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We focus on the problem of predicting missing assertions in Web Ontologies. We start from the assumption
that individual resources that are similar in some aspects are more likely to be linked by specific relations:
this phenomenon is also referred to as homophily, and emerges in a variety of relational domains. In this
article, we propose a method for: (i) Identifying which relations in the Ontology are more likely to link sim-
ilar individuals, and (ii) Efficiently propagating knowledge across chains of similar individuals. By enforcing
sparsity in the model parameters, the proposed method is able of selecting only the most relevant relations
for a given prediction task. Our experimental evaluation demonstrates the effectiveness of the proposed
method in comparison with state-of-the-art methods from the literature.
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1. INTRODUCTION

In the perspective of the Semantic Web (henceforth SW) [Berners-Lee et al. 2001]] as
a Web of Data, standard knowledge representation formalisms are being adopted for
publishing data that are semantically annotated along with shared vocabularies (Web
ontologies). In particular, this phenomenon is testified by the popularity of the Linked
Data (LD) initiative [Bizer et al. 2009a; Heath and Bizer 2011] and the growth of
the Linking Open Data (LOD) clou a set of interlinked datasets, which includes
large scale and popular knowledge bases (KBs) such as DBpedia [Auer et al. 2007],
Freebase [Bollacker et al. 2008] and YAGO [Suchanek et al. 2007].

Owing to their inherent distributed and dynamic nature and scale, these KBs are of-
ten far to be complete. For instance, as of October 2013, 75% of the persons in Freebase
were missing the nationality property value, and coverage for less common properties
can be even lower (as discussed also in [Dong et al. 2014]).

In this article we focus on the problem of predicting missing property values of indi-
vidual resources contained in SW KBs. In the literature this task is often referred to
as assertion prediction or knowledge graph completion [Bordes and Gabrilovich 2014].
Let us consider the following example:

Example 1.1 (Academic Domain). Let us consider a KB regarding the academic
domain. It contains the following set of assertions for individuals of interest:

{Researcher(MARK), Researcher(LUCAS), Researcher(JOHN),
advisor0f (MARK, LUCAS), worksWith(LUCAS, JOHN),
affiliatedTo(MARK, EFFALG), affiliatedTo(JOHN, COM) 1.

Such assertions encode the following facts: (i) Mark, Lucas and John are researchers,
(i1) Mark is the advisor of Lucas, and Lucas works with John, and (iii) Mark and
John are affiliated, respectively, to the “Efficient Algorithms” (EFFALG) and “Complexity
Management” (COM) research groups. Let us assume also that Lucas, as a researcher,
has to be affiliated to a research group, but an explicit assertion may not be con-
tained or may not be logically derivable from the KB: it may be one of the previ-
ous or some other group. In such cases, one may resort to an assertion prediction

1As of April 2014, the LOD cloud is composed by 1091 interlinked KBs, describing 8 x 106 entities and
188 x 10° relationships holding between them [Schmachtenberg et al. 2014].
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method exploiting available assertions to find the most likely filler = for the assertion
affiliatedTo(LUCAS, x). [ |

In the literature, this and related problems have often been tackled by exploiting
machine learning methods [[d’Amato et al. 2010; Rettinger et al. 2012; Nayak et al.
2012]]. A major issue with existing assertion prediction methods is that they are often
computationally impractical, or induce prediction models that are difficult to interpret
by domain experts (see Sect. [5 for a detailed discussion on this topic). Our aim is to
provide a solution that may cope with such issues.

Contribution. In this article we focus on a method, named Adaptive Knowledge
Propagation (AKP), for predicting missing property values of individual resources in
Web Ontologies. AKP is based on the following intuition: related entities influence each
other, and those that are linked by specific relations are more likely to share common
properties. This phenomenon is referred to as homophily, and arises in a vast array
of studies on networks [McPherson et al. 2001; Aggarwal 2011]l. For example, in social
network friends tend to share common characteristics, such as religious beliefs or po-
litical views. However, not every relation is equally likely to link entities with similar
properties. For instance, it has been observed that talkative persons tend to have silent
friends and vice-versa, while partners (in a married couple) are more likely to belong
to different genders [Koutra et al. 2011].

Hence, we propose a method for exploiting such heuristics to fill information gaps.
In particular, AKP works as follows. (i) First, it identifies which relations in the KB
are more likely to link similar entities: we refer to such relations as homophilic rela-
tions. (ii) Then, it leverages such relations for efficiently propagating knowledge across
chains of related entities. In this way, AKP can effectively predict the value of miss-
ing entity properties (such as religious beliefs or political views in a social network
domain) in a Web Ontology.

AKP is closely related to Graph-based Semi-Supervised Learning (SSL) meth-
ods [Chapelle et al. 2006]: such methods rely on a similarity graph defined over en-
tities for propagating information across them. The main limitation of Graph-based
SSL methods is that they assume that the similarity graph is already given. In this
article, we overcome this limitation by proposing a method for learning the optimal
similarity graph, by leveraging the relationships holding between entities in the KB.

AKRP is especially useful with real-world shallow ontologies [Shadbolt et al. 2006],
which are characterized by a relatively simple terminology and populated by very large
amounts of instance data, such as social networks or citation networks. Shallow ontolo-
gies like Freebase and YAGO are particularly frequent in the LOD cloud: to organize
vast amounts of data, LOD knowledge bases tend to rely on shallow ontologies with
low expressiveness and granularity.

Specifically, in this article, we make the following contributions:

— In Sect.[3|we discuss a method, inspired to Graph-based SSL methods, for efficiently
propagating knowledge among similar instances.

— In Sect. [d]we propose a method for learning an optimal similarity graph for a given
prediction task: the method leverages a set of semantically diverse relations among
examples holding in the ontology.

The method proposed in this article is a significant advance w.r.t. our previous work
in [Minervini et al. 2013; |Minervini et al. 2012f, in which we adopted kernel-defined
weights to construct the similarity graph. However, such weights were lacking a mean-
ingful interpretation, as they depend on the topology of the embedding space [Shawe-
Taylor and Cristianini 2004] (a common characteristic of many statistical learning
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models). Moreover, it was observed that they were sensitive to the choice of the hyper-
parameters.

In this article, we leverage a set of heterogeneous (and possibly complex) relations
holding between examples in the ontology for learning an optimal similarity graph.
During the construction of such a graph, each relation is associated to a relevance
score, which has an immediate interpretation in terms of how likely the relation is to
link two examples in the same class.

The proposed method is also very efficient: by exploiting recent results on the
problem of solving symmetric and diagonally dominant linear systems [Cohen et al.
2014; Peng and Spielman 2014], where the coefficient matrices model how informa-
tion spreads across entities, we are able to achieve nearly-linear complexity in both
(statistical) inference and learning. For such a reason, the proposed method is scal-
able and hence suitable for applications involving real, large-scale knowledge bases.
We also provide extensive evaluations on the effectiveness of the proposed method in
comparison with state-of-the-art methods in the related literature.

Summary. The remainder of this article is organized as follows. In Sect. |2 we re-
view the basics of semantic knowledge representation and reasoning tasks, and we
introduce the concept of transductive learning in the context of Semantic KBs. Then
we illustrate the details of the proposed knowledge propagation method: in Sect.
we show a transductive inference procedure using a similarity graph for efficiently
propagating knowledge across similar entities so to complete missing values; comple-
mentarily, in Sect. |4| we propose a method for learning an optimal similarity graph to
be exploited by the propagation procedure. In Sect. |5, we briefly survey related works.
In Sect. [6] we experimentally evaluate the proposed method on several datasets. In
Sect.|7) we summarize AKP, outline its limitations and discuss possible future research
directions.

2. BASICS

In this section, we introduce the basic concepts in this article, including the knowl-
edge representation formalisms and inference services, and the problem of transduc-
tive classification in Semantic Web KBs.

2.1. Representation and Deductive Inference

Knowledge Bases. For the sake of generality, we will adopt the notation of Descrip-
tion Logic (DL) [Baader et al. 2007] for recalling representation for the KBs and rea-
soning services to be possibly exploited for retrieving relations between entities (indi-
viduals). However, from a more operational viewpoint, the methods investigated in this
article can be easily applied to KBs expressed with representation formalisms based
on RDF [Hayes and Patel-Schneider 2014] such as OWL2 DI [Grau et al. 2012].

A KB describes a set of objects (or entities), their attributes, and the relations be-
tween them. The core elements are atomic concept names No = {C, D,...}, each in-
terpreted as a subset of objects in the domain (e.g. Person and Article) and atomic
role names Nr = {R, S, ...}, each interpreted as a binary relation over the domain (e.g.
friendOf, author0f). Domain objects (such as persons in a social network, on articles
in a citation network) are represented by individuals N; = {a,b,...}.

Depending on the underlying DL language, a set of constructors is available for
building complex concept and role descriptions.

20WL 2 DL is based on SROZQ(D). We sometimes will use the related terminology with concepts and roles
are referred to as classes and properties, respectively. Classes, properties and individuals are represented by
their corresponding IRIs.

ACM Transactions on the Web, Vol. V, No. N, Article , Publication date: January YYYY.



Formally, a KB can be seen as made up of three components X = (7,R,.A). The
TBox T is a set of terminological axioms relating concepts, generally inclusion axioms
(C C D) or equivalence axioms (C = D). The RBox R is a set of similar terminological
axioms that relate roles. Finally, the ABox A is a set of extensional axioms, known as
assertions, relating individuals with concepts and roles, that will be denoted as follows:
C(a) (concept assertion) and R(a,b) (role assertion). In the following, we will denote
with Ind(K) the set of individuals occurring in K. The standard DL model theory will
be adopted, with = indicating logical entailment with respect to the models of K.

Inference Services. Various inference services are available for querying DL KBs.
Instance Checking consists in deciding whether K = Q(a) or K = r(a,b) holds, where
Q is a given query concept, and «a, b are two individuals. The Open World Assumption
(OWA) is generally adopted when reasoning over DL KBs and Web ontologies hence
it may be not possible to determine the membership of an individual a to some given
concept @ and to its complement —Q), since K = —Q(a) does not follow from K [~ Q(a).
This may be caused by an absence of specific disjointness axioms. Concept Retrieval is
the related inference that aims at collecting individuals that belong to the given query
concept: retrievali (Q) = {a € Ind(K) | K = Q(a)}.

In addition to such inference services, it is also possible to express more complex
queries. Given an (infinite) set of variables Ny, a Conjunctive Query (CQ) ¢ is a con-
junction of concept and role atoms C(z) and R(z,y), with z,y € Ny U Ny, built on
the signature of K. The set of variables Var(q) in a conjunctive query ¢ is composed
by answer variables, and (existentially) quantified variables. Informally, a binding of
the variables Var(g) in a CQ ¢ w.r.t. some model of K determines the satisfiability of
a query and a result, via the values assigned to the answer variables. Given a CQ ¢,
K |= q denotes the satisfiability of ¢ w.r.t. all models of the KB K.

2.2. Transductive Learning in Web Ontologies

In this work, we focus on the problem of predicting the missing values of properties
for a given set of entities in a KB. To this purpose, we will resort to transductive learn-
ing [Vapnik 1998] to complement the traditional inductive learning setting. While the
latter focuses on the creation of general classification models exploiting the available
training examples, that can be applied to test instances, the former aims at generaliz-
ing directly from training cases, which explicitly have / do not have the given property,
to specific test instances. The approach followed in this work, however, can be further
generalized to unseen individuals quite simply, using, for example, methods like the
one outlined in [Bengio et al. 2006].

Specifically, our method will be able to propagate property information from ob-
served training cases (entities where the considered properties can be observed) to
test cases (entities where such properties cannot be either observed, or deductively
inferred).

We cast the problem of predicting a missing binary property of individual resources
as a binary classification problem. The target property may be an explicit concept-
membership (i.e. a relation between an individual and a concept) or may be cast as a
decision on the membership to the part of a given role domain whose individuals are
related to a particular filler. Entities (represented by the individuals occurring in the
KB) for which the value of such property is known are considered as labeled instances;
otherwise, they are considered as unlabeled instances.

The aim will be learning a discriminant function (also referred to as labeling func-
tion) defined over the set of examples: given a labeled or unlabeled instance, the func-
tion will return a label indicating its class (either positive or negative) that is if the
instance has the given property or not.
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More formally, the learning problem can be stated in its general form as fol-
lows [Chapelle et al. 2006]:

Definition 2.1 (Transductive Individual Classification).

Given
— A set of examples X C Ind(K), partitioned into:

— the sets of positive and negative examples, X and X_; (labeled instances)
— the set of neutral examples X, (unlabeled instances)

Find A discriminant function * : X — {—1,+1}, defined over X, assigning one of the
two labels, where +1 corresponds to the positive class, and —1 to the negative class.

This labeling function should predict the most likely labels for the unlabeled instances
while assigning to the others labels that are coherent with the given classification.

Note that, especially with datasets from the LOD cloud, it may be difficult to find
explicit negative examples for a given attribute or property. This is often due to the
limited expressiveness of the knowledge representation formalism being employed.
For instance, a KB expressed in RDF Schema [[Guha and Brickley 2014] cannot be
inconsistent, except for a few limited cases related to disjoint data-types.

A possible solution to this problem is resorting to a heuristic called the Local Closed
World Assumption (LCWA) [Galarraga et al. 2013; Dong et al. 2014]: the idea is to
consider the knowledge about a specific property R (e.g. birthDate) of an individual a
to be locally complete if a value for R is already specified for the individual a.

More formally, let O(a, R) = {b € Ind(K) | K = R(a,b)} denote the set of individuals in
K related to a by the given role R. Given a candidate assertion R(a,b), its classification
(according to the LCWA) is assigned as follows: if R(a,b) € O(a, R), then a is considered
as positive. Conversely, if R(a,b) ¢ O(a, R) and |O(a, R)| > 0 then a will be assumed
as negative, assuming that the K is locally complete for the pair (a, R). If O(a,R) = 0
then a will be considered as unlabeled (for missing filler on R(a,-)), and will have to be
predicted by using assertion prediction methods.

This strategy of collecting negative examples by assuming local completeness is also
adopted in [Losch et al. 2012; |[de Vries 2013], two related works on assertion predic-
tion methods. In the empirical evaluations in Sect. [6] for the sake of comparison, we
reproduced the experimental settings employed in [Losch et al. 2012; /de Vries 2013|]
by following the LCWA, and using the unlabeled examples as a source for negative
examples under the assumption of local completeness.

Example 2.2 (Academic Domain — cont.). Continuing Ex. let us consider the
task of predicting whether Lucas is affiliated to the Efficient Algorithms (EFFALG) re-
search group. It can be cast as an assertion prediction task, where Mark is a posi-
tive example and Lucas an unlabeled example of that research group membership, i.e.
X, = {MARK}, X, = {LUCAS}. A problem may arise if, due to the OWA, no negative ex-
ample of the membership to EFFALG is available: unless explicitly stated in the KB I,
not knowing whether a researcher is in EFFALG does not imply that it is not a member
of the research group. However, since we know that John is a member of the Complex-
ity Management group, one can resort to the LCWA and assume the knowledge about
its research group membership is locally complete. This allows considering John as a
negative example, i.e. X_ = {JOHN}.

Then, given X, = {MARK}, X_ = {JOHN} and X, = {LUCAS}, the research group of
Lucas can be recovered by finding a discriminant function f* : X — {—1,4+1}, which
associates a binary class (positive or negative) to all researchers, depending on the
predicted value of their affiliation to the Efficient Algorithms research group. |
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It is also possible to use other strategies for collecting negative examples. For in-
stance, (i) one might ask human experts to provide for negative examples explicitly,
or (ii) add logical axioms to the knowledge base (such as disjointness axioms), so to
identify assertions whose truth value is false. They may also be learned (e.g. see [Fleis-
chhacker and Volker 2011]).

In Sect.|3| we show how a given similarity graph, defined over a set of examples X,
can be used for efficiently propagating label information from labeled examples in X
and X_ to unlabeled examples in X, through (chains of) relations in the similarity
graph.

In Sect. 4] we show how an optimal similarity graph can be learned from data, by
leveraging the relations holding between examples in X in a knowledge base K. In
particular, we show that the problem of finding the optimal similarity graph can be cast
as an optimization problem, which can be solved using gradient-based optimization.

3. KNOWLEDGE PROPAGATION

In this section, we show how a similarity graph between examples in X can be used
for propagating label information from labeled to unlabeled examples in X.

Let X be a set of n =|X| examples, of which only | =|X, U X_|, with [ < n, are la-
beled (positive or negative), and the remaining u =|X,| = n —[ are unlabeled (neutral).

We assume we are provided with a weighted undirected similarity graph defined
over examples X, encoding the similarity relations between examples. Such a graph
is represented by its adjacency (weight) matrix W € R"*", where W,; is the weight
associated to the edge connecting examples z;,2; € X. In such a graph, edges with
a strictly positive weight encode similarity relations between examples. If W;; > 0,
examples z;,z; € X are linked by a similarity relation with weight W;;. On the other
hand, if W;; = 0, there is no edge connecting z; and x;.

We can use the similarity graph, represented by W, for propagating label informa-
tion across similar individuals. Following [Zhu et al. 2003], we can define a penalty
term (or cost function) over labeling functions f : X — {—1,+1} that penalizes func-
tions f that do not assign similar labels to examples connected by an edge in the
similarity graph. Note that each labeling function f can also be written as a vector

f=[f(z1),..., f(:vn)]T, where f; € {—1,+1} is the label of the i-th example z; € X. The
penalty term can be defined as follows:

2

E(f) = % Z Z W [f(i) — £(z)]

z,€X IjEX
(1)
=T (D-W)f
= fTLf,

where D € R"*" is a diagonal matrix such that D;; = Z?Zl W,;, and L € R"*" is the
graph Laplacian [Spielman 2010]], defined as L =D — W.

Given an input discriminant function f, the penalty term in Eq. associates, for
each pair of examples z;,z; € X, a non-negative penalty W;; [f(z;) — f (q;j)]Q. This
quantity is 0 when W;; = 0, i.e. when z; and z; are not linked in the similarity graph,
and when f(x;) = f(x;). Otherwise, the penalty is strictly positive.

In other terms, the penalty term defined in Eq. encodes our assumption that the
optimal discriminant function f should tend to assign the same labels to examples
linked by edges with strictly positive weights in the similarity graph. This allows the
label information to propagate across paths in the similarity graph represented by W.
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3.1. Transductive Learning as an Optimization Problem

The penalty term in Eq. penalizes labeling functions that do not assign similar
labels to examples connected by an edge in the similarity graph.

Let L = X, U X_ denote labeled examples, and let U = X, denote unlabeled ex-
amples. The problem of finding an optimal discriminant function f* can be cast as an
optimization problem, where: (i) f* is enforced to be consistent with training labels,
and (ii) f* minimizes the penalty term E(-), defined in Eq. . More formally, the opti-
mal labeling function f* can be found by solving the following optimization problem:

minimize E(f)
fe{-1,+1}» (2)
subjectto Vze L: f, =y,

where y € {—1,0,1}" is a label vector containing labels for labeled examples, such that
yi = +1 (resp. y; = —1)if z; € X, (resp. z; € X_),and y; = 0if z; € X,.

By minimizing the penalty term E(-) defined in Eq. , the optimal labeling function
f* is likely to assign similar labels to examples connected by an edge in the similarity
graph. This allows label information to propagate across similar examples.

The constraint Vo € L : f; = y; enforces the labels of all labeled examples z; € L to
f; = +1 (resp. f; = —1) if they are positive (resp. negative) examples: training labels are
considered as immutable, under the assumption that they are correct. If training labels
can be noisy, it is possible to relax the constraint in Eq. into a soft constraint. This
relaxation allows the labeling function to relabel training examples, but penalizes the
labeling functions that are not consistent with training labels. The new optimization
problem can be defined as follows:

minimize 7 f; —y; 2L E(f ,
minimize ];e:L( yi)© + E(f)

where n > 0 is a user-specified parameter that specifies the magnitude of the penalty
associated with inconsistency with training labels. For simplicity, in the following, we
assume training labels are correct. Allowing training labels to be noisy does not impact
the scalability properties of the proposed method.

However, constraining the discriminant functions f to only return discrete values
(i.e.Vz € X : f(z) € {—1,+1}) has two main drawbacks:

(1) Each discriminant function f can only provide a hard classification in {—1,+1}
(either positive or negative), without yielding any confidence measure.

(2) The penalty term E(-) in Eq. defines the energy function of a discrete Markov
Random Field, where calculating the marginal distribution over labels of unlabeled
examples is inherently difficult [Koller and Friedman 2009].

For overcoming these problems, in [Zhu et al. 2003] authors propose a continuous
relaxation of discriminant function f, by allowing a continuous range of real values
as possible outcomes (by using f : X — [—1,+1] instead of f : X — {—1,+1}). The
relaxation allows defining a much simpler optimization problem, with very interesting
complexity properties:

minimize E(f) + efTIf
fe[—-1,+1]" (3)

subjectto Vz e L: f; =y;,

where ¢ > 0 is a small weight that (i) guarantees the uniqueness of a global solution
to the optimization problem, and (ii) allows the label values to decay as the distance
from the nearest labeled examples increases in the similarity graph.
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Without loss of generality, assume that the vectors f and y, and the matrices W
and L are partitioned w.r.t. the membership of examples to the set of labeled examples
L =X, UX_ and unlabeled examples U = X:

L _lye _|Wrr Wiy _ |Lzr Ly
f= [ } ’ = [YU:| ’ W= [WUL WUU] ’ L= {LUL LUU:l ’ (4)

The optimization problem in Eq. has a unique, global solution, which can be

calculated in closed form. The optimal discriminant function is given by £* = [f}, ;] r
where f; =y, i.e. the labels for labeled examples in L coincide with training labels,
and f}; is calculated as follows:

ff} = (LUU + GI)_leLyL. (5)

where ' = f*(z;) € [-1, +1] is predicted label for the i-th example z; € X.

It is important to note that, given an example ©z € X, f*(z) =~ 1 (resp. f*(z) =~ —1)
means a high confidence that the example is in the positive (resp. negative) class, while
f*(x) ~ 0 denotes a very low confidence in the labeling, which is given by sgn(f*(z)).

An intuitive interpretation for the proposed model is the following: the similarity
graph W can be interpreted as an electric network [Bengio et al. 2006|] with conduc-
tance W,; between nodes ¢ and j: positive examples are connected to a positive voltage
source (+1V), negative examples are connected to a negative source (—1V'). Eq. (5) is a
solution to the problem of computing the voltage on the unlabeled examples, to assess
whether it is positive or negative.

Complexity of Computing the Closed Form Solution. Indeed computing f}; in Eq.
can be reduced to solving a linear system in the form Ax = b, with A = (Lyy + €l),
b = Wy ff and x = ;. Alinear system Ax = b with A € R"*" can be solved in nearly
linear time if the coefficient matrix A is SDD. In Eq. , the matrix (Lyy + €I) is SDD
since the graph Laplacian L is SDD [Spielman 2010].

In [[Cohen et al. 2014], authors propose an efficient algorithm for solving SDD lin-

ear systems: it has an approx. O(mlog'/?n) time complexity, where m is the number
of non-zero entries in A. An efficient parallel solver for SDD linear systems is also
discussed in [Peng and Spielman 2014].

4. LEARNING TO PROPAGATE KNOWLEDGE IN WEB ONTOLOGIES

In Sect. |3, we showed how a similarity graph defined over a set of examples X can be
used for efficiently propagating label information to all examples in X. Specifically, we
showed how this is equivalent to finding an optimal labeling function f* : X — [—1, +1]
with respects a given set of properties: consistency with training labels, and smoothness
on the similarity graph. In this section we discuss how we can exploit the relations
holding between examples X in the KB for learning an optimal similarity graph.

As already mentioned in Sect. |1, the underlying assumption in this work is that re-
lated individuals influence each other: some relations may be homophilic, in the sense
that related individuals may tend to share a set of common properties.

Homophily is the tendency of individuals to associate with similar others [Aggarwal
2011]], and it is a phenomenon that occurs in a wide variety of networked domains.
For example, in social networks, friends are more likely to share several characteris-
tics such as their political views, occupations, interests and beliefs [[Aggarwal 2011}
McPherson et al. 2001]]. The main problem we tackle in this article is that this is not
always true: e.g. in social networks, talkative people tend to befriend silent ones and
vice-versa [Koutra et al. 2011]. For such a reason, we need to identify which relations
are homophilic, before relying on them for propagating knowledge across examples.
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Combining Multiple Similarity Graphs. For identifying homophilic relations,
the proposed method proceeds as follows. For each relation type rel; between examples
in X (such as friendOf or advisorQf), we create a corresponding undirected similarity
graph, represented by the adjacency matrix R; € {0,1}"*". The matrix R; is struc-
tured as follows: R;; = 1 iff K = rel(x;, z;) or K |= rel(z;, ;). While the relation type
rel; may be directed, the corresponding similarity graph R; is undirected, since its
role is modeling the similarity relationships between examples in X.

Following our intuition that not every relation is homophilic, we propose the follow-
ing model: we represent the adjacency matrix W of the similarity graph as a (weighted)
linear combination of the matrices R = {Ry,...,R.}, where R, is associated to the -
th relation type between individuals in X. More formally, we propose the following
parametrization for the adjacency matrix of the similarity graph W:

W => " wR;, withp; € Ry Vi (6)
=1

where each ;; > 0 is a parameter representing the weight of the relational matrix R;
in the construction of the similarity graph W.

Example 4.1 (Academic Domain — cont.). Consider the example in Ex. where
we casted the problem of predicting missing memberships to the Efficient Algorithms
research group as an assertion prediction problem.

Assume we successfully identified that the advisor/advisee relationships between
researchers are homophilic, i.e. an advisor and its advisee are likely to be in the same
research group. We can construct a similarity graph between examples in X with ad-
jacency matrix W, such that W;; = 1 and W;; = 1 iff £ |= advisor0f(z;,z;), with
z;,z; € X. Note that despite the advisor0f relationship is directional, the correspond-
ing similarity graph is undirected. This is because W is a model of the (symmetric)
similarity relationships between researchers. Given the similarity graph W, encoding
our knowledge that advisors are likely to be in the same research groups as their ad-
visees, we can use W to propagate knowledge about research group affiliations across
the researchers in X, and successfully recognize that Lucas is a member of the EFFALG
research group, since his advisor Mark also is. [ ]

The parameters p = {1, ..., i} can be either provided by an expert, which already
knows which relations are homophilic w.r.t. the properties of interest. As an alterna-
tive, parameters p can be learned from data, as we show in the following.

Parameters Learning

The similarity graph W is fully specified by the set of parameters p in Eq. (6), which
may not be known in advance. The parameters ® = {u, ¢} fully specify how knowledge
propagates across the relations between examples in X. In this section, we discuss how
the optimal parameters ® can be learned from data.

In a model selection setting [Bishop 2006[], parameters © can be estimated by min-
imizing a k-fold Cross Validation (CV) Error. More formally, let the set of labeled ex-
amples L be partitioned into k folds, and denote as L; the i-th fold of L, and all other
folds as L_;. The k-fold CV Error is defined as the summation of the reconstruction
errors obtained by considering the examples in each fold L; as unlabeled, and pre-
dicting their labels. A special case of the k-fold CV Error is the Leave-One-Out (LOO)
Error [Bishop 2006], where k£ = |L|. In the following, we will minimize this quantity,
since it overcomes the non-determinism introduced by randomly sampling the % folds.

Formally, let U; = UU{z;} and L; = L\ {z;} be the new sets of labeled and unlabeled
examples, obtained by considering the example x; € L as unlabeled. For simplicity,
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we assume that x; is the first element in the enumeration of the set U;. Furthermore,
let ¢(z, 2) be a generic, differentiable loss function which measures the reconstruction
error between the real label z and the predicted label z: possible choices for the loss
function ¢ are the absolute loss ¢(z, %) = |« — 2| (used in this article), or the quadratic
loss ¢(z,%) = (z — 2)?/2. The Leave-One-Out Error can be defined as follows:

|L]

L(©®) = Zg(}’hfi)a (7

i=1

where y; represents the real label of example x; € L, and f; represents its predicted
label, computed assuming that z; was unlabeled.

The value of f; can be computed in closed form, by propagating label information
from examples in L; to unlabeled examples in U;:

fi = eTff}i = eT(LUiUi —|— GI)_leiLifLia

where e = [1,0,...,0]” is a vector used for selecting the first element of the vector of
labels inferred by the propagation process, using the closed-form solution in Eq. (5).

The parameters that minimize the LOO Error can be calculated by solving the fol-
lowing constrained optimization problem:

L A2 o2
minimize 5(9)4‘)\1”@”1‘*'?”@”2 (8)

subjectto pu >0, ¢ >0,

where the function £ is the LOO Error defined in Eq. (7), and A\, A2 > 0 weight a L,
and an L, regularization term over ©, respectively.

The weights \; and )\, are particularly useful, since they allow controlling complex-
ity of the parameters ©. In particular, \; weights a sparsity-inducing regularizer [Bach
et al. 2012[|, which controls the number of non-zero coefficients in p. This allows select-
ing only a limited number of relations for the propagation process, which leads to more
efficient models with better generahzatlon performance

The constrained optimization problem in Eq. (8) can be solved efﬁmently by using
Gradient-Based Optimization, where the search dlrectlon for the function minimum is
defined by the gradient of the LOO Error function L.

The gradient of the LOO Error function £ w.r.t. a parameter 6 € © is:

|L]

9L(©) = Z (%(af;’f) (eTZi_lzi) , with z; = (aWUT‘Li fr, 9Z; ) 9)

a0 00 M o8

i=1 4

The gradient in Eq. @) follows from the chain rule and from the gradient of f;:

of, 0 /oo
90 ae( Z; WULfL)
L [OWy L 0Z;
TZi ! (8[9]11”le - 90 Zi 1WU'iL'ifLi>
oWy 1. B
_ Ty (OWuiL,
=eZ ( 9 aer>

using the properties 9(X!) = - X"1(0X)X ! and 9(XY) = X(9Y) + (0X)Y
A simple gradient-based optimization algorithm, based on gradient descent, is out-
lined in Alg. (1] The algorithm starts by randomly initializing the parameters ®. Then,
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ALGORITHM 1: Projected Gradient Descent for Minimum LOO Error Parameters Learning
Input: Training Labels y,, Threshold +, Number of iterations 7:
Output: Minimum LOO Error Parameters ©7,0.
// Randomly initialize parameters:
0O  Init()
fort=1,...,7do
// Gradient descent step
0 — etV _pveet-1)
// Enforce the non-negativity constraints on parameters (")
Vi € O ¢y « max{yu;, 0}, € « max{e,v}
end
return ©(")

for finding a set of parameters that minimizes the loss function £, at each iteration,
the algorithm takes a step proportional to the negative of the gradient of £ w.r.t. pa-
rameters ©, so to approach a local minimum of the function L. At the ¢-th iteration,
the algorithm takes a step proportional to 7; in the direction of the negative of the
gradient. The optimal 7, is found through a simple line search, by selecting the value
which provides the largest decrement in £. The optimization problem in Eq. (8) is sub-
ject to a set of constraints, namely i > 0 and € > 0. For such a reason, we employ a
variant of the gradient descent algorithm called projected gradient descent [[Shor et al.
1985]: after each descent step, the parameters are projected in the space of valid pa-
rameters. In this case, the projection is equivalent to clamping each weight parameter
u; to 0 if it becomes negative, and the parameter € to max {¢,v}, where v € R, is a
small non-negative threshold (we empirically select v = 1076).

4.0.1. Complexity of Evaluating and Minimizing the LOO Error. Calculating the LOO Error £
in Eq. requires iterating over labeled examples in L. Specifically, for each labeled
example x; € L, it requires:

(1) Creating two sets of labeled and unlabeled examples L; = L\{z;} and U; = UU{z;}.

(2) Propagating label information from examples in L; to examples in U;.

(3) Evaluating the reconstruction error between the real label y; of z;, and its pre-
dicted label f;.

It follows that the complexity of evaluating the LOO Error is dominated by the |L|

propagation steps, and it is given by O(|L|m log!/? n) , where m and n are defined as in
the complexity analysis in Sect.

Evaluating the Gradient of the LOO Error in Eq. (9), for computing the steepest de-
scent direction, requires iterating over labeled examples in L. For each labeled exam-
ple z; € L, calculating the gradient of £ requires (1) propagating the label information
from L; to U;, (2) computing the gradient of ¢, and (3) computing e’ Z; z;.

Computing Z; ' might not be feasible if Z; is large, since matrix inversion has a time
complexity of ~ O(n*37*7). However, note that Z; = (Ly,y, + €I) is SDD: calculating

the term Z; 'z, in Eq. @) can be again reduced to solving a linear system in the form
Ax = b, with A = Z; = (Ly,u, + €I) and b = z;, where the coefficient matrix A is
SDD. As shown in Sect. |3} the complexity of this task is nearly-linear in the number of
non-zero coefficients in A.

Since the propagation step and computing Z; !z; have the same asymptotic complex-

ity, it follows that evaluating the gradient of the LOO Error V£ is also O (| L|m log"/? n).
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4.1. Retrieving Relations between Entities

As mentioned in the introduction of this article (Sect. [1)), we rely on the relations
holding between examples in the KB for building the similarity graph. Specifically, in
Eq. (6) we expressed the adjacency matrix of the similarity graph W as a linear com-
bination, with weights p, of relational similarity matrices R = {R,,...,R,}, where R,
corresponds to the i-th relation type holding between examples in X (such as friendOf
or advisor0f).

For expressing the relations holding between examples in the KB, we rely on Con-
Junctive Queries (CQ), as described in Sect. [2l Conjunctive Queries allow representing
a wide variety of relations between examples. For instance, the “co-authorship” rela-
tion between examples z;, z; € X can be expressed by the following CQ:

3z. (authorOf (x;, 2) A\ authorOf(z;, z)) ,

where z € Ny is a non-distinguished variable, representing a work co-authored by both
z; and z;. Similarly, the “co-authorship of an article in the field of Machine Learning,
which won the best paper award” can be retrieved by means of the following CQ:

3z. (author0f(z;, z) A author0f(z;, z) A BestPaper(z) A field(z,MachineLearning)).

The whole space of possible relations between examples, expressed by means of CQ,
can be too large to be used in practical applications.

Following [Bhagat et al. 2011[], we propose capturing two phenomena holding be-
tween the entities in a KB:

Homophily. A direct link between entities (such as friendship and supervision) is
correlated with those entities being similar.

Co-citation Regularity. Similar entities tend to refer or connect to the same ob-
jects (such as co-authorship and co-working).

More complex relationships can also be captured through the Conjunctive Query
framework. However, we experimentally found that only relying on Homophily and
Co-citation Regularity leads to state-of-the-art prediction results, while still leading
to interpretable models that can be learned efficiently. Thus, we rely on two types of
Conjunctive Queries for expressing relations between each pair of examples «;, z; € X:

Simple Queries. Queries representing atomic relations, in the form:
relation(z;, z;), (10)

where relation € Ny is an atomic role.
Symmetric Queries. Queries representing common relationships, in the form:

Jz. (relation(z;, z) A relation(z;,2)), and (11)
2. (relation(z, x;) A relation(z, a:J)) ,

where relation € Ng is an atomic role, and z € Ny is a non-distinguished variable.

Efficient Retrieval of Relations Expressed Using Conjunctive Queries. As opposed to other SW
query languages, Conjunctive Queries are not an officially specified query language:
there is no normative syntax, but there is a general agreement regarding their correct
formal interpretation [Hitzler et al. 2009|. For retrieving the relations expressed by
CQs as those in Eq. and Eq. (11I), we would need to write a distinct CQ for each
atomic role in the KB: this may not be feasible if there are many atomic roles in the
KB. A solution would be relying on a query language that also allows using variables
in place of atomic roles.
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As a solution, we propose relying on a SPARQL-DL [Sirin and Parsia 2007] reasoner
for retrieving relations between examples. This approach has several advantages:

— SPARQL-DL queries generalize Conjunctive Queries by allowing the use of vari-
ables in place of atomic roles.

— SPARQL-DL queries share the same syntax as SPARQL queries [Harris and
Seaborne 2013], making it straightforward to apply the same method on RDF KB
where a SPARQL endpoint is available.

Example 4.2 (Retrieving Relations Using SPARQL-DL Queries). Assume we need
to retrieve all relations expressed by Simple Queries, as in Eq. (10). Such relations
can be retrieved by the following simple SPARQL-DL query:

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

SELECT DISTINCT ?x ?y ?r WHERE {
?x ?r ?y .
?r a owl:objectProperty .

}

In the results of this query, x and y are mapped to the entities of interest, and r is
mapped to an atomic role. Similarly, all relations expressed by Symmetric Queries can
be retrieved by the following two SPARQL-DL queries:

SELECT DISTINCT ?x 7y ?r WHERE { SELECT DISTINCT ?x 7y ?r WHERE {
?X ?r _:z . _:z ?r 7x .
?y ?r _:z . _:z ?r ?y .
?r a owl:objectProperty . ?r a owl:objectProperty .

} }

Note that the variable _:z is a non-distinguished variable which does not need to be
materialized in the KB (i.e. represented by an individual in an assertion).

Assume that, for efficiency reason, we are only interested in retrieving relationships
between individuals in a specific class, such as Person. Constraining the type of the
two entities involved in the relationships is straightforward, and only requires adding
two triple patterns to the SPARQL-DL query, as follows:

?x a ns:Person .
7y a ns:Person .

4.2. Summary of the Proposed Method

The method proposed in this article relies on the relationships holding between entities

in a KB for propagating knowledge about their properties. It can be seen as composed

by a preliminary learning phase, where it identifies homophilic relations that can be

used for propagating information; and a subsequent inference phase, where such rela-

tions are efficiently used for learning missing properties of individual resources.
Formally, the proposed method proceeds as follows:

(1) Retrieve the relations holding among the examples in X by using SPARQL-DL
queries (see Sect.[4.1)), and create a set of adjacency matrices R = {R4,...,R,}.

(2) Find the parameters ® = {u, ¢} that minimize the Leave-One-Out Error by using
the proposed Gradient Descent algorithm (see Sect. [4).

(3) Use the relations in R and the learned weights p for constructing the similarity
graph W (as in Eq. (6)), and use the efficient closed form solution in Sect. [3] for
propagating knowledge across chains of similar examples.
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5. RELATED WORK

Several methods have been proposed for predicting the truth value of assertion in Web
Ontologies. Approaches proposed in literature include kernel methods (e.g. [Bloehdorn
and Sure 2007; Losch et al. 2012; |de Vries 2013]), latent factor models such as prob-
abilistic models (e.g. [Domingos et al. 2008; Rettinger et al. 2009]]), methods based on
tensor and collective matrix factorization (e.g. [Franz et al. 2009; [Tresp et al. 2009;
Nickel et al. 2011;|Drumond et al. 2012;|Nickel et al. 2012[) and energy-based methods
(e.g. [Socher et al. 2013; Bordes et al. 2013} |Bordes et al. 2014]).

In the following, we briefly summarize the pros and cons for each class of methods,
with respect to the method proposed in this work.

Kernel Methods

Kernel methods [Shawe-Taylor and Cristianini 2004]] are a class of pattern analysis
algorithms used for a variety of tasks, such as clustering, classification, regression
and ranking. While classical machine learning algorithms require the instances to
be provided in the form of a feature vector, kernel methods overcome this limitation
by only requiring a user-provided kernel function that, given two instances, returns a
measure of their similarity. For such a reason, kernel methods are particularly popular
in the analysis of complex structured objects such as trees or graphs, where deriving a
corresponding feature vector representation is non-trivial [Gartner 2009].

Several kernel functions have been proposed for learning from SW knowledge
bases, such as the Weisfeiler-Lehman [de Vries 2013]] (WL) and the Intersection Sub-
Tree [Losch et al. 2012] (IST) kernels. For assessing the similarity between two indi-
vidual resources, both the IST and the WL kernels rely on a set of syntactic features of
the neighborhood of such resources. Specifically, IST counts the number of common in-
tersection subtrees, while WL estimates the number of common isomorphic subgraphs.
Other kernel functions have been proposed in [Bloehdorn and Sure 2007; Fanizzi et al.
2012]]: however, they rely on a set of user-specified relational features, which might not
be known in advance.

Kernel methods can be very efficient and achieve state-of-the-art predictive perfor-
mance in several assertion prediction tasks. However, kernel methods induce statis-
tical models, such as separating hyperplanes, in the high-dimensional feature space
implicitly specified by the kernel function. The kernel function itself usually relies on
purely syntactic features of the relational neighborhood of two individual resources.
Both the model induced by the kernel method and the features considered by the ker-
nel function may not necessarily have a direct translation in term of domain knowl-
edge, and may be difficult to leverage in real life knowledge bases.

Latent Factor Models

Latent factor models try to find an explanation to the observed facts in a KB by means
of a set of latent factors, or unobserved variables.

Such models can be based on probability theory (such as the Infinite Hidden Seman-
tic Model proposed in [Rettinger et al. 2009]]), on matrix and tensor factorization (such
as TripleRank [Franz et al. 2009], SUNS [Tresp et al. 2009] and RESCAL [Nickel et al.
2011]]), or on an energy-based framework [LeCun et al. 2006] (such as the Structured
Embeddings model [Bordes et al. 2011]l, the Neural Tensor Network model [Socher
et al. 2013]] and the Semantic Matching Energy model [Bordes et al. 2014])).

Models in this class have been proposed for a wide range of applications, such as
assertion prediction [Nickel et al. 2012} |Socher et al. 2013; Bordes et al. 2014], query
answering on factorized probabilistic Knowledge Bases [Krompal et al. 2014] and with
incomplete information [Bordes et al. 2013].
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A limitation of these models is that, despite their predictive accuracy, it is not possi-
ble in general to interpret the latent factors in terms of domain knowledge, since they
do not necessarily need to have an interpretable meaning [Miller et al. 2009].

First-Order Probabilistic Logic Models

A variety of methods in Statistical Relational Learning [[Getoor and Taskar 2007]] try
to overcome the issues in terms of model understandability by combining First-Order
Logic (FOL) and statistical models. For instance, Markov Logic [Domingos et al. 2008]
relies on a set of weighted FOL formulas for creating a Markov Random Field, mod-
eling the interactions between different assertions in a KB. A problem with methods
in this class is that they need a possibly very expensive search process for finding the
optimal set of rules, or features, for a given assertion prediction task.

Mining Heterogeneous Information Networks

Learning from Semantic Web KBs is closely related to the problem of mining Hetero-
geneous Information Networks (HIN) [Sun et al. 2009; Sun and Han 2012bj; |Sun and
Han 2012all. An HIN is an information network modeling the interactions between a
set of entities: an HIN also carries type information about both entities and relations.
Thanks to their expressiveness, HINs are particularly suited for representing knowl-
edge of general real-world interactions across diverse domains.

The problem of propagating information in Heterogeneous Information Networks
has been discussed in literature. In [Ji et al. 2010], authors propose a method for prop-
agating information across multiple types of nodes, assuming there is a single type of
relation in the network. It differs from the present work in the following aspects:

(1) In [Jiet al. 2010] authors assume only entities are typed, without considering the
multiple, heterogeneous relation types that might occur in relational domains.

(2) In [J1 et al. 2010] parameters are learned using a simple grid search: this not
feasible if the space of parameters is high-dimensional.

In [Luo et al. 2014]], authors rely on so-called meta-paths for representing more com-
plex relations holding between entities in an HIN. The use of “meta-paths” in [Luo
et al. 2014] can be considered analogous to the use of Conjunctive Queries in the
present article. However, the work in [Luo et al. 2014] differs from the work in this
article in the following aspects: (i) They not propose any efficient way of learning the
weight of each meta-path. (ii) They do not discuss the problem of efficiently retrieving
the relationships encoded by meta-paths. In the present work, we rely on Conjunctive
Queries which have a clear and well-defined semantics, and we show that they can be
answered efficiently by existing inference services.

6. EMPIRICAL EVALUATION

In this section, we experimentally evaluate the Adaptive Knowledge Propagation
(AKP) method proposed in this article, and briefly summarized in Sect.

In the following experiments, we aim at evaluating the effectiveness of AKP in pre-
dicting missing properties of individual resources in Web Ontologies. For the sake of
comparison, we reproduced the same experimental settings used in relevant works in
related literature on assertion prediction methods.

Sources and datasets for reproducing the empirical evaluations in this article are
available on-line, with an open-source license: https://code.google.com/p/akp/. During
experiments, we used an open source DL reasoner [°| for answering the SPARQL-DL
queries used for retrieving the relations holding among examples in the KB.

3Pellet v2.3.1 — http:/clarkparsia.com/pellet/
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Table I: Ontologies considered in the experiments

Ontology DL Language #Axioms #Individuals #Properties #Classes

AIFB PORTAL ALEHO(D) 268540 44328 285 49
DBPEDIA 3.9 F. ALCH 78795 16606 132 251
BGS  ALZI(D) 825133 87555 154 6

6.1. Ontologies

We considered three real world ontologies: the DBPEDIA 3.9 Ontology [Bizer et al.
2009b], the ATFB PORTAL Ontology [Y} and the BRITISH GEOLOGICAL SURVEY (BGS)
Ontologyﬂ The characteristics of these ontologies are outlined in Tab.

— The DBPEDIA [Bizer et al. 2009b] project builds a large, multilingual KB by ex-
tracting structured data from Wikipedia and making it available in the LOD cloud,;
DBPEDIA 3.9, released in September 2013, describes 4.0 million entities.

— The ATIFB PORTAL Ontology is based on the SWRC Ontology and on metadata
available from the Semantic Portal of the AIFB Institute. It models the key con-
cepts within a research community, including researchers, articles, technical re-
ports, projects and curses. For instance, in the AIFB PORTAL Ontology, ~ 500 indi-
viduals are members of the class foaf : Person, and ~ 2400 individuals are members
of the class foaf : Document.

— The BRITISH GEOLOGICAL SURVEY (BGS) Ontology is part of an effort held by
the British Geological Survey, a partly publicly funded body for earth science, for
publishing geological data (e.g. hydro-geological, gravitational and magnetic data)
under OpenGeoscience ﬁ The BGS Ontology models several types of entities, such
as =~ 11700 named rock units, their lithogenetic types and geological themes.

6.2. Experimental Setting

For each of the ontologies discussed in Sect. we consider a different prediction
task, where we aim at completing the missing information about a given property of
individual resources The properties to be predicted are already fully available in the
initial ontologies, which serve as a gold standard.

Following the evaluation protocols in [Losch et al. 2012;|de Vries 2013], for each pre-
diction task, we partially remove the information to be predicted from the ontology, in
a k-fold Cross Validation fashion. At each iteration, this creates a set of entities for
which the property to be predicted is available (labeled examples) and a set of entities
for which it is missing (unlabeled examples). As noted in [Losch et al. 2012; |de Vries
2013]l, it is often not possible to extract negative examples from a Web Ontology. For in-
stance, in the DBPEDIA 3.9 Ontology, we can extract all US Presidents affiliated with
the Democratic Party, but we cannot extract those that are provably not affiliated with
such a political party. For collecting negative examples, we follow the strategy used in
[Losch et al. 2012;|de Vries 2013]: it is based on the Local Closed World Assumption,
discussed in Sect. [1} and consists in sampling negative examples from the examples
where the property to be predicted is already valued (under the assumption that the
knowledge about the considered property is locally complete).

In each experiment, we considered the problem of predicting the membership to each
of several classes. For each class, we performed a k-fold Cross Validation (CV), with
k = 10. Due to the large skew in the distribution of existing and missing properties,

4Static dump version V2012-02-21, retrieved from http:/www.aifb.kit.edu/web/Wissensmanagement/Portal
Shttp://data.bgs.ac.uk/, as of March 2014
Shttps:/www.bgs.ac.uk/opengeoscience/
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we evaluated the results in terms of the Area Under the Precision-Recall Curve (AUC-
PR): the AUC-PR has been shown to be a suitable evaluation metric when the number
of negative examples sensibly exceeds the number of positive examples [Davis and
Goadrich 2006].

For each method we used the same 10-folds partitioning of the dataset. For such
a reason, we report statistical significance tests using a paired, non-parametric dif-
ference test (Wilcoxon T test). We also report diagrams showing how using a smaller
sample of labeled training examples affects results.

Methods Used in Empirical Evaluations. In experiments, we compared AKP (as summa-
rized in Sect. with several state-of-the-art assertion prediction methods with dif-
ferent nature. In AKP, the regularization parameter )\, was fixed to A\, = 1078, while
the sparsity controlling regularization parameter \; was selected by cross validation:
we report the details for each experiment. We learn the similarity graph used by AKP
by minimizing the Leave-One-Out Error, as proposed in Sect. 4| In the formulation of
the Leave-One-Out Error, we used the absolute loss ¢(x, &) = |z — Z| for measuring the
discrepancy between real and predicted labels.

In the comparison, we evaluated two kernel methods: Soft-Margin Support Vector
Machine (SVM) [Shawe-Taylor and Cristianini 2004, pg. 223] and Kernel Logistic Re-
gression (KLR) [Hastie et al. 2008]. Each kernel method was used with two differ-
ent kernel functions aiming at learning from Web Ontologies: the Intersection Sub-
Tree (IST) kernel [Losch et al. 2012], and the Weisfeiler-Lehman (WL) kernel [de Vries
2013]]. As in [Losch et al. 2012], IST kernel parameters were selected in d € {1,2,3,4}
and \;5; € {0.1,0.3,...,0.9}, and WL kernel parameters in d,h € {1,2,3,4} (where d
represents the depth of the considered neighborhood graph). The parameter C' in SM-
SVM was selected in C € {0.0,107%,1074,...,10%, 10°}, while in KLR the weight ),
associated to the L, regularization term was selected in )\, € {10%,1073,...,10%}.

We also evaluated two latent factor models: SUNS [Tresp et al. 2009] and
RESCAL [Nickel et al. 2011]]. In the SUNS model, parameters ¢t and X\ were selected
int € {2,4,6,...,24} and A\, € {0,1072,1071,...,10°}. Due to the size of the considered
ontologies, in SUNS and RESCAL the RDF graph was composed by nodes correspond-
ing to (labeled and unlabeled) training examples and their neighborhood. The RDF
graph used to evaluate kernel functions and latent factor models was materialized as
follows: all (s, p, o) triples were retrieved by means of SPARQL-DL queries (where p
was either an object or a data-type property) together with all direct type and direct
sub-class relations. For each method, all parameters used in experiments were selected
by a k-fold CV within the training set, unless otherwise stated.

6.3. Results

Experiments with the ATFB PORTAL Ontology. As in [Losch et al. 2012;|de Vries 2013], the
learning task consisted in predicting the affiliations of AIFB staff members to research
groups. Specifically, in a set of 316 examples (each representing a researcher in the
ontology), the task consisted in predicting missing affiliations to 5 distinct research
groups.

The research groups described in the AIFB PORTAL Ontology are Business Infor-
mation Systems (BIK, with 109 affiliates), Complexity Management (COM, with 23 af-
filiates), Efficient Algorithms (EFFALG, with 49 affiliates), Economics and Technology
of eOrganizations (EORG, with 21 affiliates) and Knowledge Management (WBS, with
121 affiliates). For each research group, we evaluated the proposed method (jointly
with the other methods discussed in Sect. on the task of predicting whether unla-
beled examples were members of the research group. Following the Local Closed World
Assumption, discussed in Sect. [2| negative examples for each research group are sam-
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AUC-PR results — AIFB Portal

1
/ i
0.8 /
_ Method AUC-PR (mean + var.)
AKP 0.949 = 0.009
E —k~AKP AKP (\, = 0) 0.933 £ 0.010 v
O AKP (520 SUNS 0.734 £ 0.030 v
2 L svMasD RESCAL 0.845 £ 0.025 v
SVM (WL) SMSVM (IST) 0.825 4+ 0.025 v
SCKLR ST SMSVM (WL) 0.834 £ 0.025 v
0.4 KLR (IST) 0.817 4 0.029 v
“E-KLR (WL) KLR (WL) 0.837 +£0.025 v
SUNS
-©5-RESCAL
02 10% 30% 50% 70% 90%

Percentage of labeled examples used during training

Fig. 1: AIFB PORTAL — Left: AUC-PR results (mean, std.dev.) estimated by 10-fold
CV, obtained varying the percentage of labeled examples used for training — Right:
AUC-PR results estimated by 10-fold CV: ¥/V (resp. A/A) indicates that AKP’s mean
is significantly higher (resp. lower) in a paired Wilcoxon 7" test with p < 0.05/p < 0.10

Table II: AIFB PORTAL — AUC-PR test values on the task of predicting the research
group affiliation for all researchers in the AIFB PORTAL Ontology

ATFB | AKP | AKP(\; =0) | SYM(WL) | SVM(ST) | SUNS | RESCAL |
EFFALG | 951+ .051 | 038+ .063 | 838 £.137 | .836 +.130 | .855£.098 | .890 & .062
EORG | .971+.092 | .925+.163 | .956+.094 | .928+.099 | .764+.173 | .842+.230
BIK | .905+.086 | .921+.078 | .824+.106 | .825+.094 | .628 +.131 | .887 + .052
WBS 972 4+ .063 .993 £+ .007 875+ .063 | .874+.067 | .839+£.080 | .809 4 .088
COM | 944+ .145 | .885+.158 | .678+.222 | .661+.226 | 586 +.183 | 795+ .244

pled from the members of other research groups. This procedure is also followed in the
experimental evaluations in [Losch et al. 2012]] and [[de Vries 2013].

In AKP, the sparsity controlling regularization parameter \; was selected in \; €
{0,107%,107%,1072,1071, 1}, according to the performance on a validation set sampled
from the training set. For assessing the effectiveness of sparsity-enforcing regulariza-
tion, weighted by )\{, we also evaluated a variant of AKP, labeled AKP (\; = 0), where
the weight \; was fixed to 0.

In RESCAL, the parameters were selected via 10-fold CV using the training set, with
t € {12,16,...,32} and A € {1078,107%,1}: due to its computational cost, the number of
iterations for the ALS algorithm was fixed to 8, and the graph was composed only by
statistical units and their immediate neighborhoods.

Empirical results are described in Fig. [I} the table (right) summarizes the overall
AUC-PR results on the research group affiliation prediction task, obtained via 10-fold
CV (one per research group, in a one-versus-all setting). The plot shows average AUC-
PR values describes results obtained with a limited number of labeled training exam-
ples, and leaving the rest to the test: error bars represent twice the standard deviation.
Detailed results for each research group are available in Tab.

From results in Fig. (1, we can clearly see that AKP yields significantly better AUC-
PR results than every other method in the comparison, where statistical significance
was calculated with a Wilcoxon T test with p < 0.05.
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The main difficulty with this dataset is that, for some researchers, there is very
limited information available in the Ontology other than their (to be predicted) affili-
ation. In these cases, AKP successfully identified it was hardly possible to predict the
affiliations of such researchers, and assigned a label f; =~ 0 to their research group
membership, denoting a high degree of uncertainty (recall that f; € [—1, +1]).

On the other hand, methods relying on the WL and IST kernels considered re-
searchers with little available information about them similar to each other, and were
more likely to assign them to the same research group, even if it is counter-intuitive
and not necessarily correct.

The Role of Sparsity. Enforcing sparsity in the parameters, by means of the L, reg-
ularization term weighted by A\, proved to be beneficial for the proposed method. We
can clearly see that, on average, AKP yields better results than AKP (\; = 0), espe-
cially when the number of labeled training examples was very limited (i.e. 10% — 50%
of training examples).

A possible explanation for this phenomenon is that AKP (\; = 0) suffers from the
curse of dimensionality [Hastie et al. 2008]: since researchers in the AIFB PORTAL
Ontology are related by many fine-grained relations, it would require a potentially very
large number of labeled training examples for identifying the correct weights u. For
instance, the AIFB PORTAL Ontology contains many highly-specific and fine-grained
atomic roles, such as author2, author3, ..., authorN for indicating that a researcher is
the second, third or n-th author of a document. A similar phenomenon happens with
the competenceField atomic role.

For such a reason, there are many, rather infrequent, relations among researchers,
such as “share the same third competence field”, that may happen to relate two re-
searchers in the same research group, but are not always homophilic. For instance, re-
searchers in different research groups may share some non-primary competence fields.

Using a sparsity-enforcing L; regularization term sensibly mitigated this problem,
by only selecting a limited number of homophilic relations, and leading to simpler,
more efficient and more accurate knowledge propagation models.

Qualitative Analysis of Learned Models. AKP correctly identified which relations in
the AIFB PORTAL Ontology are more likely to link researchers in the same research
group, eliciting new knowledge about this domain.

Tab. shows a set of the homophilic and non-homophilic relation types discovered
during the experiments, from a total of 77 retrieved relation types. Recall that AKP
associates each relation type to a weight 1;, representing its relevancy in the construc-
tion of the similarity graph W: relation types with higher p; are more likely to be
homophilic, and vice versa. For instance, AKP correctly identified that researchers co-
authoring the same publications, sharing their main research interests, teaching the
same classes and working in the same office are very likely to be affiliated to the same
research group.

Efficiency. In this experiment, the parameters learning process in AKP took an av-
erage of ~ 500 seconds on a single core of an Intel®Core™i7 processor. This shows
that the proposed method is feasible for learning from real world KBs.

6.3.1. Experiments with the DBPEDIA 3.9 Fragment. Similarly to [Nickel et al. 2011]], we
evaluated the proposed approach on the task of predicting political party affiliations
to either the Democratic party and the Republican party for 82 US Presidents and
Vice-Presidents from the DBPEDIA 3.9 Ontology. The experiment illustrated in [Nickel
et al. 2011] uses a small RDF fragment containing the president and vicePresident
predicates only. On the other hand, in this experiment we used a DBPEDIA 3.9 frag-
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Table III: Relations between pairs of examples 1,72 € X considered in the AIFB
PORTAL Ontology and the DBPEDIA 3.9 Ontology, and the corresponding weights

AIFB PORTAL
pi >0 i =0
Jz. [publications(z,x1) A publications(z,z2)] Jz. [title(z1, 2) A title(zz, 2)]
Jz. [interest(w1, 2) A interest(zz, 2)] Jz. [mobile(z1, z) A mobile(wsz, z)]
Jz. [lecturer(z, 1) A lecturer(z, z2)| Jz. [road(w1, 2) A road(zs, )]
Jz. [room(z1, 2) A room(zz, 2)] Jz. [webpage(w1, z) A webpage(z2, 2)]
DBPEDIA 3.9
Hi >0 pi =0
vicePresident(z1, z2) successor(zy, z2)
president(z1, z2) predecessor(z1, T2)
3z. [region(xl ,z) A region(za, z)} Jz. [profession(ml, z) A profession(za, z)}
Jz. [state(z1, 2) A state(zz, 2)] Jz. [award(z1, ) A avard(zz, z)]

AUC-PR results — DBpedia 3.9 Fragment

0.8

Method AUC-PR (mean + var.) | S | S+C

/ AKP! 0.957 + 0.006 A
~©-AKP! AKP? 0.846 & 0.044 v

"
[
Hos 4/ AP SUNS 0.832 % 0.019 v
I<Dn L svMasD RESCAL 0.804 + 0.029 v
SMSVM (IST) 0.930 £ 0.011 a
SVM (WL) SMSVM (WL) 0.930 £ 0.011 A
o —<KLR (IST) KLR (IST) 0.888 £ 0.029 v
- = KLR (WL) KLR (WL) 0.927 £ 0.012 A
SUNS
—=-RESCAL
0.2
10% 30% 50% 70% 90%

Percentage of labeled examples used during training

Fig. 2: DBPEDIA 3.9 Ontology — Left: AUC-PR results (mean, st.d.) estimated by 10-
fold CV, obtained varying the percentage of labeled examples used for training — Right:
AUC-PR results estimated by 10-fold CV: ¥/V (resp. A/A) indicates that AKP’s mean
is significantly higher (resp. lower) in a paired Wilcoxon T test with p < 0.05/p < 0.10

ment, obtained through a crawling process, containing a number of potentially irrele-
vant and possibly noisy entities and relations.

The DBPEDIA 3.9 fragment was extracted through a crawling process, following
the extraction procedure proposed in [Hellmann et al. 2009]]. Specifically, the RDF
graph was traversed starting from resources representing US presidents and vice-
presidents: all immediate neighbors were retrieved, together with their related schema
information, consisting in direct classes, their super-classes and their subsumption
hierarchy. All extracted knowledge was used to create a KB, whose characteristics are
summarized in Tab.

In AKP, the sparsity controlling regularization parameter \; was selected in
{0,1078,107%,1072,1072, ..., 10%} using a 10-fold CV. For efficiency reasons, the num-
ber of iterations in the ALS algorithm used by RESCAL was fixed to 16, with param-
eters t = 32 and )\, = 1072 (given by an analysis of the dataset). For the WL kernel,
parameters were fixedtod =1 and h = 1.
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Table IV: DBPEDIA 3.9 — AUC-PR test values on the task of predicting the political
party affiliations for all presidents and vice-presidents in the DBPEDIA 3.9 Ontology

DBpedia3.9 | AKP' | KLR(WL) | KLRAST) | SUNS | RESCAL
DEMOCRATIC | .947 £.079 | 884+.116 | .879+.102 | .813£.158 | .835 £ .174
REPUBLICAN | 967 +.078 | .971 +£0.091 | .897+ .224 | .850+.122 | .7724+.172

In this experiment, the total number of retrieved relations (both simple and sym-
metric) was higher than the number of instances itself: 82 US presidents and vice-
presidents were interlinked by 25 simple relations and 149 symmetric relations. This
differs from the other experiments, where instance are only linked by a limited number
of, exclusively symmetric, relations. For such a reason, we evaluated two variants of
the proposed method: AKP!, which only uses simple relations, and AKP2, which uses
both simple and symmetric relations. Experimental results are summarized in Fig.
and AUC-PR results for each distinct political party are outlined in Tab.

We can see that AKP! yields higher AUC-PR values than every other method in the
comparison. Specifically, results obtained with AKP! were significantly higher than
results obtained with AKP2, SUNS and RESCAL (with p < 0.05) and higher than
those resulting from KLR with the IST kernel (with p < 0.1). This was not true for
AKP?: relying on both simple and symmetric relations greatly increased the variance
in AUC-PR results. An explanation is in the curse of dimensionality: as the number
of considered relations grows, it becomes increasingly difficult to identify those that
effectively encode similarities among examples.

Qualitative Analysis of Learned Models. Both AKP'and AKP?successfully identified
which relations are likely to link presidents and vice-presidents in the same political
party; some of such relations are summarized in Tab. The vast majority of such
relations was simple, suggesting that homophily (love of the same) plays a major role
on this domain. For instance, both AKP!and AKP2?identified that Presidents and their
Vice-Presidents, i.e. those linked by president and vicePresident atomic roles, are
very likely to belong to the same political party. In every experiment, the president
and vicePresident relations were assigned the highest weights in every learning task,
showing that they can be used for effectively propagating political party affiliations.

It was also interesting to note that AKP identified that some symmetric relations are
homophilic. For instance, AKP2?recognized that Presidents and Vice-Presidents coming
from the same state, region or district are more likely to be associated with the same
political party. It is also remarkable that AKP successfully recognized that not every
simple relation is homophilic. For instance, AKP recognized that a President and his
successor or predecessor (provided by the successor and predecessor relation, respec-
tively) are unlikely to be members of the same political party. This matches our knowl-
edge that the successor of a Democratic US President is more likely to be Republican,
and vice-versa.

Similarly, many symmetric relations, even if representing shared characteristics of
Presidents and Vice-Presidents, were found not to be relevant with respect to the pre-
diction task at hand. For instance, presidents and vice-presidents sharing their pro-
fession, religion or education were not considered more likely to be associated with the
same political party.

In AKP?the number of relations considered for constructing the similarity graph was
much larger than in AKP!, and many of such relations were later found irrelevant to
the prediction task. This provides a possible explanation to the better results achieved
by AKP'in comparison with AKP2,
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AUC-PR results — British Geological Survey

1
0.8 .,
P Method AUC-PR (mean + var.)
o ARP 0.897 £ 0.014
E —AKP ARP (\, = 0) 0.887 £+ 0.012
Oo6r ARP (5 = 0) SUNS 0.724 % 0.022 v
2 VM ST RESCAL 0.716 £ 0.015 v
SVM OWL SMSVM (IST) 0.735 4+ 0.026 v
SCKLR ST SMSVM (WL) 0.837  0.010
0.4 KLR (IST) 0.781 4 0.020 v
"5 KLR (WL) KLR (WL) 0.900 & 0.007
SUNS
-©5-RESCAL
02 10% 30% 50% 70% 90%

Percentage of labeled examples used during training

Fig. 3: BGS Ontology — Left: AUC-PR results (mean, st.d.) estimated by 10-fold CV,
obtained varying the percentage of labeled examples used for training — Right: AUC-
PR results estimated by 10-fold CV: v/v (resp. A/A) indicates that AKP’s mean is
significantly higher (resp. lower) in a paired Wilcoxon 7" test with p < 0.05/p < 0.10

Table V: BRITISH GEOLOGICAL SURVEY — AUC-PR test values on the task of predict-
ing the lithogenetic type for all Named Rock Units in the BGS Ontology

BGS | AKP | AKP(\; =0) | SM-SVM (WL) | SM-SVM(IST) | SUNS | RESCAL |
FLuviAL | .906 +.075 .907 £+ .089 853 + .115 .760 4+ .146 7034+ .164 | 711+ .129
GLACIAL | .889+.099 | .859+.143 | .922+.068 7094180 | 744 +.133 | 720 +.125

Efficiency. In this experiment, the parameters learning process in AKP took an av-
erage of ~ 50 seconds on a single core of an Intel®Core™i7 processor.

6.3.2. Experiments with the BRITISH GEOLOGICAL SURVEY Ontology. As in [|de Vries 2013,
we evaluated AKP on the Lithogenesis prediction problem in the BRITISH GEOLOG-
ICAL SURVEY Ontology. The task consisted in predicting missing lithogenetic infor-
mation in a set of 159 named rock units. Following [de Vries 2013], we focus on two
learning tasks, consisting in the prediction of two major lithogenetic types: “Alluvial”
and “Glacial”.

In AKP, the sparsity controlling regularization parameter \; was selected in \; €
{0,107%,107%,1072,1072,10~1, 1} using a 10-fold CV. For efficiency reasons, in RESCAL
the number of iterations for the ALS algorithm was fixed to 16; parameter selection
was gerfoamed via 5-fold CV within the training set, with ¢t € {12,16,...,32} and A, €
{107%,104,1}.

Results are summarized in Fig. 3| and grouped for each lithogenetic type in Tab.
We can see that AKP provides significantly higher AUC-PR values when compared to
kernel methods using the IST kernel, SUNS and RESCAL (p < 0.05). Also, AKP pro-
vides results comparable with those obtained by using the WL kernel, which confirms
the effectiveness of the WL kernel on this specific dataset [de Vries 2013]]. However,
the statistical models produced with the WL kernel can hardly be interpreted in terms
of domain knowledge. On the other hand, models learned by AKP explicitly represent
the importance of each relation in the knowledge propagation process.
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Fig. 4: Left: Grid-structured network — Nodes labeled as + (resp. —) entities in the pos-
itive (resp. negative) class, and only horizontal links represent heterophilic relations.
Right: Timings of knowledge propagation (inference) and LOO Error gradient calcula-
tion (learning), for a varying number of nodes in the network and labeled examples.

Also in this case, AKP was able to extract relations between rock units that are likely
to link rocks with similar lithogenetic types. For example, among a total of 23 (all sym-
metric) relations, it emerged that rocks with similar geographical distributions, thick-
ness and lithological components were more likely to share their lithogenetic type,
while their geological theme and oldest geological age were not considered informa-
tive.

6.4. Scalability

As discussed in Sect.[3] in AKP the result of the knowledge propagation process is given
by computing the labels for unlabeled examples f;; using the closed-form solution in
Eq. (5). Computing f; is equivalent to solving a linear system Ax = b, with coefficient
matrix A = Lyy + el and b = Wy pyr. Since A € R"*" is SDD, the system can be
solved in nearly linear time w.r.t. the number of edges m in the similarity graph, e.g.
by using the algorithm proposed in [Cohen et al. 2014] (O (m logl/ 2 n) time complexity).
Similar results also apply to the problem of computing the Leave-One-Out Error and
its gradient: see the complexity analyses in Sect. [3|and Sect. |4| for more details.

In our experiments, we used an open source implementationﬁ] of the Lean Algebraic
Multigrid (LAMG) [Livne and Brandt 2012||, a fast numerical algorithm for solving
linear systems with an SDD coefficient matrix. LAMG has a nearly-linear time and
space complexity in the number of non-zero elements in the coefficient matrix, and has
been shown to scale to graphs up to 47 million edges.

For evaluating the proposed model on relational domains with a growing number of
entities, we considered a network structured as the one in Fig. [4] (left): it is structured
as a grid, where entities are represented by nodes, and edges represent the relation-
ships between them. Entities on even rows belong to the negative class, while entities

"https://code.google.com/p/lamg/
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on odd rows belong to the positive class. Horizontal and vertical relations are of to two
distinct relation types, and only the former is homophilic.

In Fig. 4| we report the time required for both inference (propagating knowledge
across chains of related nodes) and learning (computing the gradient of the Leave-
One-Out Error, for finding its steepest descent direction), with a varying number of
nodes in the grid and labeled examples. Even for a very large number of nodes (10,000
entities), the closed form solution allows propagating knowledge to the whole graph
in less than 3.5 seconds. Computing the gradient of the Leave-One-Out Error is also
feasible for very large sets of nodes (10,000 entities). However, since this operation
requires a propagation step for each labeled example, its complexity grows with the
number of labeled examples |L|: this may lead to possibly intractable if the number
of labeled examples is very large. A possible solution consists in minimizing the k-
fold Cross Validation Error (the Leave-One-Out Error is a special case, with k£ = |L]),
discussed in Sect. [4] which would limit the number of required propagation steps to k.

Further Improving the Scalability of the Method. Despite the efficiency of the
proposed method and algorithms, it can still be infeasible for very large and Web-scale
graphs with Billions of unlabeled examples. Several approaches have been proposed to
tackle this problem: they can be used in conjunction with the method proposed in this
article for further improving its efficiency and scalability. In [Delalleau et al. 2005,
authors propose sub-sampling the examples in the similarity graph, so to reduce the
global graph size. In [Bengio et al. 2006]], authors propose resorting to an (approximate)
iterative propagation process, instead of computing the closed form solution discussed
in Sect. [3| In [Zhang et al. 2009], authors propose using the Nystrom approximation
for representing the Laplacian of the similarity graph. In [Fergus et al. 2009], authors
use smooth eigenvectors of the Laplacian of the similarity graph for computing the
discriminant function. In [Liu et al. 2010], authors propose using anchors (landmarks)
for representing groups of nodes in the similarity graph, significantly reducing the size
of the graph and thus the complexity of the propagation process. In [Zhang et al. 2011,
authors rely on a minimum spanning tree for approximating the similarity graph, and
minimum tree cut for propagating information across (chains of) similar examples.

7. CONCLUSIONS AND FUTURE WORK

In this article we proposed a method, named Adaptive Knowledge Propagation (AKP)
for predicting missing property values for individual resources in Web Ontologies. It
relies on the assumption that relations in a knowledge base may be homophilic w.r.t. a
given property or set of properties, depending on whether they are likely to link similar
entities. Specifically, in AKP predicting the most likely value for missing properties
consists in:

(1) Identifying homophilic relations in the knowledge base, and relying on them for
constructing an optimal similarity graph (learning phase).

(2) Efficiently propagating knowledge about missing properties of individual resources
across the similarity graph (inference phase).

Both phases are discussed in detail, and leverage recent developments in the field of
numerical optimization to achieve a nearly-linear time complexity.

We empirically showed that AKP is successful at identifying homophilic relations,
and that the extracted knowledge can elicit new knowledge about the domain of in-
terest. We also showed that AKP yields better or very competitive results in compar-
ison with several state-of-the-art assertion prediction methods proposed in literature.
Sources and datasets for reproducing the empirical evaluations in this article are avail-
able on-line, with an open-source license: https://code.google.com/p/akp/.
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