
NOFAQ: Synthesizing Command Repairs from Examples

Loris D’Antoni
University of Wisconsin-Madison

loris@cs.wisc.edu

Rishabh Singh
Microsoft Research

risin@microsoft.com

Michael Vaughn
University of Wisconsin-Madison

vaughn@cs.wisc.edu

Abstract
Command-line tools are confusing and hard to use for novice pro-
grammers due to their cryptic error messages and lack of docu-
mentation. Novice users often resort to online help-forums for find-
ing corrections to their buggy commands, but have a hard time in
searching precisely for posts that are relevant to their problem and
then applying the suggested solutions to their buggy command.

We present a tool NOFAQ that uses a set of rules to suggest
possible fixes when users write buggy commands that trigger com-
monly occurring errors. The rules are expressed in a language
called FIXIT and each rule pattern-matches against the user’s buggy
command and the corresponding error message, and uses these in-
puts to produce a possible fixed command. Our main contribution
is an algorithm based on lazy VSA for synthesizing FIXIT rules
from examples of buggy and repaired commands. The algorithm
allows users to add new rules in NOFAQ without having to man-
ually encode them. We present the evaluation of NOFAQ on 92
benchmark problems and show that NOFAQ is able to instantly
synthesize rules for 81 benchmark problems in real time using just
2 to 5 input-output examples for each rule.

1. Introduction
Command-Line Interfaces (CLI) let users interact with a comput-
ing system by writing sequences of commands. CLIs are especially
popular amongst advanced computer users, who use them to per-
form small routine tasks such as committing a file to a reposi-
tory with version control, installing software packages, compiling
source code, finding and searching for files etc. Even though this
mode of interaction is getting replaced by more natural graphical
user interfaces, CLIs are still routinely used for most scripting tasks
in Unix and Mac OS. Even the Windows operating system now of-
ficially provides complex command-line interfaces with products
such as Windows Powershell.

Since command-line interactions often require complex param-
eters and flag settings for specifying the desired intent, non-expert
users find CLIs challenging to use [3]. Moreover, after entering an
incorrect input command, the user has to deal with cryptic errors
that are hard to decipher by just looking at the verbose text-based
documentation of the commands. For these reasons, users typi-
cally resort to online help-forums for finding corrections to their
buggy commands. Unfortunately, this can also be problematic as
users need to precisely search for posts that relate to the issues with
their commands and then transform the suggested solutions to ap-
ply them in their context. Sometimes users also need to create a
new post if no relevant post exists (or can be found), and then need
to wait for hours or days to obtain a solution to their problem.

What about common errors? Recently, a tool THEFXXX1 was
developed for automatically addressing common errors when work-

1 We decided to censor the name of the tool. The tool can be found at
http://bit.ly/CmdCorrection.

ing with a CLI. If after typing a command a user receives an error
message, THEFXXX uses a set of hard-coded rules to suggest possi-
ble fixes to the user’s command. Each rule pattern-matches against
the input command and the error message, and uses these inputs
to produce a possible fixed command. Typical fixes include adding
missing flags, creating a missing directory, or changing file exten-
sions. THEFXXX has become extremely popular and, on GitHub, it
has already been starred by more than 20,000 users and has been
forked more than 1000 times. Despite its success, the tool also has
a main limitation: to add a new rule a developer first needs to un-
derstand the syntax and precise semantics of THEFXXX and then
manually hard-code the rule into the tool. Due to this complexity,
newly added rules have at times caused non-terminating or unex-
pected behaviors2.

Synthesizing repairs from examples Inspired by the success and
limitations of THEFXXX, we built NOFAQ (No more Frequently
Asked Questions), a tool for automatically addressing common
errors in CLIs. NOFAQ also uses a set of rules for fixing common
errors, but it differs from THEFXXX in the following key aspects:

1. Rules are encoded in a declarative domain-specific language
(DSL) called FIXIT.

2. To add new rules, users only provide examples of buggy and
repaired commands and NOFAQ automatically synthesizes the
desired FIXIT rules that are consistent with the given examples.

We envision NOFAQ system being used by non-developers and
end-users, who can easily extend the system by providing new
examples of fixes. The long-term goal of the system is to learn from
examples obtained from shell histories of thousands of users in an
unsupervised manner. Although a developer can write similar rules
in a system like THEFXXX manually, there are two main challenges
with doing so. First, it is not feasible to easily add thousands
of rules as end-users generally do not have contributor access to
THEFXXX’s source code. Second, even for developers, writing
correct rules is difficult and error-prone because of the complexity
of the string manipulations needed to perform the command fixes.
In fact, THEFXXX only consists of less than 100 rules in a little
over 1 year, since adding new ones is a fairly complex task.

The FIXIT DSL for encoding fix rules is inspired by the types
of rules appearing in THEFXXX and by common command repairs
requested by users on help-forums. A FIXIT rule first uses pattern
matching and unification to match the command and error mes-
sage, and then applies a fix transformation if the match succeeds.
The transformations consist of substring and append functions on
strings present in the command and error message.

We present an algorithm that efficiently synthesizes FIXIT rules
that are consistent with a given set of input-output examples using
a Version-space Algebra (VSA). VSA-based synthesis techniques
are used to succinctly represent the set of all expressions that are

2 http://bit.ly/1j7zxOr and http://bit.ly/1YgngXJ.

1 2018/10/14

ar
X

iv
:1

60
8.

08
21

9v
1

 [
cs

.P
L

]
 2

9
A

ug
 2

01
6

http://bit.ly/CmdCorrection
http://bit.ly/1j7zxOr
http://bit.ly/1YgngXJ

consistent with a set of examples [8, 11]. Even though existing VSA
data structures can represent an exponential number of FIXIT rules
in polynomial space, this space can still be quite large. To address
this problem we introduce lazy version-space algebra. Given a set
of examples, our algorithm maintains a lazy representation of only
a subset of the FIXIT rules that are consistent with the examples.
The rules missing from the version-space are only enumerated
when necessary—i.e., when a new input-output example can only
be accounted by adding a FIXIT rule that is not already present
in the version-space. Because of the careful design of FIXIT, our
synthesis algorithm has a polynomial time complexity. In contrast,
existing VSA-based synthesis techniques for string transformations
require exponential time [8]. The polynomial time complexity is
crucial for our synthesis algorithm to scale to a large number of
fix examples. Since different examples may refer to different target
rules, we propose a strategy to partition the input examples into
groups of examples corresponding to individual rules. We then use
the lazy VSA algorithm to learn the FIXIT rules for each partition.

We evaluate the synthesis algorithm implemented in NOFAQ
on 92 benchmark problems obtained from both THEFXXX (76) and
online help-forums (16). NOFAQ is able to learn the repair rules for
81 of the buggy commands in these benchmark problems from only
2 to 5 input-output examples each.

Contributions summary:

1. FIXIT, a declarative domain-specific language for encoding
rules that map a command and an error message to possible
fixed commands (§ 3).

2. A sound and complete polynomial time synthesis algorithm
based on lazy version-space algebra for synthesizing FIXIT
rules from input-output examples (§ 4).

3. An analysis of the formal properties of the FIXIT language and
its synthesis algorithm (§ 5).

4. A qualitative and quantitative evaluation of the synthesis algo-
rithm on 92 benchmarks obtained from both THEFXXX and on-
line help-forums (§ 6.2).

2. Motivating examples
We first present the main ideas behind NOFAQ using some con-
crete examples. All the example rules presented in this section are
actual rules appearing in THEFXXX system.

2.1 Adding missing file extension
Java programmers, in particular novice ones, are likely to encounter
this error when they accidentally pass a class name instead of a
source code file to the javac compiler.

cmd1: javac Employee
err1: Class names, ‘Employee’, are only accepted if annota-

tion processing is explicitly requested

Often, this error is provided by the javac compiler when it is
invoked on a file that does not have the proper .java extension. A
seasoned programmer would immediately recognize the problem
and add the extension .java at the end of the input file.

fix1: javac Employee.java

On the other hand, a novice programmer will search the web in
the hope of finding a way to address the error and understand how
to apply it to their setting. The goal of NOFAQ is to automatically
synthesize simple fixes like this one from examples provided by
experienced users and use the synthesized fixes to help novice users

who encounter similar errors. For example, let’s say that a skilled
developer provides another triple of the following form.

cmd2: javac Pair
err2: Class names, ‘Pair’, are only accepted if annotation pro-

cessing is explicitly requested
fix2: javac Pair.java

Using these two examples NOFAQ will synthesize the follow-
ing fix rule.

match [STR(javac), VAR-MATCH(1, ε, ε)]
and [STR(Class), STR(names,), VAR-MATCH(2, ‘, ’,)

STR(are), STR(only), STR(accepted), STR(if),
STR(annotation), STR(processing), STR(is),
STR(explicitly), STR(requested)]

→ [FSTR(javac), SUB-LR(0, 0, ε, .java,VAR(1))]

The first part of the rule (i.e., up to the symbol→) pattern-matches
against the command and the error message and binds the input
strings to the corresponding variables. The variables are then used
by the second part of the rule to produce the output. In this case the
SUB-LR(0, 0, ε, .java,VAR(1)) expression extracts the complete
string associated with VAR(1) (a start index of 0 and an end index
of 0 denotes the identity string extraction), and then prepends the
string ε at the beginning of it, and appends the string .java at the
end of it.

2.2 Extracting substrings
The following scenario is another common one for novice Java
programmers.

cmd1: java Run.java
err1: Could not find or load main class Run.java
fix1: java Run

Given this example and another similar one, NOFAQ synthesizes
the following rule.

match [STR(java), VAR-MATCH(1, ε, .java)]
and [STR(Could), STR(not), STR(find), STR(or),

STR(load), STR(main), STR(class),
VAR-MATCH(2, ε, .java)]

→ [FSTR(javac), SUB-LR(0,−5, ε, ε,VAR(1))]

This rule extracts the substring of the input file name starting at
index 0 and ending at the index −5 (5th index from the end of the
string) in order to remove the .java extension.

2.3 Extracting complex substrings
A user was trying to move a picture from one location to another
but got the following error message.

cmd1: mv photo.jpg Mary/summer12.jpg
err1: can’t rename ’photo.jpg’: No such file or directory
fix1: mkdir Mary && mv photo.jpg Mary/summer12.jpg

The error is cryptic for novice command-line users and does not
guide them towards the actual problem of the missing directory.
Given this example and another similar one, NOFAQ synthesizes
the following rule.

2 2018/10/14

match [STR(mv), VAR-MATCH(1, ε, ε),
VAR-MATCH(2, ε, ε)]

and [STR(can’t), STR(rename), VAR-MATCH(3, ‘, ’), STR(No),
STR(such), STR(file), STR(or), STR(directory)]

→ [FSTR(mkdir), SUB-LR(0,CPOS(/, 1, 0), ε, &&,VAR(2))
FSTR(mv), SUB-LR(0, 0, ε, ε,VAR(1)),
SUB-LR(0, 0, ε, ε,VAR(2))]

The second expression in the output extracts the directory
name—i.e., the substring that starts at index 0 and ends at the
index of first occurrence of the character /. The rule also adds a
string && at the end of the extracted string to pipe the two output
commands.

3. The command repair language FIXIT
We now describe FIXIT, a domain-specific language for expressing
repair rules. The syntax and semantics of FIXIT is presented in
Figure 1 and Figure 2 respectively. The language FIXIT is designed
to be expressive enough to capture most of the rules we found in
THEFXXX and in online help-forums, but at the same time concise
enough to enable efficient learning from examples.

General structure Each FIXIT program is a rule of the form

match cmd and err → fix

that takes as input a command s̄cmd and an error s̄err and either
produces a fixed command or the undefined value ⊥. The inputs
s̄cmd and s̄err are lists of strings that are obtained by extracting
all the space-separated strings appearing in the input command and
error message respectively. The output fix produced by the rule is
also a list of strings. From now on, we assume that the inputs and
outputs are lists of strings that do not contain space characters.

A rule has three components.

1. A list of match expressions cmd = [m1, · · · ,ml] used to
pattern match against the input command s̄cmd.

2. A list of match expressions err = [m1, · · · ,mk] used to
pattern match against the input error message s̄err .

3. A list of fix expressions fix = [f1, · · · , fm] used to produce
the new fixed command.

Match expressions A match expression m is either of the form
STR(s) denoting a constant string s or of the form
VAR-MATCH(i, l, r). A VAR-MATCH(i, l, r) expression denotes
a variable index i and requires the matched string to start with the
prefix l and end with the suffix r. We assume that no two variable
expressions appearing in the match expression have the same in-
dex. When a list of match expressions [m1, · · · ,ml] is applied to
a list of strings s̄ = [s1, . . . , sl] with the same length l, it generates
a partial function σ : N 7→ Σ∗ that assigns variables appearing in
the match expressions to the corresponding strings in the input. For
example, evaluating

[STR(mv),VAR-MATCH(1, ε, .jpg),VAR-MATCH(2, ε, .jpg)]

on the list of strings [mv, a.jpg, b.jpg] produces the function σ
such that σ(1) = a.jpg and σ(2) = a.jpg. On the other hand,
evaluating it on [mv, a.png, b.jpg] yields ⊥, as a.png does not
match the required suffix in VAR-MATCH(1, ε, .jpg).

Fix expressions A fix expression f is either of the form FSTR(s)
denoting the constant output string s, or of the form
SUB-LR(pL, pR, l, r,VAR(i)) denoting a function that is applied
to the string si matched by the variable VAR(i). This function out-
puts the string l · m · r, where · denotes the string concatenation
operator and m = substr(s, jL, jR) where jL and jR are the

Fix rule r := match cmd and err → fix
Input cmd cmd := [m1, · · · ,ml]
Input error err := [m1, · · · ,mm]
Output cmd fix := [f1, · · · , fn]
Match expr m := STR(s)

| VAR-MATCH(i, l, r)
Fix expr f := FSTR(s)

| SUB-LR(pL, pR, l, r,VAR(i))
Pos expr p := IPOS(k)

| CPOS(c, k, δ)
Variables and constants:
s, sl, sr : string i, k, δ : integer

c : character

Figure 1: Syntax of the rule description language FIXIT.

indices resulting from respectively evaluating the position expres-
sions pL and pR on the string s. Here, given a string s = a0 . . . an,
the expression substr(s, jL, jR) denotes the string ajL . . . ajR−1

if jL, jR ≤ n + 1 and the undefined value ⊥ otherwise. Notice
that, unlike previous VSA-based languages [8], FIXIT does not al-
low binary recursive concatenation; this is one of the key features
that enables polynomial time synthesis.

Positions expressions A position expression p can be one of the
following types of expressions.

• A constant position expression IPOS(k), which denotes the in-
dex k if k is positive and the index |s|−k if k is negative. If k =
0, this expression evaluates to 0 when evaluated for pL (i.e.,
the starting index of the substring) and to |s| when evaluated
for pR, where |s| denotes the length of the string s. For exam-
ple, in the function SUB-LR(IPOS(0), IPOS(0), ε, ε,VAR(1)),
where σ(1) = File the first constant position evaluates to the
index 0, while the second constant position evaluates to the in-
dex |File| = 4.
• A symbolic position expression CPOS(c, k, δ), which denotes

the result of applying an offset δ to the index of the k-th oc-
currence of the character c in s if k is positive, and the result
of applying an offset δ to the index of the k-th to last occur-
rence of the character c in s if k is negative. For example, given
the string www.google.com, the expression CPOS(., 1,−2) de-
notes the index 2 (two positions before the first dot), while the
expression CPOS(.,−1, 2) denotes the index 12 (two positions
after the last dot). This operator is novel and can express op-
erations that are not supported by previous VSA-based work.
In particular, FlashFill [8] only allows the extraction of the ex-
act position of a character and not positions in its proximity.
Despite this additional capability, FIXIT programs can be syn-
thesized in polynomial time.

Comparison with FlashFill DSL At the top-level, FIXIT consists
of match expressions over original command and error message,
which perform pattern-matching and unification of variables with
strings. This form of matching and unification is not expressible in
FlashFill, so we cannot use it to learn the fix rules directly. How-
ever, we can use FlashFill as a subroutine to learn string transforma-
tions corresponding to expressions similar to SUB-LR expressions
in NOFAQ. However, the FlashFill DSL has two major limitations:
1) No support for offsets from regular expression matches in com-
puting position expressions (in contrast to FIXIT’s CPOS(c, k, δ)
operator), and 2) A finite hard-coded token set for regular expres-
sions (e.g. no support for constant character tokens). Moreover, as
described in subsection 4.3 and section 8, our SUB-LR operator
yields a synthesis algorithm that operates in polynomial time in the

3 2018/10/14

Jmatch cmd and err → fixK(s̄cmd, s̄err) =

{
JfixKσ σ = unify(cmd, s̄cmd) ∪ unify(err, s̄err) ∧ σ 6= ⊥
⊥ otherwise

unify([m1, · · · ,ml], [s1, · · · , sl]) =
⋃

1≤j≤l match-expr(mj , sj),

match-expr(STR(s1), s2) =

{
σ0 if s1 = s2 and σ0 is the always undefined function
⊥ otherwise

match-expr(VAR-MATCH(i, l, r), s) =

{
σ if ∃ δ s.t. s = lδr and σ(i) = s and σ is undefined on every j 6= i

⊥ otherwise

J[f1, · · · , fn]Kσ = [Jf1Kσ, · · · , JfnKσ]

JFSTR(s)Kfun
σ = s

JSUB-LR(pL, pR, l, r,VAR(i))Kfun
σ = l ·m · r if (i, s) ∈ σ and m = substr(s, JpLKpos

s,L, JpRKpos
s,R)

JIPOS(k)Kpos
s,d =

k k > 0

|s|+ k k < 0

0 k = 0 ∧ d = L

|s| k = 0 ∧ d = R

JCPOS(c, k, δ)Kpos
s,d =

I[k − 1] + δ k > 0 and I = indices(s, c)

and |I| ≥ k
I[l − k] + δ k < 0 and I = indices(s, c)

and |I|+ k ≥ 0 ∧ l = |I|
⊥ otherwise

indices(s, c) = [i0, . . . , ij] where ∀ 0 ≤ l < j : il < il+1, s[il] = c and ∀j : s[j] = c→ ∃ 0 ≤ l < j : il = j

Figure 2: The semantics of the command repair DSL FIXIT.

number of examples, which enables the algorithm to scale to a large
number of examples. Because of the recursive binary concatenate
expressions in FlashFill, the DAG intersection based synthesis al-
gorithm is exponential in the number of examples.

4. Synthesizing rules from examples
In this section we first describe our algorithm for synthesizing a
single FIXIT rule from a set of examples of concrete command
fixes. We then describe a multi-stage partitioning algorithm for
learning multiple FIXIT programs from a large undifferentiated set
of command repair examples.

The algorithm for learning a single FIXIT rule is described in
Figure 8; it takes as input a list of examples E = [e1, . . . , en]
where each example ei is a triple of the form (s̄cmd, s̄err, s̄fix)
and outputs a symbolically represented set of FIXIT rules R
consistent with E—i.e., for every rule r ∈ R and example
ei = (s̄cmd, s̄err, s̄fix), the rule r outputs s̄fix on the input
(s̄cmd, s̄err).

The algorithm processes one input example at a time, and after
processing the first i examples Ei = [e1, . . . , ei] the algorithm
has computed a set of rules Ri consistent with Ei. At the end, the
algorithm outputs one of the rules in Rn. We use ⊥ to denote the
undefined result. If at any point our algorithm returns ⊥ it means
that there is no FIXIT rule that is consistent with the given set of
examples.

4.1 Symbolic representation of multiple rules
Since there can be exponentially many rules consistent with the
input examples, we adopt a symbolic representation of the set R
that is guaranteed to always have polynomial size. Our synthesis
algorithm takes as input a list of examplesE and produces as output
a symbolic rule of the form match cmd and err →s fixes,
where cmd and err are tuples of expressions that can consist of
either constants or variables, and fixes = [f1, . . . , fm] is a list
of expressions that symbolically represents a set of outputs that
is consistent with the examples E. Formally, each fi in fixes
is either a constant expression FSTR(s) for some s, or a set of

substring expressions {su1, . . . , suk}, where each sui is of the
form SUB-LR(pL, pR, l, r,VAR(j)). Intuitively, if we replace each
set with one of the fix expressions it contains, we obtain a FIXIT
rule. If each fi contains k elements, this symbolic representation
models kn programs using an expression of size kn.

4.2 Lazy rule representation
The core element of our algorithm is a lazy representation of the
rules that represents match and fix expressions as constants for as
long as possible—i.e., until a new example shows that some parts
of the rule cannot be constants. This helps reduce the number of
variable expressions, which in turn reduces the number of substring
expressions to be considered. We first illustrate the idea with a
concrete example. Let’s say that we are given the two examples
shown in Figure 3a and 4a. After processing the first example,
our algorithm synthesizes the FIXIT rule in Figure 5a in which
every match expression and every fix expression is a constant.
However, since we have only seen one example, we do not yet know
whether some expression appearing in the match should actually
be a variable match expression or whether some element in the
fix expression should actually be a function of some variable. The
main idea is that any of these possibilities can still be “recovered”
when a new example shows that indeed a variable is needed. Using
this idea, we maintain each expression as a constant until a new
example shows that some expression cannot actually be a constant.

This is exactly what happens when processing the input exam-
ple in Figure 4a. At this point in order to find a rule that is consis-
tent with both examples we need to introduce a variable match as
the second expression of the command match, and some function
application as the second element of the fix. To do so, our algorithm
applies the following operations to the previously computed rule.

1. All match expressions that cannot be constants are “promoted”
to variable match expressions (making sure that all variable
names are unique), which match on the longest shared prefix
and suffix of all previously seen values at that position. The
following table illustrates the idea for the case in which we try

4 2018/10/14

cmd1: java Run.java
err1: Could not find or load main class Run.java
fix1: java Run

(a) First example.

cmd2: java Meta.java
err2: Could not find or load main class Meta.java
fix2: java Meta

(a) Second example.

match [STR(java), STR(Run.java)]
and [STR(Could), STR(not), STR(find), STR(or), STR(load),

STR(main), STR(class), STR(Run.java)]
→s [FSTR(java), FSTR(Run)]

(a) Symbolic rule representation synthesized after first example.

match [STR(java), VAR-MATCH(1, ε, .java)]
and [STR(Could), STR(not), STR(find), STR(or), STR(load),

STR(main), STR(class), VAR-MATCH(2, ε, .java)]

→s [FSTR(java),

 SUB-LR(IPOS(0), IPOS(−5), ε, ε, VAR(1))])
SUB-LR(IPOS(0), CPOS(., 1, 0), ε, ε, VAR(1))])
SUB-LR(IPOS(0), CPOS(.,−1, 0), ε, ε, VAR(1))])

]

(a) Symbolic rule representation synthesized after both examples.

Figure 7: Two input examples e1 and e2 and symbolic rules synthesized after processing e1 and e2.

to unify the command cmd2 in Figure 4a with the matching part
of the already computed rule in Figure 5a.

rule: STR(java) STR(Run.java)
new-ex: java Meta.java

new-rule: STR(java) VAR-MATCH(1, ε, .java)

2. All the fix expressions that cannot be constants are “promoted”
to SUB-LR expressions that are consistent with the current
examples and are allowed to use the variables appearing in the
match expressions.

The second rule in Figure 7(d) reflects this update. The figure
also shows how multiple SUB-LR expressions are represented sym-
bolically as a set. We describe all of these components in detail in
the next section.

4.3 Synthesis algorithm
Given a list of input examples, the function SYNTHRULES uses
the first example and the function CONSTRULE to generate the
symbolic rule composed only of constant operators. It then it-
eratively refines the rule on the remaining examples as shown
in Figure 8. This second operation is done by the function RE-
FINERULE which takes as input a symbolic rule r, one new exam-
ple (s̄cmd, s̄err, s̄fix), and the list of examples E on which every
concrete rule represented by r behaves correctly. REFINERULE ex-
ecutes two main steps using the following functions.

FINDVARIABLES tries to unify the inputs s̄cmd and s̄err with the
corresponding match expressions cmd and err in the symbolic rule
r and generates new variable match expressions if necessary—i.e.,
when r contains a matching expression STR(s) but the correspond-
ing component in the example is a string different from s. In this
case, a VAR-MATCH(i, l, r) expression is generated such that i is
a new variable name, and l and r are the longest prefix and suffix
shared by s, respectively.

When FINDVARIABLES is presented with a new s̄cmd or
s̄err after a constant match expression has been ‘promoted’ to a
VAR-MATCH(i, l, r) expression, the prefix and suffix are up-
dated accordingly. FINDVARIABLES determines the longest prefix
r′ and suffix l′ of l and r, respectively, that is consistent with
the appropriate component of the new example, and generates
VAR-MATCH(i, l′, r′).

SYNTHFIX uses the variables computed in the previous step to
synthesize all possible fix expressions that are consistent with the
list of examples {(s̄cmd, s̄err, s̄fix)} :: E.

In order to simplify variable naming and guarantee unique
names, each variable has the index of the corresponding element in

the input—i.e., VAR(i) denotes the i-th string in the list s̄cmd@s̄err
obtained by concatenating the command and error input lists.

Lazy pattern matching The function FINDVARIABLES, given a
rule r and a new example e, iterates over the input components of
the new example e and outputs the set of variables necessary to
match this new example with respect to the previously computed
symbolic rule r. The function SYNTHFIX, given a rule r and a
list of examples E, individually synthesizes all the components fi
of the symbolic output fix expression that are consistent with E.
SYNTHFIX is incremental in the sense that it tries to minimally
change the original fix expression of r:

• if the i-th component ti of the fix expression of r is a con-
stant string consistent with the new example, then it is left un-
changed;
• in any other case the output has to be a substring operation,

and the function SYNTHSUBSTRINGS is used to compute all
the possible SUB-LR expressions that are consistent with the
set of examples E.

Given a list of examples e :: E, the function SYNTHSUBSTRINGS
first synthesizes all the SUB-LR expressions that are consistent with
e using the function ALLSUBSTRINGS and then runs each synthe-
sized expression on examples inE to remove the inconsistent ones.

ALLSUBSTRINGS Figure 8 omits the formal definition of the
function ALLSUBSTRINGS due to space limitations, but we de-
scribe its main components. Given an example
e = (s̄cmd, s̄err, s̄fix), a set of variable names V , and the index i
corresponding to the element of the output sequence we are trying
to synthesize, ALLSUBSTRINGS computes the set of all substring
expressions of the form fun = SUB-LR(pL, pR, l, r,VAR(j)) that
are consistent with e such that the result of applying fun to the
j-th string in s̄cmd@s̄err is the i-th string in s̄fix. Let’s assume
that |s̄cmd| + |s̄err| = nI , |s̄fix| = nO , and nL is the length of
the longest string appearing in any of the three lists in the input
example. To compute the set ALLSUBSTRINGS(e, V, i) we iterate
over all variable indices and for each variable index j ∈ V we do
the following.

1. Extract the string sj corresponding to the variable VAR(j) —
O(nI) iterations.

2. For each string s that is a substring of both s̄fix[i] and
sj , compute all possible pairs of indices k1, k2 such that
substr(sj , k1, k2) = s — O(n2

K) possible substrings and
O(nK) possible ways to place the substring in s̄fix[i].

5 2018/10/14

//Rules consistent with input examples
fun SYNTHRULES([e0, . . . , en])

r ← CONSTRULE(e0)
for 1 ≤ i ≤ n do . refine on each example ei

r ← REFINERULE(r, [e0, . . . , ei−1], ei)

return r

//Constant rule consistent with one example
fun CONSTRULE([sc1, . . . , scn], [se1, . . . , s

e
m], [sf1 , . . . , s

f
l])

cstcmd ← [STR(sc1), . . . , STR(scn)]
csterr ← [STR(se1), . . . , STR(sem)]

cstfix ← [FSTR(sf1), . . . , FSTR(sfl)]
return (match cstcmd and csterr →s cstfix)

//Refines a rule to make it consistent with one more example
fun REFINERULE(r, E, (s̄cmd, s̄err, s̄fix))

r ≡ (match cmd and err →s fixes)
(cmd′, Vc)← FINDVARIABLES(s̄cmd, cmd, 0)
(err′, Ve)← FINDVARIABLES(s̄err, err, |s̄cmd|)
V ← Vc ∪ Ve
E′ ← (s̄cmd, s̄err, s̄fix) :: E
fixes′ ← SYNTHFIX(s̄fix, fixes, E

′, V)
return (match cmd′ and err′ →s fixes′)

//Finds variables necessary to match example
fun FINDVARIABLES([s1, . . . , sn], [t1, . . . , tm], o)

if n 6= m then . Input length same as match length?
return ⊥

(m,V)← ([], ∅)
for 1 ≤ i ≤ n do

case ti = STR(s) ∧ s = si
(m,V)← (m@STR(si), V)

case ti = STR(s) ∧ s 6= si
pref ← LONGESTCOMMONPREFIX(s, si)
suf ← LONGESTCOMMONSUFFIX(s, si)
newId← i+ o . Create new variable
m← m@[VAR-MATCH(newId, pref, suf)]
V ← V ∪ {newId}

case ti = VAR-MATCH(j, l, r)
pref ← LONGESTCOMMONPREFIX(s, l)
suf ← LONGESTCOMMONSUFFIX(s, r)
m← m@[VAR-MATCH(j, pref, suf)]
V ← V ∪ {j}

return (m,V)

//Outputs the fixes consistent with all the examples E and such
that SUB-LR expressions can depend on any variable in V . The
fix component of the latest example and the fixes computed on the
previous examples are also passed as input
fun SYNTHFIX([s1, . . . , sn], [t1, . . . , tn], e :: E, V)

if n 6= m then
return ⊥

f ← []
for 1 ≤ i ≤ n do

if ti = FSTR(s) ∧ s = si then
f ← f@[FSTR(si)]

else
f ← f@[SYNTHSUBSTRINGS(e :: E, V, i)]

return f

//Outputs all SUB-LR expressions consistent with all the examples
that can appear at position i in the fix expression
fun SYNTHSUBSTRINGS(e :: E, V, i)

F ← ALLSUBSTRINGS(e, V, i)
for all (s̄cmd, s̄err, s̄fix) ∈ E do

F ′ ← ∅
for all fun ∈ F do

let SUB-LR(pL, pR, l, r,VAR(j)) = fun
o← |s̄cmd|
if j < o then . The variable is in s̄cmd

if EVAL(fun, s̄cmd[j] = s̄fix) then
F ′ ← fun :: F ′

else . The variable is in s̄err
if EVAL(fun, s̄err[j − o] = s̄fix) then

F ′ ← fun :: F ′

F ← F ′

return F

//Outputs all SUB-LR expressions consistent with one example that
can appear at position i in the fix expression
fun ALLSUBSTRINGS((s̄cmd, s̄err, s̄fix), V, i)

return all SUB-LR(pL, pR, l, r,VAR(j)) that
when evaluated on s̄cmd and s̄err output s̄fix[i]
and such that j ∈ V .

Figure 8: Algorithm for synthesizing FIXIT rules from concrete examples.

3. For each k1 (resp. k2) compute every position expression p1
(resp. p2) such that evaluating p1 (resp. p2) on sj produces the
index k1 (resp. k2) — O(nK) possible positions.

4. For each of these possibilities yield the expression
SUB-LR(p1, p2, l, r,VAR(j)) where l and r are such that
s̄fix[i] = l · substr(sj , k1, k2) · r.

ALLSUBSTRINGS produces a set of expressions that in the worst
case has size O(nIn

5
K)3. If we restrict the offset component δ to

only range over the values {−1, 0, 1} for the symbolic expressions

3 Note that the efficiency of this implementation is contingent on our
specific choice of data structure and algorithms. A more naive solution,
based on set intersection (like that of the DAG-based algorithm in FlashFill)
may experience exponential blow-up in the number of examples, due to the
quadratic nature of the intersection operations.

CPOS(c, i, δ), the size reduces to O(nIn
3
K), and the synthesis

algorithm is still sound and complete for this fragment of FIXIT.
This last restriction of the language can capture all the rules we

are interested in. Notice that this analysis still holds in the extreme
case in which all input matches are variable expressions of the form
VAR-MATCH(i, ε, ε). In our experiments on real-world commands,
worst-case performance is uncommon, and is induced by substring
operations over heterogeneous strings which yield many possible
implementations. Consider the following two examples.

cmd1: aaaa aaaa cmd2: bbbb bbbb
err1: aaaa aaaa err2: bbbb bbbb
fix1: aa fix1: bb

Performing synthesis on this pair of examples yields a pattern
match consisting of four VAR-MATCH(i, ε, ε) expressions. Due to
the uniformity of the input strings, synthesis yields 48 possible

6 2018/10/14

SUB-LR expressions. In particular, the desired fix can be generated
from any of the four strings in the supplied scmd and serr . Each
of the four strings has three substrings of length 2, any of which
yields the desired output. For each such substring, there are four
pairs of IPOS values that supply the appropriate indices: The pair
with two positive indices, the pair with two negative indices, and
the two pairs consisting of one positive and one negative index.

Key point At this point we are ready to explain why all the match
expressions can be kept as constants for as long as possible. If
after processing a set of examples E, some expression in cmd or
err is of the form STR(si), then, for every input example, the
value of the i-th component is the string si. Therefore, even if
we replace this expression with a variable, all its instantiations
will have the same values. Consequently, every function of the
form SUB-LR(p1, p2, l, r,VAR(i)) will produce a constant output,
making it equivalent to the some constant function FSTR(s′).

4.4 Partition-Based Synthesis
FIXIT can learn repair rules from a set of examples corresponding
to a specific incorrect use of a command. In practice, however,
it may be difficult to present FIXIT with a collection of neatly
curated sets of examples, from each of which, FIXIT learns a
single symbolic rule. Such a process is both labor-intensive and
error-prone. We instead envision large-scale learning of FIXIT rules
from undifferentiated sets of examples submitted by many users.
To facilitate this, we propose a simple multi-stage partitioning
strategy. As a consequence of FIXIT’s structure, each symbolic rule
matches on a pair of command and error strings, each of which
has a fixed number of tokens. Upon a match, FIXIT generates
a repaired command with a fixed number of tokens. Conversely,
every symbolic FIXIT expression must be learned from a set SE of
example triples of the form (scmd, serr, sfix) for which the lengths
of scmd, serr , and sfix do not vary.

Given an undifferentiated set of examples, SE , we partition
SE into n disjoint subsets δi where SE =

⋃n
i=0 δi. For every

δi the property ∀(scmd, serr, sfix) ∈ δi, (s̄cmd, s̄err, s̄fix) ∈
δi. |scmd| = |s̄cmd| ∧ |serr| = |s̄err| ∧ |sfix| = |s̄fix|. This
divides SE into subsets from which it is possible to synthesize
FIXIT rules.

After dividing SE , it may still be the case that individual sets δi
contain examples representing distinct command repair rules which
share the same triple of scmd, serr , and sfix lengths. At this point,
we attempt to find the smallest set of rules that can be synthesized
from the examples in δi.

The search ranges over all partitions P of δi, where P is the
set {δi,1, δi,2, . . . , δi,m} such that

⋃m
j=1 δi,j = δi and ∀j 6=

k, δi,j ∩ δi,k = ∅. We enumerate the partitions in ascending
order of size m, starting with P = {δi}, and ending with the
partition consisting entirely of singleton sets. Given a partition P ,
we attempt to synthesize a symbolic FIXIT rule for each set in P ,
stopping when we have generated a rule for each δi,j . As we will
show in section 6.2, this expensive procedure is only feasible when
using our novel contribution of lazy VSA.

Example partitioning Consider the example set shown in Fig-
ure 9. The first two examples in this set correspond to the repair
in Section 2.1 while the last two correspond to the repair in Sec-
tion 2.3. The third and fourth example correspond to the rule that
outputs composer, followed by the token at index 8 in the input
(i.e., the first token suggested by the error message).

We first group the examples based on the length of their compo-
nents. For the first four examples, we have |scmd| = 2, |serr| = 8,
|sfix| = 2 and for the two remaining examples, |scmd| = 3,
|serr| = 8, |sfix| = 6. Thus, we obtain two groups S1 =
{e1, e2, e3, e4} and S2 = {e5, e6}.

cmd1: java Run.java
e1 err1: Could not find or load main class Run.java

fix1: java Run
cmd2: java Test.java

e2 err2: Could not find or load main class Test.java
fix2: java Test
cmd3: composer pkg

e3 err3: did you mean one of these? pkg1 pkg2
fix3: composer pkg1
cmd4: composer hptt

e4 err4: did you mean one of these? http html
fix4: composer http
cmd5: mv photo.jpg Mary/summer12.jpg

e5 err5: can’t rename ‘photo.jpg’: No such file or directory
fix5: mkdir Mary && mv photo.jpg Mary/summer12.jpg
cmd6: mv dec31.jpg Bob/family.jpg

e6 err6: can’t rename ‘dec31.jpg’: No such file or directory
fix6: mkdir Bob && mv dec31.jpg Bob/family.jpg

Figure 9: Examples requiring more than one FIXIT rule.

While there exists a FIXIT program that is consistent with the
examples in the set S2, no FIXIT program can describe a transfor-
mation that is consistent with all the examples in S1. We there-
fore proceed by iteratively partitioning the set Si, attempting to
find a partition Pi for which we can synthesize a rule for every
Si,j ∈ Pi. For S2, we can clearly do so for the initial partition
P2 = {S2}, yielding the rule from Section 2.2. For S1, the first par-
tition for which we can generate a FIXIT rule for every element is
P1 = {S1,1 = {e1, e2}, S1,2 = {e3, e4}}. S1 yields the rule from
Section 2.1, and S2 yields the simple substitution rule described
previously.

4.5 More Succinct Representation
The version of symbolic rule we presented is already able to store
exponentially many concrete FIXIT rules in polynomial space. In
this section, we discuss further improvements that can make the
representation more succinct.

Avoid redundancy In the set of fix expressions enumerated by the
function ALLSUBSTRINGS, the last three components of the the
expression SUB-LR(p1, p2, l, r,VAR(j)) are often repeated many
times. Looking at Figure 6a we can see how all the synthesized
functions have l = r = ε and are applied to the variable VAR(1).
We define a data structure for representing sets of fix expressions
that avoids these repetitions. A set of fix expressions is represented
symbolically using a partial function

d : N 7→ (Σ∗ × Σ∗) 7→ Set(P × P)

where P is the set of all position expressions. Formally, given a
variable index i and two strings l and r, the set d(i, l, r) symboli-
cally represents the set of fix expressions
{SUB-LR(p1, p2, l, r,VAR(i)) | (p1, p2) ∈ d(i, l, r)}. The func-
tion d can be efficiently implemented and avoids redundancy. Con-
sidering again the example rule in Figure 6a, all the fix expressions
in the second component of the output can be succinctly repre-
sented by the function d that is only defined on the input (1, ε, ε)
and such that

d(1, ε, ε) = { (IPOS(0), IPOS(−5)),
(IPOS(0),CPOS(., 1, 0)),
(IPOS(0),CPOS(.,−1, 0)) }.

Avoid example representation Each synthesized rule is in some
sense coupled to the set of examples used to synthesize it. We
present a data structure that only keeps track of the important

7 2018/10/14

“parts” of the input examples and therefore allows us to discard
each example after it has been processed.

We modify the symbolic rule representation as follows. Given a
set of examples (s̄1cmd, s̄

1
err, s̄

1
fix) . . . (s̄ncmd, s̄

n
err, s̄

n
fix),

• every variable VAR-MATCH(i, l, r) in the match component
becomes a pair (VAR-MATCH(i, l, r), [b1, . . . , bn]) where the
second component is the list of strings that binds to VAR(i) in
the input components of the examples—i.e. bj = (s̄jcmds̄

j
err)[i];

• every set of fix expressions represented by a function di and
corresponding to the i-th component of the fix expression be-
comes a pair (di, [b1, . . . , bn]) where the second component is
the list of strings that appear in position i in the output compo-
nents of the examples—i.e. bj = s̄jfix[i];

Using this data structure we do not need to store examples as we
can always re-infer them from the symbolic rule representation.

4.6 Concrete outputs
Taking into account the updated data structures, the algorithm
SYNTHRULES returns a symbolic rule r of the form
match cmd and err →s fixes where cmd = [c1, . . . , cn]
and err = [e1, . . . , em] are lists of expressions of the form STR(s)
or (VAR(i), B), while fixes = [f1, . . . , fl] is a list of expressions
of the form FSTR(s) or (d,B) where d is the data structure for
representing multiple fix expressions. The set of concrete FIXIT
rules induced by this symbolic representation is the following.

con(match cmd and err →s fix) =
{match cmd and err → f | f ∈ con(fix)}

con([f1, . . . , fl]) = {[f ′1, . . . , f ′l] | f ′i ∈ con(fi)}
con(FSTR(s)) = {FSTR(s)}
con(d,B) = {SUB-LR(p1, p2, l, r,VAR(i)) |

∃i, l, r.(p1, p2) ∈ d(i, l, r)}.

5. Formal properties
We study the formal properties of the synthesis algorithm and of the
language FIXIT. These specific properties describe the behavior of
the synthesis algorithm in the absence of the partitioning strategy
described in Section 4.4.

Properties of the synthesis algorithm First, our synthesis algo-
rithm is invariant with respect to the order in which the training
examples are presented. Thus, the properties of a symbolic rule
generated by SYNTHRULES, can be discussed solely in terms of
the set of examples provided to SYNTHRULES.

Theorem 1 (Order invariance). Given a list of examples E, for ev-
ery permutation of examples E′ of E, we have
con(SynthRules(E)) = con(SynthRules(E′)).

Proof sketch. Consider a list of examplesE. If two examples differ
at the ith position in their respective commands, the ith expression
in cmd will be promoted to a VAR-MATCH, regardless of the order
in which they are presented to SYNTHRULES. Moreover, if all
|E| strings at the ith position in the commands share a prefix or
suffix, reordering E does not change this fact. Thus, the discovered
VAR-MATCH expressions will not vary based on order. The same
holds for err and the “promotion” of constants in SYNTHFIX.

Moreover, SYNTHSUBSTRING starts from scratch at each iter-
ation of the loop in SYNTHRULES and fix depends only on the
output of SYNTHFIX in the final iteration. Since the variable set
does not vary based on the ordering of E, the final invocation of
SYNTHFIX does not depend on the ordering of E.

Second, the synthesis algorithm produces only rules that are
consistent with the input examples. If we select an arbitrary con-
crete rule r from the set specified by a symbolic rule generated by

SYNTHRULES, and run it on the command and error of any of the
examples provided to SYNTHRULES for the synthesis of r, we will
obtain the fix originally provided in that example.

Theorem 2 (Soundness). Given a list of examplesE, for every rule
r ∈ con(SynthRules(E)) and for every example
(s̄cmd, s̄err, s̄fix) ∈ E, JrK(s̄cmd, s̄err) = s̄fix.

Proof sketch. The repeated applications of FINDVARIABLES will
promote any STR(s) expression if a new example does not match
on s. Moreover, when refining a VAR-MATCH, FINDVARIABLES
chooses the longest prefix and suffix consistent with all examples
seen so far. Thus, cmd and err will correctly match on all exam-
ples. The soundness of the resulting fix derives from the fact that
at each iteration of the loop in SYNTHRULES, the invocation of
SYNTHSUBSTRING in SYNTHFIX takes into account all examples
seen in previous iterations of the loop. Moreover, each invocation
begins with the set of all possible SUB-LR expressions, and prunes
those inconsistent with any example seen so far.

Since parts of the match expressions are “promoted” to variables
only when the input examples show that this is required, our syn-
thesis algorithm does not explicitly keep track of all the possible
rules that can be consistent with the examples. Our completeness
result reflects this idea.

Theorem 3 (Completeness). Given a set of examples E, for every
Fixit rule r that is consistent with E, either
r ∈ con(SynthRules(E)) or there exists an example e such that
r ∈ con(SynthRules(e :: E)).

Proof sketch. Concretely, a particular rule r that is consistent with
E might not appear in R = SYNTHRULES(E). However, this can
only happen because the match expression of r has more variables
than the match of any rule in R. This can be fixed by providing an
example that forces the algorithm to promote to variables all the
required match expressions.

Properties of the language Fixit We define the size of an input
example e = (s̄cmd, s̄err, s̄fix) and the size of each rule r con-
sistent with e as the sum of its lengths size(e) = size(r) =
|s̄cmd| + |s̄err| + |s̄fix|. For each set of examples, there can be
exponentially many rules consistent with it.

Theorem 4 (Number of consistent rules). Given a set of examples
E, each of size k, the set con(SynthRules(E)) contains 2O(poly(k))

rules.

Proof sketch. As we showed in Section 4.3, for each position in
the output of a FIXIT rule there are potentially polynomially many
SUB-LR expressions consistent with the provided examples. For
the ith position in fix, we are free to choose any of the possible
SUB-LRs, independently of our choice at other positions. Thus, the
number of possible rules is potentially exponential in |s̄fix|.

Despite the exponential number of rules represented, our data
structure allows the SYNTHRULES to encode these rules using only
polynomial size.

Next, there exists an active learning algorithm for learning
FIXIT rules that requires only a polynomial number of examples—
i.e., queries to the user.

Theorem 5 (Complexity of active learning). If there exists a target
rule r of size k, there exists an active learning algorithm that will
learn r by askingO(poly(k)) queries of the form: What should the
output of r be on the input (s̄cmd, s̄fix).

Proof sketch. The algorithm first asks k queries to figure out which
match expressions are variables and which ones are constants.
Then, for each output component for which there exists two pos-
sible fix expressions SUB-LR consistent with the examples, it asks

8 2018/10/14

a query that differentiates the two. Since there are only O(knIn
5
K)

many expressions in the output the algorithm will ask at most poly-
nomially many queries.

6. Implementation and Evaluation
We now describe the implementation details of NOFAQ, as well as
our experimental evaluation of NOFAQ on a set of examples and
test cases isolated from THEFXXX and web forums.

6.1 Implementation
We implemented the language FIXIT and its synthesis algorithm
in a system called NOFAQ. NOFAQ is implemented in F#4 and
consists of some additional optimizations and design choices as
described below.

6.1.1 Implementation optimizations
The function ALLSUBSTRINGS in Figure 8 synthesizes all SUB-LR
functions that are consistent with the first input/output pair (s, t) of
strings in the example set E and then applies each of the synthe-
sized functions to the other elements of E for filtering only con-
sistent functions. In practice, we first compute the longest com-
mon prefixes and suffixes of the strings appearing in the com-
ponents s̄fix of E to avoid enumerating instances of the form
SUB-LR(_, _, l, r, _) such that l or r are not prefixes or suffixes
of some output string t appearing in E.

The other optimization is based on the following property of
the REFINERULE function: when adding a new example to r, if
the function FINDVARIABLES introduces a new set of variables
V , all the new instances of SUB-LR that did not already appear
in r depend on one of the newly introduced variables in V . Based
on this idea, the function ALLSUBSTRINGS only has to compute
functions of the form SUB-LR(_, _, _, _,VAR(i)) where i ∈ V , and
can reuse the previously computed functions for the other variables
by simply filtering the ones that behave correctly on the newly
introduced example.

6.1.2 Ranking
Since there can be multiple possible expressions in FIXIT that are
consistent with the examples, we employ a simple ranking tech-
nique to select an expression amongst them. If there are multiple
SUB-LR expressions that can generate the desired output string,
we select the expression that uses the variable with the lowest
index—i.e., the leftmost one. Similarly, the l and r included in
VAR-MATCH expressions implicitly encode all rules matching on
prefixes and suffixes of l and r, respectively. We choose the longest
l and r over all others.

As the example set increases in size, we envision users will
likely submit diverse sets of examples, particularly in use cases
with thousands of users submitting examples. As users submit
examples which draw from heterogeneous collections of command
parameters, VAR-MATCH prefixes and suffixes should converge to
the least restrictive versions. Similarly NOFAQ should discover
the least restrictive set of constants for both match expressions.
As these input parameters vary over the set of examples, spurious
ambiguities in SUB-LR should be eliminated when NOFAQ is
presented with specific fix examples which function as counter-
examples to unnecessary substring expressions.

6.2 Evaluation
We now describe our experimental evaluation. The experiments
were run on an Intel Core i7 2.30GHz CPU with 16 GB of RAM.

4 The implementation will be made open-source and publicly available after
the review process.

We present both qualitative and quantitative analysis of the algo-
rithm. We assess the expressiveness of NOFAQ by attempting syn-
thesis on a benchmark suite that includes the rules in the tool THE-
FXXX. We then evaluate the performance of NOFAQ and its scala-
bility.

6.2.1 Benchmark Suite
We compiled our benchmark suite from an initial set of of 92
benchmarks, which were collected from both THEFXXX (76) and
online help forums (16). We considered the 76 repair rules hard-
coded in the THEFXXX tool to assess the expressiveness of NO-
FAQ. Since rules in THEFXXX can use arbitrary Python code, it
is hard to exactly compare them to the ones produced by NOFAQ.
We use manual testing to check that a rule r generated by our tool
is consistent with a rule r′ in THEFXXX. To do so, we manually
constructed a set of examples based on the pattern-matching and
textual substitutions performed by the THEFXXX rules.

The other sixteen example sets were obtained from examples
found during a non-exhaustive survey of command-line help fo-
rums on the web. These commands consist of various types of
git, svn, and mvn commands, including committing, reverting, and
deleting from repositories, as well as installing and removing pack-
ages.

The NOFAQ system is able to synthesize a rule for 81 of the 92
benchmarks. The remaining 11 failing benchmarks can be divided
into three broad categories: i) Hard-coded operations searching for
specific strings in some context (8), ii) Complex patterns check-
ing relationships between variable expressions (2), and iii) Error
messages displaying parts of the input file’s content (1). We did not
provide examples for these 11 rules. We elaborate more about these
categories in Section 7.

Number of examples We observed that it was natural to provide
two to five examples per benchmark for NOFAQ to uniquely learn
the desired fix rule. We also provided additional examples for
manually testing the learned rules, yielding a set of three to six
examples. Given the rule appearing in Figure 7, for example, we
used the two examples in Figure 7 and another example with the
file name Employee.java. In future, we envision users to contribute
different examples to the system for automatically building a large
corpus of learned fix rules.

While these examples are synthetic examples reverse engi-
neered from other sources, they are also natural examples which
exercise the range of e.g. path and file names one would expect
to see in a real Unix system. In the case of the repaired command
in Section 2.3, the natural two-example set would consist of two
distinct directory names which do not share prefixes and suffixes,
as well as filenames with distinct prefixes and extensions.

6.2.2 Qualitative evaluation
Given a single set containing examples for all the 81 cases in which
NOFAQ is capable of synthesizing a rule, we performed synthesis
as described in Section 4.4. For each rule we retained a single
example from the training set and used it to test the accuracy of
each rule. We also report how often a given input could be repaired
using more than one rule.

Results For all 81 cases, NOFAQ synthesized a rule consistent
with the corresponding THEFXXX rule or web forum answer. In
some cases we had to synthesize more than one FIXIT rule to cap-
ture the different possible behaviors of a single rule in THEFXXX.
For example, one can try adding ‘sudo’ in front of a command for
several possible errors such as “Command not found”, “You don’t
have the permission" etc. In such cases, thanks to the partitioning
algorithm, NOFAQ generated a separate rule for each possible er-
ror message. For each case where we synthesized a rule, correctness

9 2018/10/14

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81Si
ze

 o
f

th
e

 E
xp

re
ss

io
n

s

Benchmarks

Distribution of Cmd, Err, Fix Expr Size

CmdSize ErrSize FixSize

Figure 10: The distribution of benchmarks in terms of individual
sizes of s̄cmd, s̄err , and s̄fix expressions in the examples.

was independent of our choice of examples. If the correct rule was
synthesized, it was synthesized regardless of which subset of the
examples provided for that rule we selected.

Distribution of rule sizes We define the size of an expression
such as s̄cmd, s̄err , and s̄fix as the number of strings present in
it. The distribution of the size of the benchmarks in terms of the
sizes of the s̄cmd, s̄err , and s̄fix tuples in input-output examples is
shown in Figure 10. Note that we do not show two benchmarks in
the graph with disproportionately high s̄err expression size of 110
for clarity. The average total size of the examples in the benchmarks
was 15.91 ± 17.185, with the maximum size of 116. The average
sizes for the individual expressions of the examples were: i) s̄cmd:
2.38 ± 1.01 with maximum of 6, ii) s̄err: 10.12 ± 16.85 with a
maximum of 110, and iii) s̄fix: 3.41± 1.55 with a maximum of 7.

Distribution of rule matching For each set of example provided
for an individual rule, we isolated one example to measure the accu-
racy of the tool. All the test examples were correctly described by at
least one of the synthesized rules. For the majority of the test cases,
there was exactly one rule which matched both the command and
error message. The remaining 12 test cases which matched against
multiple rules came from collections of example sets which repre-
sented different fixes of the same command and error messages.

Total test cases 81
Test cases matched by one rule 69
Test cases matched by multiple rules 12

Ranking Consistent with our hypothesis in Section 6.1.2, a di-
verse set of examples was sufficient for eliminating spurious re-
strictions and substring expressions. In every test case, the rule cho-
sen by our ranking policy was capable of correcting all test cases
presented. In practice, many rules still have several possible cor-
rect SUB-LR expressions. However, this remaining ambiguity oc-
curs because the same string can appear many times in the com-
mand and error message (e.g., the string Employee in the example
in Section 2.1).

6.2.3 Quantitative evaluation
We now report on the quantitative metrics of our synthesis algo-
rithm. In this section we only report data for the 81 benchmarks for
which NOFAQ can successfully synthesize a FIXIT rule.

5 We use a± s to denote an average a with standard deviation s.

0

500

1,000

1,500

2,000

12 13 14 15 16 17Sy
nt
he

sis
	 Ti
m
e	
in
	 se

co
nd

s

Size	 of	 Largest	 Group

Eager	 vs	 Lazy	 VSA
Eager	 VSA

Lazy	 VSA

Enumerating	
Partitions

Figure 11: Synthesis times for different benchmarks for the lazy
and non-lazy rule representations.

Evaluation of lazy VSA synthesis time In Figure 11, we show
the time taken to partition and synthesize FIXIT rules for the 81
benchmarks, using both the lazy and a non-lazy rule representation,
as the number of examples per benchmark increases. The non-
lazy representation always considers match and fix expressions as
variables, rather than initially starting with constants.

To test the performance of the lazy and non-lazy representations
as the size of the input set increases, we iteratively increase the size
of the training set. For each test, we add a single example to one
of the benchmarks and then attempt synthesis. We plot the syn-
thesis time with respect to the largest set of examples for which we
must enumerate possible partitions until we successfully synthesize
rules. To understand the performance overhead induced by synthe-
sis, we also evaluate a version of the algorithm which enumerates
partitions without performing synthesis. For each algorithm, we it-
eratively increased the training set size until the algorithm reached
a 2, 000 second timeout.

The non-lazy VSA incurs a significant overhead, and scales
much worse than the lazy version, reaching the timeout when the
largest set has 14 examples. The lazy VSA, in contrast, is much
closer to the optimum; the synthesis time is negligible compared
to the inherent cost of enumerating all partitions of a set. In fact,
the lazy synthesis actually completes faster than exhaustive enu-
meration. This is reasonable, as the first partitioning which yields
a successful FIXIT rule for all subsets tends to be somewhere near
the middle of the enumeration, and thus does not incur the cost of
enumerating the remainder of the search space. In summary, the
lazy VSA strictly outperforms non-lazy VSA and can handle much
larger sets of examples.

SUB-LR expression in synthesized rules The distribution of
FSTR and SUB-LR expressions in the synthesized FIXIT rules is
shown in Figure 12. The output components of the synthesized rule
contain on average 29.01% ± 24.4% SUB-LR expressions. Con-
cretely, a synthesized rule contains on average 0.91±0.76 SUB-LR
expressions.

Synthesis time vs. number of SUB-LR expressions The synthe-
sis time for different numbers of SUB-LR expressions in the repair
rule is shown in Figure 13. As expected, the benchmarks that do not
contain SUB-LR expressions take negligible time. The benchmarks
involving two SUB-LR expressions on average require more time
than the benchmarks with a single SUB-LR expression. Interest-
ingly, the benchmarks with 3 SUB-LR expressions take lesser time
than the benchmarks with 2 SUB-LR expressions. A possible expla-
nation for this behavior is that the complexity of substring extrac-
tion tasks for these benchmarks is relatively simpler (e.g. identity)
than the benchmarks with 2 SUB-LR expressions.

10 2018/10/14

0

1

2

3

4

5

6

7

8

1 11 21 31 41 51 61 71 81

Si
ze

 o
f

th
e

 F
ix

 E
xp

re
ss

io
n

Benchmarks

of SubLR and FStr Exprs in Fix Exprs

FStr SubLR

Figure 12: The distribution of FSTR and SUB-LR expressions in the
final synthesized repair expression.

0

50

100

150

200

250

300

350

400

450

0 1 2 3

Le
ar

n
in

g
Ti

m
e

 (
in

 m
s)

Number of SubLR Expressions in Fix Expr

SYNTHRULES Time vs # SubLR Exprs

Figure 13: Synthesis times for varying number of SUB-LR expres-
sions in the repair rule.

Scalability of synthesis algorithm with example size Since all
real-world examples we collected are relatively of small size (with
maximum size of 116 space-separated strings), we evaluate the
scalability of the SYNTHRULES algorithm by creating artificial
examples of increasing sizes. We create these artificial examples by
repeating the s̄cmd, s̄err , and s̄fix commands multiple times for the
example shown in Section 2.2. The synthesis times for increasing
size of examples is shown in Figure 14. From the graph, we observe
that the synthesis times scale in a quadratic fashion with respect to
the example size.

7. Limitations
We showed that the language FIXIT is able to express many real-
world command line repair rules and that these rules can be synthe-
sized using few examples. We now present some limitations of our
approach, in particular with respect to the 11 THEFXXX rules that
FIXIT could not describe.

Complex patterns Two rules were checking complex properties
of the input that FIXIT cannot capture. For example, FIXIT
cannot check whether the error message contains some special
character. FIXIT’s conditional matching is limited to whole
string or prefix/suffix matching, and thus cannot check if e.g.
a file name contains a non-unicode whitespace character. All
character relative logic occurs in the substring generation after

0

1000

2000

3000

4000

5000

7 77 147 217 287 357

Le
ar

n
in

g
Ti

m
e

 (
in

 m
s)

Number of Expressions in Examples

SYNTHRULE time vs # Example Exprs

Figure 14: Synthesis times with increasing size of examples.

input matching. FIXIT also cannot check whether some string
in the input command is repeated more than once.

Context-dependencies Eight rules had hard-coded operations that
were searching some context (the file system, a configuration
file, etc.) for specific strings to complete the output. FIXIT only
receives as inputs the command and the error message, and the
rules currently cannot use any context.

8. Related work
Version-space algebra for synthesis The concept of Version-
space algebra (VSA) was first introduced by Mitchell [17] in the
context of machine learning and was later used by Lau et al. to
learn programs from demonstrations in a Programming By Ex-
amples/Demonstrations system called SmartEdit [11]. It has since
been used for many PBE systems from various domains including
syntactic string transformations in FlashFill [7], table transforma-
tions [9, 25], number transformations [24], text extraction from
semi-structured text files in FlashExtract [12], and transformation
of semi-structured spreadsheets to relational tables in FlashRe-
late [2]. Our synthesis algorithm also uses VSA to succinctly rep-
resent a large set of conforming expressions. However, in contrast
to previous approaches that represent all conforming expressions
concretely and then use intersection for refinement, our synthesis
algorithm maintains a lazy representation of rules and concretizes
the choices on demand in a lazy fashion only when it is needed.
Moreover, our careful design of DSL operators and the correspond-
ing VSA in NOFAQ lead to a polynomial time synthesis algorithm
unlike most previous approaches that have exponential time syn-
thesis algorithms.

In particular, it is illustrative to compare the FlashFill DSL with
FIXIT. While, like FIXIT, FlashFill synthesizes string manipula-
tions from input-output examples, specific performance properties
make it less suitable for large scale learning from large sample sets.
Prior to developing NOFAQ, we evaluated the possibility of sim-
ply using the FlashFill algorithm as-is for our purpose of learning
command repair rules. Early empirical results indicated that the off-
the-shelf algorithm scaled poorly as the error messages increased
in length, which was a common occurrence for our benchmarks.
Moreover, other limitations of no offset operator in position expres-
sions and support for finite hard-coded regular expression tokens
made FlashFill unsuitable for learning SUB-LR expressions.

We isolated several theoretical properties of FlashFill’s key op-
erators which yielded poor performance on large inputs. In partic-
ular, the binary concatenation operator over arbitrary substrings of

11 2018/10/14

the entire input string induces a DAG structure for the symbolic
representation of programs. More explicitly, given an example out-
put string S, there exists a node np for each position p in S. An
edge from np to n′p, p < p′ represents the substring S[p : p′]. Each
edge is labelled with the set F of functions over the example inputs
which yield the substring. Thus, a path from n0 to n|S| represents
some concatenation of the output of several string operations which
yields the desired output. Given a DAG D consistent with a set of
examplesE, FlashFill incorporates a new example e represented by
DAG D′ by taking the cartesian product of the vertices of D and
D′, to construct a new DAG D′′. An edge with label set F ′′ in the
new DAG represents a set of functions which were part of a correct
program for the examples E, and also map from the inputs of e to
a substring of e’s output. The iterated cartesian products yield time
complexity exponential in the number of examples.

FIXIT, in contrast, posesses unary string operations constrained
to specific variable terms. FIXIT’s unary SUB-LR operator yields
a language that is disjoint from FlashFill with concatenation re-
moved; we obtain a language expressive enough for a large set of
practical command repair transformations isolated from real use
cases, while dramatically improving worst-case performance. The
constrained nature of the program representation lets the synthe-
sis algorithm eliminate programs inconsistent with a new example
without directly computing the intersection of two sets of candi-
date programs, ensuring polynomial-time performance even in the
worst case. Moreover, FIXIT also allows for repair transformations
that require arbitrary offsets from a regex match, which are not ex-
pressible in the FlashFill DSL.

Programming by Examples (PBE) PBE has been an active re-
search area in the AI and HCI communities from a long time [15].
In addition to VSA-based data wrangling [8], PBE techniques have
recently been developed for various domains including interactive
synthesis of parsers [14], synthesis of recursive functional pro-
grams over algebraic data types [4, 18], synthesizing sequence
of program refactorings [20], imperative data structure manipula-
tions [26], and network policies [31]. Our technique also learns re-
pair rules from few input-output examples of buggy and fixed com-
mands, but both our problem domain of learning command repairs
and the learning techniques of using lazy VSA are quite different
from these PBE systems.

Program repair Research in automated program repair focuses
on automatically changing incorrect programs to make them meet a
desired specification [6]. The main challenge is to efficiently search
the space of all programs to find one that behaves correctly. The
most prominent search techniques are enumerative or data-driven.
GenProg uses genetic programming to repeatedly alter the incor-
rect program in the hope to make it correct [13]. Data-driven ap-
proaches use the large amount of code that is publicly available
online to synthesize likely changes to the input program [21, 30].
Prophet [16] is a patch generation system that learns a probabilistic
application-independent model of correct code from a set of suc-
cessful human patches. Unlike these techniques that learn a global
model of code repair across different applications, our technique
learns command-specific repairs by observing how expert users fix
their buggy commands — i.e., from both the incorrect command
the user started with (together with the error message) and the cor-
rect command she wrote as a fix.

Crowdsourced Repairs HelpMeOut is a social recommender sys-
tem that helps novice users facing programming errors by showing
them examples of how other programmers have corrected similar
errors [10]. While HelpMeOut can show examples of similar fixes
it does not concretely show the user how the code should be cor-
rected. This aspect is the major difference between HelpMeOut and
NOFAQ.

THEFXXX provides a Python interface for command substitu-
tion and repair rules, and it requires a degree of language and tool-
specific knowledge that may not be accessible to command line
novices, particularly if non-trivial substring operations are required
to derive the desired command. Much like FlashFill, we aim to em-
ulate the workflow of non-technical users communicating with ex-
perts on web forums. For a beginner learning the command line,
Python string manipulations are likely a fairly challenging task, and
the cost of an incorrectly transformed shell command is potentially
catastrophic. In such a situation where a non-expert desires a new
THEFXXX rule, such a user may provide an example of several
command/error pairs, and the desired fix for each, from which an
expert would write the desired Python code. NoFAQ shortens this
loop by moving the fix synthesis into a polynomial time algorithm
on the user’s machine.

Rule learning Rules provide a simple way to represent program-
mers actions and in general any type of data transformation. Rule
learning has been extensively investigated in classical machine
learning and data mining [5]. The goal of rule learning is to discover
and mine rules describing interesting relations appearing in data.
Common concept classes for describing rules are Horn clauses or
association rules [19]. The approach presented in this paper dif-
fers from rule learning in two aspects: 1) the rules are expressed in
a complex concept class and are hard to learn — i.e., FIXIT pro-
grams; 2) the examples are given by a teacher that has in mind a
target rule. In the future we plan to build a system that uses rule
learning techniques to mine FIXIT rules from unsupervised data.

Program synthesis There has been a resurgence in Program
Synthesis research in recent years [1]. In addition to examples
(as described above), there have been several techniques devel-
oped for handling other forms of specifications such as partial
programs [27, 28], reference implementations [23], and concrete
traces [29]. While these specification mechanisms have been found
to be useful in several domains, we believe examples are the most
natural mechanism for specifying command line repairs especially
for beginners. There is also a recent movement towards using
data-driven techniques for synthesis [22], e.g. the PLINY project
(http://pliny.rice.edu/index.html). In future, we envision
our system to also make use of large number of examples of buggy
commands and their corresponding repairs to learn a big database
of FIXIT rules.

9. Conclusion and Future Directions
We presented a tool NOFAQ that suggests possible fixes to com-
mon buggy commands by learning from examples of how experts
fix such issues. Our language design walks a fine line between ex-
pressivity and performance: by careful choice of unary operators
over pre-defined variables, and exclusion of arbitrary substring op-
erations, we avoid exponential-time worst case performance, while
still maintaining a useful degree of functionality. NOFAQ was able
to instantly synthesize 85% of the rules appearing in the popular
repair tool THEFXXX and 16 other rules from online help forums.
Although NOFAQ tool is aimed towards repairing commands, we
believe our novel combination of synthesis and rule-based program
repair is quite general and is applicable in many other domains as
well. We plan to to apply this methodology to more complex tasks,
such as correcting syntax errors in source code, applying code op-
timization, and editing configuration files. In the future, we hope
to create a tool which can take large command histories from ex-
pert users and quickly derive rules, as well as synthesize new rules
online as experts use the shell.

12 2018/10/14

http://pliny.rice.edu/index.html

References
[1] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-

Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In Dependable Software Systems Engineer-
ing, pages 1–25. 2015.

[2] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. Flashrelate: Ex-
tracting relational data from semi-structured spreadsheets using exam-
ples. In Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2015, pages
218–228, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3468-
6. doi: 10.1145/2737924.2737952. URL http://doi.acm.org/
10.1145/2737924.2737952.

[3] S. M. Doane, D. S. McNamara, W. Kintsch, P. G. Polson, and D. M.
Clawson. Prompt comprehension in unix command production. Mem-
ory & cognition, 20(4):327–343, 1992.

[4] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure
transformations from input-output examples. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015, pages
229–239, 2015. doi: 10.1145/2737924.2737977. URL http:
//doi.acm.org/10.1145/2737924.2737977.

[5] J. Furnkranz, D. Gamberger, and N. Lavrac. Rule learning in a
nutshell. In Foundations of Rule Learning, Cognitive Technologies,
pages 19–55. Springer Berlin Heidelberg, 2012. ISBN 978-3-540-
75196-0. doi: 10.1007/978-3-540-75197-7_2. URL http://
dx.doi.org/10.1007/978-3-540-75197-7_2.

[6] C. Goues, S. Forrest, and W. Weimer. Current challenges in automatic
software repair. Software Quality Journal, 21(3):421–443, Sept. 2013.
ISSN 0963-9314. doi: 10.1007/s11219-013-9208-0. URL http:
//dx.doi.org/10.1007/s11219-013-9208-0.

[7] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’11, pages 317–330, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0490-0. doi: 10.1145/1926385.1926423. URL http:
//doi.acm.org/10.1145/1926385.1926423.

[8] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manip-
ulation using examples. Commun. ACM, 55(8):97–105, Aug. 2012.
ISSN 0001-0782. doi: 10.1145/2240236.2240260. URL http:
//doi.acm.org/10.1145/2240236.2240260.

[9] W. R. Harris and S. Gulwani. Spreadsheet table transformations from
examples. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, pages 317–328, 2011. doi: 10.
1145/1993498.1993536. URL http://doi.acm.org/10.1145/
1993498.1993536.

[10] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What
would other programmers do: Suggesting solutions to error mes-
sages. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’10, pages 1019–1028, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-929-9. doi: 10.
1145/1753326.1753478. URL http://doi.acm.org/10.1145/
1753326.1753478.

[11] T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. Pro-
gramming by demonstration using version space algebra. Mach.
Learn., 53(1-2):111–156, Oct. 2003. ISSN 0885-6125. doi: 10.
1023/A:1025671410623. URL http://dx.doi.org/10.1023/
A:1025671410623.

[12] V. Le and S. Gulwani. Flashextract: A framework for data extraction
by examples. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14,
pages 542–553, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2784-8. doi: 10.1145/2594291.2594333. URL http://
doi.acm.org/10.1145/2594291.2594333.

[13] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In Proceedings of the 34th International Confer-

ence on Software Engineering, ICSE ’12, pages 3–13, Piscataway,
NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3. URL http:
//dl.acm.org/citation.cfm?id=2337223.2337225.

[14] A. Leung, J. Sarracino, and S. Lerner. Interactive parser synthesis
by example. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015, pages 565–574, 2015. doi: 10.
1145/2737924.2738002. URL http://doi.acm.org/10.1145/
2737924.2738002.

[15] H. Lieberman. Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

[16] F. Long and M. Rinard. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2016, pages 298–312, 2016.

[17] T. M. Mitchell. Generalization as search. Artif. Intell., 18(2), 1982.

[18] P. Osera and S. Zdancewic. Type-and-example-directed program
synthesis. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015, pages 619–630, 2015. doi: 10.
1145/2737924.2738007. URL http://doi.acm.org/10.1145/
2737924.2738007.

[19] G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong
rules. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge
Discovery in Databases, pages 229–248. AAAI Press, 1991.

[20] V. Raychev, M. Schäfer, M. Sridharan, and M. T. Vechev. Refac-
toring with synthesis. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013, pages 339–354, 2013.
doi: 10.1145/2509136.2509544. URL http://doi.acm.org/
10.1145/2509136.2509544.

[21] V. Raychev, M. Vechev, and E. Yahav. Code completion with sta-
tistical language models. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’14, pages 419–428, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594321. URL
http://doi.acm.org/10.1145/2594291.2594321.

[22] V. Raychev, M. T. Vechev, and A. Krause. Predicting program prop-
erties from "big code". In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
111–124, 2015. doi: 10.1145/2676726.2677009. URL http:
//doi.acm.org/10.1145/2676726.2677009.

[23] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization.
In Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013,
pages 305–316, 2013. doi: 10.1145/2451116.2451150. URL
http://doi.acm.org/10.1145/2451116.2451150.

[24] R. Singh and S. Gulwani. Synthesizing number transformations from
input-output examples. In Proceedings of the 24th International Con-
ference on Computer Aided Verification, CAV’12, pages 634–651,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-31423-0.
doi: 10.1007/978-3-642-31424-7_44. URL http://dx.doi.
org/10.1007/978-3-642-31424-7_44.

[25] R. Singh and S. Gulwani. Learning semantic string transformations
from examples. Proc. VLDB Endow., 5(8):740–751, Apr. 2012. ISSN
2150-8097. doi: 10.14778/2212351.2212356. URL http://dx.
doi.org/10.14778/2212351.2212356.

[26] R. Singh and A. Solar-Lezama. Synthesizing data structure manipula-
tions from storyboards. In SIGSOFT FSE, pages 289–299, 2011.

[27] A. Solar-Lezama. Program Synthesis By Sketching. PhD thesis, EECS
Dept., UC Berkeley, 2008.

[28] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Program-
ming by sketching for bit-streaming programs. In PLDI, 2005.

[29] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. K.
Martin, and R. Alur. TRANSIT: specifying protocols with concolic

13 2018/10/14

http://dx.doi.org/10.1145/2737924.2737952
http://doi.acm.org/10.1145/2737924.2737952
http://doi.acm.org/10.1145/2737924.2737952
http://dx.doi.org/10.1145/2737924.2737977
http://doi.acm.org/10.1145/2737924.2737977
http://doi.acm.org/10.1145/2737924.2737977
http://dx.doi.org/10.1007/978-3-540-75197-7_2
http://dx.doi.org/10.1007/978-3-540-75197-7_2
http://dx.doi.org/10.1007/978-3-540-75197-7_2
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
http://dx.doi.org/10.1145/2240236.2240260
http://doi.acm.org/10.1145/2240236.2240260
http://doi.acm.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/1993498.1993536
http://dx.doi.org/10.1145/1993498.1993536
http://doi.acm.org/10.1145/1993498.1993536
http://doi.acm.org/10.1145/1993498.1993536
http://dx.doi.org/10.1145/1753326.1753478
http://dx.doi.org/10.1145/1753326.1753478
http://doi.acm.org/10.1145/1753326.1753478
http://doi.acm.org/10.1145/1753326.1753478
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
http://dl.acm.org/citation.cfm?id=2337223.2337225
http://dl.acm.org/citation.cfm?id=2337223.2337225
http://dx.doi.org/10.1145/2737924.2738002
http://dx.doi.org/10.1145/2737924.2738002
http://doi.acm.org/10.1145/2737924.2738002
http://doi.acm.org/10.1145/2737924.2738002
http://dx.doi.org/10.1145/2737924.2738007
http://dx.doi.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
http://dx.doi.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544
http://dx.doi.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321
http://dx.doi.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2676726.2677009
http://dx.doi.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
http://dx.doi.org/10.1007/978-3-642-31424-7_44
http://dx.doi.org/10.1007/978-3-642-31424-7_44
http://dx.doi.org/10.1007/978-3-642-31424-7_44
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.14778/2212351.2212356

snippets. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 287–296, 2013. doi: 10.1145/2462156.2462174. URL
http://doi.acm.org/10.1145/2462156.2462174.

[30] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F.
Ilyas. Guided data repair. Proc. VLDB Endow., 4(5):279–289, Feb.
2011. ISSN 2150-8097. doi: 10.14778/1952376.1952378. URL
http://dx.doi.org/10.14778/1952376.1952378.

[31] Y. Yuan, R. Alur, and B. T. Loo. Netegg: Programming network poli-
cies by examples. In Proceedings of the 13th ACM Workshop on Hot
Topics in Networks, HotNets-XIII, Los Angeles, CA, USA, October 27-
28, 2014, pages 20:1–20:7, 2014. doi: 10.1145/2670518.2673879.
URL http://doi.acm.org/10.1145/2670518.2673879.

A. Proofs of Theorems 1, 2, and 3
We first define a notion of completeness for a symbolic rule. Intu-
itively a symbolic rule has to summarize all possible correct rules
to be complete.

Definition 6 (Command-string completeness). Let

r = match cmd and err →s fixes

be a symbolic rule such that cmd = [c1, . . . , ca],
err = [m1, . . . ,mb], fixes = [f1, . . . , fc], andE = [e1, . . . , en]
a sequence of examples. We say that cmd is complete for E
and produces variables V1, CompC(cmd,E, V1) iff for every
1 ≤ i ≤ a:

• ci = Str(s) (for some s) iff every example (s̄cmd, s̄err, s̄fix) in
E is such that s̄cmd = [s1, . . . , sk], for some k, and sj = s.
• ci = Var-Match(j, l, r) iff i ∈ V , i = j, and there exists two

examples (s̄1cmd, s̄
1
err, s̄

1
fix) and (s̄2cmd, s̄

2
err, s̄

2
fix) in E such

that s̄1cmd = [s1, . . . , sk], s̄2cmd = [s′1, . . . , s
′
k], for some k,

and sj 6= s′j .
• If ci = Var-Match(j, l, r), then for every example

(s̄cmd, s̄err, s̄fix) inE where s̄cmd = [s1, . . . , sk], l is a prefix
of sj . Moreover, l is the longest such prefix.
• If ci = Var-Match(j, l, r), then for every example

(s̄cmd, s̄err, s̄fix) in E where s̄cmd = [s1, . . . , sk], r is a
suffix of sj . Moreover, r is the longest such suffix.

Definition 7 (Error-string completeness). Analogously, we say that
err is complete for E and produces variables V2,
CompE(err, E, V2), iff for every 1 ≤ i ≤ b:
• mi = Str(s) (for some s) iff every example (s̄cmd, s̄err, s̄fix)

in E is such that s̄cmd = [s1, . . . , sk], for some k, and sj = s.
• mi = Var-Match(j, l, r) iff i ∈ V , i + a = j, and there exists

two examples (s̄1cmd, s̄
1
err, s̄

1
fix) and (s̄2cmd, s̄

2
err, s̄

2
fix) in E

such that s̄1err = [s1, . . . , sk], s̄2err = [s′1, . . . , s
′
k], for some k,

and si 6= s′i.
• If mi = Var-Match(j, l, r), and i + a = j, then for every

example (s̄cmd, s̄err, s̄fix) in E where s̄err = [s1, . . . , sk], l
is a prefix of si. Moreover, l is the longest such prefix.
• If mi = Var-Match(j, l, r), and i + a = j then for every

example (s̄cmd, s̄err, s̄fix) in E where s̄err = [s1, . . . , sk],
r is a suffix of si. Moreover, r is the longest such suffix.

Definition 8 (Input completeness). If both CompC(cmd,E, V1)
and CompE(err, E, V2) hold we say that cmd and err are com-
plete for E and produce variables V1 ∪ V2,
Comp(cmd, err, E, V1 ∪ V2).

Definition 9 (Partial fi-completeness). We say that fi is partially
complete, PCompFi(fi, E, i), with respect to E if the following
condition holds: fi = [Fstr(s)] (for some s) iff every example
(s̄cmd, s̄err, s̄fix) in E is such that s̄fix = [s1, . . . , sk], for some

k, and si = s. If for every 1 ≤ i ≤ c, PCompFi(fi, E, i) holds,
then we say that that fixes is partially complete with respect to V ,
PCompF (fixes,E).

Definition 10 (fi-completeness). If there exists a V = {i1, . . . , ij}
such that Comp(cmd, err, E, V) we say that fi is complete with
respect to V at position i, CompFi(fi, E, V, i), iff:

• PCompFi(fi, E, i).
• fi = [t1, . . . , tm] such that for all ind, tind 6= Fstr(s) (for any
s) iff the following properties hold.

For every ind ≤ m and l ≤ k, JtindKfun
σl = s̄lfix[i] (where

for all y ≤ j, σl(iy) = (s̄lcmd@s̄
l
err)[iy]).

If there exists a Sub-lr function t such that for every ind ≤ n
and l ≤ k, , JtKfun

σl = s̄lfix[i] (where for all y ≤ j,
σl(iy) = (s̄lcmd@s̄

l
err)[iy]), then there exists x ≤ m such

that tx = t.

Definition 11 (Fix completeness). If for every 1 ≤ i ≤ c,
CompFi(fi, E, V, i) holds, then we say that that fixes is com-
plete with respect to V , CompF (fixes,E, V).

Definition 12 (Rule completeness). If there is a V such that
Comp(cmd, err, E, V) and CompF (fixes,E, V), we say that
r is complete for E, CompR(r, E).

Notice that for any permutation E′ of E CompR(r, E) iff
CompR(r, E′).

Proposition 13 (CompR and con). Let E a sequence of examples
and r = match cmd and err →s fixes be a symbolic rule. If
CompR(r, E) then every concrete rule r′ ∈ con(r) is consistent
with any example in E. Moreover, for every (non-symbolic) rule

r1 = match cmd and err → [t1, . . . , tn]

consistent with E = [(s̄1cmd, s̄
1
err, s̄

1
fix), . . . , (s̄ncmd, s̄

n
err, s̄

n
fix)]

the following is true: if for every i, ti 6= Fstr(s) iff for some
j1, j2 ≤ n s̄j1fix[i] 6= s̄j2fix[i], then r1 ∈ con(r).

Proof. Immediate from Definition 12 and the definition of con.
More specifically, assume there is some r′ ∈ con(r) not con-

sistent with an example e ∈ E. The only way it can be inconsistent
with s̄cmd or s̄err is if some match expression in cmd or err is a
fixed string not equal to some string in s̄cmd or s̄err . Definition 8
precludes this possibility.

Similarly, it follows from Definition 9 that if one of the fix
expressions is a constant string, then it is consistent with every
example fix. By Definition 10, if it is a set of SUB-LR expressions,
then each one is consistent with every example.

We now show that SYNTHSUBSTRING and SYNTHFIX have the
intended behaviour with respect to Definition 12.

Lemma 14 (Correctness of SYNTHSUBSTRING). Let
E = [(s̄1cmd, s̄

1
err, s̄

1
fix), . . . , (s̄ncmd, s̄

n
err, s̄

n
fix)] be a sequence

of examples where every s̄vfix has length m, V = {i1, . . . , ij}
be a set of variables, and i ≤ m be an index in the out-
put fix. If there exist a and b such that s̄afix[i] 6= s̄bfix[i], then
SynthSubstring(E, V, i) = S iff Comp(S,E, V, i).

Proof. This lemma states that SYNTHSUBSTRING returns all the
SUB-LR functions consistent with the given examples. Again the
proof is by induction on the length of E. The base case |E| = 1
follows from the definition of ALLSUBSTRINGS. The inductive
step is also trivial: SYNTHSUBSTRING simply runs all the functions
computed so far on the added example and filters out those that are
not consistent with it. Since, by IH, the varaible F was correct at

14 2018/10/14

http://dx.doi.org/10.1145/2462156.2462174
http://doi.acm.org/10.1145/2462156.2462174
http://dx.doi.org/10.14778/1952376.1952378
http://dx.doi.org/10.14778/1952376.1952378
http://dx.doi.org/10.1145/2670518.2673879
http://doi.acm.org/10.1145/2670518.2673879

the beginning of the loop, it remains correct. Notice that the order
of the examples does not matter.

Lemma 15 (Correctness of SYNTHFIX). Let S = [s1, . . . , sn] be
a list of strings, T = [t1, . . . , tn] be a sequence of symbolic fix
expressions,

E = [(s̄1cmd, s̄
1
err, s̄

1
fix), . . . , (s̄ncmd, s̄

n
err, s̄

n
fix)]

be a sequence of examples where every s̄vfix has length m, e =
(s̄cmd, s̄err, s̄fix) be an example such that for each 1 ≤ i ≤ n,
s̄fix[i] = si, and V be a set of variables. If PCompF (T,E),
then SynthFix(S, T, e :: E, V) = fixes iff CompF (fixes, e ::
E, V).

Proof. Immediate by induction on m and by using Lemma 14 at
each step.
As SYNTHFIX iterates over each string in the example fix, and
compares it to the corresponding fix expression, we can see that
the only interesting case of the proof is when ti is either a fixed
string not equal to the correpsonding s̄n+1

fix [i] in e, or ti is a set
of SUB-LR expressions. In this case, correctness follows directly
from Lemma 14, as SYNTHFIX calls SYNTHSUBSTRING to refine
the set of substring operation to those generating s̄n+1

fix [i] as well as
all other s̄fix[i] values.

Next we show the correctness of REFINERULE and FINDVARI-
ABLES.

Lemma 16 (Correctness of FINDVARIABLES). Let
E = [(s̄1cmd, s̄

1
err, s̄

1
fix), . . . , (s̄ncmd, s̄

n
err, s̄

n
fix)] be a sequence of

examples, and cmd and err be two sequences of match expressions
of lengths |s̄icmd| and |s̄ierr| respectively. If there exists two sets of
variables V1 and V2 such that CompC(cmd,E[1 :: (n− 1)], V1)
and CompE(err, E[1 :: (n− 1)], V2), then

• if (cmd′, V ′1) = FindVariables(s̄ncmd, cmd, 0), then
CompC(cmd′, E, V ′1).
• if (err′, V ′2) = FindVariables(s̄nerr, err, |s̄icmd|), then
CompE(err′, E, V ′2).

Proof. The two statements can be proved separately but the proof is
identical. The proofs are both by induction on the length of the first
argument of FINDVARIABLES and are very simple case analysis
following Definitions 6 and 7.

W.L.O.G, consider the case for cmd.
Over a run of FINDVARIABLES, a STR(s) in cmd is only changed
if, at the nth iteration of the loop, cmd[i] is STR(S) where S is not
equal to s̄ncmd[i]. In that case FINDVARIABLES introduces a new
variable match expression VAR-MATCH(i, l, r) where l and r are
(respectively) the longest shared prefix and suffix of S and s̄ncmd[i].
By the I.H, cmd was command complete. It follows directly from
Definition 6 that command completeness continues to hold.

A VAR-MATCH(i, l, r) in cmd is only changed if, at iteration n,
the longest common prefix (suffix), x, shared by s̄ncmd[i] and l (r)
is not equal to l (r). In this case VAR-MATCH(i, l, r) is replaced
by VAR-MATCH(i, l′, r) (VAR-MATCH(i, l, r′)), where r′ (l′) is
equal to the common prefix (suffix) x. By the I.H, l was the longest
prefix (suffix) shared by the first n − 1 values of s̄kcmd[i]. Clearly,
x = r′ (l′) is the longest prefix (suffix) shared by the first n
values of s̄kcmd[i]. Moreover, by the I.H. cmd satisfied all other
criteria for command completeness. Thus, it follows that command
completeness continues to hold. It is clear that determining the
shorteset prefix and suffix shared by every s̄kcmd[i] does not depend
on the order in which the examples are presented.

Lemma 17 (Correctness of REFINERULE). Let r be a sym-
bolic rule, E be a sequence of examples, e be an example, and
r′ = RefineRule(r, E, e). If CompR(r, E) then CompR(r′, e ::
E).

Proof. Immediate from Definition 12 and Lemmas 15 and 16.

Lemma 18 (Correctness of SYNTHRULES). Let E be a sequence
of examples. If r′ = SynthRules(E) then CompR(r, E).

Proof. By induction on the length ofE. Case |E| = 1 andE = [e]:
the result of CONSTRULE(e) clearly satisfies CompR(r, E). The
inductive step follows from Lemma 17.

We can now conclude the proofs of Theorems 1, 2, and 3. The-
orem 1 and 2 follow from the order invariance of CompR(r, E)
and from Proposition 13 and Lemmas 18.

Proof of Theorem 3 Let

E = [(s̄1cmd, s̄
1
err, s̄

1
fix), . . . , (s̄ncmd, s̄

n
err, s̄

n
fix)]

be a sequence of examples,

SYNTHRULES(E) = r = match cmd and err →s fixes

be the symbolic rule for E and

r′ = match cmd′ and err′ → fix′

be a concrete rule that is consistent with all the examples in E. If
r′ belongs to con(r) then we are done. Assume it doesn’t.

Case 1. cmd = cmd′ and err = err′. Then by Propo-
sition 13 there exists some ti1 , . . . , tik such that each tiv is of
the form SUB-LR(pvL, p

v
R, l

v, rv,VAR(jv)), and for all j ≤ n
s̄jfix[iv] = s for some s (i.e., the output is a function of the in-
put, but all examples can be captured using a constant output).
In this case it is enough to create a new example e′ starting from
any example (s̄cmd, s̄err, s̄fix) ∈ E where for each iv we modify
sjv = (s̄cmd@s̄err)[jv] so that SUB-LR(pvL, p

v
R, l

v, rv,VAR(jv))
now returns a value different from the previous one (this can be
done by simply adding a new character between pvL and pvR). s̄fix
is replaced by the result of applying r′ to the modified input.

Case 2. cmd@err 6= cmd′@err′. This means that r′ uses
more variables then r (notice that from Definition 12 the set of
variables used by r′ is necessary). This can be fixed by changing
the input of any example (s̄cmd, s̄err, s̄fix) ∈ E. For each variable
VAR(i) that is in cmd′@err′ but not in cmd@err replace the string
(s̄cmd@s̄err)[i] = a1 . . . an with ba1 . . . an where b is a symbol
not appearing in a1 . . . an. s̄fix is replaced by the result of applying
r′ to the modified input. If the rule is still not in con(r′) we can
then modify the example using the techniques from Case 1 since
now cmd = cmd′ and err = err′.

15 2018/10/14

	1 Introduction
	2 Motivating examples
	2.1 Adding missing file extension
	2.2 Extracting substrings
	2.3 Extracting complex substrings

	3 The command repair language Fixit
	4 Synthesizing rules from examples
	4.1 Symbolic representation of multiple rules
	4.2 Lazy rule representation
	4.3 Synthesis algorithm
	4.4 Partition-Based Synthesis
	4.5 More Succinct Representation
	4.6 Concrete outputs

	5 Formal properties
	6 Implementation and Evaluation
	6.1 Implementation
	6.1.1 Implementation optimizations
	6.1.2 Ranking

	6.2 Evaluation
	6.2.1 Benchmark Suite
	6.2.2 Qualitative evaluation
	6.2.3 Quantitative evaluation

	7 Limitations
	8 Related work
	9 Conclusion and Future Directions
	A Proofs of Theorems 1, 2, and 3

