
UC Berkeley
UC Berkeley Previously Published Works

Title
A compiler and verifier for page access oblivious computation

Permalink
https://escholarship.org/uc/item/9gb6m0dg

ISBN
978-1-4503-5105-8

Authors
Sinha, Rohit
Rajamani, Sriram
Seshia, Sanjit A

Publication Date
2017-08-21

DOI
10.1145/3106237.3106248

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gb6m0dg
https://escholarship.org
http://www.cdlib.org/

A Compiler and Verifier for Page Access Oblivious Computation
Rohit Sinha

UC Berkeley, USA
rsinha@berkeley.edu

Sriram Rajamani
Microsoft Research, India
sriram@microsoft.com

Sanjit A. Seshia
UC Berkeley, USA

sseshia@eecs.berkeley.edu

ABSTRACT
Trusted hardware primitives such as Intel’s SGX instructions pro-
vide applications with a protected address space, called an enclave,
for trusted code and data. However, building enclaves that preserve
confidentiality of sensitive data continues to be a challenge. The
developer must not only avoid leaking secrets via the enclave’s
outputs but also prevent leaks via side channels induced by inter-
actions with the untrusted platform. Recent attacks have demon-
strated that simply observing the page faults incurred during an
enclave’s execution can reveal its secrets if the enclave makes data
accesses or control flow decisions based on secret values. To ad-
dress this problem, a developer needs compilers to automatically
produce confidential programs, and verification tools to certify the
absence of secret-dependent page access patterns (a property that
we formalize as page-access obliviousness). To that end, we imple-
ment an efficient compiler for a type and memory-safe language,
a compiler pass that enforces page-access obliviousness with low
runtime overheads, and an automatic, modular verifier that certifies
page-access obliviousness at the machine-code level, thus remov-
ing the compiler from our trusted computing base. We evaluate
this toolchain on several machine learning algorithms and image
processing routines that we run within SGX enclaves.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Logic and verification; • Software and its engineering
→ Compilers;

KEYWORDS
Enclave Programs; Secure Systems; Confidentiality; Side Channels
ACM Reference format:
Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia. 2017. A Compiler and
Verifier for Page Access Oblivious Computation. In Proceedings of 2017 11th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106248

1 INTRODUCTION
A typical computing platform contains large software layers (e.g. OS,
hypervisor, firmware) in its trusted computing base (TCB), where
numerous exploits have allowed privileged malware to execute [8,
9]. Recognizing this problem, processor vendors are now shipping
CPUs with hardware primitives, such as Intel SGX enclaves [6],
for isolating sensitive code and data within protected memory

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
2017 11th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, September 4–8, 2017 ,
https://doi.org/10.1145/3106237.3106248.

regions which are inaccessible to all other software running on
the machine. Amongst recent applications of SGX, VC3 [16] runs
Map-Reduce analytics on an untrusted cloud by computing map
and reduce functions on sensitive data within enclaves, while the
rest of the Hadoop stack (comprising over million lines of code) is
untrusted, sees only encrypted data, and is developed using legacy
software toolchains. In this new paradigm, enclaves are the only
trusted (hopefully tiny) components of an application, providing us
the luxury of programming them with greater rigor and stronger
defenses.

Nevertheless, developing enclaves that guarantee confidentiality
of sensitive data is non-trivial. Enclaves rely on the compromised
host OS for I/O interactions with remote parties, scheduling, and
resource management, and such interactions can reveal secrets,
either directly or via side channels. In addition to protecting the
enclave’s outputs (e.g. by encrypting them before writing to unpro-
tected memory), the developer faces the burden of programming
the enclaves correctly against privileged attacks. Recently, Xu et
al. [21] demonstrated a side-channel exploit that extracts secrets
from an enclave by observing its access pattern to code and data
pages — to observe page accesses, the attacker controls the valid bit
in page table entries to the effect of inducing a page fault on each
memory access. Practical defenses against a privileged adversary is
an open research problem.

In this paper, we consider the problem of defending against an
adversary that can observe page access patterns of an enclave pro-
gram. We formalize a confidentiality property, termed page access
obliviousness (PAO), that asserts that the adversary’s observation of
page accesses must be independent of the enclave’s secrets. Our key
contribution is a method for compiling high-level source programs
to machine code (containing x86-64 and SGX instructions) such
that the machine code satisfies PAO, and a method for efficiently
verifying that the enclave binary provably satisfies PAO. This is a
first step towards making the developer blissfully unaware of the
sophisticated attacks that can be mounted by a privileged adversary,
allowing them to focus entirely on application logic.

To that end, we implement PAO enforcement within a com-
piler for EncLang, a general-purpose language for programming
enclaves. The rationale for developing EncLang is two-fold: 1)
memory accesses in mainstream languages (such as C, Rust) are
determined by the compiler implementation, which offers us no
control over the placement of objects and code in memory, thus
hindering a static scheme for enforcing PAO — a dynamic scheme
for LLVM bytecode [17] has been proposed, but with prohibitively
high performance overheads; 2) because enclaves do not trust non-
enclave software, they cannot use legacy software toolchains and
thus present a rare opportunity for clean slate programming and
verification. Our compiler accepts arbitrary programs in EncLang
and obliviates the page accesses in the compiled x86-64 program
i.e. satisfies PAO by making page access pattern independent of
secrets. For instance, the compiler ensures that secret-dependent
branches fetch instructions from the same (sequence of) pages in
both branches. The compiler also performs stack allocation and

https://doi.org/10.1145/3106237.3106248
https://doi.org/10.1145/3106237.3106248

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia

lays out data structures in the enclave’s heap so that a memory
access via a secret address (e.g. array access with a secret index)
generates a deterministic page access sequence in all executions.
During this process, the compiler instruments dummy memory
accesses or inserts padding space between objects in memory to
obliviate the page accesses. For performance, the compiler performs
stochastic optimization (based on Markov Chain Monte Carlo sam-
pling) to reduce the increase in code and data size of compiled
programs. Although we implement these techniques in a compiler
for EncLang, the ideas are generally applicable to mainstream lan-
guages. Moreover, we use EncLang to only program the enclave
components of an application, which we empirically observe to
be a small fragment of the entire application (e.g. map and reduce
functions in VC3).

Next, we develop a separate verifier that proves that the output
machine code satisfies PAO. The gains are two-fold: 1) the compiler
is no longer trusted, thereby freeing us to implement aggressive
optimizations without inadvertently sacrificing PAO, and 2) the ver-
ifier is significantly simpler, and shrinks the size of our TCB, which
now includes only the CPU hardware and our verifier. Furthermore,
to alleviate the complexity of verifying arbitrary machine code, we
engineer the compiler to supply (untrusted, but useful) hints to
the verifier — we follow the typed assembly language paradigm of
having the compiler output typing annotations along with the ma-
chine code, and create a set of simple typing judgments for efficient
verification.

This paper makes the following novel contributions:

(1) We formalize PAO for enclave programs which execute in
the presence of a privileged adversary.

(2) We present a toolchain, consisting of a type system and
compiler, that automatically enforces PAO while compiling
to machine code, and implements a stochastic optimization
to reduce runtime and memory overheads.

(3) To minimize our TCB, we develop a verifier that analyzes
the compiled machine code to prove PAO. To further sim-
plify the verifier, we design a typed assembly language,
where the typing annotations accompany the machine in-
structions and reduce the verification task to efficient type
checking.

(4) We evaluate the toolchain on several machine learning al-
gorithms and image processing routines, for which attacks
have been demonstrated in [21].

2 OVERVIEW
Enclaves. An enclave is a protected region in memory (contain-

ing code and data) that can only be accessed by the code running
within the enclave. The trusted CPU implements instructions for
the untrusted software to launch enclaves; after launch, any non-
enclave software is prohibited from accessing the enclave’s memory
— the CPU implements measurement and remote attestation primi-
tives to ensure launch-time integrity [6]. An enclave (e.g. Hadoop
reducer in VC3 [16]) occupies a virtual address space contained
within the hosting application’s (e.g. Hadoop process) address space;
the enclave’s code runs at the lowest (ring 3) privilege level. An
enclave is not allowed to make system calls since the OS cannot
be trusted to modify the enclave’s memory safely. However, the
enclave can access the hosting application’s memory (but not the
other way around), which allows for efficient I/O between the en-
clave and the external world — all system calls are proxied by the

hosting application. The host application can invoke code inside
the enclave via a statically defined entry-point, and the enclave
code can transfer control back via an exit instruction. Control may
also transfer out of the enclave asynchronously due to interrupts,
faults, and exceptions, in which case the CPU protects sensitive
state e.g. by saving context in the enclave’s memory and zeroing
out the registers.

A typical enclave follows a stylized idiom where it copies en-
crypted inputs from the host application’s memory, decrypts the
input using a key known only to the enclave, computes and en-
crypts the output, and copies the encrypted output to the host
application’s memory. To support this programming idiom, we em-
ulate the design of [18] and supply a runtime library with send
and recv APIs (whose specification is formalized in [18]), which
provide the only means for communicating with the external world;
send encrypts the message and writes out the ciphertext, whereas
recv decrypts the incoming ciphertext, and provides the plaintext
message to the caller.

Threat Model. We assume a software adversary that has full
control of all system software: OS, hypervisor, system manage-
ment mode firmware, and BIOS. As a result of these privileges, the
adversary has full control over non-enclave memory, I/O peripher-
als, disks, and network; it may record, replay, or modify network
messages and disk contents. The adversary may force the CPU to
transfer control from the enclave to the untrusted OS at any time
during execution (by generating an interrupt, for example). Once
the CPU transfers control to the adversary, the adversary may exe-
cute an arbitrary adversarial operations before transferring control
back to the enclave.

To allow an OS autonomy over memory paging decisions, Intel
SGX places the page tables under the OS control. For security, the
CPU implements an inverse page table mapping to ensure that
the OS cannot change the physical mapping for any address in
enclave’s region. However, at any point, the attacker may modify
the page table entries to the effect of inducing a page fault on each
enclave memory access (e.g. by clearing the valid bit). That being
said, the OS’ page fault handler only needs to know the accessed
page (and not all bits of the address), hence the CPU clears the page
offset bits from the faulting address (12 least significant bits for
4KB-sized pages) prior to delivering the page fault exception. This
reveals the enclave’s memory access patterns only at the page-level
granularity. Recent attacks [21] on enclaves have extracted secrets
via this channel, and preventing such leaks is a key contribution
we make.

Defenses against hardware attacks are out of scope for this paper.
For instance, we assume that the adversary cannot physically attack
the CPU package to extract secrets nor snoop on the hardware bus
connecting the CPU and DRAM. The latter assumption prevents
the adversary from learning access patterns at the byte-level gran-
ularity, which would necessitate a more sophisticated defense. We
also don’t defend against timing leaks, which may result from 1)
timing of page accesses, 2) cache timing attacks which the attacker
uses to infer access patterns at a cache-line granularity.

Challenges inGuaranteeing PageAccessObliviousness. We
choose a simple notion of confidentiality: the adversary’s observa-
tions of page accesses during enclave execution must be indepen-
dent of the enclave’s secrets.

A Compiler and Verifier for Page Access Oblivious Computation ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Consider a sample enclave in Figure 1, which evaluates a decision
tree to classify an input instance. The decision tree and the evaluate
algorithm are known to the adversary, whereas the input instance
and output decision must be kept confidential — to that end, we
invoke the runtime’s send API to encrypt the output before writing
to non-enclave memory. To classify the instance, the procedure
traverses the tree (stored as a flattened array) starting from the root
node, until it reaches a leaf node (which is any node with a non-zero
value in the decision field); the evaluation uses an index variable to
record the current node in the traversal. At each interior node, the
procedure compares the value of a decision variable with a threshold
value, and recurses on either the left or right subtree based on the
outcome. The path taken through the tree reveals predicates that
hold on the secret instance, which the attacker infers by monitoring
the enclave’s accesses to code and data pages. Therefore, amongst
other measures, the enclave developer must ensure that the page
accesses are independent of the path, a property entailed by PAO.
Guaranteeing PAO for the evaluate procedure has the following
challenges:

• In the case of an unbalanced decision tree, evaluate termi-
nates after varying number of iterations (based on secret),
and the attacker may infer the path length by counting the
number of page accesses. In other words, each invocation
of evaluate leaks at most log2 k bits of secret, where k is
the height of our decision tree.

• We have a secret-dependent conditional statement (line 23).
Monitoring the enclave’s accesses to the code pages allows
the attacker to infer which branch is taken, if any of the
instructions implementing the if branch (line 25) is placed
in a different page than the instructions implementing the
else branch (line 27). Mainstream compilers often optimize
for code size and performance, but make no effort to control
the layout of instructions.

• Wefind several data accesses where the address depends on
a secret value. For instance, in lines 22 - 27, the array access
tree[index] computes a reference to a node within the tree,
where index is a secret; this makes the address evaluate to
a secret value. In the case that tree is stored across multiple
pages — because the tree size is larger than a single page,
or due to layout decisions made by the compiler — the
attacker infers some bits of the secret index by monitoring
the enclave’s accesses to data pages.

Compilation for Page Access Obliviousness. We develop a
compiler for producing PAO-satisfying x86-64 code from arbitrary
EncLang programs. First, a type system (described in § 4.5) flags
violations where the enclave leaks secrets in ways that an automatic
compiler cannot fix (without developer intervention): loops with
secret-dependent condition i.e. secret number of iterations, explicit
leaks via assignment of secret values to public state, and implicit
leaks via assignment to public state within a secret conditional
branch — these typing restrictions are common for type systems
for non-interference and side-channel mitigations. In the evaluate
procedure in Figure 1, the developer replaces the secret-dependent
loop condition (line 19) with a loop that executes for fixed number
of iterations (line 20), thus trivially satisfying the typing rule that
loop exit conditions must only depend on public values. The type
checker finds no other violations.

The compiler (described in § 4) then compiles to x86-64 code,
listed in Figure 2(a), while also enforcing PAO by controlling the

1 global tree:

2 array [2^k-1]
3 struct {

4 left : idx <2^k><public >, /* index of left subtree */

5 right : idx <2^k><public >, /* index of right subtree */

6 decision : uint64 <public >, /* != 0 for leaf node */

7 dvar : idx <d><public >, /* decision variable */

8 threshold : uint64 <public > /* threshold value */

9 };

10
11 void evaluate(instance : ref array[d]<secret > uint64)

12 {

13 local decision: uint64 <secret >; /* evaluation result */

14 local index: idx <2^k><secret >; /* values 0 to 2^k-1 */

15
16 index := 0; /* start traversal at root */

17 decision := 0; /* terminates when non 0 */

18
19 while (decision = 0) {

20 /* for (0..k) { */

21 if (decision = 0) {

22 decision := tree[index]->decision;

23 if (instance[tree[index]->dvar] <=

24 tree[index]->threshold) {

25 index := tree[index]->left; /* recurse left */

26 } else {

27 index := tree[index]->right; /* recurse right */

28 }

29 }

30 }

31 send(decision);
32 }

Figure 1: Decision tree evaluation

layout of data structures and instructions in memory — where
necessary, it generates dummy page accesses to obliviate the ac-
cess patterns, as discussed below. It takes the following necessary
measures for our sample enclave.

Even with the fix on line 20, the enclave remains vulnerable —
the program effectively stops computing and does not perform data
accesses once the traversal reaches a leaf node (i.e. condition on
line 21 evaluates to false), thus allowing the adversary to infer the
path length by counting the accesses to the data pages. To correctly
conceal this leakage, the compiler places dummy accesses in the
else branch (corresponding to the if on line 21) to account for the
imbalance in the tree. As seen in Figure 2(a), the dummy accesses
are performed using instructions within the address range 0x96
to 0xbe, and they target the same sequence of pages as the two
program paths in the input program — this is achieved via dummy
reads from the same object, and by controlling the placement of
objects.

Second, to prevent secrets from leaking via data accesses (e.g.
tree[index], where the address depends on a secret), the compiler
must either 1) layout the tree to fit entirely within a page (if pos-
sible), causing all accesses to the tree to target the same page, or
2) allow the tree to span multiple pages, and introduce dummy
accesses to all pages except the page containing tree[index]. For
a simpler presentation, the compilation in Figure 2 assumes that
the tree object fits within a single page — § 4.1 presents a general
scheme. Despite this simplifying assumption, we must generate
dummy accesses to tree in the else branch (corresponding to the
if on line 21). A dummy read (e.g. instruction 0x9e, which mim-
ics 0x35) is performed by fabricating an address within the tree.
A dummy write (e.g. instruction at 0xa6, which mimics 0x3d) is
performed by first issuing a dummy read (instruction 0xa2, which
we compensate by adding instruction 0x39 in the original path),

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia

(a) Compiler safely lays out code and data pages, and instruments dummy accesses (b) Verifier constructs CFG and computes aliases for all memory accesses

Figure 2: Compiling and verifying evaluate to guarantee page access obliviousness

and then writing the read value back at the same address, thus
preventing dummy accesses from modifying state.

Finally, To hide control decisions based on secret input (line 23),
the compiler lays out the instructions from both branches onto the
same page, when possible. Inevitably, to handle cases where the
cumulative code within the branches of a secret conditional cannot
be fit onto a single page, the compiler partitions code across pages
such that the sequence of code page accesses is equivalent in the two
branches — the compiler splits each branch into snippets, and maps
snippets to pages such that the nth chunk of both branches have
equal number of instructions and occupy the same page. Finally,
the compiler instruments nop instructions to equalize the number
of instructions (code accesses) in the two branches. Further details
are presented in § 4.3. For simplicity, we elide the nop instructions
in Figure 2, and also manage to place all of the compiled machine
code for evaluate within one page.

Verifying PageAccessObliviousness. An enclave violates PAO
if executionswith different secret values produce different sequences
of page accesses. We verify that the output machine code satisfies
PAO, thus removing the compiler’s implementation from the trusted
computing base.

In this paper, we show that verifying PAO requires sound (but
necessarily incomplete) algorithms for alias analysis and control
flow analysis — in practice, we are able to implement a simple,
yet precise algorithm for these analyses because our compiler pro-
duces idiomatic code and supplies hints to the verifier, following
the paradigm of typed assembly language. First, our verifier takes
the enclave program as input and computes its control flow graph
(CFG), as shown in Figure 2(b). Next, our verifier performs an alias
analysis, annotating each memory access with a set of objects that
the access may target. We show the aliases within curly braces in
Figure 2(b); the verifier also annotates the aliases for the dummy
accesses along the else branch (shown within the dotted box in the
CFG), corresponding to the if in line 21. The verifier uses these anal-
yses to prove PAO: for any pair of executions of the enclave binary

(that only differ in secret values), the sequence of page accesses
must be equivalent, where two accesses are equivalent if they target
the same page and have same type (read / write / execute). The
machine code in Figure 2 satisfies PAO trivially because the alias
analysis computes only one object for each memory access, and all
paths have equivalent sequence of accesses to code and data pages.

3 PAGE ACCESS OBLIVIOUSNESS
3.1 Formal Modeling of Enclave Code

Instructions. An enclave program is a partial map from 64-bit
addresses (in enclave memory) to user-mode instructions, with
a unique entrypoint. In addition to standard x86-64 instructions,
the CPU enables SGX instructions in enclave mode to perform
cryptography (e.g. ereport, egetkey), and exit to non-enclave code
(eexit). On the other hand, certain instructions such as system calls
are disabled because the enclave cannot trust the OS to update
enclave’s memory. For simplicity (of our implementation rather
than the methodology), we assume that the compiler produces
enclave programs that only contain a subset of x86 instructions — it
includes mov for loads and stores, conditional jumps such as jl, call
and ret for procedure calls, and several arithmetic and relational
operators. Our methodology assumes single-threaded enclaves.

State. The enclave program’s state consists of variables (denoted
by Vars): regs, flags, and mem. regs are CPU registers (e.g., rax,
r8, rsp, etc.), each being 64 bits wide. CPU flags (e.g., CF, ZF, etc.)
are 1-bit values. The instruction pointer (rip ∈ regs) stores the
address of the next instruction to be executed and is incremented
automatically after every instruction, except in those that change
the control flow: jumps, call, and ret. Memory (mem) is modeled as
a map from 64-bit addresses to 8-bit data. Although the machine’s
state may consist of other elements (such as control register CR4,
etc.), we omit them from the enclave’s state even though they
impact its execution. There are two main reasons for this modeling
choice: 1) we assume the ISA-defined operational semantics of each

A Compiler and Verifier for Page Access Oblivious Computation ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

instruction, which the CPU must fulfill in enclave mode, regardless
of how the adversary modifies the unprotected state elements, and
2) we would like to abstract away from the specifics of a particular
ISA implementation, and we find that our abstraction of machine’s
state (i.e. regs, flags, and mem) applies to other trusted hardware
platforms.

Semantics. We define a concrete state σ to be a valuation of all
variables in Vars. Let σ(v) be the value of a variable v ∈ Vars in state
σ . Let instr(σ) be the instruction executed in state σ (computed
from the instruction pointer rip and the contents of mem). The se-
mantics of an instruction i ∈ Instr is given by the relation ⇓, where
⟨i,σ⟩ ⇓ σ ′ if and only if i = instr(σ) and there is an execution of i
starting atσ and ending inσ ′ (as per the operational semantics). Due
to space constraints, we define the operational semantics for a sub-
set of Instr in the technical report [20]. A sequence π = [σ0, . . . ,σn]
is called an execution trace if ⟨instr(σk),σk ⟩ ⇓ σk+1 for each
k ∈ {0, . . . ,n − 1}.

3.2 Modeling Adversary’s Effect on Enclave
Execution

Our formal model of an active adversary’s operations is similar to
Moat [19] — we only extend Moat’s adversary with observations of
page-level accesses. The adversary may force the CPU to transfer
control from the enclave to the untrusted OS at any time during
execution (by generating an interrupt, for example). From then
on, the adversary executes an arbitrary sequence of instructions
before transferring control back to the enclave. The adversarial op-
erations include modifications to non-enclave memory, privileged
state accessible to the OS and hypervisor layers (e.g. page tables),
and devices. Moat proves a theorem that an unbounded sequence of
these privileged operations can be simulated by an adversary that
is only allowed to modify non-enclave memory — in other words,
the CPU ensures that the adversary can only impact the enclave’s
execution when the enclave loads inputs from non-enclave memory.
For sound analysis, our model of the enclave program havocs the
output of recv, which is the only mechanism for fetching inputs
from non-enclave memory.

3.3 Page Access Obliviousness
Wefirst define confidentiality for enclave programs, and then instan-
tiate this definition to attain PAO. An execution trace π starts in the
initial state of the machine following a power cycle; at some point
in the trace, the adversary launches the enclave program. From then
on, π consists of alternating sequences of adversarial and enclave
instructions. We use seqA(π , i) and seqE (π , i) to denote the i-th
subsequence of adversarial and enclave instructions, respectively;
figure 3 illustrates these functions. Let the projection function A
denote the component of enclave-observable machine state that
the adversary is allowed to control; we define A(σ) = σ(mem¬ENC),
where mem¬ENC denotes non-enclave memory. Note that the adver-
sary may invoke privileged instructions that modify state beyond
mem¬ENC (e.g. control register CR4). However, we omit these state
variables fromA because they are not included in the enclave’s state
or the operational semantics, and the trusted CPU must guarantee
the operational semantics during enclave execution, regardless of
how the adversary manipulates this additional machine state.

Definition 3.1. Confidentiality For any pair of execution traces
of the machine, if the adversary’s operations along the two traces

Figure 3: Illustration of confidentiality definition.

are equivalent, then the adversary’s observations along the two
traces must also be equivalent.

∀π1, π2 ∈ Σ∗ .π1 ≡A π2 ⇒ π1 ≡O π2

where
π1 ≡A π2 ⇔

∀i . instr(seqA(π1, i)) ≡ instr(seqA(π2, i)) ∧

A(seqE (π1, i)[0]) ≡ A(seqE (π2, i)[0])

Confidentiality, a hyper-property defined over pairs of execu-
tions, is violated when the enclave produces observationally dif-
ferent traces for equivalent adversarial operations. Equivalence is
defined using relations ≡A and ≡O . The equivalence relation ≡A
over pairs of adversarial subsequences (seqA(π1, i) and seqA(π2, i))
only includes traces that 1) have equal lengths, 2) have the same
instructions, and 3) produce the same sequence of states (where
equivalence is defined modulo the projection function A). Equality
of states moduloA is naturally defined to be bitwise equivalence for
all locations in mem¬ENC, with the caveat that encrypted values can
differ. Specifically, using the approach of cryptographically-masked
flows [2], we treat all valid ciphertexts to be equivalent — this en-
sures that calling recv will succeed and produce different secret
inputs in both π1 and π2. Without this restriction, definition 3.1
would force all encrypted inputs to have equivalent bitwise val-
ues, thereby forcing secrets to have the same values in π1 and π2,
which may hide information leaks. For checking that the enclave’s
observed behaviors are equivalent, we use an equivalence relation
≡O , defined below.

Definition 3.2. Page Access Obliviousness An enclave is page
access oblivious if it satisfies confidentiality, with observation func-
tion O set to the following PA function.

π1 ≡O π2 ⇔

PA(seqE (π1, i)) ≡ PA(seqE (π2, i))

PA(σ0, . . . , σn) � [PAc (σ0) · PAd (σ0) · . . . · PAc (σn) · PAd (σn)]

PAc (σ) � ⟨execute, σ(rip/2p)⟩

PAd (σ) �



⟨read, σ(rega/2p)⟩ instr(σ) = mov regd [rega]

⟨write, σ(rega/2p)⟩ instr(σ) = mov [rega] regd

⟨read, σ(rsp/2p)⟩ instr(σ) ∈ {pop reg, ret}
⟨write, σ(rsp/2p)⟩ instr(σ) ∈ {push reg, call}
ϵ otherwise

The PA function permits the adversary to observe all memory
accesses at the page-level granularity (enforced by the division
by page size 2p). The value of p is architecture-specific; a page
has size 4096 bytes in Intel SGX CPUs, which makes p = 12. As

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia

dictated by PA, for each instruction executed in enclave-mode, the
attacker records 1) access to a code page at address rip to fetch
the instruction, and 2) access to a data page, if the instruction
triggers a data access (e.g. push performs a write access to a data
page at address rsp). This definition of PA represents the x86-64 ISA
semantics, even in the presence of optimizations such as prefetching
and caching, because the CPU evaluates the page permission check
for each memory access. The adversary also observes the type of
memory access: read, write, or execute.

4 PAO-ENFORCING COMPILATION
This section presents an algorithm for obliviating data accesses at
the machine code level (§ 4.1), a stochastic optimization step for
lowering runtime overheads of this defense (§ 4.2), and an algorithm
for obliviating code accesses (§ 4.3). We also present EncLang (§ 4.4)
and its compiler (§ 4.5, § 4.6), which implements these algorithms
to produce PAO-satisfying machine code.

4.1 Obliviating Data Accesses
Consider the following secret-dependent conditional branch:

if (s) { /* s: bool <secret > */

b[i] := a[k]; /* a: array [5000] uint8 <public > */

} else { /* b: array [10] uint8 <secret > */

c := 0; /* c: uint64 <secret > */

}

With different values of the secret s in executions π1 and π2 (from
definition 3.1), the attacker observes different data accesses in π1
and π2:

• π1 (if branch): RJsK, RJa[k]K,W Jb[i]K
• π2 (else branch): RJsK,W JcK

Here, RJK andW JK indicate read and write operation, respectively
— we defer the treatment of code accesses (for fetching instructions)
to section 4.3. A strawman PAO-enforcement scheme obliviates
page accesses in the two branches by introducing dummy read
(R̂JeK) and dummy write (Ŵ JeK) operations, which are guaranteed
to 1) target the same page as the real read (RJeK) and write (W JeK)
operations that they mimic, and 2) not cause any side-effect on
the program’s state. This approach results in the following data
accesses along the two branches of the above program:

• π1 (if branch): RJsK, RJa[k]K,W Jb[i]K, Ŵ JcK
• π2 (else branch): RJsK, R̂Ja[k]K, Ŵ Jb[i]K,W JcK

The implementation of dummy operations R̂JK and Ŵ JK, which
execute in a different code path than the real operations they mimic,
must compute the same address or at least an address to the same
page. This is trivial for scalar objects (e.g. variable c, which has a
fixed location on the program stack). In the case where the object
spans multiple pages (e.g. larger-than-page array a in RJa[k]K),
we cannot statically identify a unique page targeted by a read /
write operation — in general, the address may be computed using
a secret (e.g. secret k in a[k]), and secrets may evolve to different
values within the two branches of a secret-dependent conditional.
Therefore, the dummy operation R̂Ja[k]K must access each page
that contains some part of the object, which also forces us to access
the same pages to implement the real RJa[k]K lest we violate PAO.
In other words, the RJK, R̂JK,W JK, and Ŵ JK operators — defined
in Figure 4 and described below — may perform multiple memory
accesses for each read / write operation.

First, given a RJeK orW JeK operation to mimic, we perform a
best-effort analysis to identify the object being targeted by the refer-
ence e , hereby called the statically-identifiable object. The statically-
identifiable object, or si(e), denotes a (contiguous) region of mem-
ory that is guaranteed to contain the address e , in all executions
of the program. EncLang provides two constructs for computing
references: the{ operator converts a reference to a struct into a
reference to the named field, and the [.] operator returns a reference
to the indexed array element — both operators have standard C-
like semantics. We compute si(e) syntactically by traversing struct
accesses in e until we arrive at a scalar or an array access — we stop
the recursion at an array access to avoid performing range analysis,
thereby allowing the computation of si to be syntactic. For instance,
si(a[k]) is a; si(w { x[y { z]) is w { x; si(w { x) is w { x; si(s)
is s. In general,

si(e) �


id where e ← id
si(ea) where e ← ea [ei]
si(es) where e ← es { id and es contains array access
e where e ← es { id and es has no array access

Figure 4 defines the machine code implementation of the RJeK,
W JeK, R̂JeK, and Ŵ JeK operators. If si(e) resolves to a scalar value
(i.e. ref cell in EncLang), then both RJeK and R̂JeK execute a sin-
gle mov instruction to read the value. Else, we perform a linear
scan over all pages that contain the array referenced by si(e) (as
illustrated in Figure 4). To do so, it suffices to know the size of
the array referenced by si(e), which we compute using the type
inference in EncLang (§ 4.5) — the base address can be evaluated at
runtime. Assuming the worst case layout of si(e), where the object
may span upto ⌈ size(si(e)) / 2p ⌉ + 1 pages, we perform the linear
scan in R̂JeK by issuing dummy loads from all these pages, and
perform the linear scan in RJeK by issuing a real load to the page
containing address e and dummy loads to the remaining ⌈ size(si(e))
/ 2p ⌉ pages. To an attacker, a real load is indistinguishable from
a dummy load — PAO is preserved by having equivalent number
and type of page accesses in RJeK and R̂JeK. Observe that a dummy
load targets the lowest address of a page (i.e. bottom p bits are 0),
and discards the result of the load, whereas a real load targets the
intended address e and saves the result in rax. The implementation
is similar forW JeK and Ŵ JeK. The linear scan uses dummy stores
that target the lowest address of a page, and first loads a value from
that address, and then stores that same value back. Meanwhile, a
real store first loads a value from the target address into a dead reg-
ister, and then stores the new value — to an attacker, a real store is
indistinguishable from a dummy store. The implementation makes
use of an oblivious move primitive called omove, which we borrow
from [14]. Effectively, dst := omove(c, x, y) performs a conditional
move without introducing a conditional branch — it moves both
x and y into temporary registers, evaluates c, and uses the cmovz
instruction to move either x (if c is true) or y (if c is false) into dst.

Note that the compiler only introduces dummy operations R̂JeK
and Ŵ JeK within secret-dependent conditional branches. Code
within public conditionals do not require any PAO-related defenses,
as the program executes the same branch in both π1 and π2, and
hence the attacker observes equivalent page accesses. Although, for
simplicity, our example only contains one conditional statement,
the algorithm handles arbitrary nesting of conditional statements.
This section proposed a naive, but sound defense for enforcing PAO;
the following section optimizes the program to remove unnecessary
dummy accesses, without compromising soundness.

A Compiler and Verifier for Page Access Oblivious Computation ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Reference Type RJeK: expects input e in rax, and produces output in rax R̂JeK: gets input e in rax
Γ ⊢e si(e) : ref cell . . . mov rax [rax] mov rax [rax]
Γ ⊢e si(e) : ref array . . . for k in [0..s − 1] { for k in [0..s − 1] {

r11 := pg(si(e)) + 2p ∗ k ≥ rax < pg(si(e)) + 2p ∗ (k + 1) rdx := pg(si(e)) + 2p ∗ k
let s = ⌈ size(si(e)) / 2p ⌉ + 1 rcx := omove(r11, rax, pg(si(e) + 2p ∗ k)) mov rdx [rdx]
denote the maximum number mov rcx [rcx] }
of pages that si(e) can occupy rdx := omove(r11, rcx, rdx)

}
rax := rdx

Reference Type W JeK: expects input e in rax, and value in rbx Ŵ JeK: gets input e in rax
Γ ⊢e si(e) : ref cell . . . mov rdx [rax] mov rdx [rax]

mov [rax] rbx mov [rax] rdx
Γ ⊢e si(e) : ref array . . . for k in [0..s − 1] { for k in [0..s − 1] {

r11 := pg(si(e) + 2p ∗ k) ≥ rax < pg(si(e)) + 2p ∗ (k + 1) rcx := pg(si(e)) + 2p ∗ k
let s = ⌈ size(si(e)) / 2p ⌉ + 1 rcx := omove(r11, rax, pg(si(e)) + 2p ∗ k) mov rdx [rcx]
denote the maximum number mov r12 [rcx] mov [rcx] rdx
of pages that si(e) can occupy rdx := omove(r11, rbx, r12) }

mov [rcx] rdx
}

Figure 4: Implementation of oblivious read / write primitives. The omove primitive performs a conditional move using the
cmovz instruction. pg(x) denotes the starting address of the page containing address x and is defined to be x & !(2p − 1).

4.2 Stochastic Optimization of Dummy
Accesses

So far, our strategy for obliviating data accesses assumed the worst-
case layout of objects in memory. First, the RJK andW JK operators
produce ⌈ size(si(e)) / 2p ⌉ + 1 page accesses, accounting for the
pathological case where even a two-byte object can span two pages
— we observe this phenomenon inW Jb[i]K, which needs only one
page access if the 10-byte array b can be placed entirely within
a page. Second, the strategy of introducing one dummy operator
for each real operator in the other path assumes the worst case
setting where all objects are placed in unique pages, which is rarely
the case — we observe this phenomenon in the toy example from
section 4.1, where both Ŵ Jb[i]K and Ŵ JcK can be elided objects if
b and c are placed in the same page. With this insight, we have an
optimized sequence of data accesses:

• π1 (if branch): RJsK, RJa[k]K,W Jb[i]K
• π2 (else branch): RJsK, R̂Ja[k]K,W JcK

We formulate this program transformation as a stochastic opti-
mization problem, and solve it using Markov Chain Monte Carlo
(MCMC) sampling, which quickly explores a large search space of
program rewrites. The cost function to optimize is the number of
dummy page accesses. The MCMC sampling chooses amongst two
candidate moves:

(1) Map objects to pages: Randomly select a stack-allocated
object and place it onto a random page (on the current
stack frame) that has enough contiguous, free memory.

(2) Dummy accesses: Randomly select a pair of R̂JK (or Ŵ JK)
operations and remove it from the program. Or, for ergod-
icity [15], create a pair of R̂JK (or Ŵ JK) operations, each
with a randomly chosen object as the argument.

These optimizations require the compiler to control the place-
ment of local, stack-allocated objects. We assume no control over
heap layout as it is performed by malloc, and the layout of globals is
performed independently of all procedures — in principal, these can
be optimized as well, but that would add unmanageable complexity
to the compiler.

4.3 Obliviating Code Accesses
The branches of a secret-dependent conditional may contain un-
equal number of instructions, and hence produce unequal number
of code page accesses in π1 and π2 (from definition 3.1) — in fact,
the reader may notice in Figure 4 that although our implementation
of RJeK produces equal number of data accesses as R̂JeK, RJeK uses
far more instructions. To obliviate the code accesses, the compiler
instruments nop instructions on the same page as the instructions
being mimicked — we apply this defense after the transformations
in sections 4.1 and 4.2, ensuring that enough code accesses are
interleaved with the data accesses to satisfy PAO. Note that this
instrumentation is only applied to secret-dependent conditionals.

The nop instrumentation ensures that all paths within a secret-
dependent conditional have equal number of x86-64 instructions.
However, this is not enough for PAO. Without consideration to
code layout, instructions in different branches may get placed onto
separate pages. This may happen if there is not enough space left
on the current code page, or if the cumulative size of the branches
is larger than a page. In such cases, we split each branch into a
sequence of snippets, map snippets onto pages such that the nth
snippet of both branches has equal number of instructions and
occupies the same page, and stitch the snippets together using
unconditional jumps.

4.4 The EncLang Language
Our goal is to empower the developer with a PAO-enforcing com-
piler and verifier toolchain, which implements the defenses in sec-
tions 4.1-4.3. Modifying off-the-shelf compilers for mainstream
languages would require significant overhaul. We must at the very
least: (1) add security types to identify secret branch conditions
— in the case of C/C++, the type system is also unable to strictly
enforce type and memory safety, making it exceedingly difficult
to statically reason about aliasing, control flow, and object sizes
(e.g. evaluating si in 4.1); (2) extend the operational semantics to
define memory accesses for each expression and statement in the
language and enforce these semantics in all phases of the compi-
lation — mainstream languages (e.g. C, Rust) leave these details

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia

to a compiler; (3) extend the compiler implementation with tech-
niques proposed in this paper: issue dummy accesses, place nop
instructions, arrange objects in data pages, arrange instructions
in code pages, etc. — mainstream compilers don’t offer this level
of control over the code generation. Therefore, we implement our
PAO enforcement within a compiler for a new language, called
EncLang, that is mostly inspired from Ivory [4], Cyclone [7] and
the work by Jones [3]. Note that EncLang is used to program the
(security-critical, and hopefully small) enclave, whereas the rest of
the application is developed using commodity toolchains. Figure 5
presents the syntax, and the rest of this section discusses the key
features of EncLang.

Establishing memory safety is paramount for enforcing PAO
— a memory safety violation, such as a control flow attack, may
perform arbitrary, malicious computation within enclaves, making
it infeasible to give any meaningful security guarantee. To that
end, the EncLang restricts how references to objects are computed
and stored. The language forbids out-of-bounds access and nullable
pointers. The developer may allocate memory for either primitive
types (cell β , where β is a machine word type) or aggregate struc-
tures of type struct and array. The array size must be declared
statically, and the array is indexed using a special integer type
idx⟨k⟩, which represents values from 0 to k − 1. All allocations are
either local (in the current procedure’s stack frame), global, or on
the heap (managed with malloc and free). Though we intend to
relax this restriction in future work, we force the programmer to
specify the type of the object (which also specifies its size) as an
argument to malloc, in lieu of introducing runtime bounds checks.
Allocations (via local, global, and malloc) bind the object’s name to
a reference that points to the base of the object. The{ operator
converts a reference to a struct into a reference to the named field,
and the [.] operator returns a reference to the indexed array element
(if the type checker can prove that the index’s type cannot allow an
out-of-bounds access). These are the only two ways of computing
references to objects in memory (pointer arithmetic is disallowed),
and we also prevent references from being stored in memory to
keep alias analysis simple yet precise (though we intend to relax
this in future). Once a reference to a cell is obtained, deref and store
is used to read and write a machine word.

A program may save intermediate results on the local stack
using let statements and local declarations. A procedure (includ-
ing malloc, free) is invoked using a call statement, and execution
terminates within the procedure at the ret statement. Our type
checker guarantees that references to stack allocated objects are
not returned from a procedure, thus eliminating the possibility of a
dangling pointer.

A standard feature of information flow type systems is a secrecy
type, which has two values: public (⊥) or secret (⊤). EncLang
allows both values (i.e. cell) and references to have type ⊥ or ⊤
— a secret reference indicates that the pointer is computed using
secrets e.g. a[i], where i is secret. The type checker uses these types
to identify illegal information flows (e.g. storing a secret value in a
public state variable), and the PAO enforcement algorithm (§ 4.1-
§ 4.3) uses these types to identify the secret-dependent branching
conditions.

Advantages of using EncLang for PAO. The compiler can perform
simple, yet precise, alias analysis to determine the set of objects
that are potentially targeted by a store or deref.This is because
the language provides limited constructs ({ and [.]) to compute

pointers, and such pointers are always computed in a small number
of registers and never saved in memory. In principle, we can relax
these language restrictions, and develop sophisticated alias analy-
sis, value analysis, etc. as part of the PAO-enforcing compilation.
However, we find these challenges to be orthogonal to the problems
addressed in this work.

Const
n ::= N
c ::= true | false |

0bv8 | . . . | 18446744073709551615bv64
Vars

v ::= id
Ops

⊗ ::= + | ≫ | ≪ | ∗ | = | < | ∧ | ∨ | ¬ | . . .
Region

r ::= local | global | heap
Types

l ::= public(⊥) | secret(⊤)
τ ::= ref ⟨l ⟩ r α | β
β ::= bool⟨l ⟩ | sint⟨n, l ⟩ | uint⟨n, l ⟩ | idx⟨n, l ⟩
α ::= array n α | struct{id : α, . . . , id : α } | cell β ⟨l ⟩

Expr
e ::= v | c | e ⊗ e | e { id | e[e] | deref e

Stmt
s ::= s ; s | local v : α in s | let v = e in s | store e e |

call v = id(e, . . .) in s | ret e | if (e) {s } else {s } |
while(e) {s }

Prog
p ::= proc id(v : τ , . . . , v : τ → τ){s } | var v : α |

p ; . . . ;p

Figure 5: EncLang syntax

4.5 Type Checking of EncLang Programs
Figure 6 presents a type system for EncLang. The type checker
flags information flow violations that a compiler cannot automati-
cally repair e.g. assigning secrets to public state variables. A typing
judgment for a well-typed statement s has the form Γ, lc ⊢s s ,
where Γ is the typing environment and lc is the secrecy context:
true if the statement occurs within a secret-based conditional. A
well-typed expression e has a typing judgment Γ ⊢e e : τ , where τ
is the inferred type. To check for valid information flows, we define
a subtyping relation ⊑: ⊥ is a subtype of ⊤, which creates a lattice
with the join operator ⊔: l1 ⊔ l2 is equal to ⊥ if l1 = ⊥∧ l2 = ⊥, and
⊤ otherwise.

The typing rules for LOAD and STORE mandate that deref and
store recieve a reference to a primitive (cell) type, which is com-
puted using a combination of array indexing and struct field ac-
cesses. In the case of store statements, the type checker checks that
the secrecy type of reference (lr) and the secrecy type of the written
value (ld) are subtypes of the referenced cell’s secrecy type (ld) — a
secret reference can be thought of as a secret-based choice over a
set of cells, and therefore must not be used to modify a public cell.
The type system also checks that no store is made to a public cell
in a secret context, which is a standard feature of type systems for
non-interference. A load (deref) produces a secret value if it uses
either a secret reference or a reference to a secret-valued cell. Both
CALL-BIND and RET rules enforce that call and ret statements are
performed in a public context — forcing calls (including malloc and

A Compiler and Verifier for Page Access Oblivious Computation ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

v 7→ τ ∈ Γ

Γ ⊢e v : τ
id 7→ τ1, . . . , τn → τ ∈ Γ

Γ ⊢e id : τ1, . . . , τn → τ

∃r . Γ ⊢e e : ref ⟨lr ⟩ r cell β ⟨lv ⟩
LOAD

Γ ⊢e deref e : β ⟨lr ⊔ lv ⟩

Γ ⊢e e : ref ⟨l ⟩ r struct {. . . , id : α, . . . }
STRUCT

Γ ⊢e e { id : ref ⟨l ⟩ r α

Γ ⊢e ea : ref ⟨l ⟩ r array n α Γ ⊢e ei : idx⟨n′, l ′⟩ n′ ≤ n
ARRAY

Γ ⊢e ea [ei] : ref ⟨l ⊔ l ′⟩ r α

∃r . Γ ⊢e ea : ref r ⟨lr ⟩ cell β ⟨lv ⟩ Γ ⊢e ed : β ⟨ld ⟩ ld ⊔ lr ⊔ lc ⊑ lv
STORE

Γ, lc ⊢s store ea ed

Γ ⊢e e : τ ¬∃α, l . τ , ref ⟨l ⟩ local α
RET

Γ, ⊥ ⊢s ret e

Γ[v 7→ ref ⟨⊥⟩ local α], ⊥ ⊢s s
LOCAL-BIND

Γ, ⊥ ⊢s local v : α in s

Γ ⊢e e : τ Γ[v 7→ τ], lc ⊢s s
LET-BIND

Γ, lc ⊢s let v = e in s

Γ ⊢e e : bool⟨l ⟩ Γ, lc ⊔ l ⊢s s1 Γ, lc ⊔ l ⊢s s2
COND

Γ, lc ⊢s if (e) {s1 } else {s2 }

Γ ⊢e e : bool⟨⊥⟩ Γ, ⊥ ⊢s s
WHILE

Γ, ⊥ ⊢s while(e)s

Γ ⊢e e1 : τ1 . . . Γ ⊢e en : τn Γ ⊢e id : τ1, . . . , τn → τ Γ[v 7→ τ], ⊥ ⊢s s
CALL-BIND

Γ, ⊥ ⊢s call v = id(e1, . . . , e1) in s
Γ, lc ⊢s s1 Γ, lc ⊢s s2 SEQ

Γ, lc ⊢s s1; s2

∀ var v : α ∈ p . v 7→ ref global α ∈ Γ Γ[v1 7→ τ1, . . . , vn 7→ τn], ⊥ ⊢s s each path in id ends in ret e : τ
PROC

Γ ⊢p proc id(v1 : τ1, . . . , vn : τn → τ){s }

∀ proc id(v1 : τ1, . . . , vn : τn → τ){s } ∈ p . Γ ⊢p proc id(v1 : τ1, . . . , vn : τn → τ){s })
PROGRAM

⊢ p

Figure 6: Typing rules for EncLang. Typing environment Γ::=∅ | v 7→ τ , Γ

free) to occur in a public context allows the PAO enforcement to be
modular. The COND rule checks that both branches are well-typed
in the security context determined by the branch condition. The
LOOP rule forbids loops with a secret branching condition — secret
(number of) loop iterations causes the (number of) page accesses
to depend on a secret, and therefore hinders PAO enforcement. The
ARRAY rule checks that the index expression of type idx⟨k⟩ does
not cause out-of-bounds access on an array of size n by requiring
k ≤ n.

4.6 Compiling EncLang to Typed Assembly
Language

To produce PAO-satisfying code, the compiler must control the
placement of stack-allocated objects and instructions, using the
algorithms from § 4.1-§ 4.3. However, these algorithms operate at
the level of read / write operations and machine instructions, which
is produced after compilation. This circular dependency is broken
by compiling the EncLang program in phases: 1) produce machine
code with placeholders for the location of stack-allocated objects,
2) obliviate data accesses and optimize using MCMC sampling,
which computes the location for stack-allocated objects, 3) obliviate
code accesses, which computes the location for each instruction
in the compiled program, and 4) assign placeholders from phase
1 using the locations computed in phase 2. The (nearly) entire
implementation of the compiler’s phase 1 is formalized in Figure 7;
phases 2 and 3 are described in 4.1 and 4.3.

During phase 1, the compiler maintains a context ϕ = (ϕL , ϕG ,
ϕB , ϕδ), which is read and modified during compilation to x86-64,
as seen in Figure 7. Computed in phase 2, ϕL maps stack-allocated
objects to locations in the current stack frame, specified as an offset
relative to the frame pointer rbp — this is left as a placeholder in
phase 1. ϕB tracks the location of bindings (produced by call and let
statements), and is modified each time the compilation encounters

such statement. ϕG maps globally-scoped objects to fixed, statically-
computed addresses in the enclave address space.

The compiler is modular: each procedure p in the enclave is com-
piled independently by invoking PϕJpK. The procedure first pushes
the callee-preserved registers on the stack, generates a code block
called prologue (which we describe later), and invokes compilation
on the procedure’s body. A statement s is compiled using SϕJsK,
which recursively compiles the constituent statements (using SJK)
and expressions (using EJK), while making use of context ϕ. For
any expression e , EϕJeK stores the evaluation result in rax and is
allowed to use rdx in any way. This process also produces RJeaK
andW JeaK primitives, which is used in phase 2 to obliviate data
accesses.

Recall that phase 2 produces ϕL , a mapping from stack-allocated
object to its location on the stack frame (potentially many pages),
by using stochastic optimization to assign multiple objects onto a
page. However, the compiler cannot compute the base address of
the local stack frame (as the procedure can be called via an arbitrary
call chain), and this hinders our ability to implement ϕL . For this
reason, the compiled program maintains two stacks: 1) a bindings
stack used for storing bound variables (produced by a call or let) and
intermediate results while evaluating expressions, and 2) a locals
stack used for storing stack-allocated objects, which we will align
at the page-boundary. The bindings stack bears resemblance to the
stack used in a stack-based procedural language, and is accessed
using the frame pointer rbp and stack pointer rsp. On the other
hand, the locals stack is accessed relative to the register rsi, which
we modify in the prologue to be the next page boundary, and it
remains constant throughout the procedure — there is a caveat that
if the procedure’s stack space requirement can be met within the
current page (e.g. it uses small objects), then we do not page-align
rsi. This invariant on rsi enables the compiler to statically layout
the objects to comply with the ϕL mapping and satisfy PAO.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia

SϕJlocal v : α in sK = SϕJsK

SϕJlet v = e in sK = EϕJeK
ϕ′ = (ϕL, ϕG , mov rbx ϕ′B[v]

ϕB [v := ϕδ + 8], mov [rbx] rax
ϕδ + 8) Sϕ′JsK

SϕJstore ea ed K = EϕJed K
mov rbx rax { rbx 7→ Γ(ed) }
EϕJeaK
W JeaK

SϕJcall v = p(e1, . . . , en) in sK = EϕJe1K
ϕ′ = (ϕL, ϕG , ϕB [v := ϕδ + 8] push rax

, ϕδ + 8) . . .
EϕJenK
push rax
call p
push rax
Sϕ′JsK

SϕJret eK = EϕJeK
mov rsp rbp
pop rbp
pop rdi
pop rsi

SϕJif (e) {s1 } else {s2 }K = EϕJeK
test rax rax { zf 7→ Γ(e = 0) }
jz lelse
lthen : SϕJs1K
jmp lend
lelse : SϕJs2K
lend :

EϕJvK = mov rax ϕL [v] { rax 7→ Γ(v) }
for v ∈ locals

EϕJvK = mov rax ϕG [v] { rax 7→ Γ(v) }
for v ∈ globals

EϕJvK = mov rax ϕB [v]
for v ∈ bindings mov rax [rax] { rax 7→ Γ(v) }

EϕJderef eK = EϕJeK { rax 7→ Γ(e) }
RJeK { rax 7→ Γ(deref e) }

EϕJe1 ⊗ e2K = EϕJe2K
push rax
EϕJe1K
pop rdx { rdx 7→ Γ(e2) }
⊗ rax rdx { rax 7→ Γ(e1 ⊗ e2) }

EϕJe { idK = EϕJeK
add rax off(Γ(e), id) { rax 7→ Γ(e { id) }

EϕJea [ei]K = EϕJei K
imul rax sz(Γ(ea)) { rax 7→ idx⟨sz(Γ(ea)) ∗ n ⟩ }
push rax
EϕJeaK
pop rdx { rdx 7→ idx⟨sz(Γ(ea)) ∗ n ⟩ }
add rax rdx { rax 7→ Γ(ea [ei]) }

PϕJproc p(v1, . . . , vn){s }K = push rsi
ϕ′ = (ϕL, ϕG , push rdi

ϕB [v1 := ϕδ − 8, . . . push rbp
vn := ϕδ − 8 ∗ n], mov rbp rsp

0) ⟨prologue⟩
Sϕ′JsK

Figure 7: Compilation of EncLang to Typed Assembly Language. For any typing derivation Γ ⊢e e : τ , we use Γ(e) to denote τ .

Section 5 describes an independent verifier which certifies the
compiled machine code. We follow the typed assembly language
paradigm [13] of: 1) a strongly-typed source language, EncLang,
2) a type-preserving compiler, and 3) a strongly-typed assembly
language (TAL from here on). As seen in the right-most column
of Figure 7, each update to a register accompanies an annotation
assigning its new type, derived using the type inference rules [20].
The type annotations on registers, which are used for computing
both references and values, simplifies information flow tracking
and alias analysis of the otherwise unstructured, untyped machine
code.

4.7 Supporting Heap Allocation and Procedure
Calls

Since malloc enjoys complete control over the placement of objects
within the heap, we obliviate heap accesses by performing R̂J.K
and Ŵ J.K in the other branches of a secret conditional, using the
technique described in section 4.1. Procedure arguments are treated
similarly, the compiler has no knowledge of their location. The
R̂J.K and Ŵ J.K requires the size of the object to be statically known.
Therefore, our malloc and free routines require the type of the
requested object.

5 VERIFYING PAO
The verifier proves that for any pair of executions of the enclave
binary (that only differ in secret values), the sequence of page
accesses must be equivalent, where two accesses are equivalent if
they target the same page and have same type (r/w/x). The verifier
independently analyzes each procedure because the compiler is

modular and does not optimize globally. For each procedure, the
verifier must:

1. Enumerate secret-dependent paths. Enumerate all paths in the
procedure such that each constituent path represents a unique eval-
uation of a secret-dependent conditional — number of paths is worst
case exponential in the number of secret-dependent conditionals
within the procedure. The compiler assists this step by providing
secrecy types of CPU flags at all conditional jumps in the TAL pro-
gram (see Figure 7). Furthermore, the lack of indirect jumps in the
binary enables simple, yet precise control flow analysis.

2. Identify sequence of memory accesses. : The verifier computes
the sequence of memory accesses that the CPU performs on each
path. This step is purely syntactic, and is implemented verbatim as
the definition of PAO in § 3.3.

3. Identify target page(s) for each access. : The verifier computes
the exact code page for each instruction, which is given verbatim
in the enclave executable. Identifying the target pages for data
accesses ordinarily necessitates an alias analysis which identifies
the object(s) targeted by a reference, and recovering the mapping
from objects to pages. We circumvent these analyses with a key
insight: for any reference e , the verifier only needs to determine
the statically-identifiable object si(e) (defined in section 4.1), for
which the typing annotations are sufficient. In other words, the
verifier can establish the equivalence of any two page accesses,
which use references e1 and e2, knowing only si(e1) and si(e2). The
reasoning is a combination of 1) our primitives RJeK, etc. use only
the knowledge of si(e) to generate the memory accesses, 2) for any
reference e , the semantics of EncLang ensures that si(e) evaluates
to the same object in all paths, and 3) the verifier is able to infer

A Compiler and Verifier for Page Access Oblivious Computation ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

when different local objects (si(e1) , si(e2)) are mapped to the
same page by leveraging the fact that all local objects are addressed
relative to a fixed frame pointer.

Having performed these steps, the verifier asserts that the se-
quence of page accesses is equivalent in all the enumerated paths.
Furthermore, to avoid trusting the compiler, the verifier also proves
validity of the typing annotations using a set of simple rewrite
rules.

6 EVALUATION

Table 1: Summary of results

Benchmark Code Size Code Size Data Size Data Size
(no PAO) (PAO) (no PAO) (PAO)

k-means 1638 B 1668 B 1784 B 1784 B
Decision Tree 1058 B 3082 B 416 B 416 B

SVM 1368 B 1408 B 2008 B 2008 B
CNN Classifier 1637 B 1667 B 45312 B 45312 B
IDCT (1 dim) 4574 B 10725 B 592 B 592 B
IDCT (2 dim) 7424 B 13575 B 664 B 664 B

AES Blk Cipher 5173 B 5203 B 488 B 488 B

Figure 8: Overhead in Runtime and Page Accesses

To study the performance impact of automatic PAO enforcement,
we implement an open-source toolchain consisting of a compiler
from EncLang to TAL, and a verifier for certifying PAO on the
output TAL. Along with the TAL, the toolchain produces executa-
bles that we run natively on a 3.2 GHz 6th Generation Intel CPU
(with SGX instruction set enabled and 96 MB available for enclave
memory).

We evaluate this toolchain on several enclave programs that
compute on sensitive data. We sample standard machine learning
algorithms: k-means clustering, training of SVM classifier (based
on a cache oblivious algorithm from [14]), decision tree evaluation
(Figure 1), and a convolutional neural network (CNN). In the case of
k-means clustering, the input points and the k=10 trained clusters
must be kept secret. The training of SVM classified must ensure
that the learned weights are kept secret. The CNN (trained offline)
must ensure that the image (to be classified) must be kept secret. We
also experiment with the inverse discrete cosine transform (IDCT)
routine (both one and two dimensions) from a JPEG decoder, whose
page fault patterns were exploited by Xu et al. [21] to infer edges
in the secret input images. To compare with [17], we also evaluate
on the AES block cipher (encryption only).

The compiler takes roughly 2-3 seconds to compile each of these
benchmarks, most of which is spent in the MCMC optimization.

The verifier uses the typing annotations generated by the compiler
in order to produce the proof, and this takes under 1 second for all
of these benchmarks. Table 1 compares vanilla compilation with
PAO-enforcing compilation, with respect to memory consumption
for code and data pages. Across all the benchmarks, we observe an
average of 81 % increase in code size, and 0 % increase in memory
requirements because the compiler successfully rearranged local
objects without introducing any padding space. That being said,
the runtime overhead is significantly lower than code size overhead
(81 %) because the added x64 instructions are distributed across
multiple branches.

Figure 8 reports the performance overheads for runtime and
number of page accesses, using standard datasets (e.g. UCI Reposi-
tory [1]) for machine learning programs and 1063 invocations with
randomly generated inputs for IDCT and AES programs. The over-
head denotes the increase in these metrics when enforcing PAO,
and is reported after averaging over 10 runs on a large dataset, or
a million invocations . We observe a non-negative overhead (%)
because our algorithm instruments dummy accesses, which lead
to additional data and code accesses (to fetch the added instruc-
tions). In general, we find that programs with more conditional
branches (in a secret context) incur higher code size overheads be-
cause the EncLang compiler places dummy code and data accesses
to determinize the page access across all branches, which leads to ad-
ditional x86 instructions. Specifically, IDCT shows higher runtime
overheads because the libjpeg implementation skips the complex
computation when the input image satisfies a condition [21], and
such optimization violates PAO because the attacker observes dif-
ferent page accesses based on secret input. Similarly, the decision
tree classification incurs a high overhead because the oblivious
implementation must perform a fixed number of tree traversals for
all inputs. On the other hand, we find that k-means, SVM, CNN
classification, and AES incur low overheads as the computation is
data-intensive and primarily occurs outside of secret conditionals.
Specifically, CNN and AES show negligible overhead as all array
accesses use public indices, and loops use constant bounds; our
compiler infers that they have no secret-dependent code or data
accesses.

7 RELATEDWORK
Moat [19] and SlashConf [18] verify the enclave binaries to prove
an absence of explicit leaks; side channels are out of their scope.

Shinde at al. [17] develop an instrumentation scheme (at the
LLVM IR level) for enforcing page fault obliviousness — compu-
tational security definition as opposed to non-interference — of
programs written in a subset of C/C++. Their approach, termed
deterministic multiplexing, copies all code and data blocks at the
same level of the execution "tree" to a temporary page, and dynam-
ically selects the appropriate code and data based on the current
program path. Although [17] addresses the same side channel at-
tack as this paper, there are several important differences. First,
we protect against a stronger adversary that can observe all page
accesses, whereas the attacker in [17] only observes changes in
page accesses i.e. the attacker cannot count accesses within a single
page. A realistic attack scenario can invalidate a page table entry
at any time (e.g. OS getting interrupted by a device). Therefore, the
defense in [17] potentially leaks a bit of information on each page
access, which is problematic for long-running enclaves. Second,
we develop a binary verifier to certify PAO. On the contrary, [17]

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia

makes unspecified assumptions such as memory safety — a control
flow exploit can bypass their instrumentation, and worse, spill se-
crets directly to untrusted memory. Furthermore, [17] incurs a large
software TCB comprising the C compiler, LLVM assembler, and
their instrumentation scheme. Our software TCB contains just the
verifier. Finally, [17] obliviates by transforming the compiled LLVM
program. While this allows them to target mainstream languages,
their scheme incurs 705x average runtime overhead — they reduce
this overhead using developer annotations, which may compromise
soundness. We show that by carefully designing the semantics and
compiler of EncLang, we can optimize the PAO enforcement to
incur an average 49% overhead across various benchmarks.

Ohrimenko et al. [14] manually develop machine learning algo-
rithms that guarantee data-obliviousness at a cache-line granularity;
their ideas inspired our primitives for oblivious dummy accesses.
Cache side-channel defenses are complementary to our work be-
cause pages and cache sets are addressed by disjoint bits in a virtual
address.

Oblivious RAM (ORAM) [5] protects against side channel leaks
via the program’s memory access patterns. Liu et al. [11] formalize
memory trace obliviousness, and develop a compiler for produc-
ing memory trace oblivious programs by partitioning code and
data across multiple ORAM banks for efficiency; in a follow-up
work, Liu et al. [12] develop ObliVM to compile high-level source
programs to an oblivious representation that leverages ORAMs to
efficiently perform dynamic memory accesses (in lieu of performing
a linear scan). GhostRider [10] presents a co-designed compiler and
hardware ORAM for memory trace oblivious execution. Although
these techniques provide stronger guarantees than our work, they
require a novel hardware platform with ORAM support, whereas
we target commodity SGX machines. An interesting question arises
whether an ORAM controller can be implemented within an SGX
enclave in our threat model. As [17] explains, ORAM constructions
require a private stash for shuffling data blocks, whereas our at-
tacker can observe accesses to all pages in memory. Furthermore,
to adapt the ORAM algorithm (e.g. Path ORAM) in our compiler,
we need to "compose" the ORAM logic with the enclave program,
effectively evaluating the ORAM logic on each instruction. Our com-
piler achieves obliviousness efficiently by using the type system
and program behavior to guide several optimizations.

8 CONCLUSION
We formalize page-access obliviousness (PAO) for enclave pro-
grams, and develop a toolchain for enforcing PAO automatically.
The toolchain comprises 1) a compiler for EncLang that auto-
matically enforces PAO, 2) a stochastic optimization to reduce the
runtime overhead of the compiler, and 3) a binary verifier to certify
the output machine code. The toolchain provably guarantees PAO
while achieving a tiny trusted computing base, which only includes
the SGX processor and the verifier’s implementation.

ACKNOWLEDGMENTS
This research was supported by the NSF STARSS grant 1528108 and
SRC contract 2638.001. We gratefully acknowledge the anonymous
reviewers for their insightful feedback.

REFERENCES
[1] UCI Machine Learning Repository. https://archive.ics.uci.edu/ml.
[2] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows. Theor.

Comput. Sci., 402(2-3):82–101, July 2008.

[3] I. S. Diatchki and M. P. Jones. Strongly typed memory areas programming
systems-level data structures in a functional language. In Proceedings of the 2006
ACM SIGPLAN Workshop on Haskell, Haskell ’06, pages 72–83, New York, NY,
USA, 2006. ACM.

[4] T. Elliott, L. Pike, S. Winwood, P. Hickey, J. Bielman, J. Sharp, E. Seidel, and
J. Launchbury. Guilt free ivory. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell, Haskell ’15, pages 189–200, New York, NY, USA, 2015.
ACM.

[5] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, May 1996.

[6] Intel Software Guard Extensions Programming Reference. Available at https:
//software.intel.com/sites/default/files/329298-001.pdf, 2014.

[7] T. Jim, J. G. Morrisett, D. Grossman, M.W. Hicks, J. Cheney, and Y.Wang. Cyclone:
A safe dialect of c. In Proceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’02, pages 275–288, Berkeley, CA,
USA, 2002. USENIX Association.

[8] Joanna Rutkowska. Red Pill... or how to detect VMM using (almost) one CPU
instruction. https://github.com/Cr4sh/ThinkPwn.git.

[9] Lenovo ThinkPad System Management Mode arbitrary code execution 0day
exploit. Available at https://github.com/Cr4sh/ThinkPwn.git.

[10] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi. Ghostrider: A
hardware-software system for memory trace oblivious computation. SIGPLAN
Not., 50(4):87–101, Mar. 2015.

[11] C. Liu, M. Hicks, and E. Shi. Memory trace oblivious program execution. In
Proceedings of the 2013 IEEE 26th Computer Security Foundations Symposium, CSF
’13, pages 51–65, Washington, DC, USA, 2013. IEEE Computer Society.

[12] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. Oblivm: A programming
framework for secure computation. In Proceedings of the 2015 IEEE Symposium
on Security and Privacy, SP ’15, pages 359–376, Washington, DC, USA, 2015. IEEE
Computer Society.

[13] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system f to typed assembly
language. ACM Trans. Program. Lang. Syst., 21(3):527–568, May 1999.

[14] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and
M. Costa. Oblivious multi-party machine learning on trusted processors. In 25th
USENIX Security Symposium (USENIX Security 16), pages 619–636, Austin, TX,
Aug. 2016. USENIX Association.

[15] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization. SIGPLAN
Not., 48(4):305–316, Mar. 2013.

[16] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich. VC3: trustworthy data analytics in the cloud using SGX. In S&P,
2015.

[17] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page faults
from telling your secrets. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, ASIA CCS ’16, pages 317–328, New
York, NY, USA, 2016. ACM.

[18] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A. Seshia, and K. Vaswani.
A design and verification methodology for secure isolated regions. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’16, pages 665–681, New York, NY, USA, 2016. ACM.

[19] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying confidentiality
of enclave programs. In CCS, 2015.

[20] R. Sinha, S. Rajamani, and S. A. Seshia. A compiler and verifier for page access
oblivious computation. Technical Report UCB/EECS-2017-124, EECSDepartment,
University of California, Berkeley, Jul 2017.

[21] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In Proceedings of the 2015 IEEE Sym-
posium on Security and Privacy, SP ’15, pages 640–656, Washington, DC, USA,
2015. IEEE Computer Society.

https://archive.ics.uci.edu/ml
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
https://github.com/Cr4sh/ThinkPwn.git
https://github.com/Cr4sh/ThinkPwn.git

	Abstract
	1 Introduction
	2 Overview
	3 Page Access Obliviousness
	3.1 Formal Modeling of Enclave Code
	3.2 Modeling Adversary's Effect on Enclave Execution
	3.3 Page Access Obliviousness

	4 PAO-Enforcing Compilation
	4.1 Obliviating Data Accesses
	4.2 Stochastic Optimization of Dummy Accesses
	4.3 Obliviating Code Accesses
	4.4 The EncLang Language
	4.5 Type Checking of EncLang Programs
	4.6 Compiling EncLang to Typed Assembly Language
	4.7 Supporting Heap Allocation and Procedure Calls

	5 Verifying PAO
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

