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Abstract
This paper proposes TASKPROF, a profiler that identifies parallelism
bottlenecks in task parallel programs. It leverages the structure of a
task parallel execution to perform fine-grained attribution of work to
various parts of the program. TASKPROF’s use of hardware perfor-
mance counters to perform fine-grained measurements minimizes
perturbation. TASKPROF’s profile execution runs in parallel using
multi-cores. TASKPROF’s causal profile enables users to estimate
improvements in parallelism when a region of code is optimized
even when concrete optimizations are not yet known. We have used
TASKPROF to isolate parallelism bottlenecks in twenty three appli-
cations that use the Intel Threading Building Blocks library. We
have designed parallelization techniques in five applications to in-
crease parallelism by an order of magnitude using TASKPROF. Our
user study indicates that developers are able to isolate performance
bottlenecks with ease using TASKPROF.

1. Introduction
Task parallelism is an effective approach to write performance
portable code [20]. In this model, the programmer specifies fine-
grained tasks and the runtime maps these tasks to processors while
automatically balancing the workload using work stealing algo-
rithms. Many task parallelism frameworks have become mainstream
(e.g., Intel Threading Building Blocks (TBB) [37], Cilk [16], Mi-
crosoft Task Parallel Library [27], Habanero Java [5], X10 [6], and
Java Fork/Join tasks [26]).

A common metric used to quantify the performance of a task
parallel program is asymptotic parallelism, which measures the
potential speedup when the program is executed on a large number
of processors. It is constrained by the longest chain of tasks that
must be executed sequentially (also known as the span or the
critical work). Hence, asymptotic parallelism is the ratio of the total
work and the critical work performed by the program for a given
input. A scalable program must have large asymptotic parallelism.
A task parallel program can have low asymptotic parallelism due to
multiple factors: coarse-grained tasks, limited work performed by
the program, and secondary effects of execution such as contention,
low locality, and false sharing.

Numerous techniques have been proposed to address various bot-
tlenecks in both multithreaded programs [7, 11, 13, 29–31, 42, 45]
and task parallel programs [21, 38]. These technique range from
identifying critical paths [22, 33, 35], parallelism [21, 38], syn-
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chronization bottlenecks [7, 11, 13, 42, 45], and other performance
pathologies [29–31]. Tools for multithreaded programs identify bot-
tlenecks in a specific execution on a specific machine, which does
not necessarily provide information about scalability of the program.
In contrast, tools that measure asymptotic parallelism in task par-
allel programs run the program serially [21, 38], which is feasible
only when the task parallel model provides serial semantics (e.g.,
Cilk) [16]. Although they identify parallelism bottlenecks, they do
not provide information on regions of code that matter in improving
asymptotic parallelism.

This paper proposes TASKPROF, a fast and causal profiler
that measures asymptotic parallelism in task parallel programs
for a given input. TASKPROF’s causal profile allows users to
estimate improvements in parallelism when regions of code are
optimized even before concrete optimizations for them are known.
TASKPROF has three main goals: (1) to minimize perturbation (also
known as interference [19]) while accurately computing asymptotic
parallelism and critical work for each spawn site (source code
location where a task is created), (2) to run the profiler in parallel,
and (3) to provide feedback on regions of code that matter in
increasing parallelism.

TASKPROF computes an accurate parallelism profile by perform-
ing a fine-grained attribution of work to various parts of the program
using the structure of a task parallel execution. The execution of
a task parallel program can be represented as a tree (specifically
Dynamic Program Structure Tree (DPST) [36]), which captures the
series-parallel relationships between tasks and can be constructed
in parallel. Given a task parallel program, TASKPROF constructs
the DPST in parallel during program execution and attributes work
to leaves of the DPST. To minimize perturbation, TASKPROF uses
hardware performance counters to measure work performed in re-
gions without any task management constructs, which correspond
to leaves in the DPST. TASKPROF writes the DPST and the work
performed by the leaf nodes of the DPST to a profile data file. The
profile execution runs in parallel leveraging multi-cores and the mea-
surement of computation using performance counters is thread-safe.

TASKPROF’s post-execution analysis tool uses the data file from
the profile run, reconstructs the DPST, and computes asymptotic
parallelism and critical work at each spawn site in the program
using the properties of the DPST (see Section 3.2). TASKPROF maps
dynamic execution information to static spawn sites by maintaining
information about spawn sites in the DPST. TASKPROF’s profile for
the sample program in Figure 2 is shown in Figure 3(b).

The spawn sites that perform a large fraction of the critical
work in the profile are the parallelism bottlenecks in the program.
However, optimizing regions that perform critical work may not
increase asymptotic parallelism when the program has multiple
regions that perform similar amount of critical work. Designing a
parallelization strategy that reduces critical work requires significant
effort. Hence, the programmer would like to know if optimizing
a region of code increases asymptotic parallelism even before the
specific optimization is designed.
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Figure 1: Identifying and diagnosing parallelism bottlenecks in task parallel programs using TASKPROF’s parallelism and causal profiles.

TASKPROF provides a causal profile that estimates the improve-
ment in asymptotic parallelism when a specific region of code in
the program is optimized even before concrete optimizations for
them are known. TASKPROF’s causal profile is inspired by COZ [10]
that quantifies the speedup when a selected program fragment is
optimized in multithreaded programs by slowing down all code
executing concurrently with the fragment. However, COZ cannot be
used with task parallel programs as it is not possible to slow down
all active tasks.

In contrast, TASKPROF is able to generate a causal profile
because it builds an accurate performance model of a task parallel
execution by performing a fine-grained attribution of work to
the nodes of the DPST. To quantify the impact of optimizing a
region of code, the programmer annotates the beginning and the
end of the region in the program and the anticipated speedup
for the region. TASKPROF generates a causal profile that shows
the increase in parallelism with varying amounts of anticipated
speedup for the annotated regions (see Figure 3(c)). To generate
a causal profile, TASKPROF re-executes the program, generates
profile data, and identifies nodes in the DPST that correspond to
the annotated regions. Subsequently, TASKPROF recomputes the
asymptotic parallelism in the program by reducing the critical work
of the annotated region of code by the anticipated improvement.
TASKPROF’s causal profiling enables the programmer to identify
improvements in asymptotic parallelism even before the developer
actually designs the optimization. Figure 1 illustrates TASKPROF’s
usage to generate a parallelism profile and a causal profile.

TASKPROF prototype is open source and available online [43].
We have identified parallelism bottlenecks in twenty three Intel
TBB applications using the prototype. Using TASKPROF’s causal
profile, we also designed concrete parallelization techniques for five
applications to address the parallelism bottlenecks. Our concrete
optimizations increased parallelism in these five applications by an
order of magnitude. We conducted a user study involving thirteen
undergraduate and graduate students to evaluate the usability of
TASKPROF. Our results show that the participants quickly diagnosed
parallelism bottlenecks using TASKPROF.

2. Background
This section provides a quick primer on the tree-based representation
of a task parallel execution, which is used by TASKPROF to compute
parallelism and causal profiles.

Task parallelism. Task parallelism is a structured parallel pro-
gramming model that simplifies the job of writing performance
portable code. In this model, parallel programs are expressed us-
ing a small set of expressive yet structured patterns. In contrast to
threads, task creation is inexpensive and a task is typically bound to
the same thread till completion [32]. The runtime uses work stealing
to map dynamic tasks to runtime threads and balances the workload
between threads [16]. Task programming models provide specific
constructs to create tasks (e.g., spawn keyword in Cilk and spawn

1 void compute_tree_sum(node* n, int* sum) {
2 if(n->num_nodes <= BASE) {
3 //Compute sum serially
4 __CAUSAL_BEGIN__
5 *sum = serial_tree_sum(n);
6 __CAUSAL_END__
7 } else {
8 int left_sum, right_sum;
9 if(n->left) {

10 spawn compute_tree_sum(n->left, &
left_sum);

11 }
12 if(n->right) {
13 spawn compute_tree_sum(n->right, &

right_sum);
14 }
15 sync;
16 *sum = left_sum + right_sum;
17 }
18 }
19 int main() {
20 __CAUSAL_BEGIN__
21 node* root = create_tree();
22 __CAUSAL_END__
23 int sum;
24 spawn compute_tree_sum(root, &sum);
25 sync;
26 //print sum;
27 return 0;
28 }

Figure 2: A program that computes the sum of the nodes in a binary
tree. It creates tasks and waits for tasks to complete using spawn
and sync keywords, respectively. Each node in the tree holds an in-
teger value, number of nodes in the sub-tree rooted at the node, and
pointers to the left and right sub-tree. The create_tree function
builds the tree. The serial_tree_sum takes a node n as argu-
ment and computes the sum in the sub-tree under n. BASE is a con-
stant that determines the amount of serial work. The user has used
annotations (__CAUSAL_BEGIN__ and __CAUSAL_END__) to
specify regions for causal profiling, which are not used in the regular
profiling phase.

function in Intel TBB) and to wait for other tasks to complete (e.g.,
sync keyword in Cilk and wait_for_all() function in Intel
TBB). A sample task parallel program is shown in Figure 2. These
models also provide patterns for recursive decomposition of a pro-
gram (e.g., parallel_for and parallel_reduce) that are
built using the basic constructs. Task parallelism is expressive and
widely applicable for writing structured parallel programs.

Dynamic program structure tree. The execution of a task par-
allel program can be represented as a dynamic program structure tree
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Figure 3: (a) The DPST for an execution of the program in Figure 2.
F0, F1, and F2 are finish nodes. A0, A1, and A2 are async nodes.
Step nodes are leaves in the DPST. TASKPROF maintains four
quantities with each intermediate node in the DPST: work (w),
critical work (cw), exclusive work (ew), and the list of spawn sites
performing critical work (ss_list). Each entry in the spawn site
list maintains the line number and the exclusive work done by the
spawn site (e.g., < L20, 40 >). Step nodes have work data from
the profile execution. TASKPROF updates these quantities for the
intermediate nodes by performing a bottom-up traversal of the DPST.
(b) The profile generated by TASKPROF reports the work, critical
work, parallelism, and percentage of critical work with each spawn
site. Line with a “?” in the profile corresponds to the main function
and reports the parallelism for the entire program. (c) The causal
profile reports the parallelism for the whole program when the
annotated regions in Figure 2 are optimized by 2×, 4×, and 8×.

(DPST), which precisely captures the series-parallel relationships
between tasks [36]. Further, the DPST can be constructed in parallel.
Since our goal in this paper is to profile the program in parallel, we
use the DPST representation of a task parallel execution.

The DPST is a n-ary tree representation of a task parallel
execution. There are three kinds of nodes in a DPST: (1) step,
(2) async, and (3) finish nodes. The step node represents the
sequence of dynamic instructions without any task spawn or sync
statements. All computations occur in step nodes. The async node
in the DPST represents the creation of a child task by a parent task.
The descendants of the newly created task can execute in parallel
with the remainder of the parent task. A finish node is created in
a DPST when a task spawns a child task and waits for the child
(and its descendants) to complete. A finish node is the parent of all
async, finish and step nodes directly executed by its children or their
descendants.

The DPST, by construction, ensures that two parallel tasks
operate on two disjoint sub-trees. DPST’s construction also ensures
that all internal nodes are either async or finish nodes. The siblings
of a particular node in a DPST are ordered left-to-right to reflect the
left-to-right sequencing of computation of their parent task. A path
from a node to the root and the left-to-right ordering of siblings in a
DPST do not change even when nodes are added to the DPST during
execution. The DPST was originally used for data race detection
because it allows a race detector to check if two accesses can occur

in parallel [36, 44]. In a DPST, two step nodes S1 and S2 (assuming
S1 is to the left of S2) can execute in parallel if the least common
ancestor of S1 and S2 in the DPST has an immediate child that is
an async node and is also an ancestor of S1. In Section 3.2, we will
highlight the properties of the DPST that we use to profile programs.

Illustration of the DPST. Figure 3(a) shows the DPST for an
execution of the program in Figure 2. The program in Figure 2 will
execute the spawn call at line 10 and line 13 once when BASE=n/2,
where n is the number of nodes in the tree.

We construct the DPST during program execution as follows.
When the main function starts, we add a finish node F0 as the root
of the DPST to represent the fact that main completes after all the
tasks spawned by it have completed. We add a step node S0 as
the child of the root finish node to capture the initial computations
being performed in the main function. On a spawn call at line 24 in
Figure 2, we create a finish node F1 because it is the first spawn
performed by the task. We also add an async node A0 as the child
of F1 to represent the spawning of a task. Any computation by the
newly created task will be added as nodes in the sub-tree under the
async node A0. The operations performed in the continuation of the
main task will be added to the right of the async node A0 under the
finish node F1. Hence, the continuation of the main task and newly
created task operate on distinct subtrees of the DPST and can update
the DPST in parallel.

3. Parallelism Profiler
TASKPROF computes the total work, part of the total work done
serially (critical work or span), and the asymptotic parallelism at
each spawn site in a task parallel program. The key contribution
of TASKPROF is in fine-grained attribution of work while ensuring
that the profile execution is fast, perturbation-free, and accurate.
TASKPROF accomplishes the goal of fast profile execution by using
multi-cores. TASKPROF’s profile execution itself runs in parallel and
leverages the DPST representation to attribute work to various parts
of the program. TASKPROF ensures that the profile execution is
perturbation-free by using hardware performance counters to obtain
information about the computation performed by the step nodes
in the DPST. TASKPROF also maintains a very small fraction of
the DPST in memory during profile execution to further minimize
perturbation. TASKPROF ensures that the parallelism profile is
accurate by capturing spawn sites through compiler instrumentation
and by precisely measuring work performed in each step node.

TASKPROF computes the parallelism profile in three steps. First,
TASKPROF provides a modified library for task parallelism that
captures information about spawn sites. TASKPROF’s compiler
instrumentation modifies the calls to the task parallel library in
the program to provide information about spawn sites. Second,
TASKPROF’s profile execution runs in parallel on the multi-core
processors, constructs the DPST representation of the execution, and
collects fine-grained information about the execution using hardware
performance counters. TASKPROF writes the profile information to
a data file similar to the grof profiler for sequential programs [18].
Third, TASKPROF’s offline analysis tool analyzes the profile data and
aggregates the data for each static spawn site. Finally, it computes
asymptotic parallelism and critical work for each spawn site.

Static instrumentation and modified libraries. TASKPROF
provides a modified task parallelism library that constructs the
DPST and reads hardware performance counters at the begining
and end of each step node. TASKPROF uses static instrumentation
to instrument the program with calls to the modified task parallel
runtime library. In the subsequent offline analysis phase, TASKPROF
needs to map the dynamic execution information about asymptotic
parallelism and critical work to static spawn sites in the program.
Hence, TASKPROF instruments the spawn sites to capture the line
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number and the file name of the spawn site. TASKPROF’s static
instrumentation is currently structured as a rewriter over the abstract
syntax tree of the program using the Clang compiler front-end.
Our instrumented libraries and compiler instrumentation enable the
programmer to use TASKPROF without making any changes to the
source code.

3.1 Parallel Profile Execution
The goal of the profile execution is to collect fine-grained informa-
tion about the program to enable a subsequent offline computation
of asymptotic parallelism. Typically, programs are profiled with rep-
resentative production inputs that have long execution times. Hence,
a fast profile execution is desirable. Our goal is to ensure that the
execution time of the program with and without profiling is similar.
Hence, TASKPROF profiles in parallel leveraging multi-core pro-
cessors. To ensure a parallel profile execution, it needs to construct
the execution graph in parallel and collect information about the
program in a thread-safe manner.

The DPST representation for parallel profile execution. We
use the DPST representation to measure work performed by various
parts of the program because the DPST can be constructed in
parallel. TASKPROF constructs the DPST as the program executes
the injected static instrumentation and measures the work performed
in each step node. The DPST, once constructed, allows TASKPROF
to determine the dependencies between tasks. This fine-grained
attribution of work to the step nodes in the DPST enables TASKPROF
to compute the parallelism in the program eventually using an offline
analysis.

The DPST of the complete task parallel execution has a large
number of nodes. Storing the entire DPST in memory during pro-
gram execution can cause memory overheads and perturb the execu-
tion. To address this issue, TASKPROF does not maintain the entire
DPST in memory. In a library based task parallel programming
model, a task is always attached to the same thread. We leverage
this property to minimize the footprint of the DPST in memory.
TASKPROF maintains a small fraction of the nodes that correspond
to the tasks currently executing on each thread in memory.

Once a step node of a task completes execution, the work
performed in the step node along with the information about its
parent node is written to the profile data file and the DPST node can
be deallocated. As async nodes do not perform any work, TASKPROF
writes the information about its parent in the DPST and the spawn
site associated with the async node to the profile data file. In contrast
to step and async nodes, only parent node information is written to
the profile data file for a finish node.

Measuring work with hardware performance counters. To
measure the work performed in each step node without performance
overhead, TASKPROF uses hardware performance counters. Perfor-
mance counters are model specific registers available that count
various events performed by the hardware using precise event-based
sampling mechanisms [8]. These performance counters can be pro-
grammatically accessed. TASKPROF can use both the number of
dynamic instructions and the number of execution cycles to measure
the work done in a step node. Measuring execution cycles allows
TASKPROF to account for latencies due to secondary effects such as
locality, sharing, and long latency instructions. Further, the opera-
tions on these counters are thread-safe. TASKPROF reads the value
of the counter at the beginning and the end of the step node using
static instrumentation injected into the program. It calculates the
work performed in the step node by computing difference between
the two counter values. This fine-grained measurement of work
performed in each step node using hardware performance counters
along with the construction of the DPST while executing in paral-

lel allows TASKPROF to compute a precise, yet fast profile of the
program.

The profile data file generated at the end of parallel profile
execution contains the work done in each step node. It also contains
the information about the parent for each node in the DPST and
the spawn site information for each async node. The left-to-right
sequencing of nodes is implicitly captured by the order of the nodes
in the profile data file.

3.2 Offline Analysis of the Profile Data
TASKPROF’s offline analysis reconstructs the DPST using the data
from the profile execution and computes the work and critical work
(span) for each spawn site in the program. The construction of the
DPST from the profile data is fairly straightforward as it contains
information about nodes, their parent nodes, and the left-to-right
ordering of the nodes. In this section, we describe the computation
of work and span for each intermediate node in the DPST given the
work performed in the step nodes. We also describe the process of
mapping this dynamic information to static spawn sites.

Computing work and critical work for each intermediate
node. In the DPST representation, all computation is performed in
the step nodes. The step nodes have fine-grained work information
from the profile execution. TASKPROF needs to compute the total
work and the fraction of that work done serially (critical work)
for each intermediate node in the DPST. To provide meaningful
feedback to the programmer, TASKPROF also computes the list of
spawn sites that perform critical work and the portion of the critical
work performed exclusively by each spawn site.

TASKPROF computes the total work and the critical work at
each intermediate node by performing a bottom-up traversal of the
DPST. The total work performed in the sub-tree at each intermediate
node is sum of the work performed by all the step nodes in the
sub-tree. In contrast, critical work measures the amount of work that
is performed serially. Computing critical work and the set of tasks
performing the critical work requires us to leverage the properties
of the DPST. Specifically, we leverage the following properties of
the DPST to compute the critical work.

• The siblings of a node in a DPST are ordered left-to-right
reflecting the left-to-right sequencing in the parent task.

• Given an intermediate node, all the direct step children of the
node execute serially.

• All the left step or finish siblings of an async node execute
serially with the descendants of the async node.

• All the right siblings (and their descendants) of an async node
execute in parallel with the descendants of the async node.

Using the above properties of the DPST, the critical work at an
intermediate node will be equal to either (1) the serial work done by
all the direct step children and the critical work performed by the
finish children or (2) the critical work performed by descendants of
an async child and the serial work performed by the left step and
finish siblings of the specific async child in consideration. Since any
intermediate node in the DPST can have multiple async children,
TASKPROF needs to check if any of the async nodes can contribute
to the critical work. For example, consider the intermediate node
F2 in Figure 3(a) that has two async nodes A1 and A2. The critical
work will be the maximum of (1) the work done by the direct step
child S4 or (2) the critical work by the async child A1 (it does not
have any left siblings), or (3) the sum of the critical work by the
async child A2 and the work done by the step node S4, which is the
left step sibling of A2.

Each async node in the DPST corresponds to a spawn site in
the program because async nodes are created when a new task
is spawned. Hence, TASKPROF computes the list of spawn sites
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1: function COMPUTEWORKSPAN(T )
2: for each intermediate node N in bottom-up traversal of T

do
3: CN ← CHILDREN(N)

4: N.work ←
∑

C∈CN

C.work

5: SN ← STEPCHILDREN(N)
6: FN ← FINISHCHILDREN(N)

7: N.c_work ←
∑

S∈SN

S.work +
∑

F∈FN

F.c_work

8: N.e_work ←
∑

S∈SN

S.work +
∑

F∈FN

F.e_work

9: N.ss_list←
⋃

F∈FN

F.ss_list

10: for each A ∈ ASYNCCHILDREN(N) do
11: LSA ← LEFTSTEPSIBLINGS(A)
12: LFA ← LEFTFINISHSIBLINGS(A)

13: llwA ←
∑

LS∈LSA

LS.work +
∑

LF∈LFA

LF.c_work

14: if llwA +A.c_work > N.c_work then
15: N.c_work ← llwA +A.c_work

16: N.e_work ←
∑

S∈LSA

S.work +
∑

F∈LFA

F.e_work

17: N.ss_list← (
⋃

LF∈LFA

LF.ss_list) ∪A.ss_list

18: end if
19: end for
20: if N is a async node then
21: N.ss_list← N.ss_list ∪ 〈N.s_site,N.e_work〉
22: end if
23: end for
24: end function

Figure 4: Algorithm to compute the total work (work), critical
work (c_work), exclusive work (e_work), and the spawn sites
that perform the critical work (ss_list) for each intermediate
node in the DPST. The function CHILDREN returns the set of
children of the input node. Similarly, functions STEPCHILDREN,
FINISHCHILDREN and ASYNCCHILDREN return the set of step,
finish and async child nodes of the input node, respectively.
The function LEFTSTEPSIBLINGS returns the set of step sibling
nodes that occur to the left of the input node in the DPST. Similarly,
the LEFTFINISHSIBLINGS returns the set of finish sibling nodes
to the left of the input node in the DPST.

performing critical work by computing the list of async nodes that
contribute to the critical work in the sub-tree of the intermediate
node.

Algorithm to compute work and critical work. Figure 4 pro-
vides the algorithm used by TASKPROF to compute the total work,
the critical work, and the set of spawn sites contributing to the
critical work. The algorithm maintains four quantities with each
intermediate node in the DPST: (1) total work performed in the
sub-tree under the node (work), (2) the critical work performed in
the sub-tree (c_work), (3) the list of spawn sites that perform the
critical work (ss_list), and (4) the part of the critical work that is
performed exclusively by the direct children of the node (e_work).
The exclusive work of a node is equal to sum total of the work per-
formed by the direct step children and the exclusive work performed
by the finish children. We consider the exclusive work performed
by a finish node because it is not yet associated with any spawn site.
The exclusive work of the current node will eventually be associated

with a spawn site. The algorithm does not consider the exclusive
work of the async children because it is already associated with a
spawn site.

The algorithm traverses each node in the DPST in a bottom
up fashion. All step nodes have work information from the profile
data. For any intermediate node, the work performed under the sub-
tree is the sum of the work performed by all its children (lines 3-4
in Figure 4). For a given intermediate node, TASKPROF initially
computes the serial work performed in all the step and finish children
as the critical work (lines 5-7 in Figure 4). For each async child of
the current node, it checks if the serial work done by the async node
and its left siblings is greater than the critical work computed until
that point (lines 10-15 in Figure 4).

To compute the set of spawn sites performing critical work,
each intermediate node also maintains a list of spawn sites and the
exclusive work performed by them. The algorithm initially sets the
spawn site list for a node to be the union of spawn site lists of its
finish children (lines 8-9 in Figure 4). Whenever an async child
contributes to the critical work, the spawn site list of the current
node is the union of the spawn site list of the async child and the
spawn site lists of the finish children that are to the left of the async
child (line 17 in Figure 4). When an async child contributes to the
critical work, the exclusive work of the current node is equal to sum
of the work performed by the left step siblings and the exclusive
work performed by the left finish siblings of the async child (line 16
in Figure 4). The algorithm adds the spawn site and the exclusive
work performed by the current async node to the node’s spawn site
list (lines 20-22 in Figure 4).

After the algorithm completes traversing the entire DPST, the
root of the DPST will contain the list of all spawn sites that
perform critical work and their individual contribution to the critical
work. The root node also contains information about the total work
performed by the program, the work that is computed serially by the
program, and the exclusive work performed under the entry function
of the program (i.e., main).

Aggregating information about a spawn site. A single spawn
site may be executed multiple times in a dynamic execution. Hence,
TASKPROF aggregates information from multiple invocations of the
same spawn site. TASKPROF computes the aggregate information
for each spawn site by performing another bottom-up traversal of
the DPST at the end. When it encounters an async node, TASKPROF
uses a hash table indexed by the spawn site associated with the
async node and adds the total work and critical work to the entry.
When aggregating this information, TASKPROF has to ensure that
it does not double count work and critical work when recursive
calls are executed. In the presence of recursive calls, a descendant
of an async node will have the same spawn site information as the
async node. If we naively add the descendant’s work, it leads to
double counting as the work and critical work of the current async
node already considers the work/critical work of the descendant
async node. Hence, when TASKPROF encounters an async node in a
bottom-up traversal of the DPST, it checks whether the descendants
of the async node have the same spawn site information. When
a descendant with the same spawn site exists, it subtracts such a
descendant’s work and critical work from the entry in the hash table
corresponding to the spawn site. Subsequently, TASKPROF adds the
work and the critical work of the current async node to the hash
table.

Profile reported to the user. For each spawn site in the program,
TASKPROF presents the work, the critical work, the asymptotic
parallelism, and the percentage of critical work exclusively done by
the spawn site. The asymptotic parallelism of a spawn site is the
ratio of the total work and the critical work performed by a spawn
site. The spawn sites are ordered by the percentage of critical work
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exclusively performed by the spawn site. Figure 3(b) illustrates
the parallelism profile for the program in Figure 2 that has the
DPST shown in Figure 3(a). If a spawn site has low parallelism
and performs a significant proportion of the critical work, then
optimizing the task spawned by the spawn site may increase the
parallelism in the program. This profile information provides a
succinct description of the parallelism bottlenecks in the program.

4. Causal Profiling
TASKPROF reports the set of spawn sites performing critical work to
the user, which highlight the parallelism bottlenecks in the program.
A programmer can consider these spawn sites to be initial candidates
for optimization to reduce serial computation.

Reducing critical work and the impact on parallelism. De-
signing a new optimization or a parallelization strategy that reduces
the critical work typically requires effort and time. A program may
have multiple spawn sites that perform similar amount of critical
work. When a set of spawn sites are parallelized to reduce critical
work, the resultant execution may have new spawn sites whose criti-
cal work is similar to the critical work before the optimization. In
such cases, an optimization to a spawn site performing critical work
may not improve the asymptotic parallelism in the program. Hence,
programmers would benefit from a causal profile of program that
identifies the improvement in asymptotic parallelism when certain
regions of the code are optimized.

Causal profile with TASKPROF. A causal profile provides
information on improvements in parallelism when certain parts
of the code are parallelized or optimized. TASKPROF proposes a
technique to generate causal profiles for task parallel programs. The
programmer can get an accurate estimate of the improvement in
asymptotic parallelism by reducing the serial work in a region of the
program using TASKPROF’s causal profile. TASKPROF provides
such an estimate even before the programmer has designed a
concrete strategy to parallelize or reduce the serial work in the
region of code under consideration. In summary, a causal profile
enables the programmer to identify parts of the program that really
matter in increasing the asymptotic parallelism. Figure 3(c) provides
the causal profile for the program in Figure 2 where the regions
under consideration are demarcated by __CAUSAL_BEGIN__ and
__CAUSAL_END__. Next, we describe how TASKPROF generates
a causal profile leveraging the accurate performance model of a task
parallel execution created with the fine-grained attribution of work
and the DPST.

Static code annotations. To generate causal profiles, the pro-
grammer annotates a static region of code that is considered for
parallelization and the expected improvement to the critical work
from parallelization. The programmer can provide multiple regions
as candidates for optimization. TASKPROF generates a causal profile
that estimates the improvement in parallelism when all annotated
regions are optimized. In addition, TASKPROF also generates a
causal profile for optimizing each region in isolation. Figure 2 il-
lustrates the regions of code annotated for causal profiling with
__CAUSAL_BEGIN__ and __CAUSAL_END__ annotations. If
the programmer does not specify the amount of expected improve-
ment for the considered region, TASKPROF assumes a default value.
If the annotations are nested, the outermost region of code is consid-
ered for estimating the benefits.

Profile execution and attribution of work. TASKPROF uses
these annotations, profiles the program, constructs the DPST to
attribute work to various regions, and provides the estimated im-
provement in asymptotic parallelism from optimizing the annotated
regions. During profile execution, TASKPROF measures the work
performed in the annotated part of the step node and also in parts

of the step node that have not been annotated. Hence, each step
node can have multiple work measurements corresponding to static
regions with and without annotation. TASKPROF accomplishes it
by reading the performance counter value at the beginning and the
end of the each dynamic region. TASKPROF maintains a list of work
values for each step node and writes it to the profile data file.

Algorithm to generate causal profiles. The algorithm to com-
pute the causal profile is similar to the work and span algorithm
in Figure 4. It takes the DPST as input and a list of anticipated
improvements for the annotated regions. The algorithm outputs a
causal profile that computes the improvement in asymptotic paral-
lelism of the whole program for the specified improvements of the
annotated regions. The causal profile algorithm performs a bottom
up traversal of the DPST similar to the work and span algorithm
in Figure 4. However, the causal profiling algorithm does not track
spawn sites and computes the whole program’s work and critical
work. The key difference with the causal profiling algorithm is
the manner in which it handles the work done by the step nodes,
which have regions corresponding to user annotations. Specifically,
TASKPROF maintains a list of annotated and non-annotated regions
executed with each step node and the amount of work performed
in each region. To estimate the effect of optimizing/parallelizing
the annotated region, we reduce the critical work contribution of
the annotated region by the user-specified optimization factor while
keeping the total work performed by the regions unchanged. The
output of the causal profiling algorithm is a list that provides the
asymptotic parallelism for each anticipated improvement factor for
the regions under consideration.

Illustration. After analyzing the parallelism profile in Fig-
ure 3(b) for the program in Figure 2, the programmer has identified
two regions of code (lines 4-6 and lines 20-22 in Figure 2) for op-
timization. The regions are annotated with __CAUSAL_BEGIN__
and __CAUSAL_END__ annotations to demarcate the beginning
and the end. During execution, the region at lines 20-22 is executed
once and is represented by step node S0 in Figure 3(a). In contrast,
the region at lines 4-6 is executed twice and is represented by step
nodes S5 and S6 in Figure 3(a). In this example, the entire step node
corresponds to the annotated region. In general, a step node may
have multiple annotated and non-annotated regions. To generate a
causal profile, the critical work performed by nodes S0, S5, and S6
are decreased by 2×, 4×, and 8× and its impact on whole program
parallelism is computed. Figure 3(c) provides the causal profile with
the annotated regions, which reports that the asymptotic parallelism
in the program increases when those two regions are optimized.

5. Experimental Evaluation
This section describes our prototype, our experimental setup, and
an experimental evaluation to answer the following questions: (1) Is
TASKPROF effective in identifying parallelism bottlenecks? (2) Is
TASKPROF’s parallel profile execution faster than serial profilers?
(3) Is TASKPROF effective in minimizing perturbation in the profile
execution? (4) Is TASKPROF usable by programmers?

Prototype. We have built a TASKPROF prototype to profile task
parallel programs using the Intel Threading Building Blocks(TBB)
library [37]. The prototype provides a TBB library that has been
modified to construct the DPST, measure work done in step nodes
using hardware performance counters, and track file name and
line information at each spawn site. The prototype also handles
algorithms for geometric decomposition such as parallel_for
and parallel_reduce. The prototype also includes a Clang
compiler pass that automatically adds line number and file name
information to the TBB library calls, which enables the programmer
to use the modified library without making any source code changes.
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Application Description Speedup Parallel-
ism

# of
regions

Causal
parallelism

blackscholes Stock option pricing 1.09 1.14 2 59.24
bodytrack Tracking of a human body 5.96 22.19 1 40.32
fluidanimate Simulate fluid dynamics 9.39 66.09 1 90.2
streamcluster Clustering algorithm 7.3 55.13 2 198.93
swaptions Price a portfolio 8.59 73.45 1 98.73
convexHull Convex hull 1.3 1.28 4 112.17
delRefine Delaunay Refinement 2.93 5.5 7 61.28
delTriang Delaunay triangulation 1.23 1.47 5 78.85
karatsuba Karatsuba multiplication 5.22 23.69 1 36.9
kmeans K-means clustering 2.54 4.18 6 69.6
nearestNeigh K-nearest neighbors 4.54 12.41 2 30.55
rayCast Triangle intersection 6.62 48.49 2 68.52
sort Parallel quicksort 3.91 6.33 2 45.04
compSort Generic sort 4.99 38.97 4 86.23
intSort Sort key-value pairs 4.71 48.68 2 75.02
removeDup Remove duplicate value 6.04 54.91 3 98.24
dictionary Batch dictionary opers 5.13 38.1 4 73.12
suffixArray Sequence of suffixes 3.75 5.5 1 28.53
bFirstSearch Breadth first search 6.6 22.45 5 60.55
maxIndSet Maximal Independent Set 5.48 16.46 5 52.23
maxMatching Maximal matching 6.73 46.04 0 46.04
minSpanForest Minimum spanning forest 3.47 7.99 2 49.78
spanForest Spanning tree or forest 7.46 44.04 1 58.91

Table 1: Applications used to evaluate TASKPROF. We provide
a short description of the application, the speedup obtained on
a 16-core machine when compared to serial execution time, the
asymptotic parallelism reported by TASKPROF, the number of
annotated regions in the program that provides maximum parallelism
with causal profiling, and the asymptotic parallelism when the
critical work in the annotated regions is optimized by 100×, which
we list as causal parallelism.

Hence, the modified TBB library can be linked to any TBB program.
Our prototype adds approximately 2000 lines of code to the Intel
TBB library to perform various profiling operations. The TASKPROF
prototype is open source [43].

Applications used for evaluation. We evaluated TASKPROF
using a collection of twenty three TBB applications, which in-
clude fifteen applications from the problem based benchmark suite
(PBBS) [39], all five TBB applications from the Parsec suite [4], and
three TBB applications from the structured parallel programming
book [32]. The PBBS applications are designed to compare differ-
ent parallel programming methodologies in terms of performance
and code. We conducted all experiments on a 2.1GHz 16-core Intel
x86-64 Xeon server with 64 GB of memory running 64-bit Ubuntu
14.04.3. We measured wall clock execution time by running each
application five times and use the mean of the five executions to
report performance. We use the perf events module in Linux
to programmatically access hardware performance counters.

RQ1: Is TASKPROF effective in identifying parallelism bot-
tlenecks? We used TASKPROF to identify parallelism bottlenecks in
all the 23 applications. Table 1 provides details on applications used,
their speedup on a 16-core machine compared to serial execution,
the asymptotic parallelism reported by TASKPROF, the number of
regions that we identified using TASKPROF to increase asymptotic
parallelism, and the resultant asymptotic parallelism from causal
profiling when the critical work in the identified regions is decreased
by 100×. Typically, asymptotic parallellism of a program should be
at least 10× or more than the anticipated speedup on a machine to
account for scheduling overheads [16, 37, 38].

TASKPROF’s profile shows that some applications in Table 1
have reasonable asymptotic parallelism, which accounts for a reason-
able speedup on a 16-core machine. For example, fluidanimate
application has an asymptotic parallelism of 66.09 which is the max-
imum possible speedup when the program is executed on a large
number of machines. The fluidanimate application exhibits a
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Figure 5: Figure reports the original parallelism profile, the causal
profile for the annotated regions, and final parallelism profile
generated by TASKPROF after annotated regions were parallelized
for each of the five applications. We list the top four spawn sites
from TASKPROF’s parallelism profile. Line with a “?” in the profile
corresponds to the main function and reports the parallelism for the
entire program. The asymptotic parallelism for the entire program
is marked bold in the parallelism profile.

speedup of 9.39× compared to a serial execution when the program
was executed on a 16-core machine.

Table 1 also shows that we were able to identify a small num-
ber of code regions which when optimized provide a significant
increase in asymptotic parallelism. TASKPROF’s profile information
on spawn sites performing critical work and the causal profiling
strategy was instrumental in identifying the specific regions of code
as candidates for increasing asymptotic parallelism. The application
maxMatching already had a large amount of asymptotic paral-
lelism and we could not find any region that increases parallelism.
We were not aware of these parallelism bottlenecks even though
these applications have been widely used, which emphasizes the
need for TASKPROF.

In summary, TASKPROF enabled us to identify a set of code
regions that can increase asymptotic parallelism significantly in
almost all our applications. Once we identified code regions that
can increase asymptotic parallelism, we designed concrete paral-
lelization strategies to reduce the critical work for five applications,
which increased the asymptotic parallelism and the speedup of the
program. We describe them below.
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Improving the speedup of the MinSpanningForest applica-
tion. This PBBS application computes the minimum spanning
forest of the input undirected graph. The program has a speedup
of 3.47× over serial execution on a 16-core machine. The paral-
lelism profile generated by TASKPROF is shown in Figure 5(I)(a),
which reports that the parallelism in the program (main function at
MSTTime.C:77) is 7.99. The main function performs 85% of the
serial work in the program. We identified two regions of code using
annotations for causal profiling in the main function. Figure 5(I)(b)
presents the causal profile generated by TASKPROF, which shows
the increase in asymptotic parallelism in the program on potentially
optimizing these two regions. On further investigation of the code
regions, we realized that annotated regions were performing a serial
sort. We replaced them with a parallel sort function, which increased
the asymptotic parallelism to 33.34 from 7.99. Figure 5(I)(c) reports
the profile after our parallel sort optimization. The speedup of the
program increased from 3.49× to 6.37×.

Improving the speedup of the Convex Hull application. This
PBBS application computes the convex hull of a set of points us-
ing a divide and conquer approach [3]. TASKPROF’s profile shown
in Figure 5(II)(a) reveals that the program has an asymptotic par-
allelism of 1.28 for the whole program. As expected, it did not
exhibit any speedup. Figure 5(II)(a) shows that 80% of the crit-
ical work is performed by the spawn site at hullTime.C:55.
We annotated two regions corresponding to that spawn site, which
performed sequential read and write operations of the input and
output files respectively. TASKPROF’s causal profile showed that
it would increase the parallelism to 6.85. Subsequently, we anno-
tated two additional regions of code corresponding to the spawn
site performing the next highest critical work (hull.C:209)
in Figure 5(II)(a). The causal profile shown in Figure 5(II)(b)
shows that asymptotic parallelism increases significantly when all
the four regions are optimized. We parallelized a loop at spawn
site hull.C:209 using parallel_for and parallelized I/O at
spawn site hullTime.C:55. These optimizations increased the
parallelism to 50.84 (see Figure 5(II)(c)) and the speedup of the
whole program increased from 1.3× to 8.14×.

Improving the speedup of Delaunay Triangulation. This
PBBS application produces a triangulation given a set of points such
that no point lies in the circumcircle of the triangle. The program
has an asymptotic parallelism of 1.47 (see Figure 5(III)(a)) for
the entire program and exhibits little speedup. The spawn site at
delTime.C:55 performs 99% of the critical work. When we
looked at the source code, we found that the program is structured as
a collection of parallel_for constructs interspersed by serial
code. We annotated five regions of code between the invocations
of parallel_for. The causal profile in Figure 5(III)(b)) shows
that the asymptotic parallelism increases significantly by optimizing
the annotated regions. We parallelized the annotated regions, which
had serial for loops, using parallel_for while ensuring they
operate on independent data. The profile for the resultant program
is shown in Figure 5(III)(c). The parallelism increased to 53.11 and
the speedup increased from 1.23× to 5.82×.

Improving the speedup of Delaunay Refinement. This PBBS
application takes a set of triangles that form a delaunay triangulation
and produces a new triangulation such that no triangle has an angle
less than a threshold value. TASKPROF’s profile for this program
reports an asymptotic parallelism of 5.5 (see Figure 5(IV)(a))
and it had a speedup of 2.93×. Similar to delaunay triangulation,
this program also had a set of serial code fragments in-between
parallel_for calls. We identified seven regions of such serial
code and annotated them. TASKPROF’s causal profile shown in
Figure 5(IV)(b) indicates that optimizing all these seven regions can
increase asymptotic parallelism. We parallelized the serial for loops
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Figure 6: Speedup of TASKPROF’s parallel profile execution when
compared to serial profile execution.

in these seven regions using parallel_for, which increased
the asymptotic parallelism to 48.08 (see Figure 5(IV)(c)) and the
speedup increased from 2.93× to 6.42×.

Improving the speedup of Blackscholes. This application from
the PARSEC suite [4] computes the price of a portfolio of options
using partial differential equations. It has low asymptotic parallelism
for the entire program (see Figure 5(V)(a)). This program has a
single parallel_for that has reasonable parallelism of 51.2.
However, the spawn site at bscholes.c:323 is performing 99%
of the program critical work. Our examination of the code revealed
that it was reading and writing serially. We split the input and output
into multiple files and parallelized the input/output operations which
increased the parallelism to 40.03 and the speedup increased from
1.09× to 7.7×.

In summary, TASKPROF enabled us to quantify asymptotic
parallelism in the program and its causal profiling strategy enabled
us to identify specific regions of code that can increase parallelism.

RQ2: Is TASKPROF’s parallel profile execution faster than
serial profile execution? TASKPROF’s profile execution executes
in parallel compared to prior profilers [38], which execute serially.
To quantify the benefits of parallel profile execution, we designed a
serial version of TASKPROF by pinning the execution of the program
to a single core. This is an approximation of serial profiling as
TBB programs do not have serial semantics. Figure 6 reports the
speedup of a parallel TASKPROF profile execution compared to a
serial profile execution. On average, TASKPROF’s parallel profile
execution is 4.32× faster than serial profile execution. The speedup
from a parallel profile execution is proportional to the amount of
parallelism in the application.

RQ3: Is TASKPROF effective in minimizing perturbation
in the profile execution? TASKPROF uses hardware performance
counters to perform fine-grain attribution of work and to minimize
perturbation. The average performance overhead of TASKPROF’s
profile execution compared to the parallel execution of the program
without any profiling instrumentation is 56%. A major fraction of
this performance overhead is attributed to system calls to read hard-
ware performance counters. TASKPROF’s profile execution is an
order of magnitude faster than instrumenting each dynamic instruc-
tion through compiler instrumentation, which exhibited overheads
of 20×-100× for the applications in Table 1. Hence, TASKPROF
minimizes perturbation even with fine-grained attribution of work.

RQ4: Is TASKPROF usable by programmers? We conducted
a user study to evaluate the usability of TASKPROF. The user study
had thirteen participants: twelve graduate students and one senior
undergraduate student. Among them, two students had 4+ years
of experience in parallel programming, five students had some
prior experience, four students had passing knowledge, and two
students had no prior experience with parallel programming. The
total duration of the user study was four hours. To ensure that every
student had some knowledge in parallel programming, we provided
a 2-hour tutorial on task parallelism, and on writing and debugging
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task parallel programs using Intel TBB. We gave multiple examples
to demonstrate parallelism bottlenecks.

After the tutorial, the participants were given a total of four appli-
cations and were asked to identify parallelism bottlenecks without
using TASKPROF in a one hour time period. Three applications —
minSpanForest, convexHull, and blackscholes — from Table 1 and
a treesum application similar to the example in Figure 2. We chose
these applications as it had varying levels of difficulty in diagnosing
parallelism bottlenecks. We asked the participants to identify the
static region of code causing the bottleneck and record the time they
spent to analyze each program. They were not required to design
any optimization. Some participants used gprof and others used
fine-grained wall clock based timing for assistance. At the end of
the time period, twelve of them did not correctly identify parallelism
bottlenecks in any of the four applications. One participant, who had
4+ years of experience in parallel programming, identified the bot-
tleneck in one (minSpanForest) out of the four applications. Some
participants were misled by the gprof profile.

Subsequently after the first part, we gave a brief tutorial of
TASKPROF on a simple example program. The participants were
then asked to identify bottlenecks in the four applications using
TASKPROF within an hour. Using TASKPROF, seven participants
found the parallelism bottleneck in all the four applications, one
participant found the bottleneck in three of them, four participant
found the bottleneck in two of them, and one participant did not
find the bottleneck in any application. Among the participants who
identified at least one bottleneck for any application, it took them
12 minutes on average per application to identify the bottleneck
using TASKPROF. The participants indicated that once they became
familiar with the tool by identifying a bottleneck in one applica-
tion, subsequent tasks were repetitive. In summary, our user study
suggests that TASKPROF can enable both expert and relatively inex-
perienced programmers identify parallelism bottlenecks quickly.

6. Related Work
There is a large body of work to identify parallelism bottlenecks.
These include techniques to address load imbalances [12, 24, 34, 40],
scalability bottlenecks [31, 38, 41], visualizing bottlenecks [13–
15, 25], synchronization bottlenecks [7, 11, 45], and data locality
bottlenecks [1, 28, 30]. Data locality and synchronization bottle-
necks increase serial work. Hence, TASKPROF will report asymp-
totic parallelism in their presence. In contrast to prior proposals,
TASKPROF also estimates the improvement in parallelism with
causal profiling. Next, we focus on the closest related work.

Profiling tools for task parallel programs. Profiling tools such
as HPCToolkit [2], and Intel VTune Amplifier [9] can analyze
a program’s performance on various parameters using hardware
performance counters. HPCToolKit also has metrics to quantify
idleness and the scheduling overhead [41] in Cilk programs that
is specific to a machine. They do not compute the asymptotic
parallelism in the program. They also do not identify code that
matters with respect to asymptotic parallelism. CilkView [21]
computes the whole program asymptotic parallelism. CilkProf [38]
computes asymptotic parallelism per spawn site using an online
algorithm. However, these profilers execute the program serially,
which is only possible with Cilk programs with C-elision [16]. Many
task parallelism frameworks including Intel TBB do not have serial
semantics, which limits their use. Further, executing the profiler
serially can cause high overheads. Unlike TASKPROF, they also
cannot estimate the benefits of optimizing specific regions of code.

Performance estimation tools. An early profiling technique
proposed Slack [22], which is a metric that estimates the improve-
ment in execution time through critical path optimizations for a
specific machine model. Kremlin [17] identifies regions of code

that can be parallelized in serial programs by tracking loops and
identifying dependencies between iterations. Kismet [23] builds on
Kremlin to estimate speedups for the specific machine on which the
serial program is executed. These techniques are tied to a specific
machine and cannot estimate asymptotic parallelism improvements.

Our work is inspired by COZ [10], a causal profiler for multi-
threaded programs that automatically identifies optimization oppor-
tunities and quantifies their impact on a metric of interest, such as
latency or throughput. It runs periodic experiments at runtime that
virtually speed up a single randomly selected program fragment. Vir-
tual speedups produce the same effect as real speedups by uniformly
slowing down code executing concurrently with the fragment, caus-
ing the fragment to run relatively faster. In a task parallel context, it
is not possible to slow down all active tasks. Further, slowing down
threads does not measure the impact of the region as work steal-
ing dynamically balances the load. Further, COZ’s virtual speedups
are specific to a particular machine. TASKPROF, though similar in
spirit, addresses the above challenges and proposes a causal profiler
that leverages the dynamic execution structure and estimates im-
provements in asymptotic parallelism. Hence, TASKPROF’s profile
is not specific to a single machine and enables the development of
performance portable code.

7. Conclusion
TASKPROF identifies parallelism bottlenecks by performing a low-
overhead, yet fine-grained attribution of work to various parts of the
program using the dynamic execution structure of a task parallel
execution. TASKPROF reports asymptotic parallelism and serial
work performed at each spawn site. TASKPROF’s causal profile
estimates the improvements in parallelism when regions of code
annotated by the programmer are optimized. We have identified
bottlenecks and improved the speedup in numerous Intel TBB
applications. Our user study shows that developers can quickly
identify parallelism bottlenecks using TASKPROF.
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