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ABSTRACT

While deep learning is an exciting new technique, the benefits of
this method need to be assessed with respect to its computational
cost. This is particularly important for deep learning since these
learners need hours (to weeks) to train the model. Such long train-
ing time limits the ability of (a) a researcher to test the stability
of their conclusion via repeated runs with different random seeds;
and (b) other researchers to repeat, improve, or even refute that
original work.

For example, recently, deep learning was used to find which
questions in the Stack Overflow programmer discussion forum can
be linked together. That deep learning system took 14 hours to
execute. We show here that applying a very simple optimizer called
DE to fine tune SVM, it can achieve similar (and sometimes better)
results. The DE approach terminated in 10 minutes; i.e. 84 times
faster hours than deep learning method.

We offer these results as a cautionary tale to the software analyt-
ics community and suggest that not every new innovation should
be applied without critical analysis. If researchers deploy some new
and expensive process, that work should be baselined against some
simpler and faster alternatives.
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1 INTRODUCTION

This paper extends a prior result from ASE’16 by Xu et al. [74]
(hereafter, XU). XU described a method to explore large programmer
discussion forums, then uncover related, but separate, entries. This
is an important problem. Modern SE is evolving so fast that these
forums contain more relevant and recent comments on current
technologies than any textbook or research article.

In their work, XU predicted whether two questions posted on
Stack Overflow are semantically linkable. Specifically, XU define
a question along with its entire set of answers posted on Stack
Overflow as a knowledge unit (KU). If two knowledge units are
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semantically related, they are considered as linkable knowledge
units.

In their paper, they used a convolution neural network (CNN), a
kind of deep learning method [42], to predict whether two KUs are
linkable. Such CNNs are highly computationally expensive, often
requiring network composed of 10 to 20 layers, hundreds of millions
of weights and billions of connections between units [42]. Even
with advanced hardware and algorithm parallelization, training
deep learning models still requires hours to weeks. For example:

e XU report that their analysis required 14 hours of CPU.
e Le [40] used a cluster with 1,000 machines (16,000 cores) for
three days to train a deep learner.

This paper debates what methods should be recommended to
those wishing to repeat the analysis of XU. We focus on whether
using simple and faster methods can achieve the results that are cur-
rently achievable by the state-of-art deep learning method. Specifi-
cally, we repeat XU’s study using DE (differential evolution [62]),
which serves as a hyper-parameter optimizer to tune XU’s base-
line method, which is a conventional machine learning algorithm,
support vector machine (SVM). Our study asks:

RQ1: Can we reproduce XU’s baseline results (Word Embedding +
SVM)? Using such a baseline, we can compare our methods to those
of XU.

RQ2: Can DE tune a standard learner such that it outperforms
XU’s deep learning method? We apply differential evolution to tune
SVM. In terms of precision, recall and F1-score, we observe that the
tuned SVM method outperforms CNN in most evaluation scores.

RQ3: Is tuning SVM with DE faster than XU’s deep learning
method? Our DE method is 84 times faster than CNN.

We offer these results as a cautionary tale to the software an-
alytics community. While deep learning is an exciting new tech-
nique, the benefits of this method need to be carefully assessed with
respect to its computational cost. More generally, if researchers
deploy some new and expensive process (like deep learning), that
work should be baselined against some simpler and faster alterna-
tives

The rest of this paper is organized as follows. Section 2 describes
the background and related work on deep learning and parameter
tuning in SE. Section 3 explains the case study problem and the
proposed tuning method investigated in this study, then Section 4
describes the experimental settings of our study, including research
questions, data sets, evaluation measures and experimental design.
Section 5 presents the results. Section 6 discusses implications from
the results and the threats to the validity of our study. Section 7
concludes the paper and discusses the future work.

Before beginning, we digress to make two points. Firstly, just
because “DE + SVM” beats deep learning in this application, this
does not mean DE is always the superior method for all other
software analytics applications. No learner works best over all
problems [73]- the trick is to try several approaches and select the
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one that works best on the local data. Given the low computational
cost of DE (10 minutes vs 14 hours), DEs are an obvious and low-cost
candidate for exploring such alternatives.

Secondly, to enable other researchers to repeat, improve, or
refute our results, all our scripts and data are freely available on-
line Github!.

2 BACKGROUND AND RELATED WORK
2.1 Why Explore Faster Software Analytics?

This section argues that avoiding slow methods for software ana-
lytics is an open and urgent issue.

Researchers and industrial practitioners now routinely make
extensive use of software analytics to discover (e.g.) how long
it will take to integrate the new code [17], where bugs are most
likely to occur [54], who should fix the bug [2], or how long it will
take to develop their code [34, 35, 50]. Large organizations like
Microsoft routinely practice data-driven policy development where
organizational policies are learned from an extensive analysis of
large data sets collected from developers [7, 65].

But the more complex the method, the harder it is to apply the
analysis. Fisher et al. [20] characterizes software analytics as a
work flow that distills large quantities of low-value data down to
smaller sets of higher value data. Due to the complexities and
computational cost of SE analytics, “the luxuries of interactivity,
direct manipulation, and fast system response are gone” [20]. They
characterize modern cloud-based analytics as a throwback to the
1960s-batch processing mainframes where jobs are submitted and
then analysts wait, wait, and wait for results with “little insight into
what is really going on behind the scenes, how long it will take, or
how much it is going to cost” [20]. Fisher et al. [20] document the
issues seen by 16 industrial data scientists, one of whom remarks

“Fast iteration is key, but incompatible with the
jobs are submitted and processed in the cloud. It
is frustrating to wait for hours, only to realize you
need a slight tweak to your feature set”.

Methods for improving the quality of modern software analytics
have made this issue even more serious. There has been continuous
development of new feature selection [25] and feature discover-
ing [28] techniques for software analytics, with the most recent
ones focused on deep learning methods. These are all exciting in-
novations with the potential to dramatically improve the quality of
our software analytics tools. Yet these are all CPU/GPU-intensive
methods. For instance:

e Learning control settings for learners can take days to weeks to
years of CPU time [22, 64, 69].

e Lam et al. needed weeks of CPU time to combine deep learning
and text mining to localize buggy files from bug reports [39].

e Gu et al. spent 240 hours of GPU time to train a deep learning
based method to generate API usage sequences for given natural
language query [24].

Note that the above problem is not solvable by waiting for faster

CPUs/GPUs. We can no longer rely on Moore’s Law [51] to double

our computational power every 18 months. Power consumption and

heat dissipation issues effect block further exponential increases to

!https://github.com/WeiFoo/EasyOverHard
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CPU clock frequencies [38]. Cloud computing environments are
extensively monetized so the total financial cost of training models
can be prohibitive, particularly for long running tasks. For example,
it would take 15 years of CPU time to learn the tuning parameters
of software clone detectors proposed in [69]. Much of that CPU
time can be saved if there is a faster way.

2.2 What is Deep Learning?

Deep learning is a branch of machine learning built on multiple lay-
ers of neural networks that attempt to model high level abstractions
in data. According to LeCun et al. [42], deep learning methods are
representation-learning methods with multiple levels of represen-
tation, obtained by composing simple but non-linear modules that
each transforms the representation at one level (starting with the
raw input) into a representation at a higher, slightly more abstract
level. Compared to the conventional machine learning algorithms,
deep learning methods are very good at exploring high-dimensional
data.

By utilizing extensive computational power, deep learning has
been proven to be a very powerful method by researchers in many
fields [42], like computer vision and natural language process-
ing [4, 37,47, 60, 63]. In 2012, Convolution neural networks method
won the ImageNet competition [37], which achieves half of the error
rates of the best competing approaches. After that, CNN became the
dominant approach for almost all recognition and detection tasks
in computer vision community. CNNs are designed to process the
data in the form of multiple arrays, e.g., image data. According to
LeCun et al. [42], recent CNN methods are usually a huge network
composed of 10 to 20 layers, hundreds of millions of weights and
billions of connections between units. With advanced hardware
and algorithm parallelization, training such model still need a few
hours [42]. For the tasks that deal with sequential data, like text
and speech, recurrent neural networks (RNNs) have been shown
to work well. RNNs are found to be good at predicting the next
character or word given the context. For example, Graves et al. [23]
proposed to use long short-term memory (LSTM) RNNs to perform
speech recognition, which achieves a test set error of 17.7% on the
benchmark testing data. Sutskever et al. [63] used two multiplelay-
ered LSTM RNNS to translate sentences in English to French.

2.3 Deep Learning in SE

We study deep learning since, recently, it has attracted much at-
tentions from researchers and practitioners in software commu-
nity [15, 24, 39, 52, 68, 70, 71, 74, 77]. These researchers applied deep
learning techniques to solve various problems, including defect pre-
diction, bug localization, clone code detection, malware detection,
API recommendation, effort estimation and linkable knowledge
prediction.
We find that this work can be divided into two categories:

e Treat deep learning as a feature extractor, and then apply other
machine learning algorithms to do further work [15, 39, 68].
e Solve problems directly with deep learning [24, 52, 70, 71, 74, 77].

2.3.1 Deep Learning as Pre-Processor. Lam et al. [39] proposed
an approach to apply deep neural network in combination with
r'VSM to automatically locate the potential buggy files for a given
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bug report. By comparing it to baseline methods (Naive Bayes [32],
learn-to-rank [76], BugLocator [79]), Lam et al. reported, 16.2-46.4%,
8-20.8% and 2.7-20.7% higher top-1 accuracy than baseline methods,
respectively [39]. The training time for deep neural network was
reported from 70 to 122 minutes for 6 projects on a computer with
32 cores 2.00GHz CPU, 126 GB memory. However, the runtime
information of the baseline methods was not reported.

Wang et al. [68] applied deep belief network to automatically
learn semantic features from token vectors extracted from the stud-
ied software program. After applying deep belief network to gener-
ate features from software code, Naive Bayes, ADTree and Logistic
Regression methods are used to evaluate the effectiveness of fea-
ture generation, which is compared to the same learners using
traditional static code features (e.g. McCabe metrics, Halstead’s
effort metrics and CK object-oriented code mertics [13, 26, 31, 45]).
In terms of runtime, Wang et al. only report time for generating
semantics features with deep belief network, which ranged from
8 seconds to 32 seconds [68]. However, the time for training and
tuning deep belief network is missing. Furthermore, to compare
the effectiveness of deep belief network for generating features
with methods that extract traditional static code features in terms
of time cost, it would be favorable to include all the time spent on
feature extraction, including paring source code, token generation
and token mapping for both deep belief network and traditional
methods (i.e., an end-to-end comparison).

Choetkiertikul et al. [15] proposed to apply deep learning tech-
niques to solve effort estimation problems on user story level.
Specifically, Choetkiertikul et al. [15] proposed to leverage long
short-term memory (LSTM) to learn feature vectors from the title,
description and comments associated with an issue report and af-
ter that, regular machine learning techniques, like CART, Random
Forests, Linear Regression and Case-Based Reasoning are applied
to build the effort estimation models. Experimental results show
that LSTM has a significant improvement over the baseline method
bag-of-words. However, no further information regarding runtime
as well as experimental hardware is reported for both methods and
there is no cost of this deep learning method at all.

2.3.2 Deep Learning as a Problem Solver. White et al. [70, 71]
applied recurrent neural networks, a type of deep learning tech-
niques, to address code clone detection and code suggestion. They
reported, the average training time for 8 projects were ranging from
34 seconds to 2977 seconds for each epoch on a computer with two
3.3 GHz CPUs and each project required at least 30 epochs [70].
Specifically, for the DK project in their experiment, it would take
25 hours on the same computer to train the models before getting
prediction. For the time cost for code suggestions, authors did not
mention any related information [71].

Gu et al. [24] proposed a recurrent neural network (RNN) based
method, DeepAPI, to generate API usage sequences for a given natu-
ral language query. Compared with the baseline method SWIM [57]
and Lucene + UP-Miner [67], DeepAPI improved the performance
significantly. However, that improvement came at a cost: that
model was trained with a Nivdia K20 GPU for 240 hours [24].

XU [74] utilized neural language model and convolution neural
network (CNN) to learn word-level and document-level features to
predict semantically linkable knowledge units on Stack Overflow.
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In terms of performance metrics, like precision, recall and F1-score,
CNN method was evaluated much better than the baseline method
support vector machine (SVM). However, once again, that perfor-
mance improvement came at a cost: their deep learner required 14
hours to train CNN model on a 2.5GHz PC with 16 GB RAM [74].

Yuan et al. [77] proposed a deep belief network based method
for malware detection on Android apps. By training and testing
the deep learning model with 200 features extracted from static
analysis and dynamic analysis from 500 sampled Android app, they
got 96.5% accuracy for deep learning method and 80% for one
baseline method, SVM [77]. However, they did not report any
runtime comparison between the deep learning method and other
classic machine learning methods.

Mou et al. [52] proposed a tree-based convolutional neural net-
work for programming language processing, in which a convolution
kernel is designed over programs’ abstract syntax trees to capture
structural information. Results show that their method achieved
94% accuracy, which is better than the baseline method RBF SVM
88.2% on program classification problem [52]. However, Mou et
al. [52] did not discuss any runtime comparison between the pro-
posed method and baseline methods.

2.3.3 Issues with Deep Learning. In summary, deep learning is
used extensively in software engineering community. A common
pattern in that research is to:

e Report deep learning’s benefits, but not its CPU/GPU cost [15,
52, 71, 77);

e Or simply show the cost, without further analysis [24, 39, 68, 70,
74].

Since deep learning techniques cost large amount of time and com-
putational resources to train its model, one might question whether
the improvements from deep learning is worth the costs. Are there
any simple techniques that achieve similar improvements with less
resource costs? To investigate how simple methods could improve
baseline methods, we select XU [74] study as a case study. The
reasons are as follows:

e Most deep learning paper’s baseline methods in SE are either
not publicly available or too complex to implement [39, 70]. XU
define their baseline methods precisely enough so others can
confidently reproduce it locally. XU’s baseline method is SVM
learner, which is available in many machine learning toolboxes.

e Further, it is not yet common practice for deep learning re-
searchers in SE community to share their implementations and
data [15, 24, 39, 68, 70, 71], where a tiny difference may lead to
a huge difference in the results. Even though XU do not share
their CNN tool, their training and testing data are available on-
line, which can be used for our proposed method. Since the
same training and testing data are used for XU’s CNN and our
proposed method, we can compare results of our method to their
CNN results.

o Some studies do not report their runtime and experimental envi-
ronment, which makes it harder for us to systematically compare
our results with theirs in terms of computational costs [15, 52, 71,
77]. XU clearly report their experimental hardware and runtime,
which will be easier for us compare our computational costs to
theirs.
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2.4 Parameter Tuning in SE

In this paper, we use DE as an optimizer to do parameter tuning
for SVM, which achieves results that are competitive with deep
learning. This section discusses related work on parameter tuning
in SE community.

Machine learning algorithms are designed to explore the in-
stances to learn the bias. However, most of these algorithms are
controlled by parameters such as:

o The maximum allowed depth of decision tree built by CART;
e The number of trees to be built within a Random Forest.

Adjusting these parameters is called hyperparameter optimzia-
tion. It is a well well explored approach in other communities [9, 44].
However, in SE, such parameter optimization is not a common
task (as shown in the following examples).

In the field of defect prediction, Fu et al. [21] surveyed hundreds
of highly cited software engineering paper about defect prediction.
Their observation is that most software engineering researchers did
not acknowledge the impact of tunings (exceptions: [43, 64]) and
use the “off-the-shelf” data miners. For example, Elish et al. [18]
compared support vector machines to other data miners for the
purposes of defect prediction. However, the Elish et al. paper makes
no mention of any SVM tuning study [18]. More details about their
survey refer to [21].

In the field of topic modeling, Agrawal et al. [1] investigated the
impact of parameter tuning on Latent Dirichlet Allocation (LDA).
LDA is a widely used technique in software engineering field to
find related topics within unstructured text, like topic analytics on
Stack Overflow [5] and source code analysis [10]. Agrawal et al.
found that LDA suffers from conclusion instability (different input
orderings can lead to very different results) that is a result of poor
choice of the LDA control parameters [1]. Yet, in their survey of
LDA use in SE, they found that very few researchers (4 out of 57
papers) explored the benefits of parameter tuning for LDA.

One troubling trend is that, in the few SE papers that perform
tuning, they do so using methods heavily deprecated in the ma-
chine learning community. For example, two SE papers that use
tuning [43, 64], apply a simple grid search to explore the potential
parameter space for optimal tunings (such grid searchers run one
for-loop for each parameter being optimized). However, Bergstra
et al. [9] and Fu et al. [22] argue that random search methods (e.g.
the differential evolution algorithm used here) are better than grid
search in terms of efficiency and performance.

3 METHOD
3.1 Research Problem

This section is an overview of the the task and methods used by
XU. Their task was to predict relationships between two knowledge
units (questions with answers) on Stack Overflow. Specifically, XU
divided linkable knowledge unit pairs into 4 difference categories
namely, duplicate, direct link, indirect link and isolated, based on its
relatedness. The definition of these four categories are shown in
Table 1 [74]:

In that paper, XU provided the following two methods as base-
lines [74]:
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Table 1: Classes of Knowledge Unit Pairs.

Class Description

These two knowledge units are addressing the
same question.

One knowledge unit can help to answer the
question in the other knowledge unit.

One knowledge provides similar information to
Indirect link | solve the question in the other knowledge unit,
but not a direct answer.

Duplicate

Direct link

These two knowledge units discuss unrelated

Isolated .
questions.

e TF-IDF + SVM: a multi-class SVM classifier with 36 textual
features generated based on the TF and IDF values of the words
in a pair of knowledge units.

e Word Embedding + SVM: a multi-class SVM classifier with word
embedding generated by the word2vec model [47].

Both of these two baseline methods are compared against their
proposed method, Word Embedding + CNN.

In this study, we select Word Embedding + SVM as the baseline
because it uses word embedding as the input, which is the same as
the Word Embedding + CNN method by XU.

3.2 Learners and Their Parameters

SVM has been proven to be a very successful method to solve text
classification problem. A SVM seeks to minimize misclassification
errors by selecting a boundary or hyperplane that leaves the max-
imum margin between positive and negative classes (where the
margin is defined as the sum of the distances of the hyperplane
from the closest point of the two classes [29]).

Like most machine learning algorithms, there are some parame-
ters associated with SVM to control how it learns. In XU’s experi-
ment, they used a radial-bias function (RBF) for their SVM kernel
and set y to 1/k, where k is 36 for TF-IDF + SVM method and
200 for Word Embedding + SVM method. For other parameters,
XU mentioned that grid search was applied to optimize the SVM
parameters, but no further information was disclosed.

For our work, we used the SVM module from Scikit-learn [55], a
Python package for machine learning, where the parameters shown
in Table. 2 are selected for tuning. Parameter C is to set the amount
of regularization, which controls the tradeoff between the errors
on training data and the model complexity. A small value for C
will generate a simple model with more training errors, while a
large value will lead to a complicated model with fewer errors.
Kernel is to introduce different nonlinearities into the SVM model
by applying kernel functions on the input data. Gamma defines
how far the influence of a single training example reaches, with
low values meaning ‘far’ and high values meaning ‘close’. coef0 is
an independent parameter used in sigmod and polynomial kernel
function.

As to why we used the “Tuning Range” shown in Table 2, and not
some other ranges, we note that (a) those ranges include the defaults
and also XU’s values; (b) the results presented below show that by
exploring those ranges, we achieved large gains in the performance
of our baseline method. This is not to say that larger tuning ranges
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Table 2: List of Parameters Tuned by This Paper.

Parameters Default Xue et al. Tuning Range Description
C 1.0 unknown [1,50] Penalty parameter C of the error term.
kernel ‘rbf’ ‘rbf’ [liner’, ‘poly’, ‘rbf’, ‘sigmoid’] | Specify the kernel type to be used in the algorithms.
gamma 1/n_features 1/200 [0, 1] Kernel coefficient for ‘rbf’, ‘poly” and ‘sigmoid’.
coef0 0 unknown [0, 1] Independent term in kernel function. It is only used in ‘poly’ and ‘sigmoid’.

might not result in greater improvements. However, for the goals
of this paper (to show that tuning baseline method does matter),
exploring just these ranges shown in Table 2 will suffice.

3.3 Learning Word Embedding

Learning word embeddings refers to find vector representations
of words such that the similarities between words can be captured
by cosine similarity of corresponding vector representations. It is
been shown that the words with similar semantic and syntactic are
found closed to each other in the embedding space [47].

Several methods have been proposed to generate word embed-
dings, like skip-gram [47], GloVe [56] and PCA on the word co-
occurrence matrix [41]. To replicate XU work, we used the contin-
uous skip-gram model (word2vec), which is a unsupervised word
representation learning method based on neural networks and also
used by XU [74].

The skip-gram model learns vector representations of words by
predicting the surrounding words in a context window. Given a sen-
tence of words W = wj,wa,...,wp, the objective of skip-gram model
is to maximize the the average log probability of the surrounding

words:
ln
;Z Z logp(wi+jlwi)

i=1 —c<j<c,j#0

where c is the context window size and w;; and w; represent
surrounding words and center word, respectively. The probability
of p(wjyj|w;) is computed according to the softmax function:

exp(ol_v,.)
plwolwr) = —r— =
szl exp(vViy Vw; )

where v,,, and v,,,, are the vector representations of the input and

output vectors of w, respectively. Zu/zll exp(vz:,vwl) normalizes
the inner product results across all the words. To improve the
computation efficiency, Mikolove et al. [47] proposed hierachical
softmax and negative sampling techniques. More details can be
found in Mikolove et al’s study [47].

Skip-gram’s parameters control how that algorithm learns word
embeddings. Those parameters include window size and dimen-
sionality of embedding space, etc. Zucoon et al. [80] found that
embedding dimensionality and context window size have no con-
sistent impact on retrieval model performance. However, Yang et
al. [75] showed that large context window and dimension sizes
are preferable to improve the performance when using CNN to
solve classification tasks for Twitter. Since this work is to compare
performance of tuning SVM with CNN, where skip-gram model
is used to generate word vector representations for both of these
methods, tuning parameter of skip-gram model is beyond the scope
of this paper (but we will explore it in future work).

1. Given a model (e.g., SVM) with n decisions (e.g., n = 4), TUNER calls
SAMPLE N = 10 = n times. Each call generates one member of the
population popien .

2. TUNER scores each pop; according to various objective scores 0. In
the case of our tuning SVM, the objective o is to maximize F1-score

3. TUNER tries to each replace pop; with a mutant m built using Storn’s
differential evolution method [62]. DE extrapolates between three other
members of population a, b, c. At probability p;, for each decision
ay € a,thenmy = ar V (p1 < rand() A (b V ci)).

4. Each mutant m is assessed by calling EVALUATE(model, prior=m);
i.e. by seeing what can be achieved within a goal after first assuming
that prior = m.

5. To test if the mutant m is preferred to pop;, TUNER simply compare
SCORE(m) with SCORE(pop;). In case of our tuning SVM, the one with
higher score will be kept.

6. TUNER repeatedly loops over the population, trying to replace items
with mutants, until new better mutants stop being found.

7. Return the best one in the population as the optimal tunings.

Figure 1: Procedure TUNER: strives to find “good” tunings
which maximizes the objective score of the model on train-
ing and tuning data. TUNER is based on Storn’s differential
evolution optimizer [62].

To train our word2vec model, 100, 000 knowledge units tagged
with “java” from Stack Overflow posts table (include titles, ques-
tions and answers) are randomly selected as a word corpus?®. After
applying proper data processing techniques proposed by XU, like
remove the unnecessary HTML tags and keep short code snippets
in code tag, then fit the corpus into gensim word2vec module [58],
which is a python wrapper over original word2vec package.

When converting knowledge units into vector representations,
for each word w; in the post processed knowledge unit (including
title, question and answers), we query the trained word2vec model
to get the corresponding word vector representation v;. Then the
whole knowledge unit with s words is converted to vector repre-
sentation by element-wise addition, Uv = v; ® v2 @ ... @ vs. This
vector representation is used as the input data to SVM.

3.4 Tuning Algorithm

A tuning algorithm is an optimizer that drives the learner to explore
the optimal parameter in a given searching space. According to our
literature review, there are several searching algorithms used in
SE community:simulated annealing [19, 46]; various genetic algo-
rithms [3, 27, 30] augmented by techniques such as differential evo-
lution [1,12, 21, 22, 62], tabu search and scatter search [6, 16, 49]; par-
ticle swarm optimization [72]; numerous decomposition approaches

2Without further explanation, all the experiment settings, including learner algorithms,
training/testing data split, etc, strictly follow XU’s work.



ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

that use heuristics to decompose the total space into small prob-
lems, then apply a response surface methods [36]; NSGA-II [78]and
NSGA-III [48].

Of all the mentioned algorithms, the simplest are simulated
annealing (SA) and differential evolution (DE), each of which can
be coded in less than a page of some high-level scripting language.
Our reading of the current literature is that there are more advocates
for differential evolution than SA. For example, Vesterstrom and
Thomsen [66] found DE to be competitive with particle swarm
optimization and other GAs. DEs have already been applied before
for parameter tuning in SE community to do parameter tuning (e.g.
see [1, 14, 21, 22, 53]) . Therefore, in this work, we adopt DE as our
tuning algorithm and the main steps in DE is described in Figure 1.

4 EXPERIMENTAL SETUP
4.1 Research Questions

To systematically investigate whether tuning can improve the per-
formance of baseline methods compared with deep learning method,
we set the following three research questions:

e RQ1: Can we reproduce XU’s baseline results (Word Embedding +
SVM)?

e RQ2: Can DE tune a standard learner such that it outperforms
XU’s deep learning method?

e RQ3: Is tuning SVM with DE faster than XU’s deep learning
method?

RQL1 is to investigate whether our implementation of Word Em-
bedding + SVM method has the similar performance with XU’s
baseline, which makes sure that our following analysis can be gen-
eralized to XU’s conclusion. RQ2 and RQ3 lead us to investigate
whether tuning SVM comparable with XU’s deep learning from
both performance and cost aspects.

4.2 Dataset and Experimental Design

Our experimental data comes from Stack Overflow data dump of
September 20163, where the posts table includes all the questions
and answers posted on Stack Overflow up to date and the postlinks
table describes the relationships between posts, e.g., duplicate and
linked. As mentioned in Section 3.1, we have four different types
of relationships in knowledge unit pairs. Therefore, linked type is
further divided into indirectly linked and directly linked. Overall,
four different types of data are generated according the following
rules [74]:

e Randomly select a pair of posts from the postlinks table, if the
value in PostLinkTypeld field for this pair of posts is 3, then this
pair of posts is duplicate posts. Otherwise they’re directly linked
posts.

e Randomly select a pair of posts from the posts table, if this pair
of posts is linkable from each other according to postlinks table
and the distance between them are greater than 2 (which means
they are not duplicate or directly linked posts), then this pair of
posts is indirectly linked. If they’re not linkable, then this pair
of posts is isolated.

3https://archive.org/details/stackexchange
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Flgure 2: The Overall Workflow of Building Knowledge
Units Predictor with Tuned SVM

In this work, we use the same training and testing knowledge
unit pairs as XU [74]%, where 6,400 pairs of knowledge units for
training and 1,600 pairs for testing. And each type of linked knowl-
edge units accounts for 1/4 in both training and testing data. The
reasons that we used the same training and testing data as XU are:

e It is to ensure that performance of our baseline method is as
closed to XU’s as possible.

e Since deep learning method is way complicated compared to
SVM and a little difference in implementations might lead to
different results. To fairly compare with XU’s result, we can use
the performance scores of CNN method from XU’s study [74]
without any implementation bias introduced.

For training word2vec model, we randomly select 100,000 knowl-
edge units (title, question body and all the answers) from posts table
that are related to “java”. After that, all the training/tuning/testing
knowledge units used in this paper are converted into word embed-
ding representations by looking up each word in wrod2vec model
as described in Section 3.3.

As seen in Figure 2, instead of using all the 6,400 knowledge units
as training data, we split the original training data into new training
data and tuning data, which are used during parameter tuning
procedure for training SVM and evaluating candidate parameters
offered by DE. Afterwards, the new training data is again fitted
into the SVM with the optimal parameters found by DE and finally
the performance of the tuned SVM will be evaluated on the testing
data.

To reduce the potential variance caused by how the original train-
ing data is divided, 10-fold cross-validation is performed. Specifically,
each time one fold with 640 knowledge units pairs is used as the
tuning data, and the remaining folds with 5760 knowledge units
are used as the new training data, then the output SVM model will
be evaluated on the testing data. Therefore, all the performance
scores reported below are averaged values over 10 runs.

In this study, we use Wilcoxon single ranked test to statistically
compare the differences between tuned SVM and untuned SVM.
Specifically, the Benjamini-Hochberg (BH) adjusted p-value is used
to test whether a difference is statistically significant at the level of
0.05 [8]. To measure the effect size of performance scores between

*https:/github.com/XBWer/ASEDataset
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tuned SVM and untuned SVM, we compute Cliff’s § that is a non-
parametric effect size measure [59]. As Romano et al. suggested,
we evaluate the magnitude of the effect size as follows: negligible
(I6] < 0.147 ), small (0.147 < |§| < 0.33), medium (0.33 < || <
0.474 ), and large (0.474 < |8]) [59].

4.3 Evaluation Metrics

When evaluating the performance of tuning SVM on the multi-
class linkable knowledge units prediction problem, consistent with
XU [74], we use accuracy, precision, recall and F1-score as the
evaluation metrics.

Table 3: Confusion Matrix.

Classified as
C1 C [ G | G
Ci [ c11 [ c12 [ c13 | cua
Cy [ c21 | c22 | c23 | c24
C3 | c31 | 32 | c33 | €34
Cy | cq1 | ca2 | c43 | cyq

Actual

Given a multi-classification problem with true labels Cy, Cz, C3
and C4, we can generate a confusion matrix like Table 3, where the
value of ¢;; represents the number of instances that are correctly
classified by the learner for class C;.

Accuracy of the learner is defined as the number of correctly
classified knowledge units over the total number of knowledge
units, i.e.,

i Cii
accuracy = Z,ZZ—,CU

where }; 3); cij is the total number of knowledge units. For a given
type of knowledge units, Cj, the precision is defined as probability
of knowledge units pairs correctly classified as C; over the number
of knowledge unit pairs classified as C; and recall is defined as the
percentage of all Cj knowledge unit pairs correctly classified. F1-
score is the harmonic mean of recall and precision. Mathematically,
precision, recall and F1-score of the learner for class C; can be
denoted as follows:

- icion . = _CiJ
precj = precision; = s
pd; = recall; = ché
LRt
F1; = 2 pdj * precj [(pd; + prec;)

Where }}; c;; is the predicted number of knowledge units in class
Cj and }; cjj is the actual number of knowledge units in class C;.

Recall from Algorithm 1 that we call differential evolution once
for each optimization goal. Generally, this goal depends on which
metric is most important for the business case. In this work, we
use F1 to score the candidate parameters because it controls the
trade-off between precision and recall, which is also consistent with
XU [74] and is also widely used in software engineering community
to evaluate classification results [21, 33, 46, 68].

5 RESULTS

In this section, we present our experimental results. To answer
research questions raised in Section 4.1, we conducted two experi-
ments:
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Figure 3: Score Delta between Our SVM with XU’s SVM
in [74] in Terms of Precision, Recall and F1-score. Positive
Values Mean Our SVM is Better than XU’s SVM in Terms of
Different Measures; Otherwise, XU’s SVM is better.

e Compare performance of Word Embedding + SVM method in

XU [74] and our implementation;

o Compare performance of our tuning SVM with DE method with

XU’s CNN deep learning method.

Since we used the same training and testing data sets provided by
XU [74] and conducted our experiment in the same procedure and
evaluated methods using the performance measures, we simply
used the results reported in the work by XU [74] for the perfor-
mance comparison.

RQ1: Can we reproduce XU’s baseline results (Word Em-
bedding + SVM)?

This first question is important to our work since, without the
original tool released by XU, we need to insure that our reimple-
mentation of their baseline method (WordEmbedding + SVM) has a
similar performance to their work. Accordingly, we carefully follow
XU’s procedure [74]. We use the SVM learner from scikit-learn
with the setting y = ﬁ and kernel =“rbf”, which are used by XU.
After that, the same training and testing knowledge unit pairs are

applied to SVM.

Table 4: Comparison of Our Baseline Method with XU’s. The
Best Scores are Marked in Bold.

Direct Indirect

Metrics Methods Duplicate Link Link Isolated Overall
Precision Our SVM 0.724 0.514 0.779 0.601 0.655
XU’s SVM 0.611 0.560 0.787 0.676 0.659
Recall Our SVM 0.525 0.492 0.970 0.645 0.658
XU’s SVM 0.725 0.433 0.980 0.538 0.669
Fi-score Our SVM 0.609 0.503 0.864 0.622 0.650
XU’s SVM 0.663 0.488 0.873 0.600 0.656
Accuracy Our SVM 0.525 0.493 0.970 0.645 0.658
XU’s SVM - - - - 0.669

Table 4 and Figure 3 show the performance scores and corre-
sponding score delta between our implementation of WordEmbed-
ding + SVM with XU’s in terms of accuracy 5 precision, recall and

XU just report overall accuracy, not for each class, hence it is missing in this table.



ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

0.4
0.3} 4
=
=z 0.2} RS 1
3 o
SN=
Z L = i
S 0.1 o =—
2 =
3 = BEE
S5 0.0 f=pem -
E
©
£ o1l i
a
Q
s —0.2} 4
O
» [N Precision
-0.3}F XX3 Recall [
E3 F1
.4 L L L L T
Duplicate Direct_Link Indirect_Link Isolated Overall
Figure 4: Score Delta between Tuned SVM and CNN

method [74] in Terms of Precision, Recall and F1-score. Pos-
itive Values Mean Tuned SVM is Better than CNN in Terms
of Different Measures; Otherwise, CNN is better.

Fl-score. As we can see, when predicting these four different types
of relatedness between knowledge unit pairs, our Word Embedding
+ SVM method has very similar performance scores to the baseline
method reported by XU in [74], with the maximum difference less
than 0.2. Except for Duplicate class, where our baseline has a
higher precision (i.e., 0.724 v.s. 0.611) but a lower recall (i.e., 0.525
v.8.0.725).

Figure 3 presents the same results in a graphical format. Any
bar above zero means that our implementation has a better perfor-
mance score than XU’s on predicting that specific knowledge unit
relatedness class. As we can see, most of the differences (%) are
within 0.05 and the score delta of overall performance shows that
our implementation is a little worse than XU’s implementation. For
this chart we conclude that:

Overall, our reimplementation of WordEmbedding + SVM
has very similar performance in all the evaluated metrics
compared to the baseline method reported in XU’s study [74].

The significance of this conclusion is that, moving forward, we are
confident that we can use our reimplementation of WordEmbed-
ding+SVM as a valid surrogate for the baseline method of XU.

RQ2: Can DE tune a standard learner such that it outper-
forms XU’s deep learning method?

To answer this question, we run the workflow of Figure 2, where
DE is applied to find the optimal parameters of SVM based on the
training and tuning data. The optimal tunings are then applied on
the SVM model and the built learner is evaluated on testing data.
Note that, in this study, since we mainly focus on precision, recall
and F1-score measures where F1-score is the harmonic mean of
precision and recall, we use F1-score as the tuning goal for DE. In
other words, when tuning parameters, DE expects to find a pair of
candidate parameters that maximize F1-score.

Table 5 presents the performance scores of XU’s baseline, XU’s
CNN method and Tuned SVM for all metrics. The highest score
for each relatedness class is marked in bold. Note that: Without
tuning, XU’s CNN method outperforms the baseline SVM in %
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Figure 5: Score Delta between Tuned SVM and XU’s Baseline
SVM in Terms of Precision, Recall and F1-score. Positive Val-
ues Mean Tuned SVM is Better than XU’s SVM in Terms of
Different Measures; Otherwise, XU’s SVM is better.

Table 5: Comparison of Tuned SVM with XU’s CNN Method.

The Best Scores are Marked in Bold.

Metrics ~ Methods Duplicate Dl.r ect Ind'lrect Isolated Overall
Link Link
XU’s SVM 0.611 0.560 0.787 0.676 0.658
Precision XU’s CNN 0.898 0.758 0.840 0.890 0.847
Tuned SVM 0.885 0.851 0.944 0.903 0.896
XU’s SVM 0.725 0.433 0.980 0.538 0.669
Recall XU’s CNN 0.898 0.903 0.773 0.793 0.842
Tuned SVM 0.860 0.828 0.995 0.905 0.897
XU’s SVM 0.663 0.488 0.873 0.600 0.656
Fl-score  XU’s CNN 0.898 0.824 0.805 0.849 0.841
Tuned SVM 0.878 0.841 0.969 0.909 0.899

evaluation metrics across all four classes. The largest performance
improvement is 0.47 for recall on Direct Link class. Note that this
result is consistent with XU’s conclusion that their CNN method
is superior to standard SVM. After tuning SVM, the deep learning
method has no such advantage. Specifically, CNN has advantage
over tuned SVM in 1;42 evaluation metrics across all four classes.
Even when CNN performs better that our tuning SVM method, the
largest difference is 0.065 for Recall on Direct_Link class, which is
less than 0.1.

Figure 4 presents the same results in a graphical format. Any bar
above zero indicates that tuned SVM has a better performance score
than CNN. In this figure: CNN has a slightly better performance
on Duplicate class for precision, recall and F1-score and a higher
recall on Direct link class. Across all of Figure 4, in % evaluation
scores, Tuned SVM has better performance scores than CNN, with
the largest delta of 0.222.

Figure 5 compares the performance delta of tuned SVM with
XU’s untuned SVM. We note that DE-based parameter tuning never
degrades SVM’s performance (since there are no negative values
in that chart). Tuning dramatically improves scores on predicting
some classes of KU relatedness. For example, the recall of pre-
dicting Direct_link is increased from 0.433 to 0.903, which is 108%
improvement over XU’s untuned SVM (To be fair for XU, it is still



Easy over Hard: A Case Study on Deep Learning

0.6
. 05 |
=
@
v 0.4} e
p=3
(o]
* 03l X —] R
= : R4 — —
3 1= = —
2 SS= = — R
g 0.2 t:0§= — —_— :0‘0:
[ <— — — P<<d
S = ] - [
£ = — = N
= 0.1 o= — — KA
= [ — — K&
8 [E— — — 2058
o 0.0 (XX — —
S =N Precision
(%]
—-0.1} X3 Recall ¥
B3 F1
—-0.2 . . . . T
Duplicate Direct_Link Indirect_Link Isolated Overall

Figure 6: Score Delta between Tuned SVM and Our Untuned
SVM in Terms of Precision, Recall and F1-score. Positive Val-
ues Mean Tuned SVM is Better than Our Untuned SVM in
Terms of Different Measures; Otherwise, Our SVM is Better.

84% improvement over our untuned SVM). At the same time, the
corresponding precision and F1 scores of predicting Direct_Link
are increased from 0.560 to 0.851 and 0.488 to 0.841, which are 52%
and 72% improvement over XU’s original report[74], respectively.
A similar pattern can also be observed in Isolated class. On average,
tuning helps improve the performance of XU’s SVM by 0.238, 0.228
and 0.227 in terms of precision, recall and F1-score for all four KU
relatedness classes. Figure 6 compares the tuned SVM with our un-
tuned SVM. We note that we get the similar patterns that observed
in Figure 5. All the bars are above zero, etc.

Based on the performance scores in Table 5 and score delta in
Figure 4, Figure 5 and Figure 6, we can see that:

e Parameter tuning can dramatically improve the performance of
Word Embedding + SVM (the baseline method) for the multi-
class KU relatedness prediction task;

e With the optimal tunings, the traditional machine learning
method, SVM, if not better, is at least comparable with deep
learning methods (CNN).

When discussing this result with colleagues, we are sometimes
asked for a statistical analysis that confirms the above finding.
However, due the lack of evaluation score distributions of the CNN
method in [74], we cannot compare their single value with our
results from 10 repeated runs. However, according to Wilcoxon
singed rank test over 10 runs results, tuned SVM performs sta-
tistically better than our untuned SVM in terms of all evaluation
measures on all four classes (p < 0.05). According to Cliff § values,
the magnitude of difference between tuned SVM and our untuned
SVM is not trivial (|6] > 0.147) for all evaluation measures.
Overall, the experimental results and our analysis indicate that:

In the evaluation conducted here, the deep learning method,
CNN, does not have any performance advantage over our
tuning approach.

RQ3: Is tuning SVM with DE faster than XU’s deep learn-
ing method?
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When comparing the runtime of two learning methods, it obvi-
ously should be conducted under the same hardware settings. Since
we adopt the CNN evaluation scores from [74], we can not run on
our tuning SVM experiment under the exactly same system set-
tings. To allow readers to have a objective comparison, we provide
the experimental environment as shown in Table 6. To obtain the
runtime of tuning SVM, we recorded the start time and end time of
the program execution, including parameter tuning, training model
and testing model.

Table 6: Comparison of Experimental Environment
Methods oS CPU RAM

Tuning SVM  MacOS 10.12 Intel Core i5 2.7 GHz 8 GB
CNN Windows 7 Intel Core i7 2.5 GHz 16 GB

According to XU, it took 14 hours to train their CNN model into
a low loss convergence (< e~3) [74]. Our work, on the other hand
only takes 10 minutes to run SVM with parameter tuning by DE
on a similar environment. That is, the simple parameter tuning
method on SVM is 84X faster than XU’s deep learning method.

Compared to CNN method, tuning SVM is about 84X faster
in terms of model building.

The significance of this finding is that, in this case study, CNN
was neither better in performance scores (see RQ2) nor runtimes.
CNN’s extra runtimes are a particular concern since (a) they are
very long; and (b) these would be incurred anytime researchers
wants to update the CNN model with new data or wanted to validate
the XU result.

6 DISCUSSION
6.1 Why DE+SVM works?

Parameter tuning matters. As mentioned in Section 2.4, the de-
fault parameter values set by the algorithm designers could generate
a good performance on average but may not guarantee the best
performance for the local data [9, 21]. Given that, it is most strange
to report that most SE researchers ignore the impacts of parame-
ter tuning when they utilize various machine learning methods to
conduct software analytic (evidence: see our reviews in [1, 21, 22]).
The conclusion of this work must be to stress the importance of this
kind of tuning, using local data, for any future software analytics
study.

Better explore the searching space. It turns out that one
exception to our statement that “most researchers do not tune” is
the XU study. In that work, they unsuccessfully perform parameter
tuning, but with with grid search. In such a grid search, for N
parameters to be tuned, N for loops are created to run over a range
of settings for each parameter. While a widely used method, it
is often deprecated. For example, Bergstra et al.[9] note that grid
search jumps through different parameter settings between some
min and max values of pre-defined tuning range. They warn that
such jumps may actually skip over the critical tuning values. On
the other hand, DE tuning values are adjusted based on better
candidates from previous generations. Hence DE is more likely
than grid search to “fill in the gaps” between the initialized values.
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That said, although DE +SVM works in this study, it does not
mean DE is the best parameter tuner for all SE tasks. We encourage
more researchers to explore faster and more effective parameter
tuners in this direction.

6.2 Implication

Beyond the specifics of this case study, what general principles can
we take from the above work?

Understand the task. One reason to try different tools for the
same task is to better understand the task. The more we understand
a task, the better we can match tools to that task. Tools that are
poorly matched to task are usually complex and/or slow to execute.
In the case study of this paper, we would say that

e Deep learning is a poor match to the task of predicting whether
two questions posted on Stack Overflow are semantically link-
able since it is so slow;

e Differential evolution tuning SVM is a much better match since
it is so fast and obtain competitive performance.

That said, it is important to stress that the point of this study is
not to deprecate deep learning. There are many scenarios were
we believe deep learning would be a natural choice (e.g. when
analyzing complex speech or visual data). In SE, it is still an open
research question that in which scenario deep learning is the best
choice. Results from this paper show that, at least for classification
tasks like knowledge unit relatedness classification on Stack Over-
flow, deep learning does not have much advantage over well tuned
conventional machine learning methods. However, as we better
understand SE tasks, deep learning could be used to address more
SE problems, which require more advanced artificial intelligence.

Treat resource constraints as design challenges. As a gen-
eral engineering principle, we think it insightful to consider the
resource cost of a tool before applying it. It turns out that this
is a design pattern used in contemporary industry. According to
Calero and Pattini [11], many current commercial redesigns are
motivated (at least in part) by arguments based on sustainability
(i.e. using fewer resources to achieve results). In fact, they say that
managers used sustainability-based redesigns to motivate extensive
cost-cutting opportunities.

6.3 Threads to Validity

Threats to internal validity concern the consistency of the results
obtained from the result. In our study, to investigate how tuning
can improve the performance of baseline methods and how well
it perform compared with deep learning method. We select XU’s
Word Embedding + SVM baseline method as a case study. Since
the original implementation of Word Embedding + SVM (baseline
2 method in [74]) is not publicly available, we have to reimplement
our version of Word Embedding + SVM as the baseline method
in this study. As shown in RQ1, our implementation has quite
similar results to XU’s on the same data sets. Hence, we believe
that our implementation reflect the original baseline method in
Xu’s study [74].

Threats to external validity represent if the results are of rele-
vance for other cases, or the ability to generalize the observations in
a study. In this study, we compare our tuning baseline method with
deep learning method, CNN, in terms of precision, recall, F1-score
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and accuracy. The experimental results are quite consistent for
this knowledge units relatedness prediction task. Nonetheless, we
do not claim that our findings can be generalized to all software
analytics tasks. However, those other software analytics tasks often
apply deep learning methods on classification tasks [15, 68] and so
it is quite possible that the methods of this paper (i.e., DE-based
parameter tuning) would be widely applicable, elsewhere.

7 CONCLUSION

In this paper, we perform a comparative study to investigate how
tuning can improve the baseline method compared with state-of-
the-art deep learning method for predicting knowledge units relat-
edness on Stack Overflow. Our experimental results show that:

o Tuning improves the performance of baseline methods. At least
for Word Embedding + SVM (baseline in [74]) method, if not
better, it performs as well as the proposed CNN method in [74].

o The baseline method with parameter tuning runs much faster
than complicated deep learning. In this study, tuning SVM runs
84X faster than CNN method.

8 ADDENDUM

As this paper was going to going to press we learned of a new
deep learning methods that, according to its creators, runs 20 times
faster than standard deep learning [61]. Note that in that paper, the
authors say their faster method does not produce better results- in
fact, their method generated solutions that were a small fraction
worse than “classic” deep learning. Hence, that paper does not
invalidate our result since (a) our DE-based method sometimes
produced better results than classic deep learning and (b) our DE
runs 84 times faster (i.e. much faster runtimes than those reported
in [61]).

That said, this new fast deep learner deserves our close attention
since, using it, we conjecture that our DE tools could solve an open
problem in the deep learning community; i.e. how to find the best
configurations inside a deep learner faster.

Based on the results of this study, we recommend that before
applying deep learning method on SE tasks, implement simpler
techniques. These simpler methods could be used, at the very least,
for comparisons against a baseline. In this particular case of deep
learning vs DE, the extra computational effort is so very minor (10
minutes on top of 14 hours), that such a “try-with-simpler” should
be standard practice.

As to the future work, we will explore more simple techniques
to solve SE tasks and also investigate how deep learning techniques
could be applied effectively in software engineering field.
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