
On evidence preservation requirements for forensic-ready systemsOn evidence preservation requirements for forensic-ready systems

Dalal Alrajeh, Liliana Pasquale, BASHAR NUSEIBEH

Publication datePublication date

01-01-2017

Published inPublished in

ESEC/FSE 2017 Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering;pp.559-569

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Alrajeh, D., Pasquale, L.and NUSEIBEH, B. (2017) ‘On evidence preservation requirements for forensic-ready
systems’, available: https://hdl.handle.net/10344/7430 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

On Evidence Preservation Requirements for Forensic-Ready
Systems

Dalal Alrajeh
Imperial College London

London, UK

Liliana Pasquale
University College Dublin

Dublin, Ireland

Bashar Nuseibeh
The Open University, UK, &

Lero, Ireland

ABSTRACT
Forensic readiness denotes the capability of a system to support
digital forensic investigations of potential, known incidents by pre-
serving in advance data that could serve as evidence explaining how
an incident occurred. Given the increasing rate at which (poten-
tially criminal) incidents occur, designing software systems that are
forensic-ready can facilitate and reduce the costs of digital forensic
investigations. However, to date, little or no attention has been
given to how forensic-ready software systems can be designed sys-
tematically. In this paper we propose to explicitly represent evidence
preservation requirements prescribing preservation of the minimal
amount of data that would be relevant to a future digital investiga-
tion. We formalise evidence preservation requirements and propose
an approach for synthesising specifications for systems to meet
these requirements. We present our prototype implementation—
based on a satisfiability solver and a logic-based learner—which
we use to evaluate our approach, applying it to two digital foren-
sic corpora. Our evaluation suggests that our approach preserves
relevant data that could support hypotheses of potential incidents.
Moreover, it enables significant reduction in the volume of data
that would need to be examined during an investigation.

CCS CONCEPTS
• Software and its engineering → Requirements analysis; • Ap-
plied computing → Evidence collection, storage and analysis;

KEYWORDS
Forensic-ready systems, requirements, specification synthesis
ACM Reference Format:
Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh. 2017. On Evidence
Preservation Requirements for Forensic-Ready Systems. In Proceedings of
2017 11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106308

1 INTRODUCTION
Digital forensic investigations are concerned with the discovery,
collection, preservation, analysis, interpretation and presentation
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106308

of digital data from digital sources, for proof of incident and ulti-
mately for prosecution of criminal activity [16, 36]. Such data often
comprises log entries indicating the occurrence of events in the
digital sources placed within the environment in which an inci-
dent can occur. Despite the availability of digital forensics tools
for evidence acquisition and examination (e.g., [2, 10, 14]), these
tools are designed to be used only after an incident occurs and
an investigation commences. However, some of the relevant data
may not be available then because, for example, it was stored in
a volatile memory or it has been intentionally tampered with by
an offender. Moreover, digital forensic tools do not select among
the data that might be relevant for investigating a specific incident,
thus requiring investigators to sift through large volumes of data
to determine what may be considered as relevant evidence. This
can be a cumbersome and an error-prone process [29, 54].

Software systems should be forensic-ready [45], i.e., able to sup-
port digital forensic investigations of potential, known incidents
by preserving in advance data that may serve as evidence explain-
ing how an incident occurred. Given the increasing rate at which
(potentially criminal) incidents occur, designing software systems
that are forensic-ready can facilitate and reduce the costs of digital
forensic investigations. However, existing research has provided
only generic guidelines capturing operational and infrastructural
capabilities for organisations to achieve forensic readiness [15, 42].
Little or no attention has been given to how forensic-ready systems
can be designed and verified systematically, nor to how to ensure
their suitability for the specific environments in which they will
be deployed [51]. Without a formal conceptualisation of a forensic-
ready system and a software design methodology for achieving it,
ensuring the soundness of any automated investigative process or
its outcome becomes difficult, or even impossible [43].

Forensic-ready systems should satisfy evidence preservation re-
quirements, i.e. ensure preservation of relevant and minimal evi-
dence. On the one hand, preservation of an excessive amount of
data often introduces resource and performance issues [40], and
increases the cognitive load on investigators who have to make
sense of a large data-set. On the other hand, preservation of an
insufficient amount of data provides an incomplete picture of how
an incident would have occurred, thus making way for misguided
decisions and potentially wrong convictions [12].

This paper addresses some of the challenges in the systematic
design of forensic-ready systems by making the following contribu-
tions: (i) precise definition of evidence preservation requirements
and the concepts upon which these requirements depend; (ii) a
method for generating preservation specifications that satisfy evi-
dence preservation requirements and (iii) a prototype tool for gen-
erating such specifications automatically, which we use to evaluate
our approach. More specifically, we first provide formal definitions

https://doi.org/10.1145/3106237.3106308
https://doi.org/10.1145/3106237.3106308

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh

of the domain model of a forensic-ready system including the en-
vironment in which incidents may occur and hypotheses about
such incidents. We also formalise preservation specifications and
requirements. We then present a synthesis approach that combines
deductive reasoning and inductive learning to generate preserva-
tion specifications from a formal description of an environment
and hypotheses. To the best of our knowledge this is the first work
that conceptualises the requirements of evidence preservation and
demonstrates its benefits in reducing data needed to be examined
during an investigation.

In this work, we assume a domain expert provides a set of correct
incident hypotheses. To achieve this aim s/he can follow a proper
risk assessment methodology (using approaches such as [9]) over
the threats/incidents considered most likely and highly-critical.
Specifications are expressed declaratively in Linear Temporal Logic
(LTL) [39], a commonly used formalism for specifying a system
behaviour, and prescribe constraints over when events happening
at the digital sources in the environment must be logged. We also
assume that a designated software controller, the forensic readiness
controller, is responsible for the enactment of the specification by
interacting with the digital sources through a uniform interface. We
evaluate our approach by applying it to two substantive case stud-
ies publicly available. Our evaluation suggests that our approach
preserves relevant data to explain potential incidents and enables
significant reduction in the volume of data that would need to be
examined during an investigation.

The rest of the paper is organised as follows. Section 2 presents
a motivating example and an overview of our approach. Sections 3
and 4 formalise the domain model of a forensic-ready system and
preservation specifications and requirements. Sections 5 and 6 ex-
plain our approach to generate specifications and its implemen-
tation. Section 7 presents the results of our evaluation. Section 8
gives an overview of related work, and Section 9 concludes.

2 MOTIVATING EXAMPLE AND OVERVIEW
We motivate our work using an example of a corporate fraud in-
cident, inspired by the Galleon Group case [35]. We consider an
environment (Fig. 1a) within an enterprise building , where two
employees, bob and alice, work and are provided with laptops (m2
and m3, respectively) by the company. A sensitive document doc is
stored on the server machine m1 located in the office r01. Access
to r01 is controlled by an NFC reader (nfc) and is monitored by a
CCTV camera (cctv). Both alice and bob are authorised to access
r01 and to login to m1.

Suppose that a digital investigation related to the exfiltration of
the doc is initiated. An investigator may hypothesise that the doc
was copied onto a storage device mounted on m1. To verify this, she
must first speculate the activities that may have occurred within
the environment and reconstruct different possible scenarios based
on these activities. A possible scenario is that alice enters room
r01, logs into m1, mounts usb1 on m1 and copies doc onto usb1.
Another is that bob enters room r01 but logs into m1 using alice’s
credentials, and then copies the doc onto usb1.

Once the scenarios have been identified, the investigator must
establish which of the digital devices holds data that might be rele-
vant to the scenarios. Then she must search through the storage of

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc

camera: cctv

storage: usb1

(a)

FR Controller Storage
Domain
Expert

Environment
Hypotheses

Investigator

Specification
Generation

PS

preserve
(event)

CCTVNFCCOMPUTER

receive(event)

(b)

Figure 1: Setting of our example (a) and overall approach (b)

these devices (e.g., logs for all readers and CCTVs, and hard drives
for all computers) for relevant information. However, the investiga-
tor may fail to find information about storage devices mounted on
m1 because the system log of m1 only retains information about
the last device that was mounted. The large number of events that
can occur also does not make it plausible to preserve all events in
advance for later examination. For example, corporate computers
can generate over 100 millions of events per week1, while the num-
ber of accesses recorded by CCTV cameras and card readers can
exponentially grow with the number of employees and rooms in a
building. Moreover, not all the events are relevant to support the
speculated scenarios. For instance, only copies of the doc taking
place while a storage device is mounted and a user is logged on m1
are relevant for our example.

Our approach (Fig. 1b) aims to design a FR controller that receives
events from digital sources within the environment and selectively
preserves them in a secure storage. These events can be acquired
and examined by an investigator during future digital investiga-
tions. We provide an automated approach (Specification Generation)
to generate a preservation specification (PS) for the FR controller.
We assume a domain expert (e.g., security administrator or soft-
ware engineer) provides a description of the environment and a
predefined set of hypotheses about incidents of concern. The de-
scription of the environment also includes information about what
activities can be monitored by the digital sources. To generate a
specification, we first check whether the hypotheses are feasible
within the environment (i.e., they may hold if certain activities take
place in the environment). If this is the case, the approach generates
a set of possible sequences of low-level system events (called po-
tential histories) that demonstrate this. The approach then verifies
whether the existing specification already ensures the preservation
of events that correspond to these generated histories. If not, then
our approach inductively synthesises a preservation specification
that configures when an event occurring in a digital source within
1We estimated having 50 Events Per Second (EPS) during non peaks and 2500 EPS
during peaks. An organisation that experiences peaks for 5% of the total time will have
an average of 215 EPS (125 EPS for non-peak and 90 for peak).

On Evidence Preservation Requirements for Forensic-Ready Systems ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

the considered environment should be preserved, according to their
relevance to the hypotheses. For our motivating example, our ap-
proach would prescribe preservation of events indicating copies
of the doc only if a storage device was previously mounted and
a user has previously logged on m1. In the next two sections we
define the artefacts which constitute the domain of a forensic-ready
system (environment, histories and hypotheses) and their relation
to preservation specifications and requirements.

3 FORENSIC DOMAIN MODEL
We provide here a formal underpinning of the concepts and termi-
nology that are commonly used in digital forensic domain [11] to
describe the environment in which an incident can occur, histories
and the incident hypotheses.

3.1 Environment Description
The environment description is a set of descriptive statements about:
(i) the context in which an incident may occur, (ii) the behaviour that
may be exhibited within the environment and (iii) their interactions.

A context description C is a collection of descriptive (non-behav-
ioural) declarations about the types (e.g., employees and locations),
and instances of entities present in an environment (e.g., bob and
r01), and relations between instances, such as bob is entitled to
access r01 (hasbadge(bob,r01)).

Definition 3.1 (Context Description). A context description C is
a tuple ⟨Y , I ,γ ,K⟩ where Y is a set of types, I a set of instances,
γ : I → Y is function that assigns an instance in I to its type in Y ,
and K is a set of context relations over instances in I , such that for
every k ∈ K ,k ⊆ I1 × ... × In .

We denote the universe of context relations as K . A context
relation literal is an expression of the form k or ¬k for some k ∈ K .
Given a set of context relation literals KL, we write α (KL) to denote
the set of unique context relations in KL.

Returning to our running example, a context description in this
case includes types such as Emp and Comp, instances including bob
and m1 with assignments γ (bob) = Emp and γ (m1) = Comp, and
context relations such as isLocatedIn(m1, r01), meaning that com-
puter m1 is placed in location r01, and isStoredIn(doc, m1), meaning
that doc is stored in m1.

A behavioural description B specifies the events that may occur
within an environment. In a digital investigation setting, these
may be at different levels of abstraction. Similar to [8, 11], we
distinguish between two types of events to represent these levels
of abstraction: primitive and complex. A primitive event represents
the occurrence of an atomic action that can be observed by an
investigator from a digital device (e.g., using a hard drive analysis
tools). An example of primitive event can be swipe_card(alice,nfc)
indicating the nfc reading alice’s card tag. A complex event indicates
the execution of complex human activities and can involve one
or more primitive events, other complex events and contextual
conditions. For example, a complex event indicating alice entering
room r01 involves the following primitive events: alice’s card tag
being read by the nfc reader and her entrance in r01 being recorded
by the cctv. These events can happen at the same time or in any
order. The complex event also involves the following contextual

conditions: alice is not inside r01 and does not possess a badge to
access r01. This is expressed through a composite definition.

Definition 3.2 (Composite Definition). Let Ap and Ac be the
universe of primitive and complex events respectively. A composite
definition is a tuple ⟨Ap ,Ac ,KL,L, ⪯, λ⟩ where Ap ⊆ Ap , Ac ⊆ Ac ,
α (KL) ⊆ K , L is a finite set of time-labels, ⪯⊆ L×L is a partial order
relation over L (that is reflexive, anti-symmetric and transitive) and
λ : L → P (Ap ∪Ac ∪ KL) is a labelling function.

Let D be a set of composite definitions. We define a relation
◁ ⊆ Ac × D to associate a composite definition d ∈ D with
the complex event e ∈ Ac it defines. In our example, the com-
plex event enter(alice,r01) may be defined as enter(alice,r01) ◁⟨
{swipe_card(alice, nfc), cctv_access(alice,r01,cctv1) }, ∅, {¬ in(alice,
r01), hasBadge(alice,r01)}, {l1, l2},∅, {l1 → {swipe_card(alice,nfc),¬
in(alice, r01), hasBadge(alice,r01)}, l2 →{cctv_access(alice,r01, cctv1),
¬ in(alice, r01)}}⟩.

For our example, to trigger complex event enter(alice, r01), primi-
tive events swipe_card(alice,nfc) and cctv_access(alice,r01, cctv1) can
occur in any order; however, both have to occur. When swipe_card(-
alice,nfc) and cctv_access(alice,r01, cctv1) occur alice should not
be in r01. Moreover alice should be authorised to access r01 (has-
Badge) when swipe_card(alice,nfc) occurs. Moreover, complex event
mount(usb1,m1) event occurs when the system log in m1 records the
mounting of a storage device (primitive event sys_mount(usb1, m1))
while alice or bob are logged to m1 (context condition loддed(e ,m1)).
This is defined as mount(usb1,m1) ◁⟨ {sys_mount(usb1, m1) }, ∅,
{loддed(e ,m1)}, {l1},∅, {l1 → { sys_mount(usb1, m1), loддed(e ,m1)}}⟩.

A behavioural description includes the composite definitions as-
sociated with the complex events that can occur in the environment.
A behavioural description is formally defined as follows.

Definition 3.3 (Behavioural Description). A behavioural descrip-
tionB is a tuple ⟨Ap ,Ac ,K ,D, ◁⟩ such that for every e ◁d , e ∈ Ac ,
d = ⟨Ld , ⪯d , λd ,Apd ,Acd ,KLd ⟩ ∈ D, Apd ⊆ Ap , Acd ⊆ Ac and
α (KLd) ⊆ K .

Complex events are expected to interact and bring about changes
to the context in which they occur. To capture this effect, we adopt
notions of fluents for event-driven systems [22, 31]. Given the set
K of context relations, each k ∈ K is defined by two disjoint sets of
complex events from Ac (called initiating and terminating events,
respectively) and an initial value (true or false), written according to
the following schema: k ≡ ⟨INk , TRk , initk ⟩ such that INk∩TRk = ∅
and INk ∪TRk ⊂ Ac . The set of associations of this form are called
interaction definitions, and are denoted I. In our running example
the interaction definition of context relation in(alice, r01) is defined
by ⟨{enter(alice, r01)}, {exit(alice, r01)}, false⟩. This interaction indi-
cates that context relation in(alice, r01) is initially false; it is initiated
by complex event enter(alice, r01) and terminated by complex event
exit(alice, r01).

From C, B and I we define an environment description.

Definition 3.4 (Environment Description). An environment de-
scription E is a tuple ⟨C,B,I⟩ where C = ⟨Y , I ,γ ,K⟩ is a con-
text description, B = ⟨Ap ,Ac ,K ,D, ◁⟩ a behavioural descrip-
tion and I is a set of context relation definitions such that ∀k ≡
⟨INk , TRk , initk ⟩ ∈ I. k ∈ K and INk ∪ TRk ⊆ Ac .

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh

3.2 Histories
A history is a sequence of (concurrent) events that captures the
evolution of an environment in which the digital devices and evi-
dence sources operate [11]. It is potential if it refers to at least one
event that has been speculated and actual if all the events have
been observed from digital sources within the environment. In this
paper, we focus on potential histories for defining preservation
requirements.

A history may describe events at various levels. It is called a
primitive (resp. complex) history, denoted σ (resp. ω), if all the
events that appear in it are primitive (resp. complex). We write
ω = ce1, ...cen to denote a complex history where cei is the set of
complex events occurring concurrently at position i , and similarly
for a primitive history σ .

An environment description E is interpreted over a sequence
of primitive and complex events (referred to as a hybrid history
υ). Its satisfaction is determined with respect to the satisfaction of
complex events’ composite definitions in B w.r.t. to I.

For the satisfaction of an event’s composite definition, we con-
sider the notion of a ‘narration’ (a total order over the partial order
given in a complex event’s definition). For a narration to be con-
structed, each complex event appearing in a definition is refined
until all complex events are reduced to their primitive events and
context relation literals. The result of this refinement procedure
applied to definition d is a set of composite definitions δ (d). 2

Given δ (d), a narration of d is captured with respect to one of
the elements in δ (d). We will use the notation υ |Ap (reps. υ |Ac) to
denote the projection of υ over primitive (reps. complex) events in
Ap (resp. Ac).

Definition 3.5 (Narration of Composite Definition). Let B= ⟨Ap ,

Ac ,K ,D, ◁⟩ be a behavioural description and d = ⟨Ld , ⪯d , λd ,Apd ,
Acd ,KLd ⟩ a composite definition in D. Let δ (d) be the set of defi-
nitions obtained refining d . A narration of d is a hybrid history
σ = he1, ..., hem , if there exists a d ′ ∈ δ (d) and a total order
l1 ≺ ... ≺ ln over Ld ′ such that:
• for all li , lj ∈ Ld ′ , if li ≺ lj then a < b (where 1 ≤ a,b ≤ m),
• λd ′ (li) |Ap = (hea) |Ap
• λd ′ (li) |Ac = (hea) |Ac .

where λ(l) |Ap and λ(l) |Ac denote the set of primitive events and
complex events respectively assigned to time-label l .

For instance the following are three example narrations for en-
ter(alice, r01)’s composite definition:

υ1 = ({swipe_card(alice, nfc), cctv_access(alice, r01, cctv1),
enter(alice, r01) }1)

υ2 = ({swipe_card(alice, nfc) }1,
{cctv_access(alice, r01, cctv1), enter(alice, r01) }2)

υ3 = ({cctv_access(alice, r01, cctv1) }1,
{swipe_card(alice, nfc), enter(alice, r01) }2)

Interaction descriptions are interpreted over complex histories.
Given k ≡ ⟨INk , TRk , initk ⟩ ∈ I, k is true at position b in a complex
history ω = ce1, ..., ceb , ..., cen iff either the following holds:
• initk ∧ ∀a ∈ N , eTRk ∈ TRk .(0 < a < b) → eTRk < cea ;

2See https://github.com/lpasquale/minorityReport for an outline of a refinement algo-
rithm for obtaining δ (d).

• ∃a ∈ N . (a < b) ∧ (eINk ∈ cea ∧ ∀д ∈ N , eTRk ∈ TRk .((a <
д < b) → eTRk < ceд);

otherwise it is said to be false. We assume histories in which ter-
minating and initiating events for a context relation do not occur
concurrently. We define below satisfaction of a complex event.

Definition 3.6 (Complex Event Satisfaction). Given an environ-
ment description E=(B,C,I), a composite definition d associated
with complex event e (e ◁ d ∈ B) and a hybrid history υ, υ is said to
satisfy e ◁d with respect to E if for every decomposition υ = xyz, if
y = hea , ..., heд , ..., heb is a narration of d with respect to d ′ ∈ δ (d)
and order l ′1 ≺ ... ≺ l ′j ≺ ... ≺ l ′n then:
• e ∈ (heb) |Ac
• if kl ∈ λd ′ (l ′j) |KL then υ |Ac ,д |= kl

where λ(l) |KL denotes the set of context relation literals assigned
to time-label l .

The environment description E is said to be satisfied in a hybrid
history if every complex event in Ac is satisfied in that history. We
write ϒ(E) to denote the set of hybrid histories that satisfy E.

Figure 2 shows a hybrid history satisfying E of our example. We
project the primitive and complex events composing the hybrid
history onto primitive and complex histories, respectively. The
primitive history represents the case in which (1) the nfc reads
alice’s card tag, (2) the cctv records alice passing through the door
of r01, and m1 logs (3) the login performed by user bob, (4) the mount
of storage device usb1, (5) the copy od the doc by user bob, and (6)
the unmount of usb1. If a portion of the primitive history represents
a narration of a composite definition associated with a complex
event, such event is assumed to occur. For example, the sequence of
primitive events at time 1 and 2 corresponds to narration v2 of the
composite definition of enter(alice,r01). While the primitive event
at time 4 represents a narration for the composite definition of
event mount(usb1, m1). On top of Figure 2 we indicate the context
relations that hold at each time instant and omit those that are not
satisfied, e.g., mounted(usb1,m1) starts holding when complex event
mount(usb1,m1) occurs and stops holding when complex event
unmount(usb1,m1) happens.

Legend primitive event complex event

swipe_card
(alice, nfc)

1 3 4 5

primitive
history

cctv_access
(alice, r01, cctv)

sys_login
(bob, m1)

sys_mount
(usb1, m1)

sys_copy
(bob,doc, m1)

enter
(alice, r01)

context
relations

complex
history

login
(bob, m1)

mount
(usb1, m1)

copy
(bob, doc, m1)

sys_unmount
(usb1, m1)

6

unmount
(usb1, m1)

2

logged
(bob, m1)

mounted
(usb, m1)

in
(alice, r01)

logged
(bob, m1)

in
(alice, r01)

in
(alice, r01)

in
(alice, r01)

logged
(bob, m1)

mounted
(usb, m1)

logged
(bob, m1)

in
(alice, r01)

Figure 2: Example of hybrid history

3.3 Hypotheses
The term hypothesis in a digital investigation is a conjecture that
may refer, for instance, to past events in the lifetime of digital
devices [52]. In this paper, we focus on one type of hypothesis

https://github.com/lpasquale/minorityReport

On Evidence Preservation Requirements for Forensic-Ready Systems ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

relevant to developing forensic-ready systems, the environment
construction hypothesis. This form of hypothesis postulates about
the feasibility of events occurrence and presence of contextual
conditions of interests within the environment. It may be captured
as an event’s composite definition h ◁ d , where h is a complex
event marking the satisfaction of a hypothesis, and with Ap in d
being empty and Ac and KL containing only complex events and
context relation literals respectively. The events and the contextual
conditions expressed in the hypothesis represent how an incident
may occur within the environment. The incident of our example
refers to the unauthorised exfiltration of the sensitive document doc.
One way in which the doc can exfiltrate is because an unauthorised
copy to an external storage device was performed. This hypothesis
is defined as

IllegalCopy ◁

⟨∅, {copy(bob, doc, m1) }, {mounted(usb1, m1) },
{l1 }, ∅, {l1 → {mounted(usb1, m1), copy(bob, doc, m1) } }⟩

In other words, a copy of the document is performed while an
external storage device (usb1) is mounted on m1.

Hypotheses are interpreted over finite complex histories. Their
satisfaction is given by the definition below.

Definition 3.7 (Hypotheses Satisfaction). A hypothesis h (with
definition h ◁ d) is said to be satisfied in a complex history ω at
position b, i.e., ω,b |= h, if there exists a decomposition ω = xyz
such that y = cea , ..., ceд , ..., ceb is a narration of d with respect to
d ′ ∈ δ (d) and order l ′1 ≺ ... ≺ l ′j ≺ ... ≺ l ′n and if kl ∈ λd ′ (l

′
j) |KL

then υ |Ac ,д |= kl.
We distinguish between supportable and refutable hypotheses in

environment E.
Definition 3.8 (Hypotheses Supportability and Refutability). Let

ϒ(E) be the set of hybrid histories satisfying E. A hypothesis h
(with definition h ◁ d) is said to be supportable in E if there exists
a hybrid history υ ∈ ϒ(E) such that for some b, υ |Ac ,b |= h. It is
said to be refutable if there exists a history υ ∈ ϒ(E) such that for
all b, υ |Ac ,b ̸ |= h.
We sometime abstract away from the position b and write υ |Ac |= h
for a history satisfying h at some point b. We will denote the set
of hybrid histories in ϒ(E) supporting at least one hypothesis in
H as ϒ+ (E) and those refuting every hypothesis in H as ϒ− (E).
Returning to our example, the IllegalCopy hypothesis is supportable
in our example environment (E) since there exists a decomposition
of a hybrid history (see Figure 2) satisfying E, that yields a narration
of the definition of the IllegalCopy hypothesis, i.e.,

x = {swipe_card(alice, nfc) }1,
{cctv_access(alice, r01, cctv1), enter(alice, r01) }2,
{sys_login(bob, m1), login(bob, m1) }3,
{sys_mount(usb1, m1), mount(usb1, m1) }4

y = {sys_copy(bob, doc, cctv1), copy(bob, doc, cctv1) }5,
z = {sys_unmount(usb1, m1) }6

such that υ |Ac , 5 |= mounted(usb1,m1).
As we will see later in Section 4, we are interested in minimal

hybrid histories that satisfy a hypothesis. We define minimality of
histories with respect to hypotheses as follows.

Definition 3.9. [Minimally Supportive Histories] Let ϒ(E) be a
set of hybrid histories satisfying E and h be a hypothesis support-
able by E. The hybrid history υ = he1, ..., hem ∈ ϒ+ (E) is said to

be minimally supportive of h in E iff the history υ∗ obtained be
removing any primitive event a ∈ Ap from (hei) |Ap of υ is in ϒ(E)
and no longer supports h.

For instance, the hybrid history in Figure 2 is not minimally
supportive of the hypothesis IllegalCopy since the history obtained
by removing sys_unmount(usb1,m1) from υ6 |Ap still satisfies Ille-
galCopy. We sometimes write min(υ,h) (resp. min(ϒ,h)) as a short-
hand for the minimally supportive history v∗ (resp. histories) of h
obtained from υ.

4 PRESERVATION SPECIFICATIONS
We are concerned with deriving specifications PS for a forensic
readiness controller comprising domain pre- and post-conditions
as well as required pre- and trigger-conditions, expressed in LTL.
These conditions control the execution of operations of the form
preserve(a,ts)—where a indicates the occurrence of a primitive event
in the environment, and ts marks the time-stamp (from the system
clock) at which the occurrence was observed by the FR controller.
We consider tsi to be an abstraction over real-time clock variables
that may be obtained following techniques such as [13, 28]. The
generation of such abstractions is outside the scope of the paper.
We assume an ordered set of timestamps to be isomorphic to the
set of natural numbers.

The domain pre-condition of operation preserve(a,ts) specifies
that this operation cannot take place if the occurrence of event
a at ts has already been preserved. The domain post-condition
specifies that operation preserve(a,ts) ensures preservation of the
occurrence of event a at ts in the next time instant. We assume
these ar given for each operation. We Assertions 1 and 2 specify,
respectively, the domain pre- and post-conditions of operation
preserve(sys_copy(e,d,m), ts)

∀ts : Timestamp, e : Emp, d : Doc,m : Comp

G(preserved(sys_copy(e, d,m), ts) →
¬preserve(sys_copy(e, d,m), ts)) (1)

G(preserve(sys_copy(e, d,m), ts) →
Xpreserved(sys_copy(e, d,m), ts)) (2)

Required pre-conditions are assertions that condition the execu-
tion of preserve(a,ts) upon having received notification about the
occurrence of a primitive event in the environment, receive(a, ts). Re-
quired trigger-conditions are conditions upon the (non-)preservation
of other primitive events. An example of a preservation specifica-
tion of operation preserve(sys_copy(e,d,m), ts) is
∀ts : Timestamp, e : Emp, d : Doc,m : Comp

G(¬received(sys_copy(e, d,m), ts) →
X¬preserve(sys_copy(e, d,m), ts)) (3)

∀ts : Timestamp, e : Emp, d : Doc,m : Comp

∃ts1, ts2 : Timestamp. ts1 < ts2 ∧ ts2 < ts

G(received(sys_copy(e, d,m), ts)∧
preserved(sys_login(e, d,m), ts1) ∧ preserved(sys_mount(s,m), ts2)

∧ ∄ts3, ts4 : Timestamp. (ts3 > ts1 ∧ ts3 ≤ ts ∧ ts4 > ts2 ∧ ts4 ≤ ts ∧
preserved(sys_logout(e,m), ts3) ∧ preserved(sys_unmount(s,m), ts4)) →

Xpreserve(sys_copy(e, d,m), ts)) (4)
Assertion 3 specifies the required pre-condition, i.e., receiving no-

tification of the occurrence of sys_copy(e ,d ,m). Assertion 4 expresses

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh

a trigger-condition forcing the FR controller to preserve occurrence
of sys_copy(e,d,m) if it has already preserved information about
an employee’s logging onto a computer and the mounting of a
storage device on that computer, but no subsequent occurrence
about the employee logging out or unmounting of the storage de-
vice is recorded. The preservation specification PS defines a FR
controller’s storage capacities as a set of executable sequences of
preserve operations of the form

π = {preserve(a1
1, ts1), ..., preserve(ak1 , ts1) }1, ...,

{preserve(a1
m, tsm), ..., preserve(arm, tsm) }m

We say that π is a potential log if π satisfies PS (according to stan-
dard trace semantics of LTL) and for each preserve(aij , tsj) ∈ π (j),
its required trigger-condition is non-vacuously satisfied in π at
position j. The notation π (j) indicates the set of operations that
occur at position j.

We restrict our definition of preservation specifications to those
that ensure the minimality and relevance of all potential logs to
hypotheses under consideration. Such a specification is referred
to as forensic-ready. To express forensic-ready preservation speci-
fications, we first consider the notion of a specification covering
potential histories.

Definition 4.1. [Specification Coverage] Let PS be a preservation
specification and υ = (he1, ..., hen) a hybrid history. Then PS is said
to cover υ, iff there exists a potential log π = (fe1, ..., fen) ∈ Π(PS)
isomorphic to υ |Ap , i.e., for every primitive event a ∈ (hei) |Ap ,
preserve(a, tsi) ∈ fei .

The isomorphism with respect to potential histories guaran-
tees the preservation of events related to an incident. Furthermore,
since the isomorphism is defined with respect to minimally sup-
portive histories of hypotheses in H this ensures minimality of
preserved event occurrences. It also, together with the requirement
for hypothesesH to be refutable by potential histories of E, ϒ− (E),
supports relevance of events stored through preserve operations.

Definition 4.2. [Forensic-ready Specification] Let E be an envi-
ronment description andH a hypothesis that is both supportable
and refutable in E by ϒ+ (E) and ϒ− (E) respectively. Let PS be a
preservation specification. Then PS is said to be forensic-ready with
respect toH in E iff PS covers every history in min(ϒ+ (E),h) for
every h ∈ H and does not cover any ϒ− (E).

Any FR controller whose specification is forensic-ready with
respect toH in E is sufficient to guarantee evidence preservation
requirements of relevance and minimality.

5 SPECIFICATION GENERATION
Based on our formulation above, we propose a systematic approach
(Figure 3) for generating forensic-ready preservation specifications.
Our approach takes as input an environment description E, a set
of speculative incident hypothesesH , elicited, for instance, by a
domain expert, and an initial preservation specification PS, writ-
ten in LTL, which contains domain pre- and post-conditions of
preservation operations. We assume that the description of the
environment is correct and the speculative hypotheses of concern
are known at design-time. The approach provides as output either:
(i) a confirmation that (some) hypotheses are not supportable in
the environment; (ii) a confirmation that the FR controller does
not have the capabilities to ensure the forensic-readiness of its

preservation specification; or (iii) a preservation specification that
is guaranteed to be forensic-ready with respect to H in E. The
approach comprises three phases as described below.

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

E , H, ⌥+(E), ⌥�(E)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes ()

History
Generation

1

yes (A)

Revise

Preservation Specification Synthesis

yes

Specification
Verification

Specification
Synthesis

2 3

no (B)

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

no

Domain Expert

Environment
ε

Hypotheses

A = { }

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

E , H, ⌥+(E)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes { , }

Software
Engineer

History
Generation

1

yes { }

Revise

Preservation Specification Synthesis no

Specification
Verification

Specification
Synthesis

2 3

Environment
ε

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

yes

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed
to satisfy preservation requirements [?]. The controlled oper-
ations for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved by the Controller in the storage, if the latter
already contains entries about the occurrences of employee’s
logging to a computer and the mounting of a storage device on
it, and no entries about employee’s logging out from computer
and unmounting of the storage device from the computer are
stored.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences
of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[16], [7]. The generation of such abstractions is outside the
scope of the paper. We...

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

Our approach for synthesising the preservation specification
(see Figure 3) requires as input an environment description
E , and a set of speculative incident hypotheses H that are
supportable and refutable by E . Such inputs can be provided,
for instance, by the software engineer. We assume that the
description of the environment is correct and the speculative
hypotheses are known a-priori, before an investigation starts.
Preservation specification synthesis is performed in three
phases.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) with respect to H. The existence
of histories in ⌥+(E) ensures that the hypotheses of inter-
est are feasible within the intended environment. If ⌥+(E)
is empty, this means that the either the hypothesis cannot
occur within the environment described, and thus may not
be a security concern, or that the environment description
and/or the speculative hypotheses are incorrect and need to
be revised (e.g., by a security administrator). The histories
⌥�(E) operates as a proxy for the synthesis phase to ensure
only relevant event occurrences are preserved.

2) Specification Verification. Given the generated ⌥+(E), we
check if the primitive history projection for each history is
‘covered’ by the preservation specification, i.e., there exists
corresponding potential log. If this is the case, then the
current preservation specification OS satisfies the preservation
requirements and the process terminates. If some primitive
history projection is not, then new operational preservation
specification must be synthesised in the next phase.

3) Specification Synthesis. The synthesis aims to learn a
new ReqPre and required trigger-conditions ReqTrighat would
prescribe the preservation of the potential histories ⌥+(E)
and not those in ⌥�(E). The output is a set of required pre-
conditions . The new specification OS0 is given as input to the
forensic-ready controller that is responsible for its enactment
during the system operation.

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

Hypotheses

no

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

⌥�(E)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes { , }

Software
Engineer

History
Generation

1

yes { }

Revise

Preservation Specification Synthesis no

Specification
Verification

Specification
Synthesis

2 3

Environment
ε

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

yes

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed
to satisfy preservation requirements [?]. The controlled oper-
ations for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved by the Controller in the storage, if the latter
already contains entries about the occurrences of employee’s
logging to a computer and the mounting of a storage device on
it, and no entries about employee’s logging out from computer
and unmounting of the storage device from the computer are
stored.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences
of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[16], [7]. The generation of such abstractions is outside the
scope of the paper. We...

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

Our approach for synthesising the preservation specification
(see Figure 3) requires as input an environment description
E , and a set of speculative incident hypotheses H that are
supportable and refutable by E . Such inputs can be provided,
for instance, by the software engineer. We assume that the
description of the environment is correct and the speculative
hypotheses are known a-priori, before an investigation starts.
Preservation specification synthesis is performed in three
phases.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) with respect to H. The existence
of histories in ⌥+(E) ensures that the hypotheses of inter-
est are feasible within the intended environment. If ⌥+(E)
is empty, this means that the either the hypothesis cannot
occur within the environment described, and thus may not
be a security concern, or that the environment description
and/or the speculative hypotheses are incorrect and need to
be revised (e.g., by a security administrator). The histories
⌥�(E) operates as a proxy for the synthesis phase to ensure
only relevant event occurrences are preserved.

2) Specification Verification. Given the generated ⌥+(E), we
check if the primitive history projection for each history is
‘covered’ by the preservation specification, i.e., there exists
corresponding potential log. If this is the case, then the
current preservation specification OS satisfies the preservation
requirements and the process terminates. If some primitive
history projection is not, then new operational preservation
specification must be synthesised in the next phase.

3) Specification Synthesis. The synthesis aims to learn a
new ReqPre and required trigger-conditions ReqTrighat would
prescribe the preservation of the potential histories ⌥+(E)
and not those in ⌥�(E). The output is a set of required pre-
conditions . The new specification OS0 is given as input to the
forensic-ready controller that is responsible for its enactment
during the system operation.

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

Hypotheses

no

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,

B = { }

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

E , H, ⌥+(E), ⇧+(OS), ⇧�(OS)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes { , }

Software
Engineer

History
Generation

1

yes { }

Revise

Preservation Specification Synthesis no

Specification
Verification

Specification
Synthesis

2 3

Environment
ε

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

yes

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed
to satisfy preservation requirements [?]. The controlled oper-
ations for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved by the Controller in the storage, if the latter
already contains entries about the occurrences of employee’s
logging to a computer and the mounting of a storage device on
it, and no entries about employee’s logging out from computer
and unmounting of the storage device from the computer are
stored.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences
of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[16], [7]. The generation of such abstractions is outside the
scope of the paper. We...

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

Our approach for synthesising the preservation specification
(see Figure 3) requires as input an environment description
E , and a set of speculative incident hypotheses H that are
supportable and refutable by E . Such inputs can be provided,
for instance, by the software engineer. We assume that the
description of the environment is correct and the speculative
hypotheses are known a-priori, before an investigation starts.
Preservation specification synthesis is performed in three
phases.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) with respect to H. The existence
of histories in ⌥+(E) ensures that the hypotheses of inter-
est are feasible within the intended environment. If ⌥+(E)
is empty, this means that the either the hypothesis cannot
occur within the environment described, and thus may not
be a security concern, or that the environment description
and/or the speculative hypotheses are incorrect and need to
be revised (e.g., by a security administrator). The histories
⌥�(E) operates as a proxy for the synthesis phase to ensure
only relevant event occurrences are preserved.

2) Specification Verification. Given the generated ⌥+(E), we
check if the primitive history projection for each history is
‘covered’ by the preservation specification, i.e., there exists
corresponding potential log. If this is the case, then the
current preservation specification OS satisfies the preservation
requirements and the process terminates. If some primitive
history projection is not, then new operational preservation
specification must be synthesised in the next phase.

3) Specification Synthesis. The synthesis aims to learn a
new ReqPre and required trigger-conditions ReqTrighat would
prescribe the preservation of the potential histories ⌥+(E)
and not those in ⌥�(E). The output is a set of required pre-
conditions . The new specification OS0 is given as input to the
forensic-ready controller that is responsible for its enactment
during the system operation.

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

Hypotheses

no

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,
and thus it will not required to be considered during a digital
investigation, or that the environment description and/or the

History
Generation

1
yes (A)

Revise

Specification Generation

no

Specification
Verification

Specification
Synthesis

2 3
yes (B)

no

Domain Expert

Environment
ε

Hypotheses

A = { }

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

E , H, ⌥+(E), ⌥�(E)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes ()

History
Generation

1

yes (A)

Revise

Preservation Specification Synthesis

yes

Specification
Verification

Specification
Synthesis

2 3

no (B)

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

no

Domain Expert

Environment
ε

Hypotheses

A = { }

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

E , H, ⌥+(E)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes { , }

Software
Engineer

History
Generation

1

yes { }

Revise

Preservation Specification Synthesis no

Specification
Verification

Specification
Synthesis

2 3

Environment
ε

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

yes

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed
to satisfy preservation requirements [?]. The controlled oper-
ations for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved by the Controller in the storage, if the latter
already contains entries about the occurrences of employee’s
logging to a computer and the mounting of a storage device on
it, and no entries about employee’s logging out from computer
and unmounting of the storage device from the computer are
stored.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences
of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[16], [7]. The generation of such abstractions is outside the
scope of the paper. We...

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

Our approach for synthesising the preservation specification
(see Figure 3) requires as input an environment description
E , and a set of speculative incident hypotheses H that are
supportable and refutable by E . Such inputs can be provided,
for instance, by the software engineer. We assume that the
description of the environment is correct and the speculative
hypotheses are known a-priori, before an investigation starts.
Preservation specification synthesis is performed in three
phases.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) with respect to H. The existence
of histories in ⌥+(E) ensures that the hypotheses of inter-
est are feasible within the intended environment. If ⌥+(E)
is empty, this means that the either the hypothesis cannot
occur within the environment described, and thus may not
be a security concern, or that the environment description
and/or the speculative hypotheses are incorrect and need to
be revised (e.g., by a security administrator). The histories
⌥�(E) operates as a proxy for the synthesis phase to ensure
only relevant event occurrences are preserved.

2) Specification Verification. Given the generated ⌥+(E), we
check if the primitive history projection for each history is
‘covered’ by the preservation specification, i.e., there exists
corresponding potential log. If this is the case, then the
current preservation specification OS satisfies the preservation
requirements and the process terminates. If some primitive
history projection is not, then new operational preservation
specification must be synthesised in the next phase.

3) Specification Synthesis. The synthesis aims to learn a
new ReqPre and required trigger-conditions ReqTrighat would
prescribe the preservation of the potential histories ⌥+(E)
and not those in ⌥�(E). The output is a set of required pre-
conditions . The new specification OS0 is given as input to the
forensic-ready controller that is responsible for its enactment
during the system operation.

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

Hypotheses

no

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

⌥�(E)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes { , }

Software
Engineer

History
Generation

1

yes { }

Revise

Preservation Specification Synthesis no

Specification
Verification

Specification
Synthesis

2 3

Environment
ε

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

yes

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed
to satisfy preservation requirements [?]. The controlled oper-
ations for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved by the Controller in the storage, if the latter
already contains entries about the occurrences of employee’s
logging to a computer and the mounting of a storage device on
it, and no entries about employee’s logging out from computer
and unmounting of the storage device from the computer are
stored.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences
of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[16], [7]. The generation of such abstractions is outside the
scope of the paper. We...

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

Our approach for synthesising the preservation specification
(see Figure 3) requires as input an environment description
E , and a set of speculative incident hypotheses H that are
supportable and refutable by E . Such inputs can be provided,
for instance, by the software engineer. We assume that the
description of the environment is correct and the speculative
hypotheses are known a-priori, before an investigation starts.
Preservation specification synthesis is performed in three
phases.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) with respect to H. The existence
of histories in ⌥+(E) ensures that the hypotheses of inter-
est are feasible within the intended environment. If ⌥+(E)
is empty, this means that the either the hypothesis cannot
occur within the environment described, and thus may not
be a security concern, or that the environment description
and/or the speculative hypotheses are incorrect and need to
be revised (e.g., by a security administrator). The histories
⌥�(E) operates as a proxy for the synthesis phase to ensure
only relevant event occurrences are preserved.

2) Specification Verification. Given the generated ⌥+(E), we
check if the primitive history projection for each history is
‘covered’ by the preservation specification, i.e., there exists
corresponding potential log. If this is the case, then the
current preservation specification OS satisfies the preservation
requirements and the process terminates. If some primitive
history projection is not, then new operational preservation
specification must be synthesised in the next phase.

3) Specification Synthesis. The synthesis aims to learn a
new ReqPre and required trigger-conditions ReqTrighat would
prescribe the preservation of the potential histories ⌥+(E)
and not those in ⌥�(E). The output is a set of required pre-
conditions . The new specification OS0 is given as input to the
forensic-ready controller that is responsible for its enactment
during the system operation.

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

Hypotheses

no

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,

B = { }

some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-
legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed to
satisfy preservation requirements [46]. The controlled opera-
tions for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved, if the controller already preserved infor-
mation about an employee’s logging onto a computer and the
mounting of a storage device on it, but not a subsequent entry
about his/her logging out or unmounting of the storage device.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences

of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[24], [10]. The generation of such abstractions is outside the
scope of the paper.

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

E , H, ⌥+(E), ⇧+(OS), ⇧�(OS)

Our approach for synthesising the preservation specification
(see Fig. 3) takes as input an environment description E , and a
set of speculative incident hypotheses H, elicited, for instance,
by a domain expert (software engineer or security administra-
tor). We assume that the description of the environment is
correct and the speculative hypotheses of concern are known
at design-time. The approach comprises three phases.

 yes { , }

Software
Engineer

History
Generation

1

yes { }

Revise

Preservation Specification Synthesis no

Specification
Verification

Specification
Synthesis

2 3

Environment
ε

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

yes

A history may occur at various levels [?]. It is called a
primitive (resp. complex) history, denoted � (resp. !), if all
the events that appear in it are primitive (resp. complex).We
write ! = ce1, ...cen to denote a complex history where cei is
the set of complex events occurring concurrently at position
i, and similarly for a primitive history �.

An environment description E is interpreted over a sequence
of primitive and complex events (we refer to as a hybrid
history �). Its satisfaction is determined with respect to the
satisfaction of complex events’ composite definitions in B
according to I.

For the satisfaction of an event’s composite definition, we
consider the notion of a ‘narration’ (a total order over the
partial order given in a complex event’s definition). For a
narration to be constructed, each complex event appearing in
a definition is refined until all complex events are reduced to
their primitive events and context relation literals. The result
of this refinement procedure applied to definition d is a set of
composite definitions �(d). Note that context relation literals
are not refined by their initiating and terminating events.1

Given �(d), a narration of a d is captured with respect to
one of the elements in �(d). We will use the notation �|Ap

(reps. �|Ac) to denote the projection of � over primitive
(reps. complex) events in Ap (resp. Ac).

Definition 5 (Narration of Composite Definition): Let B=
hAp, Ac, K, D, /i be a behaviour description and d = hLd,�d

,�d, A
p
d, A

c
d, KLdi a composite definition in D. Let �(d) be

the set of definitions obtained refining d. A narration of d is
a hybrid history � = he1, ..., hem, if there exists a d0 2 �(d)
and a total order l1 � ... � ln over Ld0 such that:

• for all li, lj 2 Ld0 , if li � lj then a < b (where 1
a, b m),

• �d0(li)|Ap = (hea)|Ap

• �d0(li)|Ac = (hea)|Ac .
where �(l)|Ap and �(l)|Ac denote the set of primitive events
and complex events respectively assigned to time-label l.

For instance the following are three example narrations for
enter(alice, r01)’s composite definition

�1 = ({swipe card(alice, nfc), cctv access(alice, r01, cctv1),
enter(alice, r01)}1)

�2 = ({swipe card(alice, nfc)}1, ,
{cctv access(alice, r01, cctv1), enter(alice, r01)}2)

�3 = ({cctv access(alice, r01, cctv1)}1,
{swipe card(alice, nfc), enter(alice, r01)}2)

Context descriptions’ relations are interpreted over complex
histories. Given k ⌘ hINk, TRk, initki 2 I, k is true at position
b in a complex history ! = ce1, ..., ceb, ..., cen iff either the
following holds:

• initk ^ 8a 2 N , eTRk
2 TRk.(0 < a < b) ! eTRk

62 cea;
• 9a 2 N . (a < b) ^ (eINk

2 cea ^ 8g 2 N , eTRk
2

TRk.((a < g < b) ! eTRk
62 ceg).

otherwise it is said to be false. We assume histories in which
terminating and initiating events for a context relation do not

1See github an outline of a refinement algorithm ?? for obtaining �(d).

occur concurrently. We now define the satisfaction of complex
event definitions histories as follows.

Definition 6 (Complex Event Definition Satisfaction): Given
an environment description E=(B,C,I), a complex event def-
inition e / d 2 B and a hybrid history �, � is said to satisfy
e / d with respect to E if for every decomposition � = xyz,
if y = hea, ..., heg, ..., heb is a narration of d with respect to
d0 2 �(d) and order l01 � ... � l0j � ... � l0n then:

• e 2 (heb)|Ac

• if d is a composite definition and kl 2 �d0(l0j)|KL then
�|Ac , g |= kl

where �(l)|KL denotes the set context relation literals assigned
to time-label l.

The environment description E is said to be satisfied in
a hybrid history if every complex event definition in B is
satisfied in that history. We write ⌥(E) to denote the set of
hybrid histories that satisfy E .

C. Hypotheses

The term hypothesis in a digital investigation is a conjecture
that may refer, for instance, to past events in the lifetime
of digital devices, the time span during which a system was
operational, system capabilities and configurations [?], [?].

In this paper, we focus on one type of hypothesis rel-
evant to developing forensic-ready systems, the environ-
ment construction hypothesis. This form of hypothesis pos-
tulates about the feasibility of events occurrence and pres-
ence of contextual conditions of interests. It may be cap-
tured as an event’s composite definition h / d, where h
is a complex event marking the satisfaction of a hypoth-
esis, and with Ap in d being empty and Ac and KL
containing only complex events and context relation lit-
erals respectively. For instance the hypothesis IllegalCopy
/ h{l1}, ;, ;, {copy(bob,doc,m1)}, {mounted(usb1,m1)},
{l1 ! {mounted(usb1,m1), copy(bob,doc,m1)}}i.

Hypotheses are interpreted over finite complex histories.
Their satisfaction is given by the definition below.

Definition 7 (Hypotheses Satisfaction): A hypothesis h (with
definition h / d) is said to be satisfied in a complex history
! at position b, i.e., !, b |= h, if there exists a decomposition
! = xyz such that y = cea, ..., ceg, ..., ceb that is a narration of
d with respect to d0 2 �(d) and order l01 � ... � l0j � ... � l0n
and if kl 2 �d0(l0j)|KL then �|Ac , g |= kl.

We distinguish between supportable and refutable hypothe-
ses in environment E .

Definition 8 (Hypotheses Supportability and Refutability):
Let ⌥(E) be the set of hybrid histories satisfying E . A
hypothesis h (with definition h / d) is said to be supportable
in E if there exists a hybrid history � 2 ⌥(E) such that for
some b, �|Ac , b |= h. It is said to be refutable if there exists a
history � 2 ⌥(E) such that for all b, �|Ac , b 6|= h.
We will denote the set of hybrid histories in ⌥(E) supporting
H as ⌥+(E) and those refuting it ⌥�(E). Consider the
potential hybrid history shown in Fig. ??, since there is a de-
composition of � that yields a narration of the definition of Il-

legalCopy hypothesis such that �|Ac , 5 |= mounted(usb1, m1),
then IllegalCopy is supportable in E .

D. Operational Preservation Specification

Operational preservation specifications OS specify the op-
erations that can be performed by the Controller component
in terms of domain-specific conditions, as well as additional
constraints for when operations may and must be executed
to satisfy preservation requirements [?]. The controlled oper-
ations for the controller are a set of preserve(a,ts) operations
where a indicates the occurrence of a primitive event in the
environment, and ts marks the time-stamp instance (from the
system clock) at which the occurrence was observed by the
controller. The monitored event (and condition) are the receipt
of a notification of occurrence captured by the receive(a, ts)
operation where a and ts are as before.

The domain-specific condition captures the basic state tran-
sitions defined by the application of an operation in the
domain. It is specified as a pair containing a domain pre-
condition (DomPre) and a domain post-condition (DomPost),
e.g., ¬preserved(a, ts) and preserved(a, ts). Required condi-
tions, on the other hand, capture strengthened conditions
on the software-controlled operations that contribute to the
satisfaction of the requirements. They are expressed in the
form of required pre- and trigger- conditions. Required pre-
conditions (ReqPre) are conditions that capture a permission to
perform a preserve operation. Required trigger-conditions (Re-
qTrig) are conditions that capture an obligation to perform a
preserve operation. An example of an operational preservation
requirements for the operations preserve(sys copy(e,d,m),ts)
(for some employee e, document d and computer m) is

DomPre(preserve(sys copy(e, d, m), ts)) =
{¬preserved(sys copy(e, d, m, ts)}

DomPost(preserve(sys copy(e, d, m), ts)) =
{preserved(sys copy(e, d, m, ts)}

ReqPre(preserve(sys copy(e, d, m), ts)) =
{received(sys copy(e, d, m), ts),

ReqTrig(preserve(sys copy(e, d, m), ts)) =
{9ts1, ts2, ts3, ts4 2 Clock, s 2 Str.
ts1 < ts3 ^ ts2 < ts3 ^ ts3 < ts4 < ts^
preserved(sys login(e, d, m), ts1)^
preserved(sys mount(s, m), ts2)^
¬preserved(sys logout(e, m), ts3)}

The above says that the occurrence of the event sys copy
must be preserved by the Controller in the storage, if the latter
already contains entries about the occurrences of employee’s
logging to a computer and the mounting of a storage device on
it, and no entries about employee’s logging out from computer
and unmounting of the storage device from the computer are
stored.

An operational preservation specification OS defines all ad-
missible preservation capacities (potential logs) as sequences
of preserve operations that may be executed by the con-
troller (and devices). We call each sequence a potential log
and write it in the form (⇡ = {preserve(a1

1, ts1)}1, ...,
{preserve(a1

m, tsm)}m). The set of potential logs admissible
by OS is denoted as ⇧(OS).

We now define the forensic readiness specification. Note
that we consider tsi to be an abstraction over real-time clock
variables that may be obtained following techniques such as
[16], [7]. The generation of such abstractions is outside the
scope of the paper. We...

Definition 9 (Preservation Coverage and Completeness):
Given an environment description E and a hypothesis H that is
both supportable and refutable in E . Let OS be an operational
preservation specification. Then OS is said to be cover a
potential history � = (he1, ..., hen) 2 ⌥+(E), if there exists a
potential log ⇡ = (fe1, ..., fen) 2 ⇧(OS), such that for every
a 2 (hei)|Ap , preserve(a, tsi) 2 fei (OS covers � for short.) It
is said to be preservation complete w.r.t. E and H if it covers
all potential histories in ⌥+(E) and not any history in ⌥�(E).

We say the any specification that meets the preservation
completeness described above achieves the preservation re-
quirement for H in E , denoted RH, and by abuse of notation
denote this as E , H, OS |= RH.

V. PRESERVATION SPECIFICATION SYNTHESIS

Our approach for synthesising the preservation specification
(see Figure 3) requires as input an environment description
E , and a set of speculative incident hypotheses H that are
supportable and refutable by E . Such inputs can be provided,
for instance, by the software engineer. We assume that the
description of the environment is correct and the speculative
hypotheses are known a-priori, before an investigation starts.
Preservation specification synthesis is performed in three
phases.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) with respect to H. The existence
of histories in ⌥+(E) ensures that the hypotheses of inter-
est are feasible within the intended environment. If ⌥+(E)
is empty, this means that the either the hypothesis cannot
occur within the environment described, and thus may not
be a security concern, or that the environment description
and/or the speculative hypotheses are incorrect and need to
be revised (e.g., by a security administrator). The histories
⌥�(E) operates as a proxy for the synthesis phase to ensure
only relevant event occurrences are preserved.

2) Specification Verification. Given the generated ⌥+(E), we
check if the primitive history projection for each history is
‘covered’ by the preservation specification, i.e., there exists
corresponding potential log. If this is the case, then the
current preservation specification OS satisfies the preservation
requirements and the process terminates. If some primitive
history projection is not, then new operational preservation
specification must be synthesised in the next phase.

3) Specification Synthesis. The synthesis aims to learn a
new ReqPre and required trigger-conditions ReqTrighat would
prescribe the preservation of the potential histories ⌥+(E)
and not those in ⌥�(E). The output is a set of required pre-
conditions . The new specification OS0 is given as input to the
forensic-ready controller that is responsible for its enactment
during the system operation.

To the best of our knowledge, this paper is the first to define
and formalise preservation requirements within a software
engineering context and to propose an automatic means for
synthesising specifications that satisfy them.

II. MOTIVATING EXAMPLE

Our motivating example is a corporate fraud incident,
inspired by the Galleon Group case [19]. We consider an
environment within an enterprise building, where two employ-
ees, alice and bob, work (see Fig. 1). bob and alice have
laptops (m2 and m3, respectively), provided by the company.
A sensitive document doc is stored on the server machine m1
that is located in the office r01. Access to r01 is controlled
by a nfc reader and is monitored by a cctv camera. Both alice
and bob are authorised to access r01 and to login to m1. An
incident of concern is related to the exfiltration of the doc.

Activities such entering a room may be observed (inferred)
through low level system events that can be observed from
digital devices, referred to as evidence sources. Examples of
low level events can be a log entry on an external server to
which cctv is connected identifying an agent coming through
the room door, or an nfc log entry recording the reading of a
card tag.

employee: aliceemployee: bob laptop: m2 laptop: m3

desktop: m1

file: doc

location: r01

reader: nfc1

camera: cctv1

storage: ubs1

Fig. 1. Setting of our motivating example.

Suppose that a digital investigation related to the doc
exfiltration is initiated. An investigator may suspect that the
doc was copied onto a storage device mounted on m1 and may
formulate a hypothesis on this basis. However she is uncertain
about what exact events must have occurred for this hypothesis
to be true. Hence, she reconstructs various scenarios about pos-
sible system events that could have occurred (i.e., histories).
One possibility is that alice entered r01, performed the login
to m1, mounted usb1 on m1 and copied the doc. Another
is that bob entered the room but used alice’s credentials to
login to m1 and copy the file onto usb1. A more sophisticated
alternative may be that alice accessed r01 and mounted a
storage device, and she subsequently copied the doc in the
storage remotely. Each of these possibilities would require the
investigator to identify the relevant devices, search through the
records for each of these devices (e.g., logs from all readers,
cctv recordings, and hard drives for all machines) and check
if they support or refute her hypothesis.

Given the multitude of histories that could be constructed
within an environment, a sound investigation would be depen-
dent on a) the investigators’ ability to reconstruct all possible
histories, b) the devices to preserve the required activities
that correspond to such histories and c) the investigators to
examine all these against the hypotheses. As the volume of
data to analyse is high, the context of incident unfamiliar,
and pressure to deliver results ever-increasing, the cognitive
load on investigators escalates, making way for evidence and
negative biases to go unnoticed [?]. Furthermore, as events
from devices could be concealed by offenders (clearing hard-
drive system history) or might not be retained by a device (file
copies events), potential evidence may be lost.

Although preserving all events that can be observed from
potential evidence sources in the environment may seem
plausible, examination of large data-sets is often expensive
and time-consuming and may mask what is truly relevant for
the investigation. For example, 60 days cctv footages would
occupy ⇠10 TB, while a hard drive occupies ⇠500 GB on
average. In the example, not all file copy events are relevant to
support the speculative hypothesis, but only those taking place
while a storage device is currently mounted. Therefore, there
is a pressing need for developing systems that are forensic-
ready, i.e., that can preserve ‘relevant’ evidence proactively.

III. PROBLEM STATEMENT

In this paper we attempt to address two questions: 1) Can
preservation requirements be formulated precisely? 2) What
are the system specifications that could achieve them and can
these by synthesised automatically?

To articulate the problem, we follow Jackson and Zave [17],
[31] approach to requirements definitions and satisfaction.
In their requirements reference model [], to guarantee that
a machine achieves its requirements R, it is necessary to
show that its specification S satisfies W, S |= R, where W
captures some ‘domain knowledge’ — descriptive assertions
about world phenomena that are true regardless of behaviour
of the machine. In our setting W comprises the environment
description E , and the speculative incident hypotheses H. The
‘specification’ S represents operational constraints over what
and when the ’machine’, must preserve having speculated
over events lying in the shared phenomena. In our case, these
specifications as operational preservation specifications, OS.
With this frame of mind, the preservation requirements are
properties over E , H and OS requiring OS to preserve any
event belonging to any history that shows how E may satisfy
H(i.e., E , H, OS |= RH), where RH denotes the requirement
preservations with respect to hypotheses H.

Section IV formalises the concepts needed for defining the
preservation requirement problem preciesly. Section V pro-
poses an approach for synthesising preservation specifications
from speculated hypotheses and environment descriptions.
For the latter we assume the design choice of having a
single Controller that interacts with the individual evidence
sources and whose preservation specification we synthesise
(See Fig. 2). The Controller receives events from the digital

Hypotheses

no

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,

Fig. 3. Our approach for synthesising preservation specifications.

1) History Generation. In this phase, we search for hybrid
histories ⌥+(E) and ⌥�(E) supporting and refuting H re-
spectively. The existence of histories in ⌥+(E) ensures that
the hypotheses of interest are feasible within the intended
environment. If ⌥+(E) is empty, this means that either the
hypothesis cannot occur within the environment described,
and thus it will not required to be considered during a digital
investigation, or that the environment description and/or the

PS

PS'
FR

Controller

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

On Evidence Preservation Requirements
of Forensic-ready Systems ESEC/FSE 2017, 4–8 September, 2017, Paderborn, Germany

3) Speci�cation Synthesis. �e synthesis phase considers E,H ,
PS, {�+i } and {��j }. From this it learns a new set of required pre-
and trigger-conditions that would prescribe the preservation of all
potential logs {�+i } but not in {��j }, are learned and added to PS.
�e new speci�cation PS0 is given as provided to the controller that
is responsible for its enactment.

Note the steps above suppose a design-time synthesis approach,
rather than a run-time one. �e la�er is constitutes future work.

6 TOOL IMPLEMENTATION
As a proof of concept, we have implemented a prototype tool for
synthesising forensic-ready preservation speci�cations. Our solu-
tion uses a (i) declarative language based on the Event Calculus
logic program2 [21] to represent and reason about the environment
descriptions, speculative hypotheses, preservation speci�cations
and potential histories and logs in a uniform way, (ii) a Boolean
constraint solver for logic programs, called clingo [], to compute
potential histories and logs that satisfy or refute hypotheses, and
(iii) and a logic-based learner, called XHAIL [], to synthesise preser-
vation speci�cations from examples of potential logs. �e encoding
of the input as well as the execution of the three phases in Section
5 are done automatically. �e user is expected to provide the initial
input, and the maximum length of the potential histories to be
considered in the approach.

In brief, the history generation phase �rst tries to �nd two sets
of models, called answer sets of the program, denoted ANS+ (LE [
LH)n and ANS� (LE [LH)n , where each element in the �rst com-
prises a history L�+ ⇢ ANS+ (LE [LH)n of E of length n minimally
supportive of a hypothesis inH and each of the second contains
a history L�� ⇢ ANS� (LE [LH)n that refutes a hypothesis in
H . �is is done through by solving a constraint that requires a
hypothesis Lh 2 LH to be satis�ed by at least one potential history
consistent with LE . �e solver searches for the optimal solution
which equates to the minimally supportive or refutive history of h.
We denote the set of minimally supportive hypotheses as L�+ (E)
and the minimally refutive as L�� (E) .

�e speci�cation veri�cation phase then considers the computed
histories L�+ (E) , L�� (E) , program LE [LH and program LPS. �e
phase performs several calls to the solver to check for coverage and
non-coverage of each history L�+ (E) and L�� (E) respectively by
the controller speci�cation LPS (phase 2). If this is not the case then
potential logs {�+i } and {��j } that correspond to L�+ (E) [L�� (E)

respectively and LE [LH are given to a logic-based learner [] to
compute pre- and trigger-conditions to ensure the preservations of
these.

To conduct the analysis, our implementation translates the input
model into an Event Calculus (EC) logic program [21], a formalism
—-. (However, the same technique is implementable in any language
supporting some form of behavioural modelling and declarative
synthesis of temporal speci�cations.) It has been successfully de-
ployed in the context of specifying requirements operationalisation
[3, 4] and reasoning about evidence in digital investigations [40].
It runs an o�-the- shelf model generation tool, clasp Gebser:2011,
to compute histories. Our use of ASP as the underlying veri�cation

2An logic program is a collection of rules of the form lk
lk+1, ..., ln, not ln+1, ..., not lm

engine is motivated by its capacity to handle di�cult (NP-hard)
search problems for EC programs. �e analysis in clasp is bounded
up to a user-speci�ed scope on the size of the domains which corre-
sponds to the number of entities, events and the maximum length
of histories that will be generated. Details of the encoding are
available on h�ps://github.com/lpasquale/minorityReport.

7 EVALUATION
Our evaluation aims to assess whether the quality of the synthe-
sised preservation speci�cation, particularly whether it prescribes
to preserve i) relevant events and ii) the minimum amount of events
necessary to support speculative hypotheses of potential incidents.
To achieve this aim we developed a prototype tool (implemented in
Python) and used two incident scenario data-sets that are available
publicly for research and training purposes. Each data-set includes
the data that an investigator would have to examine to explain -
if possible - how the associated incident scenario occurred. �e
tool and case study application are available online3. For each
scenario, we manually modelled the environment and the specula-
tive hypotheses in EC. Note that each log entry and event type in
the data-sets is mapped to a primitive event modelled in the envi-
ronment. From this, we used our tool to automatically synthesise
preservation speci�cations.

{�i
+}, {�j

�}

To assess whether the synthesised speci�cation prescribes to pre-
serve relevant events, we veri�ed whether the primitive events that
the speci�cation prescribes to preserve are relevant to support some
of the speculative incident hypotheses. Note that although some of
these primitive events may correspond to log entries/events in the
data-set, others might not be available because they have not been
retained by the digital source. To assess whether the synthesised
speci�cation prescribes to preserve the minimum amount of events,
we measured whether the speci�cation would prescribe the preser-
vation of fewer log entries/events compared to those included in
the data-set. We also measured how many of the log entries/events
from the data-set, which our speci�cation prescribed to preserve,
were irrelevant to support the satisfaction of the speculative hy-
potheses. At the end of the section we discuss threats to validity of
our approach.

7.1 Relevance and Minimality
�e �rst incident scenario we considered is set in a university, where
students and academic sta� can send emails by using the university
and students’ residence internal network. �e data-set4 includes the
TCP packets captured from the routers located inside the students’
residence. �erefore we considered the routers as the digital sources
within the environment and adopted primitive events to represent
speci�c network tra�c that may berelated to emails exchanges.
We modelled the following primitive events: IMAP/POP network
tra�c (SUE) related to emails sent from external addresses to an
academic (SUE); incoming HTTP tra�c adopted to set-up a cookie

3h�ps://github.com/lpasquale/minorityReport
4h�p://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario

B = { PS, }

Figure 3: Specification generation approach.

1) History Generation. In this phase, we search for hybrid his-
tories ϒ+ (E) and ϒ− (E) that minimally support and that refute
H , respectively. The existence of histories in ϒ+ (E) ensures that
the hypotheses of interest are feasible within the intended envi-
ronment. If ϒ+ (E) is empty, this means that either the hypothesis
cannot occur within the environment described, and thus it will
not require to be considered during a digital investigation, or that
the environment description and/or the speculative hypotheses are
incorrect and need revision. The histories ϒ− (E) operate as a proxy
for the synthesis phase to ensure only relevant event occurrences
are preserved.
2) Specification Verification. Given the generated ϒ+ (E), we
check if each history is potentially covered by the preservation spec-
ification, i.e., there exists a corresponding potential log in Π(PS). If
some history in ϒ+ (E) is not, then this may be owing to one of two
cases: (i) the FR controller and the digital devices do not have the
capabilities needed to, respectively, preserve the potential logs and
monitor the relevant events; or (ii) they do but require an opera-
tional preservation specification to be synthesised to ensure their
preservation. In the case of the former, the approach terminates,
indicating a need for additional capabilities. In the latter case, cor-
responding potential logs {π+i } and {π−j } are produced and passed
onto the third phase.
3) Specification Synthesis. The synthesis phase considers E,H ,
PS, {π+i } and {π−j }. It searches, within a space of candidate expres-
sions restricted to safety LTL expressions, a new set of required pre-
and trigger-conditions that would prescribe the preservation of all
potential logs {π+i } but not in {π−j }. These are added to PS. The new
specification PS′ is given as provided to the FR controller that is
responsible for its enactment. Note the steps above are conducted
for a set of given hypotheses. If new ones are provided, then a new
specification must be generated.

6 TOOL IMPLEMENTATION
As a proof of concept, we have implemented a prototype tool3 for
synthesising forensic-ready preservation specifications. Our solu-
tion uses a (i) declarative language based on the Event Calculus (EC)
logic program [31] to represent and reason about the environment
3The source code of the tool is publicly available at https://github.com/lpasquale/
kEEPER/tree/keeper_CLI.

https://github.com/lpasquale/kEEPER/tree/keeper_CLI
https://github.com/lpasquale/kEEPER/tree/keeper_CLI

On Evidence Preservation Requirements for Forensic-Ready Systems ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

descriptions, speculative hypotheses, preservation specifications
and potential histories and logs in a uniform way, (ii) an off-the-shelf
Boolean constraint solver for logic programs, called clingo [20], to
compute potential histories and logs that satisfy or refute hypothe-
ses, and (iii) and a logic-based learner, called XHAIL [41], to synthe-
sise preservation specifications that cover all histories supportive
of a hypothesis. Our choice of EC logic program as a language is
due to its successful deployment in the context of requirements
operationalisation [4, 5] and reasoning about evidence in digital in-
vestigations [56]. The encoding of the input as well as the execution
of the three phases in Section 5 are done automatically. The user is
expected to provide the initial input, and the maximum length of
the potential histories to be considered in the approach. Our use of
the solver as the underlying history generation and specification
verification engine is motivated by its capacity to handle difficult
(NP-hard) search problems for EC programs. For encoding of preser-
vation specifications, we follow the translation in [5]. Details of
the encoding for the environment description and hypotheses are
available at https://github.com/lpasquale/kEEPER/tree/keeper_CLI/
RunningExample. Although the approach is demonstrated for a
particular language, the principles behind it could be applied to
other formalisms and solvers.

In brief, the history generation phase first tries to find two sets
of models of the program LE ∪ LH . Each element in the first set
is a model of LE ∪ LH that comprises a history Lυ+ of maximum
length n that is minimally supportive of a hypothesis inH . Each
element in the second set contains a history Lυ− of length n that
refutes all hypotheses inH . This is done by solving a constraint
that requires a hypothesis Lh ∈ LH to be satisfied by at least one
potential history consistent with LE ∪ Lh . The solver searches for
the optimal solution being defined as the fewest event occurrence
in a history which equates to the minimally supportive history of
h. We denote the set of minimally supportive histories as Lϒ+ (E)
and the minimally refuting histories as Lϒ− (E) .

The specification verification phase considers the historiesLϒ+ (E)
and Lϒ− (E) , program LE ∪ LH and program LPS. This phase per-
forms several calls to the solver to check for consistency of each
history Lϒ+ (E) and Lϒ− (E) respectively with the specification LPS
(phase 2). The solver searches for models that satisfy the program
LE ∪ LH ∪ LPS ∪ Lυ (for each Lυ ∈ Lϒ+ (E) ∪ Lϒ− (E)) and a con-
straint requiring there to be an isomorphic potential log Lπ +i

in the
model. If a potential log for a supportive history cannot be found,
then the program is unsatisfiable. In this case the approach outputs
those potential histories to the user for further consideration (e.g.,
amending the FR controller’s capabilities).

Otherwise all computed potential logs LΠ+ (PS) and LΠ− (PS) that
correspond to histories in Lϒ+ (E) ∪ Lϒ− (E) respectively and the
program LE ∪ LPS are passed to a logic-based learner. The aim of
the learner is to search through a candidate space (given by a lan-
guage bias as in [5]) to compute required pre-conditions LReqPre and
required trigger-conditions LReqTrig such that LE ∪ LPS |= LΠ+ (PS)
where |= is an entailment operator defined with respect to stable
model semantics [21], whilst ensuring that LE ∪LPS ̸ |= Lπ − for any
Lπ − ∈ LΠ− (PS) . The programs LReqPre ∪ LReqTrig are then translated
back to LTL following the method described in [5].

7 EVALUATION
Our evaluation aims to assess whether the synthesised preservation
specification prescribes to preserve i) relevant events and ii) the min-
imal amount of events necessary to support speculative hypotheses
of potential incidents. To achieve this aim, we apply our prototype
tool to two case studies publicly available for research and training
purposes. Each case study comprises data that would normally be
available to an investigator for examination (when a FR controller
is not implemented). The investigator can use this data to explain, if
possible, how a particular incident occurred. For each incident, we
manually modelled the environment and the speculative hypothe-
ses in EC. From this, we used our tool to generate preservation
specifications automatically. The EC models of the case studies and
the generated specifications are available online4.

We compare the events that the generated specification pre-
scribes to preserve with those that would be available to an investi-
gator when the system that does not satisfy evidence preservation
requirements, i.e. the information available to an investigator is
represented by the data-sets provided with the case studies. To
assess relevance, we verify whether our specification prescribes
to preserve events that were relevant to satisfy the speculative
hypotheses. We also check if occurrence of those events can be
inferred from the available data-set. To assess minimality we verify
that our approach prescribes preserving fewer events. In particular,
we compare the number of events that our approach prescribes to
preserve with those that can be inferred from the data-set. We also
measure the number of events, whose occurrence can be inferred
from the data-set, which were irrelevant to support the satisfaction
of the hypotheses.

7.1 Relevance and Minimality
The first incident scenario we considered is set in a university,
where students and academic staff can send emails by using the
university and students’ residence internal network. The model of
the environment includes different agents who can be academics
or students, and can teach or attend courses, respectively. It also in-
cludes locations, such as university and students residences, routers
(each of them placed in a location), emails and their corresponding
sender/recipient email and IP addresses. We also model whether
an email address is a university address for staff and students or it
is an external address.

The primitive events we model cover events whose occurrence
can be inferred from the data-set5. This includes the TCP packets
captured from the routers located inside the students’ residence.
Therefore, we consider the routers as digital sources within the
environment and use primitive events to represent network data
streams. We model the following primitive events: IMAP/POP net-
work traffic (we indicate primitive events related to emails sent
from external addresses to an academic as SUE); incoming HTTP
traffic (we indicate HTTP messages used to set-up a cookie as SC);
general outgoing HTTP traffic (EM) and specific outgoing HTTP
traffic towards anonymous email services (SAE). Some of the com-
plex events we model include: (i) emails received by a specific email
address (ii) cookie setting from an external address to an IP; (iii)

4https://github.com/lpasquale/kEEPER/tree/keeper_CLI
5http://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario

https://github.com/lpasquale/kEEPER/tree/keeper_CLI/RunningExample
https://github.com/lpasquale/kEEPER/tree/keeper_CLI/RunningExample
https://github.com/lpasquale/kEEPER/tree/keeper_CLI
http://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh

sending of HTTP messages from an IP address and a browser agent;
(iv) sending of anonymous emails from an IP address and a browser
agent. The complex event indicating setting of a cookie initiates
the state cookieSet for a specified email and IP address.

An incident of concern is related to the receipt of harassment
emails by academics. The following speculative hypotheses were
constructed: h1: an email is sent to an academic by someone using
an external address; h2: an anonymous email is sent by an indi-
vidual who can be identified for example through the cookie and
his/her browser agents; h3: an anonymous email is sent by an indi-
vidual who cannot be identified. h1 is satisfied when complex event
(i) takes place for which the sender email address is external and
the recipient email address is owned by a university staff member.
For supporting h1, the implemented specification recommended
preserving all incoming IMAP/POP network traffic (SUE) related to
emails sent from external addresses to an academic. h2 is satisfied
when a cookie is set for a specific email and IP address, complex
event (iii) takes place for which HTTP traffic originates from the
same IP address with which the cookie is associated, and subse-
quently complex event (iv) takes places for which the IP address
and the browser agent have been previously associated with outgo-
ing HTTP traffic. For h2, the specification required preserving (a)
incoming HTTP traffic adopted to set-up a cookie (SC), (b) outgo-
ing HTTP traffic from the same address to which the cookie was
set (EM) and (c) outgoing HTTP traffic to send anonymous emails
(SAE). h3 is satisfied when complex event (iv) takes place. Therefore,
for h3 the specification requires preserving all SAE events.

Table 1 shows the total time necessary to generate a specification
for each hypothesis, and the time required by each phase of the
approach: histories generation (HG), specification verification (SV)
and specification synthesis (SS). For each hypothesis, the number
of supporting histories (out of the total number generated) and
negative histories necessary to compute a specification, including
the maximum length of the histories, are shown. A higher number
of positive and negative histories could have been given as input to
the synthesis activity without affecting the generated specification.
The maximum time was taken for the most complex hypothesis
(h2) which also required the provision of negative histories.

Table 1: Performance in the harassment case study.

Instances Execution time (s)
#Pos #Neg Length HG SV SS Total

h1 1 / 4 0 1 ∼0 0.01 0.23 0.24
h2 1 / 32 4 3 0.08 0.19 39.913 40.183
h3 1 / 8 0 1 0.01 0.03 0.301 0.341

We implemented the specification of a FR controller able to ex-
tract data stream from the data-set. Extracted data streams can
support h2 since an incoming set-cookie message associated with
jcoach@gmail.com and received by IP 192.168.015.004 was pre-
served. Outgoing HTTP messages from the same IP address and
associated with a Mozilla browser have also been recorded; the
same browser appears to have been used to send the anonymous
email. This supports our theory that our approach would preserve
data that might represent relevant evidence if such an incident
were to occur. This would support investigators in prioritising
their efforts, while ensuring that other events related to alternative

scenarios would have been preserved if such scenarios occurred.
Moreover, our approach also prescribes to preserve events that
might not be proactively retained by digital sources. For example,
the data-set does not include events about IMAP/POP network traf-
fic (SUE) necessary to support hypothesis h1. This might be due to
the fact that network traffic was collected for a limited amount of
time and was not retained.

To assess minimality we compare the total number of events
whose occurrence can be inferred from the data-set with those that
our specification would prescribe to preserve. The full data-set in-
cludes 577, 760 data streams (application level messages) exchanged
in 15, 508 communications between different IP addresses. The num-
ber of data streams corresponds to the total number of events that
an investigator would normally have to examine. The number and
type of event that our specification prescribed to preserve for each
hypothesis is shown in Table 2; the total number of events is only
0.71% of the data streams in the entire data-set. Moreover, not all
the events preserved were necessary to support the hypotheses. For
our scenario, only 956 data streams corresponding to HTTP traffic
originating from the Mozilla browser were necessary to support
h2. Therefore, although our specification consistently reduces the
amount of data to be analysed by an investigator, it does not com-
pletely ensure the minimality requirement since 2874 (69%) data
streams were not relevant to support h2.

Table 2: Number of events preserved.

SUE SC EM SAE

Events

h1 0 – – –
h2 – 2 3830 300
h3 – – –

Total: 4132 events

We also applied our approach to a more complex corporate exfil-
tration scenario6. The model of the environment includes the com-
pany’s employees, their email addresses, computers, employees’
access rights to computers, storage devices that could be mounted
and programs that are installed on each computer. The available
data-set consists of an image of the hard drive of a Windows ma-
chine. Thus, primitive events we modelled represent changes in
the file system of a Window machine that can be observed from a
hard drive image. These include users’ logins, mount and unmount
of devices, installation of programs, and sent or received emails.
Owing to space, we will not provide details of the model and the
specification generated for all the hypotheses of this example and
refer the reader to the project webpage.

An incident of concern is related to the exfiltration of a confi-
dential document of a company from the computer of the chief
financial officer (cfo). Six hypotheses were constructed for this inci-
dent. Examples of these hypotheses are: h2: the document is sent
via email to an external email address and h5: the document is
copied while an external storage device is mounted. To support h2
the specification requires preserving user logins to a computer in
which the document is stored and, while a user is logged, sending
of emails to a non-corporate address including the confidential
document attached. As h5 is equal to the hypothesis of our running
example, it lead to the same preservation specification. For this
6http://digitalcorpora.org/corpora/scenarios/m57-jean

http://digitalcorpora.org/corpora/scenarios/m57-jean

On Evidence Preservation Requirements for Forensic-Ready Systems ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

incident scenario the hypotheses we modelled were more complex
and a higher number of supporting and refuting histories were
generated. This increased the time the approach took to learn a
specification. Table 3 shows the time to generate a preservation
specification for each hypothesis.

We manually acquired the events identified from the computer
hard drive using Autopsy [10]. These were not sufficient to support
any of the hypotheses because some of the events that our approach
prescribes to preserve are not retained in a computer hard drive im-
age. For example, we cannot support hypothesis h2 speculating that
the document might be sent as an email attachment by an employee
to a non-corporate email address. In particular, although an event
in the data-set indicates that an email with the attached confidential
document was sent from the cfo’s email address (jean@m57.biz) to
an external address (tuckgorge@gmail.com), we cannot conclude
which user was logged on the machine since the data-set only pro-
vides information about the last user login. A similar situation arise
with hypothesis h5 speculating that the document may be copied
to an external device, because mounting of a storage device and
copy of a file are events that are not retained. If our specification
was implemented it would have ensured preservation of events
necessary to support h2 and h5 when they occurred.

Table 3: Performance in the exfiltration case study.

Instances Execution time (s)
#Pos #Neg Length HI SV SG Total

h1 2 / 12 2 2 0.01 0.05 7.756 7.816
h2 1 / 4 1 2 0.01 0.05 1.852 1.912
h3 4 / 18 14 3 0.1 0.28 1733.82 1734.2
h4 4 / 16 9 3 0.5 0.18 894.197 894.877
h3 4 / 18 14 3 0.1 0.28 1733.82 1734.2
h4 4 / 16 9 3 0.5 0.18 894.197 894.877
h5 1 4 3 0.05 0.2 43.851 44.101
h6 1 4 3 0.5 0.21 170.356 171.066

To assess minimality, Fig. 4 shows, for each hypothesis, the
number of events our approach would have preserved from the
hard drive image. We compared these figures with those that an
investigator would have examined from the data-set (No-FR). Our
approach would have resulted in significantly fewer events to be
examined for hypotheses h1–h6. For example, to support h2 it
would be necessary to identify the mail clients among the installed
applications (133), inspect all the outboxes associated with the
accounts registered with the mail clients (23 emails for the cfo’s
outbox and no emails for the Administrator outbox) and identify the
users’ last login (3). We cannot claim the same for h5 the generated
specification requires preserving users’ last logins, mounted devices
and file access operations, which are not present in the data-set.

7.2 Discussion
The paper aims to ensure relevant events are preserved that may
serve as evidence, thus reducing the amount of data investigators
would have to search through. This is what is evaluated. The paper
is not concerned with reactive investigations nor aiding open-ended
investigations. We make the assumption that the speculative hy-
potheses of an incident are given in advance. Therefore a forensic-
ready system will be prepared to investigate only the incidents
known a-priori. This the assumption on which forensic readiness

Figure 4: Number of events to be examined.

guidelines for organisations are based on. Training experts (e.g.,
system/security administrator) to identify these is part of the busi-
ness requirements for implementing forensic measures [45] and is
outside the scope of our work. Furthermore, as the environment
and the speculative hypotheses are expected to be known a pri-
ori, there is a risk that this knowledge can be used to thwart the
forensic-ready system itself — an individual might adjust her be-
haviour to avoid preservation of events indicating her involvement
in an offense. Thus, applications of our approach would require
maintenance of confidentiality of the system specification.

The performance of our approach decreases when ‘richer’ posi-
tive and negative histories are used [5] (a saturation point is reached
for 18 histories). This is caused by the increase in the EC model
size when grounded. The time taken to synthesise a specification
increases linearly with the length of the considered preservation his-
tories. A saturation point is reached with histories having length 11.
Note that the scalability results purely depend on the open-source
prototype tool7 used to support the specification synthesis. This
could be significantly improved by deploying learning techniques
for context-dependent learning [32], and distributed reasoning [34].

To show that our formalisation could yield a practical solution,
we provide a proof-of-concept implementation, putting aside us-
ability issues. The definition of the model of the environment and
the hypotheses of the university harrassment and the corporate ex-
filtration scenarios required 2 and 3.5 days of work, respectively, to
one of the paper’s authors. We are developing a graphical interface
that would mask the complexity of the formal specification and
help practitioners represent potential incidents and how they may
occur in the environment. Such graphical interface is based on the
model-driven engineering principle to hide the complexity of the EC
language used to represent the environment and hypotheses within
a model. A model-based representation has the potential to ensure
correctness of the models by-design and encourage re-usability of
the environment and hypotheses among experts.

8 RELATED WORK
Existing research on forensic readiness has mainly focused on iden-
tifying high-level strategies which organisations can implement to
be forensic-ready. For example, Elyas et al. [15] use focus groups to
elicit required forensic readiness objectives (e.g., regulatory compli-
ance, legal evidence management) and capabilities (organisational
factors and forensic strategy). Reddy and Venter [42] present a
forensic readiness management system taking into account event

7https://github.com/stefano-bragaglia/XHAIL

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh

analysis capabilities, domain-specific information (e.g., policies pro-
cedures and training requirements), and costs (e.g., staff, infras-
tructure and training costs). However, none of these approaches
has addressed the problem of how to implement forensic readiness
in existing IT systems— inspite of the standardisation of forensic
readiness processes (ISO/IEC 27043:20158) which prescribes the
planning and implementation of pre-incident collection and analy-
sis of evidence activities.

Shield et al. [48] propose performing continuous proactive ev-
idence preservation. However, in large scale environments like
cloud systems, monitoring all potential evidence is not a viable
solution, as it might be cumbersome to analyse. Pasquale et al. [37]
propose a more targeted approach, where evidence preservation
activities aim to detect potential attack scenarios that can violate
existing security policies. However, this approach is less selective as
it prescribe to preserve any type of event within a history leading
to an incident, independently of other events that have previously
occurred or preserved. Existing work on data extraction for inves-
tigative purposes, such as E-Discovery [25], although supporting
retrieval of data for an investigation, it does not provide a solution
to engineer a forensic-ready system prescribing what data should
be preserved depending on its relevance to future investigations.

With the growth of digital forensics as a discipline, interest
in rigorous approaches has increased. For example, Carrier [11]
provides guidelines about the types of hypotheses that should be
formulated and the analysis to be performed to verify those hy-
potheses during a digital investigation. Others [1, 8, 27, 47] have
focused on providing a unified representation of heterogeneous log
events to automate event reconstruction. Similar to us, all these
approaches distinguish between primitive events having a direct
mapping to raw log events and complex level events, which can be
determined by the occurrence of primitive ones. Formal techniques
have also been used to represent and analyse the behaviour of the
environment in order to identify the root causes that allowed an
incident to occur [50] or possible incident scenarios [23]. Other
work is specialised on identifying attackers’ traces (e.g., evidence
and timestamps improperly manipulated by an attacker), from vio-
lations of invariant relationships between digital objects [49] or by
applying model checking techniques on a set of events expressed
in a multi-sorted algebra [7]. However, none of this work addresses
the problem of how hypotheses can be expressed formally, how
they relate to sequences of primitive and complex events supporting
them and how to achieve preservation requirements.

The requirements engineering community [26, 33, 53, 55] pro-
posed numerous techniques for modelling security and privacy
requirements to enable the design of systems less vulnerable to
potential attacks and privacy breaches. However, only prelimi-
nary attempts have been made towards engineering forensic-ready
systems [6, 38] and investigating how forensic-readiness require-
ments are considered during systems development lifecycles [24].
Although preservation requirements can be considered as a spe-
cific type of monitoring requirements [17, 18, 44, 46], the nature
of the specifications for forensic-ready systems is different in its

8http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=44407

scope (environment and hypotheses) and characteristics. These are
aspects that have not been covered in previous work.

Recent studies in program analysis, such as [19, 57], have high-
lighted the importance of providing software developers with auto-
mated support in making logging decisions and difficulty in con-
structing specifications to guide logging behaviour. In [57] for in-
stance, the authors present a method for learning what and when
to log from past logs of software developers. This differs concep-
tually from what we present here since incident-related histories
are domain specific, showing how particular hypotheses may be
met within particular environments. For forensic-ready systems,
justification of preservations need to be made explicit and in read-
able form, which is supported by the learning technique that we
deploy. We believe however that our approach could help software
developers in making informed decisions and insights on what logs
to preserve to enhance forensic-readiness of systems. Closest to
our work with in a forensic setting is that of [3, 30]. However [3]
focuses on defining “ideal” logging preferences for databases that
is independent of the incidents of concern and hence still poses a
risk of inadequate logging. The work of [30] instead is limited to
eliciting from natural language descriptions of software artefacts
the set events (as verb-object pairs) and an empirical classification
of such events to determine logging requirements.

9 CONCLUSION
This paper represents a first step towards a rigorous approach to
developing forensic-ready systems. We defined a framework for
formalising evidence preservation requirements of such systems.
We use this to synthesise specifications that guarantee a minimal
amount of data, constituting potentially relevant evidence to sup-
port given speculative hypotheses of incidents of concern, is pre-
served. We also provided a proof-of-concept implementation that
has been evaluated on two incident scenarios. Our results demon-
strate that our approach preserves relevant events and provides
insight into whether existing software/devices have the necessary
capabilities for preserving evidence. Moreover, the size of preserved
data is smaller than what would have been examined during an
investigation otherwise. Our approach does not propose replacing
the role of engineers nor investigators. It also assumes that domain
experts are involved in modelling the environment and selecting the
relevant histories to be covered by the preservation specifications.

In the future, we plan to investigate how our approach may
be adapted to dynamic situations at run-time in which environ-
ments and hypotheses may change over time. We are developing
a graphical designer aimed to facilitate the practitioners’ task of
designing the model of the environment and generation of hypothe-
ses. Finally when generating a preservation specification, we will
consider systematic approaches for synthesis when conflicts with
other requirements, such as legal requirements, are present which
may forbid preserving relevant data for privacy reasons.

ACKNOWLEDGEMENTS
This work is supported by ERC Advanced Grant no. 291652 (ASAP),
SFI Grants 10/CE/I1855, 13/RC/2094 and 15/SIRG/3501, and the
Imperial College Research Fellowship.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44407
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44407

On Evidence Preservation Requirements for Forensic-Ready Systems ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] J. Abbott, J. Bell, A. Clark, O. De Vel, and G. Mohay. Automated Recognition of

Event Scenarios for Digital Forensics. In Proc. of the 2006 ACM Symposium on
Applied Computing, pages 293–300. ACM, 2006.

[2] AccessData. FTK – AccessData Digital Forensics Software. http://www.
accessdata.com/products/digital-forensics/ftk, 2014.

[3] O. M. Adedayo and M. S. Olivier. Ideal log setting for database forensics recon-
struction. Digit. Investig., 12(C):27–40, 2015.

[4] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning operational require-
ments from goal models. In Proc. of the 31st International Conference on Software
Engineering, pages 265–275, 2009.

[5] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Elaborating requirements using
model checking and inductive learning. IEEE Trans. Software Eng., 39(3):361–383,
2013.

[6] F. Alrimawi, L. Pasquale, and B. Nuseibeh. Software Engineering Challenges for
Investigating Cyber-physical Incidents. In Proc. of the 3rd International Workshop
on Software Engineering for Smart Cyber-Physical Systems, pages 34–40, 2017.

[7] A. R. Arasteh, M. Debbabi, A. Sakha, and M. Saleh. Analyzing Multiple Logs for
Forensics Evidence. In Digital Investigations, volume 4, pages 82–91, 2007.

[8] F. P. Buchholz and C. Falk. Design and Implementation of Zeitline: a Forensic
Timeline Editor. In Proc. of the Digital Forensics Research Workshop, 2005.

[9] A. Cailliau and A. van Lamsweerde. A probabilistic framework for goal-oriented
risk analysis. In Proc. of the 20th International Requirements Engineering Confer-
ence, pages 201–210, 2012.

[10] B. Carrier. The Sleuth Kit (TSK) & Autopsy: Open Source Digital Forensic Tools.
http://www.sleuthkit.org, 2014.

[11] B. D. Carrier. A Hypothesis-Based Approach to Digital Forensic Investigations. PhD
thesis, Purdue University, 2006.

[12] E. Casey, A. Blitz, and C. Steuart. Digital Evidence and Computer Crime, 2014.
[13] E. Clarke, F. Lerda, and M. Talupur. An Abstraction Technique for Real-time

Verification. Next Generation Design and Verification Methodologies for Distributed
Embedded Control Systems, pages 1–17, 2007.

[14] e-fense. Helix. http://www.e-fense.com/products.php, 2014.
[15] M. Elyas, A. Ahmad, S. B. Maynard, and A. Lonie. Digital Forensic Readiness:

Expert Perspectives on a Theoretical Framework. Computers & Security, 52:70–89,
2015.

[16] B. E. Endicott-Popovsky and D. A. Frincke. Embedding Forensic Capabilities
into Networks: Addressing Inefficiencies in Digital Forensics Investigations. In
Proceedings of the 2006 IEEE Workshop on Information Assurance, pages 133–139,
2006.

[17] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard. Reconciling System
Requirements and Runtime Behavior. In Proc. of the 9th International Workshop
on Software Specification and Design, page 50, 1998.

[18] S. Fickas and M. S. Feather. Requirements Monitoring in Dynamic Environments.
In Proc. of the 2nd International Symposium on Requirements Engineering, pages
140–147, 1995.

[19] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie. Where
do developers log? an empirical study on logging practices in industry. In
Companion proc. of the 36th International Conference on Software Engineering,
ICSE Companion 2014, pages 24–33, 2014.

[20] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, and M. T. Schaub,
T.and Schneider. Potassco: The potsdam answer set solving collection. AI
Commun., 24(2):107–124, 2011.

[21] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proc. of 5th Intl. Conf. on Logic Programming,
pages 1070–1080, 1988.

[22] D. Giannakopoulou and J. Magee. Fluent model checking for event-based sys-
tems. In proc. of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering 2003 held jointly with 9th European Software Engineering Conference,
pages 257–266, 2003.

[23] P. Gladyshev and A. Patel. Finite State Machine Approach to Digital Event
Reconstruction. Digital Investigations, 1:130–149, 2004.

[24] G. Grispos, J. García-Galán, L. Pasquale, and B. Nuseibeh. Are you ready? Towards
the engineering of forensic-ready systems. In Proc. of the 11th International
Conference on Research Challenges in Information Science, pages 328–333, 2017.

[25] M. R. Grossman and G. V. Cormack. Technology-Assisted Review in E-Discovery
Can Be More Effective and More Efficient Than Exhaustive Manual Review. Rich.
JL & Tech., 17:1, 2010.

[26] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security Requirements Engi-
neering: A Framework for Representation and Analysis. IEEE Transactions on
Software Engineering, 34(1):133–153, 2008.

[27] C. Hargreaves and J. Patterson. An Automated Timeline Reconstruction Approach
for Digital Forensic Investigations. Digital Investigation, 9:S69–S79, 2012.

[28] T. A. Henzinger and O. Kupferman. From quantity to quality. In Proc. of the
International Workshop on Hybrid and Real-Time Systems, pages 48–62, 1997.

[29] R. J. Heuer. Psychology of Intelligence Analysis. Center for the Study of Intelligence,
1999.

[30] J. King, R. Pandita, and L. Williams. Enabling forensics by proposing heuristics
to identify mandatory log events. In Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, HotSoS ’15, pages 6:1–6:11, 2015.

[31] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation
Comput., 4(1):67–95, 1986.

[32] M. Law, A. Russo, and K. Broda. Iterative learning of answer set programs from
context dependent examples. In proc. of the 32nd International Conference on
Logic Programming, 2016.

[33] L. Liu, E. S. K. Yu, and J. Mylopoulos. Security and Privacy Requirements Analysis
within a Social Setting. In Proc. of the 11th IEEE International Conference on
Requirements Engineering, pages 151–161. IEEE Computer Society, 2003.

[34] J. Ma, F. Le, D. Wood, A. Russo, and J. Lobo. A declarative approach to distributed
computing: Specification, execution and analysis. TPLP, 13(4-5):815–830, 2013.

[35] New York Times. Raj Rajaratnam’s Galleon Group Founder Convicted in In-
sider Trading Case. topics.nytimes.com/top/reference/timestopics/people/r/raj_
rajaratnam/index.html.

[36] G. Palmer. A Road Map for Digital Forensics Research. Technical report, Air
Force Research Lab, Rome, 2001.

[37] L. Pasquale, S. Hanvey, M. Mcgloin, and B. Nuseibeh. Adaptive Evidence Col-
lection in the Cloud Using Attack Scenarios. Computers & Security (In Press),
2016.

[38] L. Pasquale, Y. Yu, M. Salehie, L. Cavallaro, T. T. Tun, and B. Nuseibeh.
Requirements-Driven Adaptive Digital Forensics. In Proc. of the 21st International
Requirements Engineering Conference, pages 340–341, 2013.

[39] A. Pnueli. The temporal logic of programs. In Proceedings of SFCS77, pages 46–57,
1977.

[40] D. Quick and K.-K. R. Choo. Big Forensic Data Reduction: Digital Forensic Images
and Electronic Evidence. Cluster Computing, 19(2):723–740, 2016.

[41] O. Ray. Nonmonotonic abductive inductive learning. J. Applied Logic, 7(3):329–
340, 2009.

[42] K. Reddy and H. S. Venter. The Architecture of a Digital Forensic Readiness
Management System. Computers & Security, 32:73–89, 2013.

[43] S. Rekhis and N. Boudriga. Formal digital investigation of anti-forensic attacks.
In Proc. of the 5th IEEE International Workshop on Systematic Approaches to Digital
Forensic Engineering, pages 33–44, 2010.

[44] W. N. Robinson. A Requirements Monitoring Framework for Enterprise Systems.
Requir. Eng., 11(1):17–41, 2006.

[45] R. Rowlingson. A Ten Step Process for Forensic Readiness. International Journal
of Digital Evidence, 2(3):1–28, 2004.

[46] M. Salifu, Y. Yu, A. K. Bandara, and B. Nuseibeh. Analysing Monitoring and
Switching Problems for Adaptive Systems. Journal of Systems and Software,
85(12):2829–2839, 2012.

[47] B. Schatz, G. Mohay, and A. Clark. Rich Event Representation for Computer
Forensics. In Proc. of the 5th Asia-Pacific Industrial Engineering and Management
Systems Conference, pages 1–16, 2004.

[48] C. Shields, O. Frieder, and M. Maloof. A System for the Proactive, Continuous,
and Efficient Collection of Digital Forensic Evidence. In Digital Investigations,
volume 8, pages 3–13, 2011.

[49] T. Stallard and K. N. Levitt. Automated Analysis for Digital Forensics Science:
Semantic Integrity Checking. In Proc. of the Annual Computer Security Application
Conference, pages 160–167, 2003.

[50] P. Stephenson. Modeling of Post-Incident Root Cause Analysis. International
Journal of Digital Evidence, 2, 2003.

[51] C. Taylor, B. Endicott-Popovsky, and D. A. Frincke. Specifying Digital Forensics:
A Forensics Policy Approach. Digital investigation, 4:101–104, 2007.

[52] S. Tewelde, S. Gruner, and M. Olivier. Advances in Digital Forensics XI: 11th IFIP
WG 11.9 International Conference, Orlando, FL, USA, January 26-28, 2015, Revised
Selected Papers, chapter NOTIONS OF HYPOTHESIS IN DIGITAL FORENSICS,
pages 29–43. Springer International Publishing, 2015.

[53] T. T. Tun, A. K. Bandara, B. A. Price, Y. Yu, C. B. Haley, I. Omoronyia, and
B. Nuseibeh. Privacy Arguments: Analysing Selective Disclosure Requirements
for Mobile Applications. In Proc. of the 20th International Requirements Engineering
Conference, pages 131–140, 2012.

[54] J. Van den Bos and T. Van Der Storm. Domain-specific optimization in digital
forensics. In International Conference on Theory and Practice of Model Transfor-
mations, pages 121–136, 2012.

[55] A. van Lamsweerde. Elaborating Security Requirements by Construction of
Intentional Anti-Models. In Proc. of the 26th International Conference on Software
Engineering, pages 148–157. IEEE Computer Society, 2004.

[56] S. Y. Willassen. Using Simplified Event Calculus in Digital Investigation. In
Proc. of the ACM Symposium on Applied Computing, pages 1438–1442, 2008.

[57] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang. Learning to Log: Helping
Developers Make Informed Logging Decisions. In Proc. of the 37th International
Conference on Software Engineering, pages 415–425, 2015.

http://www.accessdata.com/products/digital-forensics/ftk
http://www.accessdata.com/products/digital-forensics/ftk
http://www.sleuthkit.org
http://www.e-fense.com/products.php
topics.nytimes.com/top/reference/timestopics/people/r/ raj_rajaratnam/index.html
topics.nytimes.com/top/reference/timestopics/people/r/ raj_rajaratnam/index.html

	On evidence preservation requirements for forensic-ready systems
	Abstract
	1 Introduction
	2 Motivating Example and Overview
	3 Forensic Domain Model
	3.1 Environment Description
	3.2 Histories
	3.3 Hypotheses

	4 Preservation Specifications
	5 Specification Generation
	6 Tool Implementation
	7 Evaluation
	7.1 Relevance and Minimality
	7.2 Discussion

	8 Related Work
	9 Conclusion
	References

