
Cherry-Picking of Code Commits in Long-Running,
Multi-release Software

Panuchart Bunyakiati and Chadarat Phipathananunth
University of the Thai Chamber of Commerce

panuchart_bun,chadarat_phi@utcc.ac.th

ABSTRACT
This paper presents Tartarian, a tool that supports maintenance of
software with long-running, multi-release branches in distributed
version control systems. When new maintenance code, such as bug
fixes and code improvement, is committed into a branch, it is likely
that such code can be applied or reused with some other branches.
To do so, a developer may manually identify a commit and cherry
pick it. Tartarian can support this activity by providing commit
hashtags, which the developer uses as metadata to specify their
intentions when committing the code. With these tags, Tartarian
uses dependency graph, that represents the dependency constraints
of the branches, and Branch Identifier, which matches the commit
hashtags with the dependency graph, to identify the applicable
branches for the commits. Using Tartarian, developers may be able
to maintain software with multiple releases more efficiently.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Softwaremaintenance
tools; Software version control;

KEYWORDS
version control system, git, github, cherry pick, dependency
ACM Reference format:
Panuchart Bunyakiati and Chadarat Phipathananunth. 2017. Cherry-Picking
of Code Commits in Long-Running, Multi-release Software. In Proceedings of
2017 11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17), 5 pages.
https://doi.org/10.1145/3106237.3122818

1 INTRODUCTION
Distributed, branch-based version control systems, such as Github,
have increasingly gained popularity in the software community
[7]. The release-branching feature in Github allows software to
be maintained as multiple releases. It is observed that projects
such as Jetty and Python maintain multi-release branches because
of the dependency constraints on external libraries. When new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3122818

maintenance code is committed into one release branch, it is likely
that such code can be reused with some other branches. Tartarian
can identify the branches that can benefit from reusing the code
and may help developers to efficiently maintain software.

2 RELATEDWORKS
Code maintenance, especially bug fixing, is studied [1] and the
results suggest that bug management should not consider the stage
of bug (active, inactive, etc.) and workflow but should be based
on satisfying “stakeholder’s goals during the lifespan of bug” such
as assignment of ownership and search for knowledges. Guo et
al. [5] study bugs in Windows Vista and Windows 7 and develop
a statistical model to predict the probability of a bug to be fixed;
and similarly, bug reporting and fixing are found to be related to
individuals, social and organisational issues.

Several works (e.g. [3] and [4]) study the automatic generation
of commit messages. Jiang and McMillan [6] propose a tool that au-
tomatically generate commit messages in the “verb+object" format
by classifying a diff on the commit messages. Instead of creating the
commit message automatically, our work provides a set of hashtags
for developers to annotate the commit messages, which may en-
hance code reuse through better semi-automated communication.
Our approach focuses on team collaboration and is different from
code clone detection techniques [2] and [10] that analyze code to
identify similarities between branches to support code reuse.

3 CHERRY-PICKING
Cherry-picking is a process to manually pick commits in one branch
and apply them into another branch. The difficulty lies in the fact
that developers must know which commits and which branches the
commits should be applied. Given the condition that those branches
cannot be merged as they are long-running releases, the developers
can use the function git cherry-pick to reuse the code and apply the
commits into their branches.

To illustrate the concept, the direct acyclic graph (DAG) of a
repository below has three releases 1.1, 1.2 and 1.3 where release
1.1 has commit a, release 1.2 has commits a, b and c and release
1.3 has commits a, b, c, d and e. Once the bug fix f is committed
to release 1.3 (with the hash db55fd2), it can be cherry picked to
release 1.1 and 1.2 hence release 1.1 becomes a and f, release 1.2
becomes a, b, c and f and release 1.3 becomes a, b, c, d, e and f.
* b44ea88 (release1.2) Added f (cherry picked from db55fd2)
| * 4fcd797 (release1.1) Added f (cherry picked from db55fd2)
| | * db55fd2 (HEAD -> master, release1.3) Added f
| | * 3e63476 Added e
| | * f0a729e Added d
| |/
|/|
* | 9981679 Added c
* | 01ea7e6 Added b
|/
* 5597940 Added a

ar
X

iv
:1

70
8.

02
39

3v
1

 [
cs

.S
E

]
 8

 A
ug

 2
01

7

https://doi.org/10.1145/3106237.3122818
https://doi.org/10.1145/3106237.3122818

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Panuchart Bunyakiati and Chadarat Phipathananunth

4 CURRENT PRACTICES
Regardless of the workflow that the developers are using, we argue
that once there is a necessary for cherry-picking, there requires
a tool that help to automate the decision making by identifying
affected release branches. We aim to develop Tartarian to apply
to any kind of branch-based workflow that allows cherry-picking.
This section describes existing practices related to cherry-picking.

First, to consider which commit to be cherry picked, developers
can use git cherry to find commits to be applied from the topic
branch into the upstream branch, reporting as + or -. This approach
only considers code diff and does not consider dependency con-
straints; hence, all commits with code diff are simply reported even
though they are indeed inapplicable to the branch.

Second, to keep track of the cherry-pick, developers must use
the option to record the original commit using -x; with this option,
Git appends the commit message with “cherry picked from com-
mit <commitid>”. This helps to keep track of the cherry-pick so
that other developers can use the command git branch −−contains
<commitid> to check which of the branches have the commit and
use the command git log −− <file path> to track the changes to the
file. If the commit is done without -x, it can be difficult to track the
cherry-picked record.

Third, to decide whether to merge or to cherry pick, there are
suggestions to use instead the flow that merges the changes into
the downstream branch and then merge upstream. There are sit-
uations that the branches can not be merged as they have to be
maintained separately. And because this is a manual process, there
is a possibility to merge into the different branches instead of the
one intended. Also, because pull-based software development often
involves a number of contributors and those who integrate changes
from themmust understand all changes and possible conflicts, while
cherry-picking is done at the commit level instead of the branch
level. It can be done more quickly, and thus more suitable for fixes
that required immediate handling.

5 TARTARIAN APPROACH
We present Tartarian, a tool for identifying branches that have
a potential to benefit from commits in other branches. Tartarian
helps developers to make decisions whether the commit should be
cherry picked into a release branch. Tartarian supports Maven and
Git by parsing the pom.xml configuration file and searching the
dependency requirements to construct a Dependency Graph that
represents the dependencies of the release branches on external
libraries. In addition to the original commit message, Tartarian
requires developers to provide hashtags to indicate the purpose of
commit regarding the dependencies. The Branch Identifier matches
the dependency graph and the hashtags to identify the applicable
branches for the commits. To use Tartarian, a developer can use git
tcommit operation with some hashtags in the message. For example,
$git tcommit -m "fixed bug 132215 #bugfix{JDK, 1.8+}"

Tartarian analyses hashtags and uses Branch Identifier to search
through the dependency graph to identify the affected releases and
makes recommendations to cherry pick. Developers can read the
recommendations using,
$git tcommit -r

5.1 Dependency Graph
Tools such as MaX [11] can determine control and data dependen-
cies and create a dependency graph to analyse the impact of code
changes. Build tools such as Maven, Ant and Gradle maintain de-
pendency configurations and acquire the required libraries during
the build. In Maven, the dependencies of a release are maintained
in pom.xml. Tartarian parses the pom.xml files and constructs a
global dependency graph for all releases present.

Dependency graph can be defined as a directed graphG = (V ,E)
where V is a set of modules and E ⊆ V×V is a set of dependencies.
V (X ,Y) indicates a module X depends on modules Y. Using depen-
dency graph, Tartarian can address the “dependency hell” problems
such as long chains of dependencies e.g.V (W ,X),V (X ,Y),V (Y ,Z),
dependency conflicts e.g. V (X ,Z1),V (Y ,Z2) and circular depen-
dency e.g. V (X ,Y),V (Y ,Z),V (Z ,X).

5.2 Tartarian Hashtags
To communicate through space and time, developers describe the
purpose of a commit in a commit message. Other developers must
read the message to understand the purpose. If the commit message
has insufficient information, it is difficult for other developers to
know what he should do and whether he should apply the commit
into his branch, despite the fact that the developers may know
about the existence of the commit.

We analyse practices and guidelines, such as the JDK migration
guide [12], which describe the removed and changed APIs, the dep-
recated list of APIs [13] and the conventional uses of cherry-picking.
We also examine the cherry-picking practices of the Jetty project
and four other open source projects including cpython, elasticsearch,
hadoop, and linux. We analyze commit messages that contain the
text “cherry picked from” for traceable cherry-picked commits. The
process has two steps. First, for each project, we use R to find term
occurrence in the messages. Second, we use those terms as key-
words that appear more frequently to classify the messages into
categories. Based primarily on the Jetty project, we use qualitative
analysis into the detail of issues and code changes. In table 1, we
propose an initial set of hashtags including bugfix, backport, config,
deprecated, improve, inaccessible and removed, each of which has
tag name together with the dependency constraints such as depen-
dency on external libraries and the versions of those libraries that
the commit is related with.

Table 1: Tartarian hashtags

Tag Description Example Priority
#bugfix A branch will result in an error,

without this commit.
#bugfix{JDK, +} High

#backport Backport this commit from a
newer release to an older one.

#backport{Jetty, 9.2.x} Medium

#config Changes in configuration which
may effect some of the releases.

#config{JDK, 1.8+} High

#deprecated A method is deprecated and
there is a better alternative in
this commit.

#deprecated{JDK, 1.8+} Low

#improve This commit provides an im-
provement for a higher quality
of code.

#improve{Maven, +} Low

#inaccessible The method is found to be inac-
cessible, without this commit a
branch will not compiled.

#inaccessible{JDK, 1.8+} High

#removed A method is removed but still in
backwards compatibility.

#removed{JDK, 8+} Medium

Cherry-Picking of Code Commits in Long-Running, Multi-release Software ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

These hashtags can be prioritised into three levels of urgency:
high, medium and low. A commit with hashtag of high priority must
be cherry picked immediately and without them software might
fail. A hashtag of medium priority must be dealt with eventually
when a developer can. And the hashtag with low priority indicates
that the commit may be ignored but to apply it to the release can
be beneficial to the quality of software.

5.3 Branch Identifier
After a code change is committed to the repository, Tartarian checks
if a commit has a relevant hashtag. If so, it analyses the tag and
parses for the dependency constraints attached with the tag. The
Branch Identifier represents dependency graph in Neo4j [9], a data-
base for graph data structure, and translates the constraints into
Cypher [8], a query language for graphs, to retrieve the affected re-
lease branches. For example, #bugfix{JDK, 1.8+} indicates a commit
applicable for the releases that have dependency on JDK 1.8 and
later. Each release is then checked for its dependency satisfying the
constraints. With this information, Tartarian can notify developers
who are responsible for the affected releases to consider cherry
picking this commit into their branches with high priority.

Figure 1 depicts how a commit in Jetty 9.4.x with a hashtag
#bugfix{JDK,1.8+} is resolved with Jetty 9.2.x and 9.3.x where release
9.2.x has dependency on JDK1.7 and release 9.3.x on JDK1.8. The
commit is resolved with release 9.3.x and a developer maintaining
this release is notified with this commit having a high priority.

commit x

#bugfix{JDK,1.8+} 9.4.x

committed to

9.3.x

applicable to

1.8

Jetty

9.2.x

1.7

JDK

Figure 1: How Tartarian works

6 CASE STUDIES
This section illustrates the cherry-picked commits in Jetty, a web
server and servlet container. Since 2016, Jetty repository is main-
tained at Github under https://github.com/eclipse/jetty.project. We
use data from jetty-9.2.x, jetty-9.3.x and jetty-9.4.x for this study.

To analyse cherry-picked commits in the Jetty project, we iden-
tify the commit messages that contains the phrase “cherry picked
from <commit id>”. We search with the term “cherry picked” and
“cherry” to trace all cherry-picked commits using the SourceTree
tool. When we found such commit, we explore the intention of the
commit by looking at the issue that tends to cause this commit, the
full commit message and the diff of source code of both the original
commit and the cherry-picked one.

We use “git branch –contains <commit id>” to identify all branches
that contain the commit and verify that the commit is indeed cherry

picked. Oncewe have the branch id, we check the commit and source
code in Github to analyse the changes.

In the Jetty repository 9.2.x, 9.3.x and 9.4.x, SourceTree returns
19 messages from the search with keyword “cherry picked” i.e. the
cherry picked commits and 27 messages with keyword “cherry”
that indicates other commits such as “cherry pick correction”, “undo
cherry pick”, “cherry pick cleanup” etc.

6.1 #deprecation of older methods
It is possible that the newer version of external libraries might
provide a better alternative to code. For example, in issue 1135
“Avoid allocations from Method.getParameterTypes() if possible
#1135” found at https://github.com/eclipse/jetty.project/issues/1135,
the contributor suggests to change all the method calls as below.

-if (m.getParameterTypes().length != 0)
+if (m.getParameterCount() != 0)

There was a pull request. It was suggested that there should have
been a merge into release 9.3.x but the commit was pulled instead
into master. Then, it was cherry picked into release 9.3.x and then
merged into release 9.4.x.

With Tartarian, the cherry-picking can be semi-automated and
thus better supported. The commit can be tagged with “#depre-
cated{JDK, 1.8+}”, suggesting that this change will affect the re-
leases that depend on JDK 1.8 onwards, without the knowledge
about other branches. Tartarian can search from the dependency
graph for the affected release branches i.e. Jetty 9.3.x and 9.4.x in
this case, both having dependencies on JDK 1.8, and then notify
the developers to consider cherry picking this commit without the
developers having to communicate.

6.2 #bugfix
In commit fa53b11 in release 9.4.x, the commit message is “fixed
reset of DispatcherType”. The original source code has a finally block
at the end of the case selection which resets the DispatcherType to
null for every possible case. This error was removed and each case
has its own finally block instead. The commit was cherry picked
to release 9.3.x as commit 56afc2, tagged as “481554 DispatcherType
reset race.”

Because the bug fix concerns programming logic, it is likely that
this change should apply to all release branches. However, this
commit is not cherry picked into release 9.2.x.

Tartarian can help to facilitate this change. Developers can com-
mit the change with a tag “#bugfix{JDK, +}” to specify that the
commit may be applied to all release branches having dependency
on any version of the JDK because finally is introduced into Java
programming language since the early version of the JDK. The tag
would be checked and recognised as high priority. The developers
taking care of all other release branches then would be notified
with this change and can make decision to include the change into
their branches.

6.3 #configuration changes
The commit 521cc6 containing the message “Some javadoc plu-
gin configuration updates (cherry picked from commit 240c217)” de-
scribes the changes in software configuration that may affect vari-
ous release branches that depend on the external libraries specified

https://github.com/eclipse/jetty.project
https://github.com/eclipse/jetty.project/issues/1135

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Panuchart Bunyakiati and Chadarat Phipathananunth

in the configuration. In the original commit (240c217), the configu-
ration was removed from jetty.project/pom.xml specifying that the
remove was required for JDK 8u121 or later. And the cherry-picked
commit (i.e. commit 521cc6) is modified to support the release
branch with a dependency on JDK1.8 onward. The two commits
suggest that implicit knowledge about the JDK version that affect
the configuration of Jetty are specified traditionally in the comment.

With Tartarian, the commit message can be tagged with #con-
fig{JDK,1.8+} instead. By doing so, other release branches with
dependency on JDK1.8 can be advertised with the updates in the
configuration and developers can make a decision to cherry pick
the commit into their branches.

6.4 #backport from a newer release
Backport is essential for backward compatibility and for the code in
newer branch to produce the same output as those in older branches.
In commit 5c0906e in release 9.3.x, the commit message is “474454 -
Backport permessage-deflate from Jetty 9.3.x to 9.2.x + post cherry-
pick merge cleanup”. The commit message does not contain the hash
of the original commit, without this information, it is very difficult
to identify the original commit.

To backport from a branch to an older release branch, Tartarian
uses #backport{Jetty, 9.2.x} to indicate that a commit can be used to
backport into the 9.2.x release branch. Developers taking care of
the release branch then would be notified with this change and can
make decision to backport this change into their branch in a more
systematic way.

6.5 #improve the quality of software
This case illustrates the improvement to code. Commit be5bb05 with
message “Disabling javadoc, deploy, findbugs in /tests/ (cherry picked
from commit ad1512d)” proposes changes to the tests/pom.xml file
so that the maven-deploy-plugin and maven-javadoc-plugin are
skipped and that the projects are not deployed during test and
that no java doc is generated, thus the overall performance can
be improved. The pom.xml file is changed in release 9.4.x and is
cherry picked into 9.3.x to disable the unnecessary plugins in the
org.eclipse.jetty.tests package. In release 9.2.x there is no configura-
tion for the two plugins so it is unnecessary to apply the change.

Using Tartarian, the tag for quality improvement can be written
as #improve{Maven, +} to notify other release branches that depend
on Maven for potential code improvement. However, in this par-
ticular case, for some reasons, the configuration in release 9.2.x
does not contain the plugins of interest. Therefore the developers
responsible for the release branch may choose to ignore the cherry-
pick if they consider this as unnecessary or they may choose to
apply the commit to make the file consistent among all branches.

The #inaccessible tag can be used in the situations similar to those
of the #bugfix tag, as the code will not be compiled or executed
without these inaccessible methods; therefore, equivalent to a bug
in the code. And the #removed tag can be used in the same situations
as those of the #deprecated tag, as the code can still be compiled and
executed but may need to be updated at some point in the future.

7 CHERRY-PICKING IN OTHER SOFTWARE
PROJECTS

We found that many software projects have long-running release
branches to maintain multiple versions of the software. Examples
include python 2.7, 3.5 and 3.6. Due to a large numbers of external
libraries only support Python 2.x when the language itself has
progressed to Python 3.x, the Python community consequently
has to maintain both versions of the language for several years.
Elasticsearch and Hadoop maintain a number of release branches.
For Linux, while the project maintain only one master development
branch on Github, there are 513 releases as of June 2017.

As discussed in section 5.2, we try to generalise the cases found
in the Jetty project to other open source projects to examine the
pattern of cherry-picking. Based on this high-level analysis, the
cherry-picked commits can be categorized into three groups: “bug
fixes” for commits related to bugs, “backports” for commits re-
garding backward compatibility, and “code maintenance” for the
messages that contain verb words such as ‘add’, ‘remove’, ‘improve’,
‘change’ etc. At this stage, without analysing the source code in
a detail, it is difficult to further classify the commits in the code
maintenance into the subgroups at the level of our defined tags in
the case study. We plan to further develop this in the future work.

Table 2: Cherry-picks in four major open source projects

Project release total bug back- code
branches fixes ports maintenance

cpython 2.7, 3.5, 3.6 461 149 10 264
(python/cpython) (32.32%) (2.17%) (57.27%)
elasticsearch 2.0-2.4, 337 49 1 269
(elastic/elasticsearch) 5.0-5.4, 5.x (14.54%) (0.30%) (79.82%)
hadoop 2, 2.6-2.8.1, 7150 1431 - 2095
(apache/hadoop) 3.0.0-alpha1, (20.01%) (29.30%)

2 and 3
linux - 534 98 - 119
(torvalds/linux) (18.35%) (25.81%)

8 CONCLUSION AND FUTUREWORK
We propose that, together with commit messages, developers may
use hashtags as metadata to help specifying the intention of a
commit. These hashtags, when used with the Tartarian tool, can
identify the release branches that a commit may be reused. Doing
so can help developers to efficiently maintain software without the
need to acquire implicit knowledge of the release branches.

Despite the fact that dependencies on JDK are used in most of the
case studies in this paper, we believe that Tartarian can be applied
to dependency constraints in general, which we will explore in
our future work. In addition, it can be argued that the satisfaction
of dependency constraints alone is not sufficient for the cherry-
picked commit to fit the branch. Cherry-picking requires semantic
checking to establish that the cherry-picked commit will not cause
unintentional faults or build breaks in the branch. A feature that
checks for these semantic constraints is needed in Tartarian.

9 ACKNOWLEDGEMENT
The authors are grateful to the reviewers for their helpful sugges-
tions and would like to thank the University of the Thai Chamber
of Commerce for supporting this project.

Cherry-Picking of Code Commits in Long-Running, Multi-release Software ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Jorge Aranda and Gina Venolia. 2009. The secret life of bugs: Going past the

errors and omissions in software repositories. In Proceedings of the 31st Interna-
tional Conference on Software Engineering (ICSE ’09). IEEE Computer Society,
Washington, DC, USA, 298-308.

[2] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering, Vol. 33, no. 9. IEEE.

[3] Casalnuovo, Casey. Analyzing and Generating Commit Messages for Software
Repositories. Diss. University of Delaware, 2013.

[4] CortàźĽs-Coy, Luis Fernando, et al. 2014. On automatically generating commit
messages via summarization of source code changes. In Proceedings of the 14th
International Working Conference on Source Code Analysis and Manipulation
(SCAM ’14). IEEE, USA, 275-284.

[5] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
2010. Characterizing and predicting which bugs get fixed: an empirical study of
Microsoft Windows. In Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1 (ICSE ’10), Vol. 1. ACM, New York, NY,
USA, 495-504.

[6] Siyuan Jiang and Collin McMillan. 2017. Towards automatic generation of short
summaries of commits. In Proceedings of the 25th International Conference on
Program Comprehension (ICPC ’17). IEEE Press, Piscataway, NJ, USA, 320-323.

[7] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M.
German. 2015. Open source-style collaborative development practices in commer-
cial projects using GitHub. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1 (ICSE ’15), Vol. 1. IEEE Press, Piscataway, NJ,
USA, 574-585.

[8] Neo Technology. Cypher Introduction. http://neo4j.com/docs/developer-
manual/current/cypher/#cypher-intro. Retrieved July, 2017.

[9] Neo Technology. Neo4J. http://neo4j.com. Retrieved July, 2017.
[10] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and

evaluation of code clone detection techniques and tools: A qualitative approach.
Sci. Comput. Program. 74, 7 (May 2009), 470-495.

[11] Amitabh Srivastava, Jay Thiagarajan, and Craig Schertz. 2005. Efficient integra-
tion testing using dependency analysis. Technical Report MSR-TR-2005-94, Vol.
82. Microsoft Research.

[12] Oracle. Java Platform, Standard Edition Oracle JDK 9 Migration Guide.
https://docs.oracle.com/javase/9/migrate/. Retrieved June, 2017.

[13] Oracle. Deprecated API. https://docs.oracle.com/javase/8/docs/api/deprecated-
list.html. Retrieved June, 2017.

	Abstract
	1 Introduction
	2 Related works
	3 Cherry-Picking
	4 Current Practices
	5 Tartarian approach
	5.1 Dependency Graph
	5.2 Tartarian Hashtags
	5.3 Branch Identifier

	6 Case Studies
	6.1 #deprecation of older methods
	6.2 #bugfix
	6.3 #configuration changes
	6.4 #backport from a newer release
	6.5 #improve the quality of software

	7 Cherry-picking in other software projects
	8 Conclusion and Future Work
	9 Acknowledgement
	References

