
VART: A Tool for the Automatic Detection of Regression Faults∗

Fabrizio Pastore, Leonardo Mariani
University of Milano-Bicocca, DISCo
{pastore,mariani}@disco.unimib.it

ABSTRACT
In this paper we present VART, a tool for automatically revealing
regression faults missed by regression test suites. Interestingly,
VART is not limited to faults causing crashing or exceptions, but
can reveal faults that cause the violation of application-specific
correctness properties. VART achieves this goal by combining static
and dynamic program analysis.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;

KEYWORDS
Regression testing, dynamic analysis, static analysis.
ACM Reference Format:
Fabrizio Pastore, Leonardo Mariani. 2017. VART: A Tool for the Automatic
Detection of Regression Faults. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4–8, 2017 (ESEC/FSE’17), 5 pages.
https://doi.org/10.1145/3106237.3122819

1 INTRODUCTION
Software systems are continuously evolving artefacts. They change
for many different reasons, including feature extension, program
enhancement, and bug fixing. Changing and evolving the software
is a tricky task because developers have to simultaneously consider
the correctness of the change and its effect on the existing func-
tionalities. Indeed changing the software often results in regression
problems, which are faults introduced in functionalities that were
supposed to be unaffected by the change [7, 8].

Although changes are tested systematically, regression faults
frequently remain silent until observed in the field. This is due to
the extensiveness of regression test suites that, although designed
to cover both the change and the presumably unchanged function-
alities of the system, they may miss important corner cases affected
by the change [12].
∗This work has been partially supported by the H2020 Learn project, which has been
funded under the ERC Consolidator Grant 2014 program (ERC Grant Agreement n.
646867).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3122819

To cope with the intrinsically limited scope of testing, static
program analysis can be exploited to formally verify if a given
software (e.g., a modified program) satisfies a set of correctness
properties [1, 9, 13]. While static analysis can prove that some
properties hold, its practical applicability is limited by the need of
specifying the correctness properties that must be checked.

To combine the power of static analysis together with the effec-
tiveness of testing, we designed the Verification Aided Regression
Testing (VART) technique [12], which exploits test cases to both auto-
matically generate the correctness properties that must be checked
and identify the properties that have been intentionally violated
by the changes, and static analysis to both discover properties that
provably hold before the change and detect properties that have
been unintentionally violated by the change. Empirical results show
that the combination of these two solutions can augment the classic
regression testing process, which consists of running the available
test cases after every change, with a fully automated verification
process that can detect additional regression problems not revealed
by the test cases, including faults that violate application-specific
properties without producing any crash or exception.

In particular, VART can analyze a change from a base version to
an upgraded version as follows. It first uses dynamic analysis, in-
variant detection in particular [2], to automatically derive dynamic
program properties from the information collected while running
the test cases on the base version of the software. VART then uses
static analysis, model checking in particular [3], to verify if the
dynamic program properties provably hold for the base version
of the software. The properties that are not proved to hold, either
because they are false or they are too hard to prove, are discarded,
and only the true properties are preserved for the next steps of the
analysis.

Since some correctness properties that hold for the base version
of the software might be intentionally invalidated by a change, for
instance because a software requirement has changed, VART au-
tomatically detects the likely outdated properties before analyzing
the upgraded version of the software by running the test cases
designed to verify the change. Any property falsified during the
execution of these test cases is likely to be a desirable manifestation
of the change (we assume the correctness of the executions pro-
duced by passing test cases). For instance, in automotive software,
a property acceleration ≥ 0 is likely violated by any test case that
covers a change that introduces the possibility to encode the event
of braking as a negative acceleration.

Once the outdated properties have been removed, the result-
ing set of properties are the non-regression properties, that is, the
correctness properties that are satisfied by the base version of the
software and that should be preserved by the change. VART finally
uses static program analysis, again in the form of model checking,
to verify the non-regression properties on the upgraded version
of the software. Violations, together with counterexamples, are

ar
X

iv
:1

70
8.

02
05

2v
1

 [
cs

.S
E

]
 7

 A
ug

 2
01

7

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Fabrizio Pastore, Leonardo Mariani

int is_available(t_product* prod){

return prod->items > 0;

}

Figure 1: Base Version: function is_available.

reported to the user since they are strong indicators of the pres-
ence of regression faults. Note that VART discovers faults on the
basis of the violation of application-specific properties derived
from the monitored executions. This allows VART to identify faults
causing incorrect outcomes, which cannot be detected by program-
independent correctness properties, such as the absence of null
pointer dereferences.

The VART framework (hereafter VART for simplicity) imple-
ments this analysis for C programs, providing: (1) a backend that
executes dynamic and static program analyses, (2) a set of com-
mand line tools for the automated execution of VART within con-
tinuous integration systems, such as Jenkins (https://jenkins.io),
and (3) a GUI, implemented as a plug-in for the Eclipse IDE, that
provides a set of views for supporting developers in analysis and
debugging tasks. A video about the VART tool is available at https:
//youtu.be/E6eUraMc0x0.

This paper focuses on presenting the framework that implements
the VART technique, more precisely it first presents how VART
can be used to effectively debug a regression fault (Section 2), then
illustrates the components that are part of the tool (Section 3),
overviews the empirical results achieved with well known open-
source software (Section 4), and provides final remarks (Section 5).

2 REVEALING REGRESSION FAULTS
This Section shows how VART can be used to reveal regression
faults using a running example.

The program considered in this example implements a simplified
library for managing a store. The two software versions differ for
the implementation of the function is_available that returns an
integer value representingwhether a product is available or not. The
base version of function is_available, shown in Figure 1, returns
1 if a product is available, 0 otherwise. The upgraded version of the
function, shown in Figure 2-b, in addition to returning 0 and 1, can
return −1 for products that are out of catalog.

The upgraded function implements the new requirement to
support out of catalog products, but also introduces a regression
fault in function available_products, shown in Figure 2-b. Func-
tion available_products receives as input a list of products, and
counts the number of available products by summing the val-
ues returned by function is_available, see the 4th line in func-
tion available_products. Function available_products works
properly in the base version of the software, but fails in the upgraded
program when processing a list that contains out of stock items.
When function is_available returns −1, the sum computed in
function available_products is decreased by one, producing an
incorrect result, for example variable total may become negative.

Although changes are regularly tested, developers may fail to
cover all the relevant cases. For instance, in this case the developer
may implement a test case that checks if the upgraded version of
function is_available returns −1 when the item passed as input
is out of stock, omitting to design new test cases with out of stock

items for function available_products. VART can effectively ad-
dress these cases revealing the missed regression fault.

2.1 Revealing Regression Faults
When VART is executed on the running example, it immediately re-
ports a regression fault in the upgraded version of the software. The
only inputs required by our tool are the paths to the project fold-
ers containing the base and the upgraded versions of the software
and the name of the executables. VART requires the presence of a
Makefile to run the test cases of the program in the project folder.
The inputs are saved in the configuration file Store.bctmc stored
in an Eclipse project, as shown in Figure 2-a. Once the analysis is
started VART executes every analysis step in background.

VART shows the results of the analysis in the Eclipse GUI, reusing
standard Eclipse views when possible. VART uses both the Problems
view (Figure 2-d) and the Regressions view (Figure 2-c) to show the
list of non-regression properties violated by the code opened in the
editor, if any, and by the whole program, respectively. The presence
of non-regression properties violated by the upgrade indicates the
presence of regressions. In the example, the violation of the property
total ≥ 0 in function available_products is the effect of the
change in function is_available, which may return −1 and thus
cause the generation of negative values for variable total.

VART also annotates the source code editor with information
about the identified regression problems. For example, the red
marks next to the code visualized in the editor correspond to the
program locations that falsified at least a non-regression property
(Figure 2-b). The properties corresponding to the marks can be vi-
sualized by moving the cursor over the mark, as shown in Figure 4.
In this case, the property prods == 0 has been preserved by the
upgrade, while the property total ≥ 0 has been falsified.

To let developers to precisely investigate the nature of the re-
gression problems, VART can report the complete list of the dy-
namic, outdated, valid, and invalid properties (Figure 2-e). The
outdated and valid properties can also be visualized contextually
in the source code, similarly to the invalid properties, as shown
in Figure 5. This information can be useful during debugging. For
instance, the fact that the property return == 0 || return ==
1 is outdated clearly points the developer at the change that mod-
ified the behavior of function is_avalable, which is the change
responsible for the negative values assigned to variable total in
function available_products.

Finally, VART can visualize the complete list of non regression
properties in the view Non regression properties (Figure 2-f).

2.2 Counter-example Driven Debugging
To further support debugging, VART can generate a counterexam-
ple trace that shows how each violated property can be actually
violated by an execution of the software. The counterexample trace
is visualized in Eclipse using a modified version of the CBMC plug-
in [3]. Software engineers can navigate the trace backward, starting
from the point of violation of the property, that is, the end of the
trace, to identify the variable assignments that caused the prop-
erty violation. Figure 3 for example shows that the violation of the
property total ≥ 0 (Figure 3-a) is caused by the assignment of
value −1 to variable total (Figure 3-b). The value −1 is returned by

VART: A Tool for the Automatic Detection of Regression Faults ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

a b c

e

d

f

Figure 2: Eclipse with VART views (properties are shown in form of asser-
tions).

a

b

c

Figure 3: Inspection of a counterexample
for property total ≥ 0. The variables with a
yellow background are the ones updated in the
lines selected (orange) in the left panel.

Figure 4: Annota-
tion showing a non-
regression property
invalid for the upgraded
software.

Figure 5: Annotation showing
two outdated properties.

function is_available as shown in Figure 3-c. This trace suggests
that function available_products should be fixed by adding the
support to the case of function is_avalable returning −1.

3 FRAMEWORK OVERVIEW

RADAR DAIKON

GDB FunFrog

Changes
Detector

CBMC

Eclipse VART
library

VART Eclipse plug-in
VART
Views

CBMC Counter-
example Inspector

Source
Editor

«extends»

«annotates»

«uses» «uses»«uses»«uses»

Figure 6: VART components.

This section describes how the components in VART interact to
automatically identify regression faults.

VART is implemented in Java according to the architecture
shown in Figure 6. The GUI is an Eclipse plug-in (the VART Eclipse
plug-in) that provides all the views described in Section 2. The
functionalities to generate and check program properties are imple-
mented in a standalone JAR library (the VART library) that, although
released with the plug-in, can be used independently. VART de-
pends on two external tools: the GDB debugger [6], and a bounded
model checker, either CBMC [1] or FunFrog [13].

The following paragraphs describe how the VART components
cooperate to perform the four main steps of the VART technique: (1)

1. Generation of Dynamic Properties

Changes
Detector

Execution
Trace

Test cases
(Base Software)

Daikon
TraceModified

Functions

GDB
Scripts Dynamic

Properties

RADAR

DAIKON

VART

Copy of Base
Software

(+ Assertions)

CBMC/
FunFrog

RADAR

True
PropertiesFalsified

Assertions

2. Identification of True Properties

Base
Software

Upgraded
Software

3. Filtering of Outdated Properties

Execution
Trace

Test cases
(Upgraded Software)

RADAR Property
Violations

VART

Outdated
Properties4. Identification of Regressions

Non-regression
Properties

VART
Copy of Upgraded

Software
(+ Assertions)

Non-regression
Properties

CBMC/
FunFrog

Falsified
Assertions

Counter-
examples

GDB

GDB

+

Figure 7: VART workflow.

generate dynamic properties, (2) identify true properties, (3) filter
outdated properties, and (4) check non-regression properties. The
workflow covering all these four steps is shown in Figure 7.

3.1 Generation of Dynamic Properties
VART generates dynamic properties by first collecting the values
assigned to the variables in the base version of the software while
executing its test cases. The collected values are then passed to the
Daikon [2] invariant detector to identify likely assertions on the
monitored variables. VART uses RADAR [10, 11] to automatically
generate GDB scripts that record variable values. To reduce the
cost of the analysis, VART restricts data collection to the functions
changed by the upgrade, their callers, and their callees. The value of
any variable in the scope of these monitored functions is collected
at runtime. Traces are generated in the format processed by Daikon.

Daikon derives properties in the form of Boolean expressions
that are satisfied by every occurrence of the variable values recorded

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Fabrizio Pastore, Leonardo Mariani

in the trace files. In the case of line 28 of file store.c for example
Daikon generates the property total ≥ 0.

3.2 Identification of True Properties
The generated dynamic properties may overfit the values observed
during the execution of the test cases, which means that they may
not hold for every execution of the software. For instance, in case
the highest value returned by function available_products is 25,
Daikon may generate the property return ≤ 25, which is a prop-
erty overfitting the observations. These properties may produce
false alarms that may annoy the user of the tool. VART eliminates
overfitting and inaccurate properties using static program analysis,
thus keeping for the next phases of the analysis only the true prop-
erties, which are properties that provably hold for every possible
execution of the software.

To identify true properties, VART uses bounded model checking
technology. More specifically VART integrates CBMC [3] and Fun-
Frog [13], two bounded model checkers that can be executed on the
source code annotated with assertions to determine the true and
false assertions. To run bounded model checking, VART automati-
cally generates a copy of the software with the dynamic properties
annotated as assertions. Since CBMC and FunFrog may have dif-
ferent performance depending on the program under analysis, the
choice among them is left to the developer.

Bounded model checking may experience some scalability issues
when analysing large systems. To mitigate this issue, we scoped
the analysis by limiting to N (default is 5 in VART) the number
of times loops are unrolled. We found this configuration a good
compromise between soundness and scalability, as shown by the
fact that although in principle the scoped analysis may fail to discard
false properties, it never had an impact on the results reported to
users in our experiments. In addition, VART runs the analysis using
the callers of the modified functions as entry point, instead of using
the main entry point of the software. This choice may discard
some properties that are actually true when considering the whole
program, but has the benefit to not keep any false property, which
may cause false alarms at a later stage of the analysis, and make
the analysis feasible even for large systems.

3.3 Filtering of Outdated Properties
The true properties identified by VART characterize the behavior
of the base version of the software. However the changes imple-
mented in the software may intentionally invalidate some of these
properties. We call them outdated properties.

VART can automatically identify and drop outdated properties.
To achieve this result, VART monitors the execution of the test
cases designed to test the change in the upgraded version of the
software using Radar [10, 11]. The values collected dynamically
during the execution of the test cases are checked with the true
properties derived for the base version of the software and any
violated property is labeled as outdated and dropped from the anal-
ysis. The remaining properties, the non-regression properties, are
the ones that must be preserved by the update.

3.4 Identification of Regressions
To identify regression faults, VART uses again bounded model
checking. To this end VART first generates a copy of the upgraded
software inserting all the non-regression properties into the code
as program assertions. The program is analyzed with a bounded
model checker, and the property violations are reported to the user
as strong indicators of the presence of a regression fault.

The counterexamples produced by model checking are also pre-
sented to the user in a navigable form to ease debugging. Compared
to the counterexamples natively produced by the model checkers,
VART adjusts line numbers so that the statements in the coun-
terexamples can be mapped to the program without the assertions
embedded in the code.

4 EMPIRICAL RESULTS
VART has been evaluated in terms of its capability to discover
regression faults, its ability to provide sound results despite the
usage of incomplete test suites, and its precision in the generation
of the alarms [12].

To evaluate its effectiveness, we used VART to analyze changes in
two popular open-source string manipulation systems: Sort [4] and
Grep [5]. This study resulted in the identification of two regression
faults that were not revealed by the projects test suites. The presence
of these two faults is confirmed by the entries in the bug repositories
of the two projects.

To investigate how sensitive to the completeness of the test suite
VART is, we analyzed several versions of GREP using incremen-
tally smaller test suites. Results show that VART can successfully
identify regression faults even in the presence of weak test suites.
For example, VART has been able to identify regression faults using
test suites only covering 25% of the branches in Grep.

Finally, in all the experiments, we observed that the combination
of dynamic program analysis and model checking as defined in
VART successfully discarded the false (overfitting) and outdated
properties. In particular, VART reported only actual faults, that is,
non-regression properties violated by faults in the code, and never
reported false alarms, that is, properties intentionally violated by
changes that affect the behaviour of the software.

5 CONCLUSION
VART is a technique that combines static and dynamic analysis to
automatically discover regression faults that violate application-
specific program properties. VART has been effective with several
subtle regression faults [12].

This paper presents the VART tool, which provides a library to
execute the VART analysis in a batch fashion and an environment
to analyze software upgrades interactively. VART is implemented
as an Eclipse plug-in and provides several views to inspect the
program properties that can be generated at the various stages of
the analysis, to visualize the detected problems contextually in the
source code, and to navigate the counterexamples.

VART can be downloaded from the following URL http://www.
lta.disco.unimib.it/tools/vart/.

VART: A Tool for the Automatic Detection of Regression Faults ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking

ANSI-C Programs. Springer.
[2] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dy-

namically Discovering Likely Program Invariants to Support Program Evolution.
Transactions on Software Engineering (TSE) 27, 2 (February 2001), 99–123.

[3] D. Kroening et al. 2017. CBMC. http://www.cprover.org/cbmc/. (2017).
[4] Free Software Foundation. 2017. Coreutils.

http://www.gnu.org/software/coreutils/. (2017).
[5] Free Software Foundation. 2017. Grep. http://www.gnu.org/software/grep/.

(2017).
[6] Free Software Foundation. 2017. The Gnu Project Debugger.

http://sources.redhat.com/gdb/. (2017).
[7] Maggie Hamill and Katerina Goseva-Popstojanova. 2009. Common Trends in

Software Fault and Failure Data. Transactions on Software Engineering (TSE) 35, 4
(2009).

[8] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. 2009. Semantics-
aware Trace Analysis. In Proceedings on the International Conference on Program-
ming Languages, Design and Implementation (PLDI). ACM.

[9] T. Ishigooka, H. Saissi, T. Piper, S. Winter, and N. Suri. 2014. Practical Use of
Formal Verification for Safety Critical Cyber-Physical Systems: A Case Study. In
Proceedings of the International Conference on Cyber-Physical Systems, Networks,
and Applications (CPSNA). https://doi.org/10.1109/CPSNA.2014.20

[10] Fabrizio Pastore, Leonardo Mariani, and Alberto Goffi. 2013. RADAR: A Tool
for Debugging Regression Problems in C/C++ Software. In Proceedings of the
International Conference on Software Engineering (ICSE), Tool Demo.

[11] F. Pastore, L. Mariani, A. Goffi, Manuel Oriol, and Michael Wahler. 2012. Dynamic
Analysis of Upgrades in C/C++ Software. In proceedings of the International
Symposium on Software Reliability Engineering (ISSRE). IEEE.

[12] Fabrizio Pastore, Leonardo Mariani, Antti E. J. Hyvärinen, Grigory Fedyukovich,
Natasha Sharygina, Stephan Sehestedt, and Ali Muhammad. 2014. Verification-
aided Regression Testing. In proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA). ACM.

[13] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2012. FunFrog:
Bounded Model Checking with Interpolation-Based Function Summarization. In
ATVA (LNCS), Vol. 7561. Springer, 203–207.

