JoanAudit: A Tool for Auditing Common Injection
Vulnerabilities

Julian Thomé
University of Luxembourg
Luxembourg
julian.thome@uni.lu

Domenico Bianculli
University of Luxembourg
Luxembourg
domenico.bianculli@uni.lu

ABSTRACT

JoanAudit is a static analysis tool to assist security auditors in au-
diting Web applications and Web services for common injection
vulnerabilities during software development. It automatically iden-
tifies parts of the program code that are relevant for security and
generates an HTML report to guide security auditors audit the
source code in a scalable way. JoanAudit is configured with vari-
ous security-sensitive input sources and sinks relevant to injection
vulnerabilities and standard sanitization procedures that prevent
these vulnerabilities. It can also automatically fix some cases of vul-
nerabilities in source code — cases where inputs are directly used
in sinks without any form of sanitization — by using standard sani-
tization procedures. Our evaluation shows that by using JoanAudit,
security auditors are required to inspect only 1% of the total code for
auditing common injection vulnerabilities. The screen-cast demo is
available at https://github.com/julianthome/joanaudit.

CCS CONCEPTS

« Security and privacy — Information flow control; « Soft-
ware and its engineering — Automated static analysis;

KEYWORDS

Security auditing, static analysis, vulnerability, automated code

fixing

ACM Reference format:

Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C. Briand.
2017. JoanAudit: A Tool for Auditing Common Injection Vulnerabilities. In
Proceedings of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17),
5 pages.

https://doi.org/10.1145/3106237.3122822

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3122822

Lwin Khin Shar
University of Luxembourg
Luxembourg
Iwinkhin.shar@uni.lu

Lionel C. Briand
University of Luxembourg
Luxembourg
lionel.briand@uni.lu

1 INTRODUCTION

The most common and serious threats for Web applications include
Cross-site scripting (XSS), SQL injection (SQLi), XML injection
(XMLi), XPath injection (XPathi), and LDAP injection (LDAPi) [27]
which enable attackers to inject malicious input through an input
source which is then relayed to another system by means of a sink.
It is important to detect vulnerabilities at an early phase rather than
later stages of software development.

Security auditing, i.e., the examination of the source code for the
purpose of detecting vulnerabilities, helps to detect vulnerabilities
during the early phases of software development. However, with-
out proper automation, this task is laborious, error-prone and not
scalable; hence, security auditors need automated tools to facilitate
the auditing process.

Auditing tools face the following challenges [39]: (1) they have
to help auditors locate the vulnerabilities quickly in the source
code; (2) they need to scale to the size of realistic Web systems;
(3) they should generate reports that provide control-dependency
information to detail how injection vulnerabilities reach the sink
in order to eliminate false alarms quickly; (4) these reports should
only provide information relevant to security; (5) they need to
support various types of vulnerabilities, such as XSS, SQLi, XMLi,
XPathi or LDAPi; (6) they need to support security analysis for
the Java programming language, one of the most commonly used
technologies for Web development in industrial context [5].

Challenges 1 and 2 are addressed by approaches based on taint
analysis [14, 18, 21, 23, 30, 41, 42]. However, reports generated by
these approaches typically contain data-flow analysis traces and
lack control-dependency information (challenge 3), which is essential
for security auditing. Indeed, conditional statements checks are
often used to perform input validation or sanitization tasks; without
analyzing such conditions, feasible and infeasible data-flows cannot
be determined, causing many false warnings.

Challenge 3 is addressed by approaches based on symbolic ex-
ecution [19, 47] which helps to identify and locate potential vul-
nerabilities in program code, and thus, could assist the auditor’s
tasks. Though symbolic execution approaches reason with control-
dependency information, they have yet to address scalability issues
(challenge 2) due to the path explosion problem [45]. Other ap-
proaches [44] report analysis results without any form of pruning

https://github.com/julianthome/joanaudit
https://doi.org/10.1145/3106237.3122822
https://doi.org/10.1145/3106237.3122822

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C. Briand

I IFC Analyzerl

! JoanAudit
P Bt el 1
—wa b Joana/WALA |
ava We . |
[Crpmr}--—E)
1
1

HTML Vulnerability
(Secunty S[lces)—) Report
Generator

1
1
| Context Analyzer l—)l Autofix Engine | :
1

Figure 1: Architecture of JoanAudit

(challenges 1 and 4), thus containing a significant amount of infor-
mation not useful to security auditing. As a result, an auditor might
end up checking large chunks of code, which is not practical.

Challenge 5 is also not addressed by the majority of the above-
mentioned approaches; the only exception is [30], which explicitly
addresses XMLi, XPathi, and LDAPi.

Challenges 2, 4, and 5 are addressed by security testing ap-
proaches [1, 2, 16, 20, 37] and dynamic analysis-based security at-
tack detection approaches [10, 24, 31-33, 35, 36]. These approaches
can be used to detect XSS, SQLi, XMLi, XPathi, and LDAPi vulnera-
bilities. However, a security auditor is typically required to locate
vulnerabilities in source code (challenge 1), identify their causes and
fix them. Analysis reports from the above-mentioned approaches,
though useful, are not sufficient to support code auditing since they
only contain information derived from observed program behav-
iors or execution traces; they do not provide information about the
location of the vulnerability in the source code.

Challenge 6 is generally addressed by black-box security testing
approaches [2, 16, 37] because they are agnostic with respect to
the programming language of the system under test. However, this
is the same reason for which these approaches cannot locate vul-
nerabilities in the source code (challenge 1). Some security testing
based approaches [10, 20] and static-analysis approaches [14, 30]
do support Java but cannot meet challenges 1 and 3, respectively.

To facilitate security auditing of XSS, SQLi, XMLi, XPathi, and
LDAPi vulnerabilities in program source code, in previous work
we proposed an approach called security slicing [39, 40]. In this
approach we first apply static analysis to identify the input sources
and the sinks; afterwards, we apply program slicing and code fil-
tering techniques to extract minimal and relevant source code that
contains only statements required for auditing potential vulnera-
bilities related to each sink, pruning away other statements that do
not require auditing.

In this paper, we present JoanAudit, a tool that implements our
security slicing approach. It aims to provide security auditors a
scalable way to locate and fix common injection vulnerabilities
during the software development phase. JoanAudit addresses all of
the above-mentioned challenges by (1) generating a vulnerability
report that locates the vulnerabilities in the source code, (2) being
scalable to Web systems realistic in size (52 kKLOC), (3) extracting
control- and data-dependency information from the program, (4)
generating precise security slices that do not miss security-relevant
information, (5) being readily configured for common injection
vulnerabilities, and (6) targeting Java Web systems.

2 SECURITY SLICING WITH JOANAUDIT

Figure 1 illustrates the architecture of JoanAudit. The tool takes as
input the bytecode of a Java Web application and a vulnerability
catalogue (specified in the configuration file config. json), ie. a
pre-defined set of input source and sink signatures. For example, an
input source could be the getParameter () function from the Java
Servlet API for accessing HTTP POST parameters; a possible sink
could be the evaluate() function from the javax.xml package
which executes XPath queries on an XML database.

FJoanAudit first constructs a System Dependence Graph (SDG),
i.e., a graph model that captures inter-procedural data-, control-,
and call-dependencies. An SDG is an ideal data structure for com-
puting sound and precise program slices in linear time [12, 26].
The SDG is derived from the Java bytecode by the SDG builder.
The latter also prunes functions that are irrelevant to security (e.g.,
logging libraries) or functions that are known or assumed to be
free from security issues (e.g., standard security libraries). The list
of irrelevant and known-good functions is predefined but can be
configured in the vulnerability catalogue.

Afterwards, the Annotator annotates the SDG with input sources,
sinks, and declassifiers. Based on the annotations in the SDG, the
tool generates a program chop for each sink. Each program chop
contains all the program statements that influence a sink, starting
from the input sources, possibly through different program paths.
Sinks that are not affected by any input source are pruned from the
SDG.

The block labeled IFC Analyzer performs Information Flow Con-
trol Analysis (IFC) on each chop to determine if there are paths in
the chop that can be considered secure due to the proper usage of
sanitization functions and thus pruned. IFC is a well-known tech-
nique that checks whether a software system conforms to a security
specification [11]. This step relies on a pre-defined set of declas-
sifiers (standard sanitization procedures for preventing common
injection vulnerabilities), which are configured in the vulnerability
catalogue.

The block labeled Context Analyzer performs context analysis
on the remaining paths. As part of this analysis, the block Autofix
Engine attempts to patch, when feasible, the source code with the
required security API. More specifically, this step uses a lightweight
static analysis called context analysis to identify the context in
which the data from an input source is used in the sink. Based on
the identified context, this technique is able to automatically fix a
vulnerable input source by applying the appropriate sanitization
function to it. This technique is always guaranteed to properly fix
a given vulnerability because it applies a fix only 1) in case of a

JoanAudit: A Tool for Auditing Common Injection Vulnerabilities

wm\nm.&wmwoa:

Source
simple/Simple.java: 96
simple/Simple.java:95
simple/Simple.java: 96
simple/Simple.java:95
simple/Simple.java:96

simple/Simple.java:95
simple/Simple.java: 96
simple/Simple.java: 96
simple/Simple.java:95

Sink
simple/Simple.java:101
simple/Simple.java:117
simple/Simple.java: 125
simple/Simple.java:101
simple/Simple.java:117

simple/Simple.java:107
simple/Simple.java:116
simple/Simple.java:107
simple/Simple.java:116

Len
8
18
11
9
17

10

16
9

17

Vulnerability
Xss
Xss
xpath injection
xss
Xss

Xss
Xss
xss

Xxss

Figure 2: The overview page of the report generated by
JoanAudit shows all potentially vulnerable paths found

direct data flow from an input source to a sink, and 2) if the context
of the user input can be determined.

As output, the tool generates a report that guides the security
auditor in auditing potentially vulnerable parts of the program.
Figure 2 shows the main page of the report generated by JoanAudit,
which gives an overview of all the paths from the security slices
that were extracted by JoanAudit. The report indicates how many
potentially vulnerable paths have been detected. Every row in the
overview table represents a single path; it details the location of
the sources and sinks in the source code, i.e., a combination of the
scope or class in which the source/sink was found, and the line
number of the source file. Moreover, the report indicates the path
size (in terms of program statements) and vulnerability to which
the path may be vulnerable.

After clicking on one of the rows in the overview table, the de-
tailed information for the respective paths is displayed in an extra
window (Figure 3), which shows the actual source code of the ana-
lyzed program and highlights the individual program statements
belonging to the selected path. In this view, the source code line
numbers are shown on the left; the scope, i.e., the class where the po-
tential vulnerability has been found, is displayed at the top; source
and sink, respectively, are the first and last highlighted statements
in the code snippet. Notice that only the security-relevant parts are
highlighted. This detailed view guides the security auditors from
the input source to the potentially vulnerable sink.

3 IMPLEMENTATION

The implementation of JoanAudit comprises approximately 11
kLOC (excluding library code) and is based on Joana [9, 11] and
IBM’s Wala framework [15]; Joana provides APIs for SDG genera-
tion from Java bytecode, program slicing, and IFC analysis.

The tool is configured with the JSON file config. json which
contains a list of Java bytecode signatures for input sources, sinks,
and declassifiers. The config. json file also specifies the list of
bytecode signatures for known-good and irrelevant APIs. Note that
JoanAudit is highly customizable: based on their domain knowledge,
developers can specify in config. json additional input sources,
sinks, and custom declassifiers used in their applications. Thanks
to this user-defined additional configuration, the tool will not skip
analyzing other security-sensitive operations, and will not falsely
report as insecure the paths containing custom declassifiers. The
following excerpt from the config. json shows an example config-
uration for the sink corresponding to the function evaluate (from
the javax.xml package).

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

[-]1 simple/Simple.java 95:125

95 String account = req.getParameter("account");

% String pass = req.getParameter("pass");

o7 String balance = allowUser(account, pass);

o8 |}

99 | protected String allowUser(String account, String password) {
100 Document doc = null;

1081 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
102 DocumentBuilder builder = null;

103 try {

104 builder = factory.newDocumentBuilder();

165 } catch (ParserConfigurationException e2) {

106 /[TODO Auto-generated catch block

107 e2.printStackTrace();

168 }

109 try {

110 doc = builder

111 -parse("/Users/julian/Documents/workspace. safe/joana-to-simple-s
112 } catch (SAXException e1) {

113 // TODO Auto-generated catch block

114 el.printStackTrace();

115 } catch (IOException el) {

116 // TODO Auto-generated catch block

117 el.printStackTrace();

118 +

119 XPathFactory xPathfactory = XPathFactory.newInstance();
120 XPath xpath = xPathfactory.newXPath();

121 String q = "/users/user[@nick="" + account + "' and @password=""
122 + password + "']";

123 try {

124 NodeList nl = (Nodelist) xpath.evaluate(q, doc,

125 XPathConstants.NODESET);

Figure 3: Security slice containing only the program state-
ments relevant to security (highlighted statements)

"sinks":[{
"name": "javax.xml.xpath.XPath.evaluate(Ljava/lang/String,Ljava/
lang/Object;)Ljava/lang/String;",
"labels": "1(H)"
3]

The configuration entry for the sink is a JSON object with a name
attribute, i.e., the bytecode signature of the sink (in bytecode for-
mat), and a labels attribute that specifies the index of the pa-
rameter to be tracked and its security level. The security level is
important for IFC in order to detect an actual security violation.
In the example configuration, we label the first parameter of the
evaluate function with security label H (high integrity) which
requires that data arriving at the sink should not be tampered
with. The configuration for sources and declassifiers is done sim-
ilarly; the detailed overview of the configuration is available at
https://github.com/julianthome/joanaudit.

4 SUMMARY OF THE EVALUATION RESULTS

We evaluated the precision, soundness, and scalability of JoanAudit
on 9 Web applications/services, representing a selection of com-
monly used benchmarks (see [39, 40] for details); the average pro-
gram size is 17 kLOC with the largest program having 52 kLOC,
which is fairly typical for this type of systems. For space reasons,
we only provide a summary of the evaluation results; the full de-
scription of the evaluation methodology and the detailed results
are available in our previous work [39, 40].

To assess precision (i.e., the reduction of source code in terms of
security-relevant statements), we compared the size of the slices
produced by JoanAudit with the size of the slices produced by the
state-of-the-art chopping implementation provided by joana. Our

https://github.com/julianthome/joanaudit

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

security slices are significantly smaller than their counterparts ob-
tained through normal chopping: we achieved a mean reduction of
76% in terms of the number of SDG nodes. Furthermore, we could
observe that on average, security slicing (for all the sinks in a given
Web application) would require the audit of only approximately
1% of the whole application code. The size reduction of security
slicing achieved with JoanAudit is directly correlated to the re-
duction of the manual effort required from security auditors for
verifying vulnerable paths in the source code. Hence, these results
clearly suggest that a significant reduction in code inspection can
be expected when using JoanAudit.

Soundness requires our approach not to miss statements relevant
to auditing XSS, SQLi, XMLi, XPathi and LDAPi vulnerabilities.
We assessed soundness by manually comparing the security slices
extracted by JoanAudit with their normal chop counterparts. We
also manually inspected all the normal chops to determine whether
JoanAudit had incorrectly dropped the whole chop from being
reported. JoanAudit neither missed any information important for
security auditing nor incorrectly dropped any chop.

In terms of scalability, JoanAudit took on average 27 s to analyze
the individual test subjects; the slowest run took 124 s. These results
show that JoanAudit exhibits good run-time performance, which
makes it suitable to analyze Java Web applications similar in size
to our test subjects, which is the case for many such systems.

5 TOOL AND DATA AVAILABILITY

The tool and the data-sets used for the evaluation, the installation
and user manuals alongside with the screen-cast are available on the
tool website: https://github.com/julianthome/joanaudit.
The tool is available as a Java executable, included in a Docker
container, and can be freely used for research purposes.

6 RELATED WORK

The main static analysis tools and frameworks which can be used
for security analysis of Java Web applications are FindBugs [3, 13],
SFlow [14], FlowTwist [21], LAPSE+ [30], TAJ [42], Andromeda [41],
Indus [17], Soot [43], Joana [11], Wala [15]; for a more comprehen-
sive list see [28].

FindBugs [3, 13] is a widely-used static analysis tool for finding
bugs in Java programs based on a set of bug-patterns; vulnerabilities
can be identified from its bug report.

SFlow, FlowTwist, LAPSE+, TAJ and Andromeda are static taint
analysis tools that track the data-flows between sources and sinks.
SFlow and FlowTwist require the developers to specify sources and
sinks, but this task can be laborious and error-prone. LAPSE+ is
already configured for the most common sources, sinks and san-
itization operations. TAJ and Andromeda have been shown to be
effective in their evaluation reports [41, 42], but they are not pub-
licly available.

Furthermore, all of the above-mentioned approaches are based
on taint analysis and, thus, do miss control-dependency informa-
tion (challenge 3 in Section 1). JoanAudit, by contrast, is based
on security slicing which leverages both control- and data-flow
information from the program, and filters irrelevant information in
order to identify program parts that are relevant for security.

Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C. Briand

Joana, Indus, and Soot are general-purpose slicing frameworks.
Joana relies on the Wala libraries and provides a sound and precise
approach for computing slices and chops. Indus is built on top of
Soot, but is less precise than Joana, since it does not fully support
interprocedural slicing [11]. As our approach and tool are built
on top of Joana, we have the same advantages. Since these are
general-purpose tools, their users have to provide slicing criteria
suitable for their analysis goals (such as checking information flow
and debugging). The generated slices may contain large amount of
irrelevant information.

By contrast, JoanAudit is a specialized tool that targets security
auditing of XSS, SQLi, XML, XPathi, and LDAPi vulnerabilities.
It is already configured with sources and sinks corresponding to
these injection vulnerabilities, effectively defining the slicing cri-
teria. Furthermore, it minimizes the size of the generated slices
by applying various filtering techniques that prune irrelevant or
secure code, making security auditing scalable and practical.

There are other static analysis tools for security analysis that
target PHP systems: RIPS [6], DEKANT [25], Stranger [46], PH-
PAspis [29], and Pixy [18]. However, they are not applicable to Java
systems due to the technical differences between the two languages.

7 CONCLUSION

We presented JoanAudit, a security slicing tool for auditing Java
Web services and Web applications for common injection vulnera-
bilities, namely XSS, SQLi, XMLi, XPathi and LDAPi. Our current
implementation is readily configured with a rich set of Java sources,
sinks, and declassifiers. It can also be easily extended with new
sources, sinks, and declassifiers for analyzing new types of vulner-
abilities.

Our evaluation indicates that JoanAudit scales to realistic Web
systems and significantly minimizes the amount of information
extracted from source code, ultimately reducing the amount of
manual effort required for security auditing.

As part of future work, we will adapt JoanAudit to widely-used
Java Web frameworks such as Spring [34] or Play Framework [22],
and we plan to integrate JoanAudit into build management tools
like Maven [8] or Gradle [7]. We will also integrate the security
slicing technique implemented by JoanAudit with symbolic execu-
tion [4] and string constraint solving techniques [38] to provide
comprehensive tool support for the detection of injection vulner-
abilities. Furthermore, we will conduct a user study to assess the
usefulness of our tool in industrial settings.

ACKNOWLEDGMENTS

This work is supported by the National Research Fund, Luxem-
bourg FNR/P10/03, INTER/DFG/14/11092585, and the AFR grant
FNR9132112.

REFERENCES

[1] Nuno Antunes and Marco Vieira. 2013. SOA-Scanner: An Integrated Tool to
Detect Vulnerabilities in Service-Based Infrastructures. In Proceedings of SCC
2013. IEEE Computer Society, Washington, DC, USA, 280-287.

[2] Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. 2014.

Automated testing for SQL injection vulnerabilities: an input mutation approach.

In Proceedings of ISSTA 2014. ACM, New York, NY, USA, 259-269.

Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and

William Pugh. 2008. Experiences Using Static Analysis to Find Bugs. IEEE Softw.

3

https://github.com/julianthome/joanaudit

JoanAudit: A Tool for Auditing Common Injection Vulnerabilities

N
fust

[11

[12]

[13]

[14]

[15]

[16

[17]

[20]

[21]

[22]

[23]

[24]

[25

25, 5 (2008), 22-29.

Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (2013), 82-90.

Stephen Cass. 2016. The 2016 Top Programming Languages. http://spectrum.
ieee.org/computing/software/the-2016-top-programming-1languages.
(2016).

Johannes Dahse. 2016. Static detection of complex vulnerabilities in modern PHP
applications. Ph.D. Dissertation. Ruhr University Bochum.

Adam Hans Dockter, Szczepan Murdoch, Peter Faber, Daz Niederwieser, Luke Da-
ley Deboer, and Rene Gréschke. 2017. The Gradle Build Tool. https://gradle.
org. (2017).

Apache Software Foundation. 2017. The Apache Maven Project. https://maven.
apache.org/. (2017).

Jirgen Graf, Martin Mohr, Martin Hecker, Simon Bischof, and Tobias Blaschke.
2017. Joana - Information Flow Control for Java. https://github.com/
joana-team/joana. (2017).

William G. J. Halfond, Alessandro Orso, and Pete Manolios. 2008. WASP: Pro-
tecting Web Applications Using Positive Tainting and Syntax-Aware Evaluation.
IEEE Trans. Softw. Eng. 34, 1 (2008), 65-81.

Christian Hammer. 2009. Information flow control for java: a comprehensive
approach based on path conditions in dependence graphs. Ph.D. Dissertation.
Karlsruhe Institute of Technology.

Susan Horwitz, Thomas W. Reps, and David Binkley. 1990. Interprocedural
Slicing Using Dependence Graphs. ACM Trans. Program. Lang. Syst. 12, 1 (1990),
26-60.

David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN Not.
39, 12 (2004), 92-106.

Wei Huang, Yao Dong, and Ana Milanova. 2014. Type-Based Taint Analysis for
Java Web Applications. In Proceedings of FASE 2014. Springer, New York, NY,
USA, 140-154.

IBM. 2017. T. J. Watson Libraries for Analysis (WALA).
sourceforge.net. (2017).

Sadeeq Jan, Cu D. Nguyen, and Lionel C. Briand. 2016. Automated and Effective
Testing of Web Services for XML Injection Attacks. In Proceedings of ISSTA 2016.
ACM, New York, NY, USA, 12-23.

Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and John Hatcliff. 2005.
Kaveri: Delivering the Indus Java Program Slicer to Eclipse. In Proceedings of
FASE 2005. Springer, Berlin, Heidelberg, 269-272.

Nenad Jovanovic, Christopher Kriigel, and Engin Kirda. 2006. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities. In Proceedings of
SP 2006. IEEE Computer Society, Washington, DC, USA, 258-263.

Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. 2009. Au-
tomatic creation of SQL Injection and cross-site scripting attacks. In Proceedings
of ICSE 2009. IEEE Computer Society, Washington, DC, USA, 199-209.

Nuno Laranjeiro, Marco Vieira, and Henrique Madeira. 2014. A Technique for
Deploying Robust Web Services. IEEE Trans. Serv. Comput. 7, 1 (2014), 68-81.
Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini. 2014. FlowTwist:
efficient context-sensitive inside-out taint analysis for large codebases. In Pro-
ceedings of SIGSOFT FSE 2014. ACM, New York, NY, USA, 98-108.
Lightbend and Zengularity. 2017. The Play Framework.
playframework.com/. (2017).

V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities
in Java Applications with Static Analysis. In Proceedings of USENIX Security 2005.
USENIX Association, Berkeley, CA, USA, 18-18.

Christian Mainka, Meiko Jensen, Luigi Lo Iacono, and Jérg Schwenk. 2013. Mak-
ing XML Signatures Immune to XML Signature Wrapping Attacks. In Proceedings
of CLOSER 2013. Springer, New York, NY, USA, 151-167.

Ibéria Medeiros, Nuno Neves, and Miguel Correia. 2016. DEKANT: A Static Anal-
ysis Tool That Learns to Detect Web Application Vulnerabilities. In Proceedings
of ISSTA 2016. ACM, New York, NY, USA, 1-11.

http://wala.

https://www.

[26

[27]
(28]

[29

[39

[40

[41]

[42

[43

[44]

[45

[46]

N
=

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Karl]. Ottenstein and Linda M. Ottenstein. 1984. The Program Dependence Graph
in a Software Development Environment. In Proceedings of SIGSOFT/SIGPLAN
PSDE 1984. ACM, New York, NY, USA, 177-184.

OWASP. 2017. OWASP Top 10. https://www.owasp.org/index.php/
Category:0OWASP_Top_Ten_Project. (2017).

OWASP. 2017. Static Code Analysis. https://www.owasp.org/index.php/
Static_Code_Analysis. (2017).

Toannis Papagiannis, Matteo Migliavacca, and Peter Pietzuch. 2011. PHP Aspis:
Using Partial Taint Tracking to Protect Against Injection Attacks. In Proceedings
of WebApps 2011. USENIX Association, Berkeley, CA, USA, 2-2.

Pablo Martin Pérez, Joanna Filipiak, and José Maria Sierra. 2011. LAPSE+ Static
Analysis Security Software: Vulnerabilities Detection in Java EE Applications. In
Proceedings of FutureTech 2011. Springer, Berlin, Heidelberg, 148-156.

Abdul Razzaq, Khalid Latif, Hafiz Farooq Ahmad, Ali Hur, Zahid Anwar, and
Peter Charles Bloodsworth. 2014. Semantic security against Web application
attacks. Inf. Sci. 254 (2014), 19-38.

Thiago Mattos Rosa, Altair Olivo Santin, and Andreia Malucelli. 2013. Mitigating
XML Injection 0-Day Attacks through Strategy-Based Detection Systems. IEEE
Secur. & Priv. 11, 4 (2013), 46-53.

Hossain Shahriar and Mohammad Zulkernine. 2012. Information-Theoretic
Detection of SQL Injection Attacks. In Proceedings of HASE 2012. IEEE Computer
Society, Washington, DC, USA, 40-47.

SpringSource. 2017. The Spring Framework. https://spring.io/. (2017).
Zhendong Su and Gary Wassermann. 2006. The essence of command injection
attacks in Web applications. In Proceedings of POPL 2006. ACM, New York, NY,
USA, 372-382.

Zhao Tao. 2013. Detection and Service Security Mechanism of XML Injection
Attacks. In Proceedings of ICICA 2013. Springer, Berlin, Heidelberg, 67-75.
Julian Thomé, Alessandra Gorla, and Andreas Zeller. 2014. Search-based security
testing of Web applications. In Proceedings of SBST Workshop 2014. ACM, New
York, NY, USA, 5-14.

Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C. Briand. 2017.
Search-driven String Constraint Solving for Vulnerability Detection. In Proceed-
ings of ICSE 2017. ACM, New York, NY, USA, 198-208.

Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C. Briand. 2017.
Security slicing for auditing common injection vulnerabilities. (2017). https:
//doi.org/10.1016/j.jss.2017.02.040

Julian Thomé, Lwin Khin Shar, and Lionel C. Briand. 2015. Security slicing for
auditing XML, XPath, and SQL injection vulnerabilities. In Proceedings of ISSRE
2015. IEEE Computer Society, Washington, DC, USA, 553-564.

Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. 2013. Andromeda: Accurate and Scalable Security Analysis of Web
Applications. In Proceedings of FASE 2013. Springer, Berlin, Heidelberg, 210-225.
Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: effective taint analysis of Web applications. In Proceedings of PLDI
2009. ACM, New York, NY, USA, 87-97.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
and Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In
Proceedings of CASCON 1999. IBM, Indianapolis, Indiana, USA, 13.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of SP
2014. IEEE Computer Society, Washington, DC, USA, 590-604.

Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid. 2014. Directed
Incremental Symbolic Execution. ACM Trans. Softw. Eng. Methodol. 24, 1 (2014),
3:1-3:42.

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. 2010. STRANGER: An Automata-
based String Analysis Tool for PHP. In Proceedings of TACAS 2010. Springer,
Berlin, Heidelberg, 154-157.

Yunhui Zheng and Xiangyu Zhang. 2013. Path sensitive static analysis of Web
applications for remote code execution vulnerability detection. In Proceedings of
ICSE 2013. IEEE Computer Society, Washington, DC, USA, 652-661.

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
https://gradle.org
https://gradle.org
https://maven.apache.org/
https://maven.apache.org/
https://github.com/joana-team/joana
https://github.com/joana-team/joana
http://wala.sourceforge.net
http://wala.sourceforge.net
https://www.playframework.com/
https://www.playframework.com/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.owasp.org/index.php/Static_Code_Analysis
https://spring.io/
https://doi.org/10.1016/j.jss.2017.02.040
https://doi.org/10.1016/j.jss.2017.02.040

	Abstract
	1 Introduction
	2 Security Slicing with JoanAudit
	3 Implementation
	4 Summary of the Evaluation Results
	5 Tool and Data Availability
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

