
A

A Logic-based Approach for the Verification of UML Timed Models

LUCIANO BARESI, DEIB - Politecnico di Milano
ANGELO MORZENTI, DEIB - Politecnico di Milano
ALFREDO MOTTA, DEIB - Politecnico di Milano
MOHAMMAD MEHDI POURHASHEM K., DEIB - Politecnico di Milano
MATTEO ROSSI, DEIB - Politecnico di Milano

This paper presents a novel technique to formally verify models of real-time systems captured through a
set of heterogeneous UML diagrams. The technique is based on the following key elements: (i) a subset
of UML diagrams, called C-UML, which allows designers to describe the components of the system and
their behavior through several kinds of diagrams (e.g., state machine diagrams, sequence diagrams, activity
diagrams, interaction overview diagrams), and stereotypes taken from the UML MARTE profile; (ii) a formal
semantics of C-UML diagrams, defined through formulae of the metric temporal logic TRIO; (iii) a tool, called
Corretto, which implements the aforementioned semantics and allows users to carry out formal verification
tasks on modeled systems. We validate the feasibility of our approach through a set of different case studies,
taken from both the academic and the industrial domain.

CCS Concepts: •Software and its engineering→Model-driven software engineering; Model check-
ing; Unified Modeling Language (UML);

Additional Key Words and Phrases: Formal Verification, Metric Temporal Logic, Formal semantics, Timed
systems

ACM Reference Format:
Luciano Baresi, Angelo Morzenti, Alfredo Motta, Mohammad Mehdi Pourhashem K., and Matteo Rossi,
20XX. A Logic-based Approach for the Verification of UML Timed Models. ACM Trans. Softw. Eng. Methodol.
V, N, Article A (January YYYY), 51 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
UML is a well-known and widely-used design notation. As such, it has been often crit-
icized [Erickson and Siau 2007; Dori 2002] because it includes too many diagrams and
symbols and because of the complexity of managing structural and behavioral views
spread over many different diagrams. The semantics provided by the UML specifica-
tion [OMG 2011] is given through textual descriptions and it is often ambiguous; a
UML specification consists of a collection of loosely coupled models (classes, use cases,
collaborations, activities, etc.) that are tied together by few and semantically weak
rules [Glinz 2000]. The introduction of domain-specific extensions (profiles, according
to the OMG jargon) further complicates the integration of standard and specific con-
cepts.

These problems have often hampered the use of UML as a rigorous specification
notation. There have been many different attempts to ascribe the notation with a pre-
cise, formally defined semantics, but the heterogeneity of the language has often led

Author’s addresses: Luciano Baresi, Angelo Morzenti, Alfredo Motta, Mohammad Mehdi Pourhashem K.,
and Matteo Rossi, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano. (Cur-
rent address) Politecnico di Milano, piazza L. da Vinci, 32 - 20133 Milano (Italy).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1049-331X/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

the authors to only concentrate on some diagram types (e.g., state and collaboration
diagrams), while neglecting the key characteristics of UML, that is, the rich set of
diagram types and the freedom with which the designer can model a system.

While the formalization of single diagram types has been carried out in several ways
[Störrle 2003; Eshuis 2006; Burmester et al. 2004], the integration into a single coher-
ent framework of a significant number of diagram types is a distinguished character-
istic of C-UML (Corretto UML), the extensible, formal, timed, subset of UML proposed
in this article. Even fUML [OMG 2016] (Foundational UML), the official executable
subset of UML, is not well-suited for the formal verification of defined models (as dis-
cussed in Section 2).

C-UML proposes a comprehensive framework that accommodates class, object, state
machine, activity, sequence, and interaction overview diagrams. C-UML focuses on the
interdependencies among the different diagrams by means of a suitable set of events
shared among the different diagram types. In addition, it borrows a notion of time from
MARTE (the UML Profile for Modeling and Analysis of Real-Time and Embedded Sys-
tems), which makes it particularly suited for the specification of timed systems, whose
correctness depends on their ability to ensure certain temporal relations concerning
their activities and events. The Corretto Property Language (CPL) allows the user to
state the properties to be verified for the system in an OCL-oriented way.

The formal semantics of C-UML is based on the TRIO [Ciapessoni et al. 1999] met-
ric temporal logic, which ensures the flexibility and composability required to specify
the semantics of a complex notation. The formalization presented in this paper aims at
width instead of depth. We want to integrate different types of diagrams and reason on
their interdependencies, instead of digging down and addressing any single element
and semantic variation of a specific diagram type. The modularization and composi-
tionality of the presented approach allow for the addition of many more details. For
example, the interested reader can refer to [Baresi et al. 2014] for an in-depth treat-
ment of the syntactic elements and semantic variations of Sequence Diagrams.

C-UML is supported by Corretto [Motta et al. 2017], a prototype verification tool that
groups the above mentioned features inside a plugin for Papyrus,1 a well-known open
source UML-based engineering tool. Corretto translates C-UML models into the corre-
sponding TRIO models, which are then verified through the Zot bounded model/satis-
fiability checker [Pradella et al. 2013]. A backward traceability mechanism allows the
user to interpret the analysis results—provided as counterexamples generated by the
model checker—in terms of elements of the analyzed UML models. This is similar to
the features provided by tools for the controlled execution of programs, where lower-
level execution actions are rendered in terms of a high-level programming language.

This article extends our previous work [Baresi et al. 2015; Baresi et al. 2012] in dif-
ferent ways. It provides: (i) a complete description of C-UML, which has been extended
in several ways with respect to the aforementioned previous works, most notably by
adding support for Activity Diagrams and by widening the range of available action
types; (ii) a detailed presentation of the metric temporal logic semantics, which has
been revised and extended to cover the new elements; (iii) a thorough experimental
assessment of the capabilities of the tool; and (iv) an in-depth, exhaustive analysis of
the state of the art. As for this last aspect, the survey categorizes the different ap-
proaches in terms of supported UML diagrams, type of verification performed, and
availability of tool support. The comparative analysis highlights both the features and
limitations of the various approaches, and frames C-UML as a significant step forward
towards associating a formal semantics with the whole set of UML diagrams.

1www.eclipse.org/papyrus

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.eclipse.org/papyrus/

A Logic-based Approach for the Verification of UML Timed Models A:3

The experimental assessment was conducted on five different models that come
from heterogeneous sources, including case studies provided by industrial partners,
instances from the literature on verification tools for timed UML, and classical aca-
demic examples commonly used to evaluate the scalability of different verification ap-
proaches.

The rest of the article is organized as follows. Section 2 frames the contribution with
respect to the other UML-related specifications. Section 3 presents C-UML, our en-
riched subset of UML diagrams. Section 4 describes the metric temporal logic seman-
tics we defined. Section 5 introduces Corretto. Section 6 summarizes the experiments
we conducted to assess the validity of the approach. Section 7 surveys the state of the
art and Section 8 concludes the paper. Appendix A gives a short introduction to TRIO,
the formal language exploited in the paper. In addition, a number of resources are
available from the Corretto repository [Motta et al. 2017], including the source code of
the tool and of the examples presented in this paper, and the meta-model of the C-UML
notation.

2. C-UML IN CONTEXT
The UML ecosystem has evolved significantly over the years and C-UML must be
framed within it. Besides UML, C-UML must also be related to both fUML (Foun-
dational UML [OMG 2016]) and Alf (Action Language for Foundational UML [OMG
2013]). fUML contributes a precise execution semantics for a subset of UML: compos-
ite structures, classes, and activities (behavior) [Tatibouët et al. 2014]. Alf defines a
textual action language to specify complex execution behaviors; the resulting specifi-
cations can then be compiled to fUML. fUML borrows some of the metamodels defined
in the UML specification [OMG 2011] as its abstract syntax, and augments them with
well-formed OCL assertions for constraining some modeling concepts. fUML models
can exploit both the usual UML graphical symbols and textual Alf statements. For ex-
ample, one may mix “classic” UML shapes for classes and Alf specifications to define
their behaviors.

The specification of the fUML’s execution model remains generic on purpose. It leaves
some key semantic elements unconstrained and defines explicit semantic variation
points. Among them, the simulation of time is left open: both discrete and continuous
time models can be adopted, but an extension to the execution model is required to
support them [Benyahia et al. 2010].

The execution model is defined in an operational manner and specifies a virtual
machine that interprets fUML models. The specification of the operations is written in
Java, used as concrete (textual) representation of the UML activity models, which in
turn define the behavioral modeling capabilities included in the Base UML (or bUML).
bUML is the subset of fUML used to write the execution model.

The base semantics—that is, the semantics of bUML—is expressed as axioms of first
order logic, rendered in Common Logic Interchange Format (CLIF), and in the Process
Specification Language (PSL), that is a foundational axiomatization of processes. It
only specifies when particular executions conform to a model defined in bUML, and
does not define a virtual machine to execute models directly.

This is the context in which C-UML must be embedded. Figure 1 both summarizes
the description above and identifies a role for C-UML. Everything starts from UML.
While Alf complements it and fUML formalizes it—and then Alf itself is formalized
through fUML—C-UML only supports a subset of UML, extends it with some key
features, and its semantics is defined in TRIO. As already said, C-UML emphasizes the
management and simulation of time, and thus we selected a proper temporal language
for specifying its behavior. Similarly one may also think of a timed version of fUML,
and use TRIO as underlying formal kernel, but this is out of the scope of the paper.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

UML

CLIF/PSL

Alf C-UML

bUMLfUML

TRIO

Design
Notations

Kernel
Notations

Formal
Domains

augmented
with

form
alized by fo

rm
ali

ze
d

by

fo
rm

al
iz

ed
 b

y

fo
rm

al
iz

ed
 b

y

enriched
subset of

subset of

Fig. 1: Relationships among C-UML and the other UML specifications.

Moreover, while the “standard” UML languages are mainly design means, sometimes
used for simulation and code generation [Ciccozzi 2016], C-UML was conceived mainly
for the formal verification of designed models, which seems to be a key distinctive
feature in the sketched UML ecosystem.

While other proposals aim at turning UML design models into an executable no-
tation, the formalization approach proposed in this paper is functional to the formal
verification of design models—and not of the corresponding code, even when this is au-
tomatically generated. We are interested in identifying the finite, complete execution
domain of the modeled system and searching it against the properties of interest. We
are not interested in defining a virtual machine that creates objects and calls methods
on them. In our solution, objects (i.e., instances of classes) are only identified through
a set of variables. Similarly, methods only assert on the possible evolutions of related
variables. Features more related to the execution of code corresponding to UML mod-
els, like object creation and dynamic binding, can also be considered, but the domain
must always be finite. This means that object creation can be mimicked by identifying
a set of objects that are then switched on and off accordingly. Similarly, dynamic bind-
ing would be dealt with by considering all the possible alternatives while checking the
model.

To conclude, MARTE also introduces a time model able to cope with dense, discrete,
metric, and logical times [MARTE 2011], but the languages that it defines to express
constraints, such as VSL (Value Specification Language) and CCSL (Clock Constraint
Specification Language), either lack a formal semantics, or are limited in terms of
the constraints they can express—for example, CCSL cannot express liveness proper-
ties [Gascon et al. 2011].

MARTE introduces mechanisms to capture Non-Functional Properties (NFPs)
through VSL, which lets users express both qualitative and quantitative constraints
on “event observations”, whose nature however is not formally defined (an observa-
tion can be associated with any named element). C-UML essentially uses a subset of
VSL to express constraints among elements of UML models, by precisely identifying—
through a MARTE-inspired, but specialized, notation—the set of observed elements
and by associating each of them with a predicate formalizing its occurrences and a
suitable semantics. Also, CPL includes all TRIO temporal operators, through which
one can express, e.g., liveness constraints; this, in turn, allows for the verification of
properties under user-defined liveness assumptions concerning UML elements (e.g.,
signals). In addition, MARTE allows users to introduce clocks, to associate them with
elements, and to express dependencies among them through CCSL. Formalizations of
CCSL have been defined in literature [Mallet 2008]. [André 2009] formalizes a subset

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:5

of CCSL, called Kernel CCSL, and [Zhang et al. 2016] defines a technique to formally
analyze stated CCSL constraints. CCSL expresses constraints only as dependencies
between clocks, which can make expressing properties cumbersome—potentially, new
clocks might have to be introduced for each constraint. Finally, we remark that, al-
though this is out of the scope of the present work, the TRIO metric temporal logic
which provides the formal foundation to our whole approach could also be used to pro-
vide a formalization of CCSL constraints.

3. C-UML
Corretto UML2 (C-UML) was designed to be a simplified—and a special-purpose—
version of UML for modeling complex time-dependent embedded systems. We con-
ceived it as a verifiable subset of UML, to which we added some key elements of
MARTE to address time-related aspects.

More specifically, C-UML comprises:3 Class Diagrams, Object Diagrams, State Ma-
chine Diagrams, Sequence Diagrams, Activity Diagrams, and Interaction Overview
Diagrams.4 C-UML also offers a simple, OCL-like language, Corretto Property Lan-
guage (CPL), that helps state the properties of interest during verification. A valid
C-UML model must comprise at least a Class Diagram, while all the behavioral views
are optional.

Class Diagrams provide the static definitions of the elements in a system. Every
class should have at least one Instance Specification (object) instantiating the class
in an Object Diagram. The number of Instance Specifications must be finite in or-
der to run the formal verification. Class diagrams also allow for clock types (through
stereotype «clockType») and timed events («timedEvent»), both borrowed from MARTE.
The former can be used to constrain the timed behavior of components [MARTE 2011;
André et al. 2007], while the latter can be used to associate clocks with events of be-
havioral diagrams—e.g., messages in Sequence Diagrams—to constrain them to be
periodic.

State Machine Diagrams can be used to describe the behavior of significant classes
in the system, that is, all their instances will behave as stated by these diagrams. Each
class may be associated with one or more State Machine Diagrams, which would then
run in parallel. A single object will then be into multiple states at a given time. Each
of these states belongs to one of the state machines assigned to that object. Similarly,
Activity Diagrams capture the dynamic aspects of objects by showing the flow of control
among their activities, which emphasizes the sequences, conditions and parallelism
among them. Each class can have a set of Activity Diagrams.

Sequence Diagrams describe partial behaviors of the system. They identify the mes-
sages exchanged between the instances of the classes defined in Class Diagrams. These
messages in turn should be instances of the operations defined in the classes the
objects belong to. Interaction Overview Diagrams constitute a high-level structuring
mechanism that is used to compose Sequence Diagrams through standard operators
such as sequence, iteration, concurrency, and choice [Baresi et al. 2011].

In addition to these standard UML diagrams, we add the notion of time con-
straints to predicate on the time dimension of the system. Time constraints can be in-
troduced in Sequence Diagrams through special-purpose comments (stereotype «time-

2The notation was defined within the EU project MADES: www.mades-project.org
3In this paper we use the term “diagrams” (e.g., Class Diagrams) when referring to the various parts of a C-
UML model, because this is the terminology most users are probably familiar with. However, what matters
are the entities in the model (classes, instances, activities, interactions, and so on), rather than their actual
graphical representation in diagrams. Diagrams are not taken into account during analysis.
4A document containing the C-UML meta-model is available on the Corretto repository [Motta et al. 2017].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

www.mades-project.org

A:6 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

Constraint»), in State Machine Diagrams as triggers or guards of a transition, and in
Activity and Interaction Overview Diagrams as guards of control flows. They always
have the format:

ev2− ev1 ∼ K
where ev1 and ev2 are events occurring in the model, ev2−ev1 is the number of time in-
stants between the occurrences of ev1 and ev2 (i.e., the difference of their timestamps),
∼ is a relation in the set {<,≤,==, ! =,≥, >}, and K is a numeric (integer) constant.

C-UML addresses the interdependencies among the different diagrams of a complete
specification by means of shared events, such as invocations of operations and clock
ticks. To refer to an event (i.e., a timed observation) we use the MARTE-inspired [De-
mathieu et al. 2008] notation @id.event, where id is the identifier of the element with
which the event is associated. The events of interest are:

— @id.start, @id.end, @id.stop, where id is the name of a Sequence Diagram and
the three events refer to the time instants at which the Sequence Diagram starts,
ends, and is stopped. A Sequence Diagram ends when it successfully completes all
the interactions shown in the diagram. If the interactions are not completed success-
fully (this can happen when they are part of an interruptible region—see Section
4.5—which is interrupted by a signal) we say that the Sequence Diagram has been
stopped.

— @id.send, @id.receive, where id is the name of a message defined in a Sequence
Diagram, and the two events refer to the time instants at which the message is sent
and received.

— @id.begin, @id.terminate, where id is the name of an execution specification5 in
a Sequence Diagram, and the two events refer to the time instants at which the
execution specification starts and ends.

— @id.enter, @id.exit, where id is the name of a state of a State Machine Diagram
and the two events refer to the time instants at which an object enters and exits the
state.

— @id.call, @id.reply, where id is the name of an operation defined in the Class Di-
agram and call (resp., reply) occurs when the operation is invoked (resp., returns).
For example, given an operation defined in a Class Diagram, when a Sequence Di-
agram sends a message to an operation op, event @op.call occurs. If the user mod-
els an execution specification for the invoked operation and then a return message,
@op.reply occurs when the reply message is received by the client. If no execution
specifications, and reply messages, are provided the (implicit) assumption is that the
execution is instantaneous. In addition, if the interaction is synchronous, no events
can happen between @op.call and @op.reply on the caller’s lifeline (if the sequence
diagram has not been stopped in between).

— @id.tick, where id is the name of a clock instance defined in a Class Diagram and
the tick event occurs every T time units, where T is the period associated with the
clock.

— @id.sig, where id is the name of a signal defined in a Class Diagram and it may be
triggered (sig) because (i) it is associated with an action of a transition in a State
Machine Diagram; (ii) it is associated with a send signal action in an Activity or
Interaction Overview Diagram (see below); or (iii) non-deterministically, when none
of the previous cases holds, i.e., when the signal is left free.

— @id.adstart, @id.adend, where id is the name of an Activity Diagram and adstart
(resp., adend) refers to the instants when the diagram starts (resp., ends) its execu-
tion.

5As defined in [OMG 2011], execution specifications are represented as thin rectangles on lifelines.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:7

— @id.iodstart, @id.iodend, where id is the name of an Interaction Overview Diagram
and the two events refer to the time instants at which it starts and ends its execution.

— @now is a special event that refers to the current time instant.

C-UML supports both local and static (i.e., global) attributes, and if they have de-
fault values, they are initialized accordingly. Attributes maintain their values except
in case of assignments. However, it is sometimes desirable, for example with cyber-
physical systems, to capture also non-deterministic behaviors to describe uncontrol-
lable choices made by the application environment. Thus, when an attribute is tagged
with stereotype «free», its value changes non-deterministically, without an explicit as-
signment (see Figure 4 and accompanying description for an example).

Actions are the fundamental units for specifying system behaviors in C-UML. They
define elementary behaviors, comparable to atomic statements in traditional program-
ming languages. Actions can be introduced through action nodes in Activity and Inter-
action Overview Diagrams, in the “action” part of transitions in State Machine Dia-
grams, and in messages of Sequence Diagrams. C-UML supports five kinds of actions:
assignment, call operation, send signal, accept event, and init sequence diagram. Fig-
ure 2 shows which action types—from zero to many—are supported by the different
diagrams.

Assignment

Send
Signal

Accept
Event

Call
Operation

Init
Sequence
Diagram

Activity
Diagram

Interaction
Overview
Diagram

Sequence
Diagram

State
Machine
Diagram

Fig. 2: Diagram and Action types.

Assignments can refer to and modify the values of attributes of classes, but they have
a slightly different syntax than in usual programming languages to allow for greater
flexibility in combining values taken at different instants of time. In fact, given an
attribute A, simply A refers to its current value, <Y>A to its value at the previous time
instant, and <X>A at then next one6. Then, to increment the value of attribute A, the
assignment should be written as A = <Y>A + 1, to indicate that the current value of A
is equal to the one at the previous time instant, plus one.

Actions call operation, accept event, send signal and init sequence diagram all ex-
ploit the notation introduced above for shared events. For example, the call operation
@OP.call can appear in the action of a transition of a State Machine Diagram7. Simi-
larly, the action of a transition can include an init sequence diagram @SD.start, where

6The use of Y and X is borrowed straightforwardly from LTL to refer to a value at the previous and next time
instants, respectively.
7If an object can invoke the same operation on different objects, C-UML allows the user to disambiguate
the target object of an operation call by means of associationEnd.op.call. This is exemplified in the State
Machine Diagram of Figure 22 by the transition between states Main and Won.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

SD is the id of a Sequence Diagram. This custom syntax has been introduced to ease the
burden on the modeler who needs to call operations and initialize sequence diagrams
within UML diagrams: this is supported by the standard, but realized in different ways
in different tools.

In C-UML, the properties to be checked are expressed through the Corretto Prop-
erty Language (CPL), which is inspired by OCL and has a straightforward transla-
tion into the TRIO metric temporal logic [Ciapessoni et al. 1999] (see Appendix A). The
properties to be checked are introduced through a special-purpose constraint associ-
ated with the main C-UML model package, which is tagged with stereotype «property»
and contains a sequence of declarations in CPL. The syntax of the CPL is defined by
the following grammar:

CPLFm ::= !CPLFm |CPLFm Pop CPLFm |
Time.Temp1(CPLFm) |Time.Temp2(CPLFm,CPLFm) |
Time.TempInt(CPLFm, Integer) |
signalID | InState | objID ôpID() |ArithBool

InState ::= objID.in(State)
State ::= objID.getState(STDID,UMLStateID)
Pop ::= && ||| |=> |<=>
Temp1 ::= alw | som |alwF | somF |alwP | somP
Temp2 ::= until | since | release | trigger
TempInt ::= futr |past |withinF |withinP | lasts | lasted
ArithBool ::= ArithTerm(>|>=|<|<=|==|!=)ArithTerm
ArithTerm ::= constant |ArithV ar |ArithTerm(+|-|*|/)ArithTerm |

Futr(ArithTerm, Integer)) |Past(ArithTerm, Integer))
ArithV ar ::= objID.attributeID | objID :: opID.parameterID |

sdID.getParameter(parameterID)

According to the grammar, a formula (CPLFm) of the language can refer
to the occurrence of a signal (signalID), a state of an object being active
(InState), or an operation invocation on an object (objID ôpID()). For example,
obj1.in(obj1.getState(mainSTD, idle)) describes that object obj1 is in state idle of
State Machine Diagram mainSTD, and obj1^update() refers to the invocation of oper-
ation update on obj1.

In addition to the usual propositional operators (Pop), CPL in-
cludes three types of temporal operators, characterized by prefix
Time and identified as Temp1, Temp2 and TempInt in the grammar.
Temp1 operators take a single formula as argument: for example,
Time.alw(! failureSignal) states that signal failureSignal is never issued.
Temp2 operators have two formulae as arguments: for instance, Time.until(!
obj1.in(obj1.getState(mainSTD, shutdown)), failureSignal) describes that
obj1 will not be in state shutdown until failureSignal is issued. Finally,
TempInt operators take a formula and an integer as arguments: for example,
Time.lasts(obj1.in(obj1.getState(mainSTD, warning)), 5) states that obj1 will be
in state warning for at least the next 5 time units.

CPL also allows for arithmetic expressions through which users can express
properties of attributes and parameters. Arithmetic formulae compare two terms,
which can be the results of arithmetic operations, or single arithmetic variables.
Arithmetic variables can be attributes and operation parameters of objects, or pa-
rameters of Sequence Diagrams. For example, Time.alw(! (sensor.temperature -
Past(sensor.temperature, 1) > 5)) states that there will never be an increase in
the temperature measured by the sensor exceeding 5 degrees.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:9

Figure 3 shows how CPL supports declarations to make formulae more readable.
Lines 1 and 2 state that inStateOn and isHeating hold, respectively, when object heat-
ingSys is in state on of State Machine Diagram mainSTD and when attribute temper-
ature of object sensor is greater than its value at the previous time instant. Line 3
defines a surge, that is, an increase in temperature grater than 5 degrees, and Line 4
the property of interest, that is, that the temperature detected by the sensor always
increases as long as the heating system is on, and a surge never occurs. Line 5 tells
Corretto to check the property, which means verifying whether all executions satisfy
the property. If one used execute() instead of verify(), Corretto would only return an
execution trace of the modeled system.

1 inStateOn = heatingSys.in(heatingSys.getState(mainSTD , on))
2 isHeating = sensor.temperature > Past(sensor.temperature , 1)
3 surge = (sensor.temperature - Past(sensor.temperature , 1)) > 5
4 property = Time.alw(inStateOn => isHeating) && Time.alw(! surge)
5 Corretto.verify(property)

Fig. 3: An example property in CPL.

4. SEMANTICS
The semantics of C-UML is defined through the TRIO metric temporal logic [Ciapes-
soni et al. 1999], which is briefly introduced in Appendix A. Each C-UML diagram
is translated into a set of predicates and variables, plus a set of TRIO formulae; the
predicates and variables encode the diagram elements, while the axioms define their
semantics by stating the constraints that rule their behavior.

The logic-based approach allows us to break down the semantics of UML diagrams
into small pieces, captured by different groups of axioms, and thus to dominate its
complexity.

More formally, let us define D = {CD ∪ OD ∪ AD ∪ IOD ∪ SM ∪ SD} as the set of
diagrams included in a C-UML model (where CD is the set of Class Diagrams, OD
is the set of Object Diagrams, AD is the set of Activity Diagrams, IOD is the set of
Interaction Overview Diagrams, SM is the set of State Machine Diagrams, and SD
is the set of Sequence Diagrams), P as the set of predicates and variables that encode
their elements, andAP as the set of axioms that constrain the behavior of the elements
in P. The semantics is a triple < Γ,∆,Θ >, where Γ : D → 2P is a function that given
a diagram returns the set of predicates and variables assigned to it, ∆ : D → 2AP is a
function that given a diagram returns the set of axioms that constrain its behavior, and
Θ : D×D → 2AP is a function that, given two diagrams, returns the set of axioms that
formalize their combined behavior, as determined by the items that they share, thus
modeling features such as communication, coordination, and any kind of interaction
among diagrams.

The semantics Sem of a C-UML model is therefore built as follows.

Sem =

(⋃
d∈D

∆(d)

)
∪

 ⋃
d1,d2∈D,d1 6=d2

Θ(d1, d2)

 (1)

This formalization/verification approach emphasizes and facilitates:

— Decoupling. The semantics is decoupled from the predicates that represent the el-
ements of C-UML models. This means that one can change the semantics while
keeping the translation from UML to the predicates unchanged. For example, if we

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

wanted to change the semantics of time associated with clocks, we do not need to
alter the predicates, but only the axioms associated with them. This also gives the
opportunity to experiment and evaluate different semantics for the same model.

— Extensibility. The logic-based formalization is easy to extend. Adding a new diagram
type entails defining the predicates that represent its elements, and their associated
axioms. If the new diagram type shares some predicates with the already existing
ones, then the coordination between diagrams is obtained seamlessly through the
formulae that predicate on shared elements.

— Composability. Introducing new details may result in specifications that become too
big to be analyzed automatically. In such scenarios it is common practice to select an
interesting subset of the model that focuses on a particular feature to simplify the
analysis. To this end, our approach supports the analysis of partial models by simply
avoiding the translation of the diagrams the user is not interested in.

The rest of the section uses a running example to illustrate the proposed semantics.

4.1. Car Collision Avoidance System
To explain the formal semantics of the various diagrams we use an example, Car Col-
lision Avoidance System (CCAS for short). Let us remark that the CCAS model has
been created with the purpose of showing a wide range of features of C-UML in an
integrated, coherent way; a more economical use of C-UML diagrams to describe the
same system is possible.

«clockType»
{period=4}

RadarClock

«signal»
brakeInterrupt

+ notifyDistance(+ receivedDistance: Integer)

Controller

+ notifyBrake()

BrakingSystem

Bus

+ sendSensorDistance(+ receivedDistance: Integer)
+ sendBrakeCommand()

«signal»
failure

Radar

- getDistance()

«free» - sensedDist: Integer
- failureC: Integer

Fig. 4: CCAS: Class Diagram.

!! @sendSensorDistance.end - @sendSensorDistance.start == 1
«"meConstraint»

sendSensorDistance(distance)

notifyDistance(distance)

radar:Radar bus:Bus ctrl:Controller

Fig. 5: CCAS: Sequence Diagram sendSensorDistance.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:11

!!
@sendBrakeCommand.end - @sendBrakeCommand.start == 2

«"meConstraint»

Fig. 6: CCAS: Sequence Diagram sendBrakeCommand.

«timedEvent»
getDistance()

Fig. 7: CCAS: Sequence Diagram periodicReadDist.

 @notifyDistance.call[(receivedDistance < 2) && @now - @warning.enter > 20] / @brakeInterrupt.sig

@now - @braking.enter == 1

 @notifyDistance.call[(receivedDistance >= 2)] @notifyDistance.call[(receivedDistance < 2)]

@notifyDistance.call[(receivedDistance >= 2)]

Fig. 8: CCAS: State Machine Diagram of class Controller.

The CCAS detects the position of the vehicle on which it is installed with respect to
other objects. The distance between the car and the external objects is read through

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

@brakeInterrupt.sig

periodic
ReadDist

sendBrakeCommand

Fig. 9: CCAS: Interaction Overview Diagram.

Fig. 10: CCAS: State Machine Diagram of class BrakingSystem.

an on-board Radar, which is in charge of validating and sending data to the Controller
through the system Bus. When the distance between the car and the external objects is
greater than or equal to 2 meters the CCAS should not perform any action. When the
distance becomes strictly less than 2 meters the CCAS switches to a warning state.
If the distance continues to remain less than 2 meters for 200 ms, the CCAS must
brake. The brake command is sent to the BrakingSystem, which finally brakes the car.
The Radar reads and validates the distance received from the sensor every 40 ms. If
the sensor is broken, or if it produces an inconsistent value, the Radar invalidates the
distance reading. A failure signal is issued by the Radar if the distance read has been
invalidated more than two consecutive times. If the distance read is valid, it is sent to
the controller via the Bus, which takes 10 ms.

The complete model comprises one Class Diagram, one Object Diagram, one Inter-
action Overview Diagram, one Activity Diagram, three Sequence Diagrams, and two
State Machine Diagrams.

The Class Diagram of Figure 4 defines the different classes in the system. Radar-
Clock is used to model the fact that Radar reads the distance periodically, and stereo-
type «clockType» defines the period of the clock, where one time unit corresponds to 10
ms. Attribute sensedDist of class Radar captures the value of the distance detected by

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:13

failureC = <Y> failureC + 1

@getDistance.call

@failure.sig

sensedDist sendSensorDistance
distance

failureC = 0

[(failureC < 2)]

[else]

Fig. 11: CCAS: Activity Diagram of class Radar.

the radar. It is tagged as «free» because its value changes not because of assignments
performed by the components of the system, but non-deterministically, depending on
the environment in which the system operates. The Object Diagram is very simple, in
that it instantiates exactly one object for each class of Figure 4, so it is not shown here
for brevity.

The communication among the different objects in the system is captured by two
Sequence Diagrams. The Sequence Diagram of Figure 5 says that the sending of the
distance by the Radar through the Bus takes one time instant (10 ms). The Sequence
Diagram of Figure 6 states how the Controller sends the brake command to the Brak-
ingSystem via the Bus and that this takes exactly two time instants. In addition, the
Sequence Diagram of Figure 7 describes that the Radar periodically reads its sensor
value according to the period set by clock RadarClock.

The Controller monitors the value of the received distance according to the State Ma-
chine Diagram of Figure 8. If the Controller detects that the system has been in state
warning for more than 20 time units (200ms), the transition from warning to braking
takes place and consequently signal brakeInterrupt is issued. The Interaction Overview
Diagram (Figure 9) captures the fact that Sequence Diagram periodicReadDist is ex-
ecuted repeatedly, whereas Sequence Diagram sendBrakeCommand is executed in re-
sponse to signal brakeInterrupt8. The State Machine Diagram of Figure 10 captures
the behavior of BrakingSystem leaving state braking after 10 time instants. Finally, the

8Note that this way only the current thread is terminated, but the diagram remains active and waits for the
next occurrence of signal brakeInterrupt.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

behavior of Radar is captured by the Activity Diagram of Figure 11. The diagram de-
scribes how a counter of the number of failures is updated with each new reading of
the sensor value; for simplicity, the choice of whether to accept the reading or not is
non-deterministic.

4.2. Class and Object Diagrams
A C-UML Class Diagram includes a finite set of classes, clocks, and signals. An Ob-
ject Diagram defines the objects that instantiate the classes defined by a Class Dia-
gram. The set of objects must be finite to enable the verification. Clocks define peri-
odic events, whereas signals represent general-purpose events that are not bound to a
specific class. For every clock c, a predicate Clockidc

Tick is declared, where idc is the
unique identifier of the clock. For every signal s we declare a predicate Signalids

. For
every operation y that belongs to an object x we introduce the predicate Objidx

Opidy
to

denote the invocation of the operation, and Objidx
Opidy

Reply to denote the correspond-
ing reply. Note that prefix Objidx

is needed to distinguish the predicates generated
for the same operation, but for a different object. Predicates for operation parameters,
return values, and attributes are generated in a similar way. More precisely, the at-
tributes of a class, the parameters and return values of operations are all translated
into TRIO arithmetic variables. TRIO supports both integer and real variables.

From the point of view of the formalization of C-UML models, the role of Class Di-
agrams is twofold: on one hand, they declare part of the alphabet of the model (in
particular, the elements that are shared across diagrams); on the other hand, they de-
fine the semantics of clocks. Concerning the latter issue, given a clock c with period T ,
the associated semantics is that its tick event must occur every T time units. In other
words, its clock tick occurs if, and only if, it did not tick during the last T −1 time units,
which implies that it ticks at times T, 2T, 3T, . . .: 9

Lasted(¬Clockidc
Tick, T − 1)⇔ Clockidc

Tick (2)

For instance, in the Class Diagram of Figure 4 the timing of Radar operations is
specified by RadarClock, whose formal semantics is therefore captured by:

Lasted(¬RadarClockT ick, 3)⇔ RadarClockT ick (3)

This clock is used in Sequence Diagram periodicReadDist (Figure 7) that forces the
Radar object to invoke getDistance every 4 time instants, which in turn initiates its
Activity Diagram (Figure 11). In fact, the message that represents the invocation of
operation getDistance is tagged with stereotype «timedEvent», hence it is synchronized
with the ticks of the RadarClock, as defined by Formula (4):

ObjradargetDistanceSend⇔ RadarClockT ick (4)

4.3. State Machine Diagrams
Each State Machine Diagram is owned by a class, and each class may have more than
one State Machine Diagram. In this case, the different state machines run in paral-
lel, that is, each object has a current state in each State Machine Diagram and they
run independently. For each object o we generate the following predicates according to
the State Machine Diagrams that describe its behavior. For every state s we declare
three predicates ObjidoStateidsEnter, ObjidoStateidsExit and ObjidoStateids that hold,
respectively, when the object is entering or exiting the state, and when it is in the state.

9TRIO axioms are implicitly asserted for all time instants, hence Formula (2) is implicitly interpreted as
Always(Lasted(¬ClockidcT ick, T − 1)⇔ ClockidcT ick).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:15

If this state has also an invariant we declare predicate Objido
Invariantids

. For every
transition t of the same diagram we declare predicate Objido

Transitionidt
. The same

transition may have a trigger, a guard, and an action, which are mapped to predicates:
Objido

Triggeridt
, Objido

Guardidt
, Objido

Actionidt
respectively.

The formalization of State Machine Diagrams is fairly standard, therefore we will
only hint at some of its features. One of the key assumptions in our formalization is
that the firing of a transition consumes a time instant, so we do not allow multiple
transitions to occur at the same time instant, as some semantics of State Machine Di-
agrams/Statecharts do [Eshuis 2009]. The TRIO family of languages does indeed sup-
port mechanisms for modeling so-called zero-time transitions [Rossi et al. 2016], but
they complicate the coordination among different components [Ferrucci et al. 2012],
especially in a real-time setting.

In C-UML, diagrams types are ascribed with a common temporal semantics, and
most of them are not naturally suited to accommodate zero-time transitions. Hence,
to better allow for the synchronization of heterogeneous types of diagrams, the choice
was made to avoid zero-time transitions also in State Machine Diagrams. This has
no impact on the practical applicability of the approach: for example, multiple—non-
conflicting—assignments (see Section 4.6) can still be performed in the same time in-
stant.

Given a state s owned by object o, we define the set of its incoming and outgoing
transitions as Incomings and Outgoings, respectively. A necessary condition to enter
the state is that one of the incoming transitions holds in the previous time instant:

Objido
Stateids

Enter ⇒ Past

 ∨
t∈Incomings

Objido
Transitionidt

, 1

 (5)

Similarly, the necessary condition to exit a state is that one of the outgoing transitions
holds at the current time instant.

Given a transition t that connects a source state s with a different destination state
d, the sufficient condition to leave s and enter d is that t occurs:

Objido
Transitionidt

⇒ Objido
Stateids

Exit ∧ Futr(Objido
Stateidd

Enter, 1) (6)

This axiom is not generated if t is a self-loop. When object o is in state s, predicate
Objido

Stateids
holds untilObjido

Stateidd
Exit holds. Similarly, if object o is not in state s,

unless the corresponding Enter predicate holds in the next time instant, it will remain
in a different state. A necessary condition for taking the transition is that the object is
in source state s and the corresponding guard and trigger hold, if present. The trigger
is defined by the event associated with it. If e is the event associated with the trigger
of transition t, the trigger predicate of t holds if, and only if, the object is in state s
and event e occurs. Similarly, the guard predicate holds if, and only if, the associated
Boolean condition holds and the object is in the source state. If the transition has
actions associated with it, then the action predicates hold one time instant after the
transition. Finally, the outgoing transitions of a state are mutually exclusive. If more
than one transition can be fired at a given time instant, the one that will be actually
taken is chosen non-deterministically. This is achieved in temporal logic formulae by
stating that, if a transition is enabled, then there exists exactly one enabled transition
that is taken.

As example, we introduce the formal semantics of the transition from state warning
to state braking in Figure 8, along with its trigger, guard and action. The following
formula states that when transition controllerTran1 occurs, it takes one time instant to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

switch states:

controllerTran1 ⇒ controllerWarningExit ∧ Futr(controllerBrakingEnter, 1) (7)

The transition is annotated with @notifyDistance.call[receivedDistance<2 && @now -
@warning.enter>20] / @brakeInterrupt.sig, according to the syntax Trigger[Guard]/Action.
Predicates controllerTran1Guard, and controllerTran1Trigger are mapped to, respec-
tively, the guard and trigger of the transition; they are defined by the following for-
mulae, which state that the guard (trigger) holds when the corresponding Boolean
condition (triggering event) holds:

controllerTran1Guard⇔ controllerWarning ∧ receivedDistance < 2 ∧ TC1 (8)
controllerTran1Trigger ⇔ controllerWarning ∧ controllerNotifyDistance.call (9)

In Formula 8, TC1 is a placeholder for the formula capturing @now - @warn-
ing.enter>20; its precise definition will be given in Section 4.8. The following formula,
instead, defines that the action (i.e., the emission of signal brakeInterrupt) is executed
one time instant after the transition:

Past(controllerTran1 ∧ controllerWarning, 1)⇔ brakeInterrupt (10)

Finally, the next formula defines precisely when the transition is taken (i.e., when the
State Machine Diagram is in the source state, and the guard and trigger both hold):

controllerTran1 ⇒ (11)
controllerWarning ∧ controllerTran1Guard ∧ controllerTran1Trigger

As mentioned above, a transition in a State Diagram can include actions, which can be
of different kinds. The semantics of actions, which is common across different types of
diagrams, is presented in Section 4.6.

4.4. Sequence Diagrams
For each Sequence Diagram s we generate predicates SDids

Start and SDids
End that

are true at the beginning and at the end of the diagram execution, respectively. We also
generate predicate SDidsStop that holds true when the diagram is interrupted, that is,
when it is stopped without reaching its natural end. Finally, predicate SDids holds
true when the Sequence Diagram is active, that is, when the diagram has started, but
it has not ended nor has it been stopped, yet. For every message m, we declare two
predicates: Msgidm

Start and Msgidm
End. The predicates hold at the beginning and at

the end of the message, respectively. Note that these two time instants may—but need
not—coincide. For every execution specification e, we define predicates ExSide

Start,
ExSide

End, and ExSide
, which hold true, respectively, at the beginning, at the end, and

during the execution specification. Parameters and assignments—within Sequence
Diagrams—have received a number of different interpretations [Micskei and Waese-
lynck 2011]. C-UML allows each Sequence Diagram to define parameters whose values
are chosen non-deterministically when the diagram starts and remain constant during
the entire execution of the diagram, unless there is an assignment.

A parameter in a Sequence Diagram can be assigned in an Activity Diagram, where
an object flow connects it to a variable. For example, in the Activity Diagram of Fig-
ure 11 Sequence Diagram sendSensorDistance is initiated while its parameter (dis-
tance) is set to the value of attribute sensedDist of Radar. With this feature the user
can forward a value between the objects in a Sequence Diagram without any need for
complex assignments. For example, by using parameter distance as the actual argu-
ment for operations sendSensorDistance and notifyDistance in the Sequence Diagram
of Figure 5 we define that the value of distance is passed around the objects of the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:17

diagram. For every variable y in a Sequence Diagram s, we declare a TRIO arithmetic
variable SDids

Paridy
. For every assignment a, we declare a predicate Assignmentida

that holds true when the assignment is performed in the diagram. Finally, for every
time constraint c, we declare predicate Constraintidc

that holds true from the begin-
ning until the end of the execution of the Sequence Diagram.

A Sequence Diagram is defined as a set of lifelines. Every lifeline is an ordered
list of events. These events can be the start/end of messages, start/end of execution
specifications, and assignments. Given a Sequence Diagram s, we define Lifeliness
as the set of lifelines that belong to s. Also, given a lifeline l ∈ Lifeliness, we define
LifelineEvl as the set of events that belong to the lifeline. For every pair of events
Evi, Evj ∈ LifelineEvl, where Evi precedes Evj on the lifeline, if Evi holds at a given
instant, then Evj will follow in the future if the diagram is not stopped. This is formal-
ized by the following axiom:

Evi ⇒ Until(¬Evi ∧ ¬Evj , SDxStop) ∨ Until(¬Evi ∧ ¬SDxStop,Evj) (12)
Also, if Evj holds at a given instant, then Evi was true in the past and the execution

has not been stopped in the meanwhile. This is formalized by the following axiom:
Evj ⇒ Since(¬Evj ∧ ¬SDxStop,Evi) (13)

The first event in the Sequence Diagram is the start event that holds true when pred-
icate SDidsStart holds true. The first message of the Sequence Diagram may or may
not start at the same time instant when the Sequence Diagram starts. The last event
in the Sequence Diagram is represented by predicate SDidsEnd that holds true when
the last message of the Sequence Diagram occurs. The system is executing Sequence
Diagram s if, and only if, SDids

Start holds, or the diagram neither ended nor has been
stopped since the last time the predicate held.

The different lifelines are connected through messages. To say that the send event
of a message m is followed by the corresponding receive event, and that a receive event
is preceded by the send event we use axioms similar to 12 and 13:

MsgidmSend ⇒ Until(¬MsgidmSend ∧ ¬MsgidmReceive, SDxStop) ∨ (14)
Until(¬Msgidm

Send ∧ ¬SDxStop,Msgidm
Receive)

Msgidm
Receive ⇒ Since(¬Msgidm

Receive ∧ ¬SDxStop,Msgidm
Send) (15)

For every execution specification e, predicate ExSide
holds between ExSide

Start and
ExSide

End. The objects that are inside an execution specification must be considered
busy. We define the set of execution specifications that belong to object o as ExSSeto.
For each pair of execution specification i, j ∈ ExSSeto, the corresponding predicates—
ExSidi and ExSidj—are mutually exclusive.

C-UML supports variable assignments in Sequence Diagrams represented as re-
cursive messages. The name of the message contains the assignment expression. The
semantics for assignment will be presented in Section 4.6. The same kind of semantics
is used to set the actual values of the formal parameters of the methods invoked in Se-
quence Diagrams. For every parameter k that does not appear in the left-hand side of
any assignment, we impose that the value of the parameter remains constant through-
out the whole diagram. This means that the parameter keeps the value it had at the
previous time instant—with the exception of the first instant the diagram is active.
This is formalized by the following axiom, where SDidsParidk

is the TRIO arithmetic
variable that captures the value of parameter k:

SD ∧ ¬SDsStart ⇒ SDids
Paridk

= Past(SDids
Paridk

, 1) (16)
Given a time constraint c associated with a Sequence Diagram s, the predi-

cate Constraintidc
associated with the constraint holds while we are inside the Se-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

quence Diagram (i.e., when predicate SDids
holds). This is formalized by the axiom

Constraintidc
⇒ SDids

.
We can now exemplify all these definitions by considering the lifeline of object bus in

the Sequence Diagram of Figure 5. Since the first and the last events of the lifeline are
linked to the start and end points of the execution specification covering the lifeline
(whose id ES1 is not shown on the diagram, as customary for execution specifications),
they must be synchronized with ES1Start and ES1End, respectively, as formalized by
the following formulae:

ES1Start⇔ sendSensorDistanceEnd (17)
ES1End⇔ notifyDistanceStart (18)

Moreover, the following formulae force ES1Start to be followed by ES1End (unless
SD1Stop takes place), and ES1End to be preceded by ES1Start:

ES1Start⇒ Until(¬ES1Start ∧ ¬ES1End, SD1Stop) ∨ (19)
Until(¬ES1Start ∧ ¬SD1Stop, ES1End)

ES1End⇒ Since(¬ES1End ∧ SD1Stop, ES1Start) (20)

As mentioned above, an object cannot have more than one active execution specifi-
cation. Accordingly, since object bus is engaged in the Sequence Diagrams of Figures 5
and 6, and in both cases it is covered by an execution specification, the following for-
mula is added to prevent the object from having both execution specifications active at
the same time:

ES1 ⇒ ¬ES2 (21)

Sequence Diagrams also support the concept of combined fragments, but their se-
mantics has been subject to different interpretations. For simplicity, in this paper we
do not delve further in this issue. However, we have defined formal semantics for the
various interpretations and our tool, Corretto, can handle each of them; interested
readers can find further details in [Baresi et al. 2014].

4.5. Activity Diagrams and Interaction Overview Diagrams
C-UML supports both Activity Diagrams and Interaction Overview Diagrams. In C-
UML the dynamic aspects of an object can be captured by State Machine Diagrams
and Activity Diagrams, whereas Interaction Overview Diagrams are used to describe
the coordination among the different (partial) interactions. For example, the State Ma-
chine Diagram of Figure 8 and the Activity Diagram of Figure 11 capture the behavior
of Controller and Radar, respectively, whereas the Interaction Overview Diagram of
Figure 9 specifies the interaction among Controller, Radar, Bus, and BrakingSystem.

Activity Diagrams contain control, action, and object nodes interconnected through
control flow and object flow edges. Control flows define the chaining of activities, and
object flows capture how data (object nodes) flow between the input/output pins of
action nodes. For example, in the Activity Diagram of Figure 11 an object flow sets
parameter distance of Sequence Diagram sendSensorDistance to the value of variable
sensedDist.

Control nodes include initial, decision/merge, fork/join, flow final, and activity final
nodes. Their behavior is formalized through a number of predicates that become true
each time they become active. For every decision node d, we generate k predicates,
where k is the number of control flows that leave the node: for every outgoing control
flow p, predicateDecidd

Pathp represents the fact that p has been taken. In addition, if a
guard is associated with the control flow, a dedicated predicate Decidd

Guardp is added.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:19

When a decision is activated, one of its control flows whose guard is true is selected
non-deterministically, while a merge becomes active as soon as it receives a token from
one of its incoming control flows. Fork nodes with guards are translated in a similar
way (e.g., a predicate Forkidf

Pathp is introduced for each path leaving fork node f),
but all of the outgoing control flows will be activated. For every join node j, predicate
JoinidjEnd holds true when all its incoming control flows terminate their execution.

Action (executable) nodes are the fundamental elements of Activity Diagrams that
can modify the state of the corresponding objects and initiate interactions with other
objects. Among them, accept event nodes listen to signals and invocations of specific ob-
ject operations. They are activated and receive a token as soon as the signal is issued
or the operation is invoked. C-UML also supports nodes of type assignment, call opera-
tion, send signal, and init sequence diagram; the corresponding actions are formalized
in Section 4.6.

A key part of the formalization of an action node defines the start and duration of the
execution of the the node, which depend on the type of the node itself. Let us consider
an action node n in an Activity Diagram i. Depending on the nature of n, a predicate is
introduced to capture when the action associated with the node starts being executed;
for example, if n is an init sequence diagram node, the predicate is ADidi

SDidn
Start,10

whereas if n is a call operation node, it is ADidi
OPidn

Call. To generalize, in the follow-
ing we refer to the predicate as ADidi

Actionidn
. Let us remark that an action node can

have at most one incoming control flow (accept event nodes need not have an incom-
ing control flow, as Figure 11 shows). For an action node n to start its execution, an
“activation condition” must be met, which depends on the nature of its input node u—
i.e., the source of the incoming control flow of n. We indicate the activation condition
as ACn(u), and we describe below how it is defined. Then, predicate ADidiActionidn

holds one time unit after the ACn(u) holds, unless n is an accept event node. In the
latter case, predicate ADidiAEActionidn holds if, and only if, the event associated with
n holds in the current instant, the activation condition ACn(u) held sometimes in the
past, and no other accept event action occurred since then.

Condition ACn(u) is defined recursively based on the nature of u. If u is an initial
node, then ACn(u) simply corresponds to predicate ADidi

Start capturing the start of
the Activity Diagram being true. If u is an action node that takes one instant to be
executed (this is the case for assignment, call operation, send signal and accept event
nodes), ACn(u) corresponds to ADidi

Action being true. If u is an init sequence diagram
node, ACn(u) is ADidi

SDidn
End, which holds when the Sequence Diagram terminates.

We have also several inductive cases. If u is a merge node, and h1 . . . hk are its input
nodes, the activation condition of s holds when any of the incoming nodes terminates
its execution. Formally, this is translated as:

ACn(u) = ACu(h1) . . . ∨ACu(hk). (22)
If u is a fork node, h is its input node, and p is the path connecting u with n, the acti-
vation condition of n holds when the predicate assigned to p holds and the activation
condition of u holds:

ACn(u) = ACu(h) ∧ ForkiduPathp. (23)
If u is a decision node, h is its input node, and p is the path connecting u with n,
the activation condition of n holds when the predicate assigned to p holds and the
activation condition of u holds:

ACn(u) = ACu(h) ∧Decidu
Pathp. (24)

10For simplicity, in the rest of this section we omit prefix Objido , which identifies the object to which the
Activity Diagram belongs, from diagram-related predicates such as ObjidoADidiSDidnStart.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

Unlike a fork node, the paths that leave a decision node are mutually exclusive, thus
constraint ∀p′ 6= p(Decidu

Pathp ⇒ ¬Decidu
Pathp′) holds.

If u is a join node with input nodes h1 . . . hk, ACn(u) corresponds to predicate
Joinidn

End being true, which in turn occurs at the time instant when the last acti-
vation condition among ACn(h1) . . . ACn(hk) holds.

Finally, if n is an activity final node of the Activity Diagram i, with input node u,
predicate ADidiEnd holds at the same time instant as the activation condition ACn(u)
holds (similarly for flow final nodes).

Interaction Overview Diagrams can be seen as special-purpose Activity Diagrams,
where action nodes can only be of type init sequence diagram and send/receive signal
(see Section 4.6). For example, the Interaction Overview Diagram of Figure 9 activates
Sequence Diagram periodicReadDist infinitely often, since the decision node has only
one output path with an implicit true guard, and Sequence Diagram periodicReadDist
is both its input and output node. This is captured by the following formula:

periodicReadDistStart⇔ Past(periodicReadDistEnd ∨ IOD1Start, 1) (25)

In addition, the Interaction Overview Diagram keeps listening to signal brakeInter-
rupt sent from State Machine Diagram Controller (Figure 8) and, upon receiving it, it
activates Sequence Diagram sendBrakeCommand after one time instant; this is for-
malized as follows:

sendBrakeCommandStart⇔ Past(brakeInterrupt, 1) (26)

Interaction Overview Diagrams support the concept of Interruptible Regions. An
Interruptible Region identifies a set of Sequence Diagrams, whose behavior can be
interrupted when a given event e occurs. This means that for every Sequence Dia-
gram s enclosed in at least one Interruptible Region, SDsInterrupts is the set of in-
terrupts associated with the Interruptible Regions enclosing s. More precisely, if s be-
longs to an Interruptible Region associated with the interrupt event e, then e belongs
to SDsInterrupts. s is stopped if, and only if, the Interaction Overview Diagram has
reached the end node, or when one of the Interruptible Regions is activated. More for-
mally, we must constrain predicate IODidi

SDids
Stop such that it holds if, and only if,

predicate IODidi
End holds, or one of the interrupt events e in SDsInterrupts holds.

4.6. Actions
To capture the semantics of assignment actions, a predicate
Objidx

AssignmentV aridv
UMLidu

is introduced for each assignment, where idx is
the name of the object in which the assignment takes place, idv is the name of the
variable (i.e., the attribute) that is assigned, and idu is the identifier of the UML
element to which the assignment is attached (e.g., an assignment node).

The assignment predicate holds and lasts for one time unit as a result of its action
node receiving a token in an Activity Diagram, its transition being fired in a State Ma-
chine Diagram, or its corresponding message being received in a Sequence Diagram.

A set of formulae is produced to define the value of the variable at the time instant
the assignment takes place. Let us consider the statement x = <Y>y + z in an assign-
ment node of an Activity Diagram, and let us call Asg1 the corresponding predicate, for
simplicity. Predicate Asg1 holds when the enclosing assignment node receives a token,
and the following formula is produced:

Asg1 ⇒ V arx = Past(V ary, 1) + V arz (27)

Note that, if a variable v appears in an assignment with the qualifier <Y> (resp., <X>),
the corresponding TRIO term is Past(V arv, 1) (resp., Futr(V arv, 1)). If variable x has n
assignments Asgi . . . Asgn in the various diagrams, the following formula is produced

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:21

to force the variable to maintain its value when there is no assignment.

¬
n∨

i=1

Asgi ⇒ V arx = Past(V arx, 1) (28)

For example, if we considered the Activity Diagram of Figure 11, where two assign-
ment nodes modify the value of attribute failureC, the following set of formulae would
be produced:

ObjradarAssignmentV arfailureCUML1 ⇒ failureC = 0 (29)
ObjradarAssignmentV arfailureCUML2 ⇒ failureC = Past(failureC, 1) + 1 (30)
¬(ObjradarAssignmentV arfailureCUML1 ∨ObjradarAssignmentV arfailureCUML2)

⇒ failureC = Past(failureC, 1) (31)

Objects can invoke operations that belong to themselves or to other objects if they are
connected in the Object Diagram. To capture call operation actions, given an operation
idop invoked on object idx, predicateObjidx

Opidop
holds when at least one of the triggers

of the operation call occurs, as captured by the following formula:

Objidx
Opidop

⇔
n∨

i=1

Triggeri (32)

where Triggeri can be the predicate associated with a call operation node in an Activ-
ity Diagram, a transition action in a State Machine Diagram, or a receiving message
event in a Sequence Diagram. Additionally, if the operation to be invoked has input
parameters, their value must be set at the invocation time, the node must have as
many input pins as parameters, and they must be set by means of object flows.

The semantics of a send signal action is similar to the one of a call operation, that
is, it is a disjunction over related triggers across diagrams. A sent signal is visible
system-wide by all objects; it is instantly read by accept event actions in Activity and
Interaction Overview Diagrams, such that the corresponding nodes receive a token
and regulate the control flow thereafter. However, unlike in Interaction Overview Dia-
grams, accept event actions in Activity Diagrams can also read operation calls in addi-
tion to signals.

Finally, init sequence diagram is a kind of action that initializes a Sequence Diagram
in Activity Diagrams and Interaction Overview Diagrams as soon as the corresponding
node receives a token. Once the Sequence Diagram terminates, the token is transferred
to the next node. A Sequence Diagram may be referenced by several init sequence
diagram nodes or triggers in Activity and Interaction Overview Diagrams. Therefore,
similarly to send signal and call operation actions, the predicate for the init sequence
diagram action is constrained to coincide with at least one of its triggers.

4.7. Shared Events
Different diagrams may share a common set of events as enablers of the communi-
cation among them. Shared events include operation invocations, clock ticks, signals,
Sequence Diagram starts, ends, and stops, Activity Diagrams starts and ends, and
Interaction Overview Diagram starts and ends.

For example, Figure 12 shows the parts of the Interaction Overview Diagram of Fig-
ure 9, of State Machine Controller of Figure 8, and of Sequence Diagram sendSensor-
Distance of Figure 5 that communicate through the invocation of operation notifyDis-
tance and signal brakeInterrupt. More precisely, let us consider the scenario where the
CCAS activates the braking system. Object radar in Sequence Diagram sendSensor-
Distance of Figure 12(a) frequently updates the current distance in ctrl via bus, which

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

invokes operation notifyDistance. If the received distance is less than 2 meters, and the
system has been in state warning for longer than 20 time instants, then it enters state
braking and sends signal brakeInterrupt (Figure 12(c)). At the very same time the sig-
nal is received within the Interaction Overview Diagram, which entails that Sequence
Diagram sendBrakeCommand is immediately activated (Figure 12(b)).

sendSensorDistance(distance)

notifyDistance(distance)

radar:Radar bus:Bus ctrl:Controller

(a)

@brakeInterrupt.sig

sendBrakeCommand

(b)

 @notifyDistance.call[(receivedDistance < 2) && @now - @warning.enter > 20] / @brakeInterrupt.sig

(c)

Fig. 12: Examples of intra-diagram interactions.

Given two diagrams dx, dy of a C-UML model, their shared events are formalized
through their combined behavior Θ(dx, dy) as follows. Let us define χ : P × P →
{read, nil} as the function that defines the type of communication between two predi-
cates: χ(px, py) = read if the diagram that owns px catches an event py that occurs in
another diagram; χ(px, py) = nil if we have no relation between px and py. The com-
bined behavior Θ(dx, dy) is defined according to the values of function χ. For each pred-
icate px that is associated with diagram dx (i.e., px ∈ Γ(dx), where Γ is defined earlier
in this section) let us define Reasonspx as the set of predicates py ∈ Γ(dy), with dy 6= dx,
such that χ(px, py) = read. Intuitively, set Reasonspx contains all the predicates that
may cause predicate px to be true. This is formalized as px ⇔

∨
r∈Reasonspx

r.
In the example of Figure 12 we have that:11

—OpnotifyDistance is the predicate associated with operation notifyDistance in the Class
Diagram.

—MessageEndnotifyDistance is the predicate associated with the end of message notify-
Distance in the Sequence Diagram.

11For the sake of readability, we omit prefix Objx from each predicate.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:23

— TriggernotifyDistance is the predicate associated with the trigger of the transition of
the State Machine Diagram associated with class Controller.

—ActionbrakeInterrupt is the predicate associated with the action of the transition of the
State Machine Diagram associated with class Controller.

— SignalbrakeInterrupt is the predicate associated with signal brakeInterrupt in the Inter-
action Overview Diagram.

The values of χ define the semantics of the various connections. The method
predicate in the Class Diagram reads from the message end predicate in the Se-
quence Diagram and this is its only read relationship, therefore we produce formula
OpnotifyDistance ⇔ MessageEndnotifyDistance. The trigger predicate in the State Ma-
chine Diagram reads from the operation predicate in the Class Diagram and this
is its only read relationship, therefore we produce formula TriggernotifyDistance ⇔
OpnotifyDistance. Finally, the signal predicate in the Interaction Overview Diagram
reads from the action predicate in the State Machine Diagram and this is its
only read relationship, therefore we produce the formula SignalbrakeInterrupt ⇔
ActionbrakeInterrupt. This is enough to connect the semantics of all these diagrams.

4.8. Time Constraints
As mentioned in Section 3, time constraints are of the form @ev2 − @ev1 ∼ K, where
ev2 can be now, and ∼ is one of {<,≤,=, 6=,≥, >}. In general, the meaning of a time
constraint @ev2 − @ev1 ∼ K is, informally, “the distance in time between the last
occurrence of ev2 and the last occurrence of ev1 is ∼ K”. If now is used instead of ev2,
the constraint becomes @now − @ev1 ∼ K, and its meaning is “the distance in time
between the current instant and the last occurrence of ev1 is ∼ K”.

Time constraints can appear in guards and triggers of transitions in State Machine
Diagrams (see for example Figure 8 and Figure 10), in guards of control flows in Activ-
ity and Interaction Overview Diagrams, and attached to whole diagrams (as exempli-
fied in Figure 5). The formalization of time constraints changes depending on whether
they are part of guards and triggers, or if they are attached to whole diagrams.

If a time constraint t of the form @ev2 − @ev1 ≤ K appears as a guard of a State
Machine Diagram transition or of an Activity Diagram control flow, it is formalized by
the following axiom:

Since(¬ev1 ∧ ¬ev2, ev2 ∧WithinPii(ev1,K)) (33)

Essentially, the formula captures the condition “ev2 occurred, and ev1 also occurred no
earlier than K time units before it”, which can be used to enable transitions (or control
flows), or to trigger them. Similar axioms can be derived if one of the other relations
{=, <, 6=, >,≥} is used instead of≤. A constraint of the form @now−@ev1 ≤ K, instead,
is translated into TRIO as WithinPii(ev1,K).

As further example, @now - @warning.enter > 20 appears in the annotation of the
transition from state warning to state braking of Figure 8. We introduce predicate TC1

to characterize the instants when the time constraint holds, by means of the following
formula:

TC1 ⇔ SomP(warning.enter) ∧ Lastedii(¬warning.enter, 20) . (34)

Then, predicate TC1 can be referenced in other formulae, such as Formula (8).
If, instead, the time constraint is attached to a whole diagram, its meaning is to limit

the behavior of that diagram, to guarantee that the constraint is met. For example, the
constraint of Figure 5 states that in all executions of Sequence Diagram sendSensor-
Distance the end is reached one time instant after the execution is started. In this case,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

an expression of the form @ev2−@ev1 ≤ K is translated as:

ev2⇒WithinPii(ev1,K) ∧ ¬Since(¬ev1, SDStart ∧ ¬ev1) (35)

that states that if ev2 occurs in the current instant, then ev1 occurred no more than K
time instants in the past, within the same execution of the Sequence Diagram.

The semantics of the time constraints that use the other comparison operators can
be easily derived from the above examples.

5. CORRETTO
Corretto is our prototype specification and verification tool for C-UML whose goal is
to allow UML designers to carry out the formal verification of their models in a user-
friendly manner. The goal is to have a verification tool that hides as many details
about the creation of the formal representation as possible. The tool must provide the
user with the means to understand how the model behaves according to the given
semantics, specify the properties of interest without leaving the UML mindset, and
understand the results produced by the underlying verification engine.

The formal verification of C-UML models is divided in four phases (Figure 13):

UML2
Zot

Verified?
Yes

No

zot_model.lispuml_model.xmi

counter_example.txt

Papyrus

Traceability Tool

Zot

Fig. 13: The tools within Corretto.

Modeling. During this phase the user builds the model to be verified and specifies
the properties of interest using C-UML. Corretto exploits Papyrus,12 an Eclipse-
based modeling tool that provides an integrated and user-oriented environment for
editing models created with UML and related modeling languages such as SysML
and MARTE. Papyrus is enriched with all the C-UML stereotypes to build models
and specify the properties of interest.
Transformation. During this phase the C-UML model is translated—together with
the properties to be verified—into its formal representation. The result, that is,
the formal model, remains hidden to the user. To this end, we created UML2ZOT, a
Java component that takes the XMI version of a C-UML model produced by Papyrus
and automatically generates its corresponding TRIO representation. UML2ZOT is

12eclipse.org/papyrus

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.eclipse.org/papyrus/

A Logic-based Approach for the Verification of UML Timed Models A:25

built on top of the Eclipse UML2 library, the Eclipse standard to read, create and
modify UML-compliant models.
Verification. During this phase the required property is verified against the formal
model. Corretto uses Zot [Pradella et al. 2013; Baresi et al. 2015], a bounded satis-
fiability checker that encodes satisfiability (and validity) problems for discrete-time
TRIO formulae as satisfiability problems for propositional logic or for decidable frag-
ments of first-oder logic. Produced specifications are then checked with off-the-shelf
SAT or SMT (Satisfiability Modulo Theories) solvers (e.g., Z3 [Moura and Bjørner
2008]). If the property specified by the user holds, then she is just notified of the
result. If the property does not hold, Zot returns a textual counterexample that
violates the property.
Traceability. During this phase the results produced by the verification tool are in-
spected using a high-level representation. The aim is to bring verification results
back to the modeling environment the user is familiar with. If the property does not
hold, the Traceability Tool visualizes the textual counterexample produced by Zot
within Papyrus. The goal of this simple tool is to shorten the gap between the verifi-
cation domain, to which the Zot textual counterexample belongs, and the modeling
domain, the one the user is familiar with. Currently this is achieved by simply link-
ing the counterexample elements to their corresponding UML elements, but more
sophisticated solutions could be built on top of this simple bridge. The tool enriches
the textual elements of the trace with hyperlinks to the corresponding UML ele-
ments (see Figure 14) to provide a suitable means for the user to understand the
results. In fact, by navigating the trace, the user can visualize elements of the UML
model such as the states traversed by the various objects, the messages sent at each
time instant, the activities being executed. For example, Figure 14 shows a trace
such that at time instant 4 object brakes, which is of type BrakingSystem, is in state
idle. The Zot trace also shows, though not in the UML model, the values taken by
each attribute at each time instant. For instance, in Figure 14, the right-most panel
shows that at time 3 attribute failureC of object radar takes value 0.

Fig. 14: Traceability navigation tool

In the end, she is therefore able to understand the verification results and modify
the C-UML model accordingly.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

6. EXPERIMENTAL EVALUATION
Corretto can be used to carry out various formal verification activities on C-UML mod-
els. These range from the automatic generation of traces compatible with the system
model, e.g., for validation purposes, to the fully automated proof of relevant properties.
In this section, we present six case studies. Each of them is meant to demonstrate some
of the characteristics of our approach. In this section, we also perform some scalabil-
ity experiments to study the performance of the Corretto tool. All experiments were
carried out on a Linux desktop machine with a 3.4 GHz Intel R© Core TM i7-4770 CPU
and 8 GB RAM.13 Note that our intent here is to show the feasibility of our UML-
to-temporal logic approach for carrying out verification activities on UML diagrams,
rather than studying optimizations that might make the tool more efficient, so we are
not striving for maximum performance. Moreover, even if we use well-known examples
in the domain of formal verification, our formal models are created automatically from
higher-level specifications. As such they cannot be as efficient and optimized as those
created on purpose and maybe by experts.

6.1. Car Collision Avoidance System
The Car Collision Avoidance System (CCAS) model has been developed in the MADES
project14 to demonstrate the features of C-UML in terms of supported UML elements
and types of properties that can be proved. The model has already been used as run-
ning example in Section 4.1. Here we are interested in proving the following property:
if the distance remained less than 2 meters for 45 time units, then the system braked
within those same 45 time units. We expect this time frame to be wide enough for the
system to react on time because the warning state lasts 20 time units and the bus
delivery takes 2 time units. The property is specified by the CPL property shown in
Figure 15.

1 smallDistance = sendSensorDistance.getParameter(distance) < 2
2 inBraking = brakeS.in(brakeS.getState(brakingSM , braking))
3 brakingInTime = Time.lasted(smallDistance && ! failure , 45)
4 => Time.withinP(inBraking , 45)
5 property1 = Time.alw(brakingInTime)
6 Corretto.verify(property1)

Fig. 15: Property for the CCAS System.

Corretto transforms the diagrams together with the property to feed Zot transpar-
ently. Zot, in turn, determines in around 3 minutes that the property does not hold
for the CCAS system, and it produces as counterexample a trace of the system that
violates the property. The trace is shown in Figure 14. By navigating the trace, and
looking at the corresponding UML elements, the user can understand that the CCAS
does not enter the warning state immediately when the distance becomes less than 2
meters, but only when it receives message notifyDistance from the bus and the distance
is less than 2. If we change the time constant in the property from 45 to 52 time units
(i.e., 520ms), Zot is able to show in around ten minutes that the new property holds.

This example shows how C-UML and Corretto help compose the behavior of four
different types of UML behavioral diagrams (Sequence Diagrams, State Machine Di-
agrams, Activity Diagrams, and Interaction Overview Diagrams) and prove a non-
trivial property.

13All the models and their verification results are available from the Corretto repository [Motta et al. 2017].
14www.mades-project.org

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

www.mades-project.org

A Logic-based Approach for the Verification of UML Timed Models A:27

6.2. Automated Teller Machine
As a second example, we use the automated teller machine (ATM) introduced for the
OMEGA2 project [Ober and Dragomir 2010]. Both Corretto and OMEGA2 propose
approaches to model and verify UML models. This section aims to show how Corretto
is flexible enough to model the same class of systems targeted by the OMEGA2 project
and to overcome some of its limitations.

The ATM must allow the user to withdraw cash. The user is authenticated through
her ATM card and personal identification number (PIN). If the ATM determines that
the customer’s PIN is invalid, the customer is required to re-enter the PIN. If the au-
thentication succeeds, the ATM card is retained by the machine until the transaction
is completed. The user can make a cash withdrawal from any suitable account linked
to the card. Each withdrawal needs to be approved by the bank. The ATM must inter-
act with the bank to obtain the approval. The transaction is considered complete by
the bank once approved or disapproved.

OMEGA2 models the system by using a Component Diagram, while we use a Class
Diagram to mimic the relevant information.15 The Class Diagram models the main
entities of the system at a high level of abstraction, like Bank, ATM, and Controller,
which coordinates the interaction between ATM and Bank. The behavior of the objects
of each class is described through a dedicated State Machine Diagram. The complete
model comprises one Class Diagram, one Object Diagram, and seven State Machine
Diagrams. Here we only show the State Machine Diagram of class Controller (Figure
16).

If we exclude the syntax used for the transitions, which is tool-specific, this diagram
is equivalent to the one built by OMEGA2 [Ober and Dragomir 2010]. The meaning
of the diagram is fairly intuitive. The user must insert a card into the CardReader,
then she has to insert the PIN, and finally she must select the amount of money she
wants to withdraw. When the PIN is wrong or the requested amount of money is not
available, the Controller returns to the idle state.

Figure 17 shows the CPL property being checked against the model. It states that
the amount of money provided by the ATM is always equal to the one requested by
the user. This is equivalent to the following: if operation cd_releasemoney of CashDis-
penser is invoked, then parameter amount_released is equal to the amount of money
requested by the user. This is specified by attribute amount of class User, initialized to
50 for this experiment. Zot takes 30 seconds to verify this property.

Comparing OMEGA2 and Corretto, OMEGA2 allows one to automatically generate
the IF semantics [Bozga et al. 2004] of the UML model16 and the IF command line
tool can be used to inspect the IF model together with its property. While this process
is definitely feasible for an expert of the IF language, it is not guaranteed that an
average UML user would be able to perform the verification procedure on her own.
Also, Corretto translates the UML model into the underlying formal language TRIO,
but the verification procedure is performed in the background and the result is shown
to the user by means of the traceability tool (see Figure 14). Finally, OMEGA2 requires
that the property be expressed by means of a special type of State Machine Diagram,
whereas Corretto uses CPL declarations introduced through a UML constraint.

To summarize, both Corretto and OMEGA2 can verify UML models and the prop-
erties can be expressed in a UML-like notation. OMEGA2, however, only supports a
single UML behavioral diagram, State Machine Diagrams, and the verification proce-

15Since C-UML does not support Component Diagrams, we use a Class Diagram and we abstract compo-
nents into objects. This is clearly not correct in a complete design model, but it is enough for verifying the
system.
16IF is the target formal language of the OMEGA2 tool.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

@
ct

r_
no

tif
yW

ith
dr

aw
al

D
ec

lin
ed

.c
al

l /
@

co
ns

ol
e.

cs
_n

ot
ify

W
ith

dr
aw

al
D

ec
lin

ed
.c

al
l

@
ct

r_
no

tif
yP

in
D

ec
lin

ed
.c

al
l /

@
co

ns
ol

e.
cs

_n
ot

ify
Pi

nD
ec

lin
ed

.c
al

l

/ @console.cs_notifyWithdrawalAccepted.call

/ @cardReader.cr_ejectCard.call

@ctr_notifyMoneyReleased.call

/ @cashDispenser
.cd_releaseMoney.call
(amount_requested)

@ctr_notifyWithdrawalAccepted.call / @console.cs_notifyWithdrawalAccepted.call

@ctr_cardInserted.call

@ctr_verifyPin.call /
@cardReader.cr_verifyPin.call

@ctr_notifyPinAccepted.call /
@console.cs_notifyPinAccepted.call

@ctr_selectAmount.call /
amount_requested=amount

/ @bank.bk_executeWithdrawal
(amount_requested).call

Fig. 16: State Machine Diagram for the Controller of the ATM System.

1 releaseMoney = cashdispenser^cd_releaseMoney ()
2 Corretto.verify(Time.alw(releaseMoney
3 => cashdispenser :: cd_releaseMoney.amount_released == 50))

Fig. 17: Property for the ATM System.

dure is not transparent to the user. Corretto overcomes these limitations by supporting
a wider set of UML diagrams and provides a traceability tool to let the user analyze
the results provided by the verification engine without any knowledge of the formal
language, and without changing mindset.

6.3. Radar System
Corretto has been used in the context of the MADES project also for the verification of
two example Radar Systems, one on an airplane and one on the ground, provided by
two industrial partners. In this article, we present the onboard system, and more pre-
cisely a component that carries out the delivery of the flight data from the environment
to the User Interface (UI) of the pilot (the ground-based radar system is described in
[Baresi et al. 2015]). Such a delivery is performed by a number of periodic tasks. There
are four types of tasks: swPanelData, swRadarData, swNavData, and swWeatherData.
The original model contains one object for each task type. Each task is in charge of
reading one data type and of delivering it on time to the pilot UI, which is captured
by class swMainMMI. To capture the communication between the tasks delivering the
data and the MMI, a class swEnvironment is introduced, which acts as an intermediary

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:29

between senders and receivers. The C-UML model is made of one Class Diagram with
five clocks, five Sequence Diagrams, and five State Machine Diagrams. The different
Sequence Diagrams illustrate how the data are read and processed by the different
periodic tasks. For example, the Sequence Diagram of Figure 18(a) shows how a pro-

(a)

(b)

Fig. 18: Radar System: (a) Sequence Diagram PanelDataToEnvironment that shows the
radar’s periodic behavior to retrieve and process the data. (b) State Machine Diagram

of class swPanelData that regulates the period of Sequence Diagram
PanelDataToEnvironment using the C-UML notation.

cess of type swPanelData interacts with an object of type swEnvironment to retrieve
the data to be displayed on the pilot UI (i.e., swMainMMI). More precisely, swPanelData
invokes operation panel_setButton on the swEnvironment object. A dual Sequence Dia-
gram, not shown here for brevity, depicts that the swMainMMI object invokes operation
main_panel_getButton on the same swEnvironment object to retrieve the data. The dif-
ferent State Machine Diagrams in the model are used to regulate the periods of the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

1 setButtonCall = environment^panel_setButton ()
2 getButtonCall = environment^main_panel_getButton ()
3 Corretto.verify(Time.alw(setButtonCall => Time.withinF(getButtonCall , 15)))

Fig. 19: Property for the Radar System.

Sequence Diagrams according to the clocks defined in the Class Diagram. For exam-
ple, the State Machine Diagram of Figure 18(b) has only one transition that is executed
each time clock ckPanelData ticks. At that time Sequence Diagram PanelDataToEnvi-
ronment—shown in Figure 18(a)—is activated. All the tasks of reading and delivering
a data type share the same resource, swEnvironment, and must wait if the resource is
not available. Such waiting time could affect the responsiveness of the system. Cor-
retto was used to prove that between messages panel_setButton in Figure 18(a) and
main_panel_getButton, which are representative of the data retrieval cycle, there is al-
ways a time window smaller than 15 seconds. The corresponding property is captured
by the statements of Figure 19.

This example was used to analyze how Corretto behaves when the number of objects
that perform a periodic task increases. We increased the number of objects from one up
to seven for each task type, and thus we obtained a maximum of 28 task objects. Figure
20 shows the results for two kinds of checks: verification that the model is indeed
satisfiable (SAT), that is, that it is not inconsistent; and verification that the model
satisfies the property presented in Figure 19, and the expected outcome is UNSAT, that
is, it is not possible for an execution of the model to violate the property. As expected,

0"

2000"

4000"

6000"

8000"

10000"

12000"

4" 8" 12" 16" 20" 24" 28"

Time%(s)%

Task%Objects%

SAT"

UNSAT"

Fig. 20: Radar System: Verification times for the consistency check (SAT outcome)
and property verification (UNSAT outcome).

the verification times for both the SAT and UNSAT cases increase significantly with
the number of objects. For small models (4 and 8 task objects), the verification takes
less than 4 minutes. On the other hand, the verification of the biggest radar model (28
task objects), which yields SAT as result, took some 4 hours.

6.4. Leader Election
In this section we present the verification of a well-known algorithm for the election
of a leader in a group of processes. More precisely, given a circular arrangement of n

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:31

uniquely numbered processes, it determines the one with the highest identifier in a
distributed manner.

The algorithm has been discussed in several research papers and it has been used
to test the scalability of different verification tools. This article uses the version de-
scribed in [Dolev et al. 1982] and implemented in Promela, the input language of the
Spin model checker.17 This algorithm has become a kind of benchmark to evaluate the
performance and scalability of verification tools.

The algorithm can be rendered in UML with one Class Diagram and two State Ma-
chine Diagrams. The Class Diagram of Figure 21(a) comprises class Process, which
models the processes that take part to the election. The ring is oriented and each

+ one(id : Integer)
+ two(id : Integer)
+ winner(id : Integer)

- id : Integer = 1
- active : Boolean = true
- max : Integer = -1
- neighbourR : Integer = -1

Process
in [1]

link

out [1]

Monitor

«signal»
WeHaveWinner

(a)

- id : Integer = 1
- active : Boolean = true
- max : Integer = -1
- neighbourR : Integer = -1

p1:Process
- id : Integer = 2
- active : Boolean = true
- max : Integer = -1
- neighbourR : Integer = -1

p2:Process

- id : Integer = 3
- active : Boolean = true
- max : Integer = -1
- neighbourR : Integer = -1

p3:Process

inout

in

out in

out

(b)

Fig. 21: Leader Election: Class Diagram (a) and Object Diagram (b).

process has two distinct association ends named in and out. Attribute id states the id
assigned to the process. The process with the highest id wins the election. Attribute
active is equal to true if the process is still participating in the election process, false
otherwise. Attribute max contains the id of the current winner. In the initialization
phase, each process assumes to be the leader in the ring by initializing max to its own
id. Finally, attribute neighbourR contains the id of the process next to the current one
that is still active. Each process offers three methods: method one is invoked by the
neighbor process to communicate the id of the first active process next to the receiver.

17The Promela model of the leader election algorithm is available at http://spinroot.com/spin/whatispin.
html.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html

A:32 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

Similarly, method two is invoked by the neighbor process to communicate the id of the
second active process next to the receiver. Finally, method winner is invoked to com-
municate the winner of the election. The Object Diagram of Figure 21(b) shows an
example ring with the state of three processes just after the initialization.

@setId.call / mynumber=<Y>myId,
@out.one(mynumber).call, max=mynumber

@one.call[(active==0)]/@out.one(<Y>one_nr).call

@two.call[(active==0)]/@out.two(<Y>two_nr).call

@one.call[(active==1) && (one_nr!=max)]/
@out.two(<Y>one_nr).call, neighbourR=<Y>one_nr

@two.call[(active==1) && (neighbourR>two_nr) &&
(neighbourR>max)]/max=<Y>neighbourR,
@out.one(<Y>neighbourR).call

@two.call[(active==1) && ((neighbourR<=two_nr)
|| (neighbourR<=max))]/active=0

@one.call[(active==1) && (one_nr==max)]
/@out.winner(<Y>one_nr).call, @WeHaveWinner.sig

@winner.call[(win_nr==mynumber)]/@out.winner(<Y>win_nr).call@winner.call[(win_nr!=mynumber)]/@out.winner(<Y>win_nr).call

Fig. 22: Leader Election: State Machine Diagram of class Process.

As captured by the State Machine Diagram associated with class Process, shown in
Figure 22, each process in the ring starts by invoking method one(id) on its neighbor
following association out. The receiver saves the id of the neighbor and forwards it
to the next process in the ring by invoking method two(id) on it. Each time an active
process knows the ids of the two preceding neighbors, it compares them against max.
If neighbourR is the highest of the three values, then max is assigned with the value
of attribute neighbourR. If not, the process removes itself from the ring by setting
attribute active to 0 and forwards the id of its first neighbor to the next process in
the ring by calling one(neighbourR). Following these rules, the process that remains
active and receives a message for one(neighbourR), where neighbourR is equal to max,
knows the winner and can trigger signal WeHaveWinner shown in the Class Diagram.
Class Monitor is just a helper class that switches to state Winner if a winner has been
detected, and to state Error if the winner signal has been triggered more than once.

1 stateEnd = idGenerator.getState(IdGenerator_SM , end)
2 inStateEnd = idGenerator.in(stateEnd)
3 stateWinner = monitor.getState(Monitor_SM , state_Winner)
4 inStateWinner = monitor.in(stateWinner)
5 Corretto.verify(Time.alw(Time.somF(inStateEnd) => Time.som(inStateWinner)))

Fig. 23: Property P1 for the Leader Election.

We used Corretto to check that the model is satisfiable and to verify two properties,
namely P1 and P2, whose CPL definitions are shown in Figure 23 and Figure 24, re-
spectively. P1 checks whether the algorithm is always able to find a winner. P2 checks
that the monitor never goes into state Error. These properties were verified with an
increasing number of processes: 8, 10, 12, 14, and 15. For 15 processes, we were not
able to finish the verification procedure in 11 hours, which was our threshold. Clearly

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:33

1 stateError= monitor.getState(monitor_SM , State_Error)
2 inStateError = monitor.in(stateError)
3 Corretto.verify(Time.alw(! inStateError))

Fig. 24: Property P2 for the Leader Election.

0"

3000"

6000"

9000"

12000"

15000"

18000"

8" 10" 12" 14"

Time%(s)%

Processes%

SAT"

P1"

P2"

Fig. 25: Leader Election: Verification times for the consistency check (SAT outcome)
and for the verification of properties P1 and P2.

the verification of the original Promela model in Spin is faster than the verification
of our C-UML model with Corretto, and can consider more processes. However, the
goals are completely different: the Promela model was created by hand by experts, and
the goal was to conceive something optimized for verification. Our goal is simply to
demonstrate the feasibility of the formal verification of high-level, verbose UML mod-
els. Solutions to shrink the size of generated models, and speed up the verification, are
not part of this work and will be addressed in the future.

6.5. Fischer Protocol
The Fischer protocol is a well-known mutual exclusion protocol designed for n pro-
cesses. It is a timed protocol where the concurrent processes check for both a delay
and their turn to enter the critical section using a shared variable (ID). The protocol
has been widely used to test the scalability of different verification approaches. Here
we present the version described in the Uppaal tutorial [Behrmann et al. 2006]. When
considering the reported figures the reader should keep in mind that Uppaal uses
timed automata as the underlying formalism, whereas in this section we describe our
C-UML representation.

The C-UML model of the protocol comprises one Class Diagram and one State Ma-
chine Diagram. The Class Diagram contains a single class Process with one (local)
attribute pid and two static (i.e., global) attributes ID and COUNTER. The State Ma-
chine Diagram (Figure 26) comprises five states. Each process in the system starts
competing for the critical section non-deterministically by moving from state FischerP
to state Req. Each process is allowed to remain in state Req at maximum a = 3 time
instants before moving to state Updated. After this move, the process assigns attribute
ID to its own pid. After exactly d = 4 time instants the process moves to state Wait. At
this point, if the value of attribute ID is still equal to the process pid, then the process

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

/ ID = -1, COUNTER = <P> COUNTER - 1

[(ID = pid)] / COUNTER = <P> COUNTER + 1

[(ID = -1)]

[(ID != pid)]

<Y>

<Y>

Fig. 26: State Machine Diagram of the Fischer Protocol.

is allowed to enter the critical section, represented by state CS. If not, it must restart
the above process by moving to state FischerP. The key feature of the protocol is the
relation between parameters a and d. In this simplified version, the protocol works
as long as a < d. Each process that enters the critical section increments attribute
COUNTER, whereas each process exiting the critical section decrements it.

Firstly we used Corretto to check that the system is satisfiable (i.e., consis-
tent). Figure 27(a) shows the performance for this check with an increasing num-
ber of processes competing for the critical section. Secondly, we used Corretto to
prove that at maximum one process is allowed in the critical section at any given
time instant. This is equivalent to checking that attribute COUNTER is always
less than or equal to one, which in turn corresponds to verifying the property
Corretto.verify(Time.alw(process.counter ≤ 1)). Figure 27(b) shows the perfor-
mance for this check. In this case, the verification terminated for systems made of up

0"

50"

100"

150"

200"

250"

300"

2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

Time%(s)%

Processes%

(a)

0"

10000"

20000"

30000"

40000"

2" 3" 4" 5" 6" 7"

Time%(s)%

Processes%

(b)

Fig. 27: Fischer Protocol: Verification times for (a) consistency check (outcome SAT)
and (b) property verification (outcome UNSAT).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:35

to 7 processes, with a maximum verification time of 10 hours. Again, since the aim of
Corretto is not to study smarter and faster verification algorithms, but to demonstrate
the feasibility of the formal verification of UML—or domain-specific—models, we be-
lieve these results are interesting and pave the ground to a wider adoption of formal
methodologies in practice.

6.6. Summary of the Experimental Evaluation
The C-UML models introduced in the previous sections come from different sources,
with different perspectives and modeling approaches. As a consequence, overall they
use very heterogeneous C-UML elements and diagrams to capture the structure and
behavior of the target systems. On the one hand this shows the flexibility and adapt-
ability of our modeling and verification approach, which can handle very different
modeling styles. On the other hand, it hampers the comparison of the various mod-
els size-wise, since different models use different diagrams in varying mixtures (some
rely more on Sequence Diagrams, other more on State Machine Diagrams, etc.).

This section suggests a comparison of the verified models based on a rather fine-
grained view of the C-UML elements involved in them, in order to give a rough idea
of the size of the models that can be analyzed through Corretto within a reasonable
amount of time.

Table I shows the number of modeling elements used in the biggest verified model
in each of the previous sections. The element count was automatically produced by

Table I: Number of C-UML elements involved in the models of case studies.

CCAS ATM Radar*System Leader*Election Fischer
SM_States 5 24 29 61 90
SM_Transitions 9 51 58 145 120
SD_Lifelines 7 0 58 0 0
SD_Messages 5 0 137 0 0
SD_Parameters 1 0 0 0 0
SD_Time*Constraints 2 0 0 0 0
OD_Objects 5 7 35 16 15
OD_Clocks 1 0 5 0 0
IOD_Elements 6 0 0 0 0
AD_Elements 10 0 0 0 0
Arithmetic*Variables 5 7 0 126 17
Total 56 89 322 348 242

Corretto, and it includes all the key elements for each type of diagram. More precisely,
it keeps track of the number of states and transitions in State Machine Diagrams,
the number of lifelines, messages, parameters and time constraints in Sequence Dia-
grams, the number of objects and clocks in Object Diagrams, the number of elements
in Interaction Overview Diagrams and Activity Diagrams, and finally the number of
arithmetic variables (integer- or real-valued). The last row of Table I shows the total
number of elements for each model, and can be used as a rough measure of the size of
models. We always count the number of states and transitions in the instances of State
Machine Diagrams and Activity Diagrams in order to keep this measure more real-
istic. For example, the C-UML model of the Fischer protocol contains only one State
Machine Diagram that has 6 states, but in the biggest analyzed instance of this model
there are 15 instances of this State Machine Diagram in the corresponding formal
model (one for each object), hence accordingly we count 90 states.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

Note that in comparing two models, it is not always the case that the model with
fewer C-UML elements is easier to verify. A single element, or a combination of few
elements, can put a significant burden—or has no impact—on the verification process
depending on the type of element and the resulting TRIO formula. Estimating the
complexity of the verification process from the sheer number of C-UML elements is not
straightforward. For example, adding a time constraint with a time window of K time
units can be much heavier than adding a transition that imposes an ordering between
two events with a time difference of one instant. It can be reasonably expected that
metric time constraints, which appear in Sequence Diagrams as stand-alone elements,
and also as part of transitions in State Machine Diagrams, are the most cumbersome
to deal with. For example, the model of the Fischer protocol includes many transitions
with metric time constraints and many states with invariants that are also temporal
constraints, and it is in fact the heaviest to check. Given the indirect nature of the
relationship between the number of C-UML elements and the strain of the verification
process, the maximum Total in Table I is important to give the reader and idea of the
maximum size of the models we verified and also of their complexity in terms of UML
elements. These numbers must always be associated with the UML element type they
refer to; they cannot be interpreted as simple syntactical upper-bounds on the size of
verifiable models: bigger models, but with verification-wise lighter elements could be
managed properly.

7. RELATED WORK
Many researchers have addressed the problem of providing a precise semantics to part
of UML. Most of the works only target a subset of the UML diagrams that are impor-
tant for the specific domain of interest and no absolute definition of correct/incorrect
semantics exist: The UML specification itself is imprecise [Harel 2004]; and many
works propose their own semantic variations that are aimed at a particular domain.
Even if one focused on a single diagram type, the number of supported operators varies,
together with their interpretation.

The different proposals in the literature can be divided in two groups: (a) those that
ascribe a semantics to UML as a purely theoretical exercise to reveal inconsistencies
of the UML specification (e.g., [Störrle 2003]), and (b) those that do not only ascribe a
semantics to UML, but also propose tools to formally verify the models (e.g., [Diethers
and Huhn 2004]). Focusing on the types of diagrams taken into account provides a
further dimension to our analysis: (a) the first set contains the solutions that only deal
with structural views of the system; (b) the second group comprises the works that
specifically address the behavior of UML models; and (c) the third group deals with
the works that try to ascribe a comprehensive interpretation to UML by means of a
common-ground semantics.

The works that deal with the structural view of the system usually concentrate on
the satisfiability of OCL constraints over structural diagrams. Some well-known exam-
ples are the approaches presented in [Cabot et al. 2014; Gogolla et al. 2014; Ahrendt
et al. 2005]. Our work does not take into account this aspect of the verification, as we
concentrate on the verification of the behavioral models, which is orthogonal to the
verification of OCL constraints. As soon as the OCL constraints on the structure of the
UML model are satisfied, the user can analyze its behavior.

While there seems to be a general consensus on (a large portion of) the static se-
mantics of UML, the dynamic semantics of its behavioral diagrams, such as activity
diagrams, interaction overview diagrams, and state machines, is still an open problem
[Broy and Cengarle 2011]. The works that address the behavior of UML models only
focus on a limited number of diagram types (oftentimes, they only consider a single
type) and neglect the interdependencies with the other diagrams of a system. Nota

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:37

that while Section 7.1 presents these approaches in detail, our approach moves a step
further by allowing users to verify models composed of multiple heterogeneous behav-
ioral diagrams.

Finally, a number of works tried to build a common semantic ground to integrate the
different UML structural and behavioral views. For example, Kuske et al. in [Kuske
et al. 2009] show how a central part of UML can be integrated into a single visual
semantic model (graphs) to support the visual simulation of integrated specifications.
Posse et al. [Posse and Dingel 2016] translate UML-RT (a UML profile for real-time
and embedded systems) models into the kiltera language, that is a real-time extension
of the π-calculus. Their translation tool produces kiltera code, and covers Capsule Di-
agrams, one kind of structural diagrams, and State Machine Diagrams, one kind of
behavioral diagrams. However, not only the work focuses on a very limited subset of
diagrams, but it does not provide mechanisms for the formal verification of the consid-
ered diagrams.

Broy et al. [Broy et al. 2014] present a ground mathematical semantics, called sys-
tem model, to integrate the different views. The system model defines a universe of
interacting state machines that describe the behavior of the objects and their inter-
relationships. In a sense, this is akin to the approach of fUML [OMG 2016], which has
been presented in Section 2. Compared to Kuske [Kuske et al. 2009] and Broy [Broy
et al. 2014], we do not focus on the structure of the UML models (we only consider
Class and Object Diagrams), but on their behavior, and we aim at a complete verifi-
cation tool, developed incrementally to support a growing number of UML elements,
with the underlying metric temporal logic as enabler.

In a similar vein, the GEMOC initiative [Combemale et al. 2014] has released
GEMOC Studio,18 which supports mechanisms for defining a common semantics for
heterogeneous languages, with a focus on their executability. The C-UML approach
focuses, instead, on formal verification purposes. Indeed, our TRIO-based approach
could be the basis for a common semantics of heterogeneous notations that enables
the verification of combined models, much like Corretto currently allows for the formal
verification of a combination of UML diagrams.

7.1. UML Behavioral Models
Table II and Table III summarize the works that focus on behavioral diagrams. Most
of the approaches surveyed in this section focus on the analysis of models. Those that
also consider advanced object-oriented features are explicitly identified in Table III.

Table II presents the diagrams each work supports: Class Diagrams (CDs), Com-
ponent Diagrams (CpDs), Communication Diagrams (CommDs), Sequence Diagrams
(SDs), Activity Diagrams (ADs), State Machine Diagrams (SMs) and OCL. One star
(*) says the work only supports the basic operators of the diagram type; two stars (**)
mean that the work supports most of the operators; and three stars (***) that the work
supports all the operators. The various works have been divided in different sets ac-
cording to the main supported diagram types. For the works that support multiple dia-
grams a separate multiple diagrams group is created. Note that many works use State
Machine Diagrams to describe the behavior of the system, and Sequence Diagrams
to specify the requirements that must be satisfied by the State Machine Diagrams.
In these cases, there is only one diagram type that contributes to the specification of
the behavior (State Machine Diagrams), while the other is used to check the desired
properties (Sequence Diagrams). This is why some approaches are not included in the
multiple diagrams group even if in the table they are associated with more than one
diagram type.

18gemoc.org/studio

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://gemoc.org/studio/

A:38 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

Table III presents additional details about the technology underlying each solution.
Column Domain specifies the semantic domain assigned to the diagrams. The remain-
ing columns are reserved to the works that provide the user with an analysis tool, that
is, everything that can help the user understand the behavior of the UML model. We
identified three kinds of analysis: simulation (S), automated (A), and manual (M). Sim-
ulation tools animate UML models according to the specified semantics. Automated
tools provide the means to automatically analyze properties of the system. Manual
tools provide the instruments to conduct a formal proof on top of the semantics as-
sociated with the UML models. The CASE-labeled column indicates whether the tool
is integrated into a Computer-Aided Software Engineering environment (for example,
Eclipse) or if an XMI import is available therefore leaving the choice of the UML tool
to the user. For the model checking tools, the column Properties specifies whether it is
possible to express the property to be checked using some UML-like or equivalent high-
level formalism, while column Results specifies if it is possible to map the results of the
model checking analysis onto the UML model. In other words, the user must be able
to understand the results of the analysis without being an expert of the underlying
notation and tools. Column AdvOO specifies whether the approach also supports ad-
vanced object-oriented features such as object creation/destruction (x marker), and/or
code generation (* marker).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:39

C
D

S
C

P
D

S
C

M
D

S
S

D
S

A
D

S
S

M
S

O
C

L
Se

qu
en

ce
D

ia
gr

am
s

[S
tö

rr
le

20
03

]
**

*
[L

un
d

an
d

St
ol

en
20

06
]

**
*

[C
en

ga
rl

e
an

d
K

na
pp

20
04

]
**

*
[H

am
m

al
20

06
]

**
*

[E
ic

hn
er

et
al

.2
00

5]
**

*
A

ct
iv

it
y

D
ia

gr
am

s
[S

tö
rr

le
20

04
]

**
*

[E
sh

ui
s

20
06

;E
sh

ui
s

an
d

W
ie

ri
ng

a
20

04
]

**
*

[B
ou

ab
an

a-
Te

bi
be

l2
00

9]
**

**
[A

pv
ri

lle
et

al
.2

00
4]

**
**

[D
aw

et
al

.2
01

5]
**

St
at

e
M

ac
hi

ne
D

ia
gr

am
s

[K
na

pp
an

d
W

ut
tk

e
20

06
]

**
**

*
**

*
[P

al
to

r
an

d
L

ili
us

19
99

]
**

**
*

**
*

[D
am

m
et

al
.2

00
5]

**
**

*
[D

ie
th

er
s

an
d

H
uh

n
20

04
]

**
**

**
[H

am
m

al
20

05
]

**
*

[O
be

r
an

d
D

ra
go

m
ir

20
10

]
**

**
**

*
[H

an
se

n
et

al
.2

01
0b

]
**

**
*

[B
ou

ab
an

a-
Te

bi
be

l2
00

7]
*

*
**

**
[t

er
B

ee
k

et
al

.2
01

1]
**

**
*

[B
ur

m
es

te
r

et
al

.2
00

4]
**

**
*

[P
ap

et
al

.2
00

5]
**

*
**

[K
ya

s
et

al
.2

00
5]

**
**

**
M

ul
ti

pl
e

D
ia

gr
am

s
[L

an
o

20
09

]
**

**
**

**
[G

ra
w

an
d

H
er

rm
an

n
20

04
]

**
**

**
**

C
or

re
tt

o
**

**
**

**

Ta
bl

e
II

:D
if

fe
re

nt
se

m
an

ti
cs

(p
ar

t
I)

.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

D
O

M
A

IN
T

O
O

L
T

Y
P

E
C

A
S

E
P

R
O

P
E

R
T

IE
S

R
E

S
U

L
T

S
A

D
V

O
O

Se
qu

en
ce

D
ia

gr
am

s
[S

tö
rr

le
20

03
]

M
at

h
[L

un
d

an
d

St
ol

en
20

06
]

M
at

h
[C

en
ga

rl
e

an
d

K
na

pp
20

04
]

M
at

h
[H

am
m

al
20

06
]

G
ra

ph
s

[E
ic

hn
er

et
al

.2
00

5]
Pe

tr
in

et
P

-U
M

L
au

t
S

A
ct

iv
it

y
D

ia
gr

am
s

[S
tö

rr
le

20
04

]
Pe

tr
in

et
[E

sh
ui

s
20

06
;E

sh
ui

s
an

d
W

ie
ri

ng
a

20
04

]
LT

S
N

uS
M

V
A

x
x

x
[B

ou
ab

an
a-

Te
bi

be
l2

00
9]

Pe
tr

in
et

P
R

O
D

A
x

[A
pv

ri
lle

et
al

.2
00

4]
P

ro
ce

ss
A

lg
.

R
T-

L
O

T
O

S
A

x
x

[D
aw

et
al

.2
01

5]
P

R
O

M
E

L
A

U
P

PA
L

,S
P

IN
,

A
x

x
N

uS
M

V,
P

E
S

St
at

e
M

ac
hi

ne
D

ia
gr

am
s

[K
na

pp
an

d
W

ut
tk

e
20

06
]

P
R

O
M

E
L

A
SP

IN
A

x
[P

al
to

r
an

d
L

ili
us

19
99

]
P

R
O

M
E

L
A

SP
IN

A
x

x
[D

am
m

et
al

.2
00

5]
ST

S
dS

P
IN

A
x

x
x

[D
ie

th
er

s
an

d
H

uh
n

20
04

]
T.

A
ut

om
at

a
U

P
PA

A
L

A
x

x
[H

am
m

al
20

05
]

Pe
tr

in
et

[O
be

r
an

d
D

ra
go

m
ir

20
10

]
T.

A
ut

om
at

a
IF

-T
oo

lk
it

A
x

x
x

[H
an

se
n

et
al

.2
01

0b
]

m
C

R
L

2
LT

Sm
in

A
x

x
x

[B
ou

ab
an

a-
Te

bi
be

l2
00

7]
Pe

tr
in

et
P

R
O

D
A

x
[t

er
B

ee
k

et
al

.2
01

1]
LT

S
U

M
C

A
[B

ur
m

es
te

r
et

al
.2

00
4]

T.
A

ut
om

at
a

U
P

PA
A

L
A

x
x

[P
ap

et
al

.2
00

5]
K

ri
pk

e
St

r.
SP

IN
A

x
[K

ya
s

et
al

.2
00

5]
H

O
L

P
V

S
M

x
M

ul
ti

pl
e

D
ia

gr
am

s
[L

an
o

20
09

]
A

ct
io

n
L

og
ic

B
-T

oo
lk

it
A

x*
[G

ra
w

an
d

H
er

rm
an

n
20

04
]

cT
L

A
T

L
C

A
x

C
or

re
tt

o
T.

L
og

ic
ZO

T
A

x
x

x

Ta
bl

e
II

I:
D

if
fe

re
nt

se
m

an
ti

cs
(p

ar
t

II
).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:41

The following subsections group the different works with respect to the main dia-
gram types they refer to. The description is not exhaustive with respect to the elements
listed in Table II, as we focus on the types of behavioral—rather than structural—
diagrams each approach relies on.

7.1.1. Sequence Diagrams. The work by Störrle [Störrle 2003] defines a partial order
semantics for plain interactions, and also for combined fragments compliant with the
OMG specification. Stolen et al. [Lund and Stolen 2006; Haugen et al. 2005b; Haugen
et al. 2005a] present a similar work on Sequence Diagrams and propose an operational
semantics for this diagram type. The semantics is defined by means of functions over
an abstract syntax. This semantics is used to implement a tool for the translation of
Sequence Diagrams into the Maude language, which in turn is the basis for a test
generation tool for Sequence Diagrams. Cengarle and Knapp [Cengarle and Knapp
2004] propose a denotational semantics for Sequence Diagrams. Compared to the pre-
vious ones, they provide a detailed analysis of the neg operator. The work presented by
Hammal [Hammal 2006] proposes a semantics based on a branching time structure for
Sequence Diagrams. The branching time structure is represented by means of graphs
annotated with time information. This is the enabler for timeliness and performance
analysis. Eichner et al. [Eichner et al. 2005] present a translation from Sequence Di-
agrams to Petri nets. The advantage of using such a semantics is that it is defined
compositionally, founded on basic Petri net composition operations. On the other hand,
it cannot deal with the time dimension of the system, and it cannot deal with object-
oriented features. The authors also present a tool called P-UMLaut that simulates the
behavior of Sequence Diagrams according to the provided Petri net semantics.

7.1.2. Activity Diagrams. The work by Störrle [Störrle 2004] defines the semantics of
Activity Diagrams by means of Petri nets. The work is characterized by strict confor-
mance with the OMG specification, but no automated tool is provided and also nothing
is said about other diagram types (e.g., the integration with the semantics for Sequence
Diagrams by the same author [Störrle 2003]). The approaches presented by Eshuis
and Wieringa [Eshuis 2006; Eshuis and Wieringa 2004; Eshuis and Wieringa 2001]
ascribe semantics to UML Activity Diagrams at two different levels of abstraction—
requirements level and implementation level—through suitable translations into La-
beled Transition Systems (LTS), using NuSMV as verification engine. The path that
corresponds to the counterexample returned by NuSMV is highlighted in the Activity
Diagram. Bouabana-Tebibel [Bouabana-Tebibel 2009] proposes a semantics for Inter-
action Overview Diagrams—which can be considered a particular variation of Activ-
ity Diagrams where nodes are Sequence Diagrams—based on hierarchical Petri Nets
(HPN). A tool is provided to translate the Interaction Overview Diagrams into the in-
put language of PROD, a model checker for HPN. The user must then write an LTL
formula in PROD to enact the verification phase. Apvrille et al. [Apvrille et al. 2004]
present the TURTLE framework that formalizes an extension of Class Diagrams and
Activity Diagrams specified by the TURTLE UML profile. The semantics is given in
terms of a particular process algebra, called RT-LOTOS. The framework is supported
by a CASE tool and the properties must be expressed using formulae over the reacha-
bility graph produced by the formal specification. Daw et al. [Daw et al. 2015] present
UML Verification Tool (UML-VT), that is implemented as an Eclipse-plugin. UML-
VT automatically translates Activity Diagrams to input the model checkers UPPAAL,
SPIN, NuSMV, or PES. It allows the user to select the target model checker to be used
in the verification.

7.1.3. State Machine Diagrams. Most of the works that formalize State Machine Dia-
grams [Schfer et al. 2001; Knapp and Wuttke 2006; Paltor and Lilius 1999; Lilius

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:42 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

and Paltor 1999; Damm et al. 2005; Damm and Westphal 2003; Diethers and Huhn
2004; Hammal 2005] also support Sequence Diagrams to check whether the interac-
tion shown in the Sequence Diagrams can be satisfied by the behaviors described in
the State Machine Diagrams. Therefore Sequence Diagrams (or Communication Dia-
grams) are used as a property-specification mechanism and do not contribute to the
possible behaviors of the system. The approach presented by Knapp et al. [Schfer et al.
2001; Knapp and Wuttke 2006] translates State Machine Diagrams and Sequence Di-
agrams into the input language of UPPAAL, into PROMELA for SPIN, the language
of the theorem prover KIV, and into Java and SystemC code.

Paltor and Lilius [Paltor and Lilius 1999; Lilius and Paltor 1999] present the vUML
tool to verify Class Diagrams, State Machine Diagrams and Communication Diagrams
using SPIN [Gerard J. Holzmann 2004]. Damm et al. [Damm et al. 2005; Damm and
Westphal 2003] give semantics to rtUML, a subset of UML that includes Class Dia-
grams and State Machine Diagrams. The semantics is given by using symbolic tran-
sitions systems (STS). Properties are expressed using Live Sequence Charts, and this
is similar to the idea of using Sequence Diagrams, but with greater expressiveness. A
prototype of a discrete-time verification environment, integrated in the UML model-
ing tool Rhapsody, automates the verification. Diethers and Huhn [Diethers and Huhn
2004] propose the VOODUU framework, which supports Class Diagrams, State Ma-
chine Diagrams and Sequence Diagrams, formalized through timed automata, then
analyzed by UPPAAL. A plugin for the Poseidon CASE tool eases the specification/ver-
ification process and displays on the Sequence Diagrams the counterexamples gener-
ated by UPPAAL (even if no details are provided). Hammal [Hammal 2005] proposes
a semantics for State Machine Diagrams based on Petri nets. He suggests that the
timed Petri net that corresponds to the State Machine Diagram can then be checked
against the constraints imposed by a Sequence Diagram. It would be interesting to
understand how this could be done by exploiting the semantics for Sequence Dia-
grams proposed by the same author [Hammal 2006], but unfortunately no further
details are provided. Choppy et al. [Choppy et al. 2011] propose a translation of UML
state diagrams into Colored Petri nets, and the verification of desired properties can be
carried out automatically. The OMEGA framework by Ober and Dragomir [Ober and
Dragomir 2010] addresses Class Diagrams, Component Diagrams, and State Machine
Diagrams in terms of communicating extended timed automata, then translated into
the IF language—supported by a number of verification tools. Hansen et al. [Hansen
et al. 2010b; Hansen et al. 2010a] introduce xUML, which includes Class Diagrams and
State Machine Diagrams. The semantics is given through the mCRL2 formal specifi-
cation language. The system can then be model checked by using the LTSmin model
checker.

Both Ober and Dragomir [Ober and Dragomir 2010] and Hansen et al. [Hansen et al.
2010b; Hansen et al. 2010a] express properties using a variation of State Machine Di-
agrams where the user can tag the error states. In [Hansen et al. 2010b; Hansen et al.
2010a], the result of the verification is also mapped back onto the Sequence Diagrams.
Other approaches like those proposed by Bouabana-Tebibel [Bouabana-Tebibel 2007],
ter Beek et al. [ter Beek et al. 2011], Burmester et al. [Burmester et al. 2004], and
Pap et al. [Pap et al. 2005] map State Machine Diagrams onto Petri nets, LTS, timed
automata, and kripke structures, respectively. Only Burmester et at. [Burmester et al.
2004] address the time dimension of the system, and none of them propose a UML-like
notation for properties. Burmester et al. also support the traceability of the verification
results, but it is only possible to verify properties belonging to a subset of the model.
The authors define them as local properties.

Finally, Kias et al. [Kyas et al. 2005] present a higher-order logic semantics for Class
Diagrams with OCL constraints and flat State Machine Diagrams. The obtained for-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A Logic-based Approach for the Verification of UML Timed Models A:43

mal model can be analyzed by means of the PVS theorem prover. This is complemen-
tary to our approach and the previous ones as it can be a viable solution when there is
the need for navigating the details of the proof that demonstrates that a given property
holds for the system.

7.1.4. Multiple Diagrams. The approach presented by Graw and Herrmann [Graw and
Herrmann 2004] proposes a semantics based on a compositional Temporal Logic of
Actions (cTLA). The work integrates Class Diagrams, Sequence Diagrams, Activity
Diagrams and State Machine Diagrams, and the authors provide a transformation tool
from XMI to cTLA. The work presented by Lano [Lano 2009] gives semantics to Class
Diagrams, State Machine Diagrams, and Sequence Diagrams by using the Real Time
Action Logic formalism (RAL). A transformation tool from UML to B is provided as a
standalone Java program. The analysis must be performed using B Tools. Note that
Lano [Lano 2009] and Graw and Herrmann [Graw and Herrmann 2004] are the only
solutions that are able to consider heterogeneous models like us and their semantics
is also based on temporal logic.

None of the works provide a tool for the analysis of Sequence Diagrams, while we
support a broader range of diagram types and provide a tool to automatically analyze
them and also to deal with the real-time dimension of systems. Following the guide-
lines of the UML/MARTE specification [MARTE 2011] we are able to predicate on the
time dimension of the system using clocks and time constraints. We do not provide
a simulation tool, but we can ask for execution traces of the system. We support the
back translation of verification results on heterogeneous models, while Eshuis and
Wieringa [Eshuis 2006] only support this for Activity Diagrams. Finally, our tool is in-
tegrated with the Papyrus Eclipse modeling environment, where the user can design
the model and also express the properties of interest using an OCL-like notation. The
traceability mechanism allows the user to understand verification results on designed
UML models.

8. CONCLUSIONS
This paper introduces a UML-based technique for the modeling and formal verifica-
tion of embedded, real-time systems. The technique is based on two main pillars: (i)
a modeling notation, called C-UML, which uses UML diagrams and borrows from the
UML MARTE profile to describe the features of the systems under design; and (ii)
a verification tool, called Corretto, which translates C-UML models into an internal
representation, expressed in the metric temporal logic TRIO, and then verifies them
against user-defined properties. Our logic-based approach exhibits several valuable
features, such as flexibility, customizability, and compositionality. The current version
of C-UML comprises a significant set of widely-used UML diagram types; the addition
of new diagrams (e.g., Component Diagrams) would require the use of the same con-
ceptual framework and the proper identification of the links and inter-dependencies
with the other diagram types. We have illustrated our approach through several case
studies consisting of non-trivial examples from industrial applications and classic ex-
amples from the literature on formal verification.

The C-UML approach is currently being considered to provide formal verification
capabilities to the design of data-intensive applications within the DICE project19.
In the future, we will explore mechanisms to optimize the verification phase in the
Corretto tool.

19http://www.dice-h2020.eu/.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.dice-h2020.eu/

A:44 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

In addition, we will investigate the possibility of founding the semantics of C-UML
on a more general model of time. In fact, as mentioned in Section 4, C-UML models
currently employ a discrete notion of time where state changes, operation invocations,
activations of Sequence Diagrams, etc., all consume a time unit. It is sometimes useful,
however, to describe system changes that occur at speeds that are much faster than
others, by separating between micro- and macro-steps, where the former capture log-
ical, instantaneous evolutions in the system and the latter the advancement of real
time (see for example [Lee and Seshia 2011], Chapter 6). The TRIO language, which
provides the formal foundations to C-UML, can indeed support such a finer notion
of time, even in a metric setting [Rossi et al. 2016], although at the price of making
models more costly to analyze.

Another way to introduce a finer-grained model of time is through the adoption of
a continuous—rather than a discrete—notion of time. The Zot bounded satisfiability
checker which is used to carry out the formal verification of C-UML models supports
continuous-time models in several ways: through the notion of sampling [Furia and
Rossi 2010; Furia et al. 2008], which can be used to integrate in the same framework
discrete and continuous time models—as done in the predecessor to the Corretto tool
for purposes of simulation of system designs [Baresi et al. 2015]; and through the
CLTLoc temporal logic [Bersani et al. 2015], which employs a metric, continuous notion
of time, equivalent to the one adopted in timed automata [Bersani et al. 2017]. In
fact, in future works we will explore the possibility of providing new, complementary
semantics for C-UML diagrams, based on the CLTLoc temporal logic.

Acknowledgments. We would like to thank the anonymous reviewers for their useful
suggestions, which have helped us improve the paper.

REFERENCES
Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Wolfram Menzel, Woj-

ciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H Schmitt. 2005. The KeY tool Integrating
object oriented design and formal verification. Software and Systems Modeling (2005), 32–54.

Charles André. 2009. Syntax and semantics of the clock constraint specification language (CCSL). Ph.D.
Dissertation. INRIA.

Charles André, Frédéric Mallet, and Robert de Simone. 2007. Modeling Time(s). In Model Driven Engineer-
ing Languages & Systems (MoDELS) (LNCS), Vol. 4735. 559–573.

Ludovic Apvrille, Jean-Pierre Courtiat, Christophe Lohr, and Pierre de Saqui-Sannes. 2004. TURTLE: a
real-time UML profile supported by a formal validation toolkit. IEEE Transactions on Software Engi-
neering 30, 7 (2004), 473–487.

Luciano Baresi, Gundula Blohm, Dimitrios S. Kolovos, Nicholas Matragkas, Alfredo Motta, Richard F.
Paige, Alek Radjenovic, and Matteo Rossi. 2015. Formal verification and validation of embedded
systems: the UML-based MADES approach. Software and Systems Modeling 14, 1 (2015), 343–363.
DOI:http://dx.doi.org/10.1007/s10270-013-0330-z

Luciano Baresi, Angelo Morzenti, Alfredo Motta, and Matteo Rossi. 2011. From interaction overview
diagrams to temporal logic. Models in Software Engineering 6627, i (2011), 90–104. http://www.
springerlink.com/index/3V4348H45N0M2125.pdf

Luciano Baresi, Angelo Morzenti, Alfredo Motta, and Matteo Rossi. 2012. A Logic-based Semantics for
the Verification of Multi-diagram UML Models. SIGSOFT Softw. Eng. Notes 37, 4 (July 2012), 1–8.
DOI:http://dx.doi.org/10.1145/2237796.2237811

Luciano Baresi, Mohammad Mehdi Pourhashem Kallehbasti, and Matteo Rossi. 2014. Flexible modu-
lar formalization of UML sequence diagrams. In Proceedings of the 2nd FME Workshop on Formal
Methods in Software Engineering - FormaliSE 2014. ACM Press, New York, New York, USA, 10–16.
DOI:http://dx.doi.org/10.1145/2593489.2593492

Luciano Baresi, Mohammad Mehdi Pourhashem Kallehbasti, and Matteo Rossi. 2015. Efficient Scalable
Verification of LTL Specifications. In International Conference on Software Engineering (ICSE).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://dx.doi.org/10.1007/s10270-013-0330-z
http://www.springerlink.com/index/3V4348H45N0M2125.pdf
http://www.springerlink.com/index/3V4348H45N0M2125.pdf
http://dx.doi.org/10.1145/2237796.2237811
http://dx.doi.org/10.1145/2593489.2593492

A Logic-based Approach for the Verification of UML Timed Models A:45

Luciano Baresi, Mohammad Mehdi Pourhashem Kallehbasti, and Matteo Rossi. 2016. How Bit-Vector Logic
Can Help Improve the Verification of LTL Specifications over Infinite Domains. In ACM Symposium on
Applied Computing.

Gerd Behrmann, Alexandre David, and Kim G Larsen. 2006. A Tutorial on Uppaal 4.0. Technical Report.
Abderraouf Benyahia, Arnaud Cuccuru, Safouan Taha, François Terrier, Frédéric Boulanger, and Sébastien

Gérard. 2010. Extending the standard execution model of UML for real-time systems. In Distributed,
Parallel and Biologically Inspired Systems. Springer, 43–54.

Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. 2017. A logical characteriza-
tion of timed regular languages. Theoretical Computer Science 658, Part A (2017), 46–59.
DOI:http://dx.doi.org/10.1016/j.tcs.2016.07.020

Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. 2015. A Tool for Deciding the
Satisfiability of Continuous-time Metric Temporal Logic. Acta Informatica (2015), 1–36.
DOI:http://dx.doi.org/10.1007/s00236-015-0229-y

Thouraya Bouabana-Tebibel. 2007. Roles at the basis of UML validation. Journal of Computing and Infor-
mation Technology (2007), 171–183. DOI:http://dx.doi.org/10.2498/cit.1000882

Thouraya Bouabana-Tebibel. 2009. Semantics of the interaction overview diagram. In
IEEE International Conference on Information Reuse Integration (IRI). 278–283.
DOI:http://dx.doi.org/10.1109/IRI.2009.5211565

Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. 2004. The IF Toolset. In Formal
Methods for the Design of Real-Time Systems (SFM-RT). 237–267.

Manfred Broy and María Victoria Cengarle. 2011. UML formal semantics: lessons learned. Software and
Systems Modeling 10, 4 (June 2011), 441–446. DOI:http://dx.doi.org/10.1007/s10270-011-0207-y

Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. 2014. Towards a System Model for UML.
The Structural Data Model. CoRR abs/1409.6613 (2014). http://arxiv.org/abs/1409.6613

Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling. 2004. Incremental Design and For-
mal Verification with UML/RT in the FUJABA Real-Time Tool Suite. In International Workshop on
Specification and vaildation of UML models for Real Time and embedded Systems (SVERTS).

Jordi Cabot, Robert Clarisó, and Daniel Riera. 2014. On the Verification of UML/OCL Class Dia-
grams using Constraint Programming. Journal of Systems and Software 93, 0 (2014), 1 – 23.
DOI:http://dx.doi.org/10.1016/j.jss.2014.03.023

Victoria Cengarle and Alexander Knapp. 2004. UML 2.0 Interactions : Semantics and Refinement. In Criti-
cal System Development with UML (CSDUML).

Christine Choppy, Kais Klai, and Hacene Zidani. 2011. Formal Verification of UML State Dia-
grams: A Petri Net Based Approach. SIGSOFT Softw. Eng. Notes 36, 1 (Jan. 2011), 1–8.
DOI:http://dx.doi.org/10.1145/1921532.1921561

Emanuele Ciapessoni, Alberto Coen-Porisini, Ernani Crivelli, Dino Mandrioli, Angelo Morzenti, and Pier-
giorgio Mirandola. 1999. From formal models to formally-based methods: an industrial experience. ACM
Transactions on Software Engineering and Methodology (TOSEM) 8, 1 (1999), 79—-113.

Federico Ciccozzi. 2016. On the automated translational execution of the action language for foundational
UML. Software & Systems Modeling (2016), 1–27. DOI:http://dx.doi.org/10.1007/s10270-016-0556-7

Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert France, Jean-Marc Jézéquel, and
Jeff Gray. 2014. Globalizing Modeling Languages. IEEE Computer (June 2014), 68–71.
DOI:http://dx.doi.org/10.1109/MC.2014.147

Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. 2005. A discrete-time UML seman-
tics for concurrency and communication in safety-critical applications. Science of Computer Program-
ming 55, 1-3 (2005), 81–115.

Werner Damm and Bernd Westphal. 2003. Live and Let Die : LSC-Based Verification of UML-Models. In
Formal Methods for Components and Objects (FMCO). 99–135.

Zamira Daw, John Mangino, and Rance Cleaveland. 2015. UML-VT: A Formal Verification Environment for
UML Activity Diagrams. (2015).

Sébastien Demathieu, Frédéric Thomas, Charles André, Sébastien Gérard, and François Terrier. 2008.
First Experiments Using the UML Profile for MARTE. IEEE International Symposium on Ob-
ject and Component-Oriented Real-Time Distributed Computing (ISORC) 1 (May 2008), 50–57.
DOI:http://dx.doi.org/10.1109/ISORC.2008.36

Karsten Diethers and Michaela Huhn. 2004. Vooduu: Verification of Object-Oriented Designs Using UP-
PAAL. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, Vol.
2988. 139–143.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://dx.doi.org/10.1016/j.tcs.2016.07.020
http://dx.doi.org/10.1007/s00236-015-0229-y
http://dx.doi.org/10.2498/cit.1000882
http://dx.doi.org/10.1109/IRI.2009.5211565
http://dx.doi.org/10.1007/s10270-011-0207-y
http://arxiv.org/abs/1409.6613
http://dx.doi.org/10.1016/j.jss.2014.03.023
http://dx.doi.org/10.1145/1921532.1921561
http://dx.doi.org/10.1007/s10270-016-0556-7
http://dx.doi.org/10.1109/MC.2014.147
http://dx.doi.org/10.1109/ISORC.2008.36

A:46 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

Danny Dolev, Maria Klawe, and Michael Rodeh. 1982. An O(n log n) unidirectional distributed al-
gorithm for extrema finding in a circle. Journal of Algorithms 3, 3 (Sept. 1982), 245–260.
DOI:http://dx.doi.org/10.1016/0196-6774(82)90023-2

Dov Dori. 2002. Why significant UML change is unlikely. Communications of the ACM (CACM) 45, 11 (2002),
82–85.

Christoph Eichner, Hans Fleischhack, Roland Meyer, Ulrik Schrimpf, and Christian Stehno. 2005. Com-
positional semantics for UML 2.0 sequence diagrams using Petri nets. In International SDL Forum.
133–148. http://www.springerlink.com/index/XYAMC31QHVLVCMCM.pdf

John Erickson and Keng Siau. 2007. Theoretical and practical complexity of modeling methods. Communi-
cations of the ACM (CACM) (2007).

Rik Eshuis. 2006. Symbolic model checking of UML activity diagrams. ACM Transactions on Software En-
gineering and Methodology 15, 1 (2006), 1–38.

Rik Eshuis. 2009. Reconciling statechart semantics. Science of Computer Programming 74, 3 (2009), 65–99.
DOI:http://dx.doi.org/10.1016/j.scico.2008.09.001

Rik Eshuis and Roel Wieringa. 2001. A Real-Time Execution Semantics for UML Activity Diagrams. In
Fundamental Approaches to Software Engineering (FASE), Vol. 02. 1–15.

Rik Eshuis and Roel Wieringa. 2004. Tool Support for Verifying UML Activity Diagrams. IEEE Transactions
on Software Engineering 30, 7 (2004), 437–447. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1318605

Luca Ferrucci, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. 2012. Modular Automated Verification
of Flexible Manufacturing Systems with Metric Temporal Logic and Non-Standard Analysis. In Formal
Methods for Industrial Critical Systems. Lecture Notes in Computer Science, Vol. 7437. 162–176.

Carlo A. Furia, Matteo Pradella, and Matteo Rossi. 2008. Automated Verification of Dense-Time MTL Spec-
ifications via Discrete-Time Approximation. In Proceedings of the 15th International Symposium on
Formal Methods (FM’08) (Lecture Notes in Computer Science), Jorge Cuéllar and Tom Maibaum (Eds.),
Vol. 5014. Springer-Verlag, 132–147.

Carlo A. Furia and Matteo Rossi. 2010. A Theory of Sampling for Continuous-Time Metric Temporal Logic.
ACM TOCL 12, 1 (2010), 8:1–8:40.

Régis Gascon, Frédéric Mallet, and Julien Deantoni. 2011. Logical time and temporal logics: Comparing
UML MARTE/CCSL and PSL. In Temporal Representation and Reasoning (TIME), 2011 Eighteenth
International Symposium on. IEEE, 141–148.

Gerard J. Holzmann. 2004. The Spin Model Checker: Primer and Reference Model.
Martin Glinz. 2000. Problems and deficiencies of UML as a requirements specification language. In 10th

International Workshop on Software Specification. http://dl.acm.org/citation.cfm?id=857171.857222
Martin Gogolla, Lars Hamann, and Frank Hilken. 2014. Checking Transformation Model Properties with a

UML and OCL Model Validator. In Proc. 3rd Int. STAF’2014 Workshop Verification of Model Transfor-
mations (VOLT’2014).

Günter Graw and Peter Herrmann. 2004. Transformation and Verification of Executable
UML Models. Electronic Notes in Theoretical Computer Science 101 (Nov. 2004), 3–24.
DOI:http://dx.doi.org/10.1016/j.entcs.2004.09.006

Youcef Hammal. 2005. A Formal Semantics of UML StateCharts by Means of Timed Petri Nets. In Interna-
tional Conference on Formal Techniques for Networked and Distributed Systems (FORTE). LNCS, Vol.
3731. 38–52.

Youcef Hammal. 2006. Branching Time Semantics for UML 2.0 Sequence. In Formal Techniques for Net-
worked and Distributed Systems. 259–274.

Helle Hansen, Jeroen Ketema, Bas Luttik, MohammadReza Mousavi, and Jaco van de Pol. 2010b. Towards
model checking executable UML specifications in mCRL2. Innovations in Systems and Software Engi-
neering 6, 1 (2010), 83–90.

Helle Hvid Hansen, Jeroen Ketema, Bas Luttik, and Mohammadreza Mousavi. 2010a. Automated Verifica-
tion of Executable UML Models. In Formal Methods for Components and Objects (FMCO). 1–26.

David Harel. 2004. What’s the Semantics of "Semantics"? IEEE Computer (2004).
Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. 2005a. Why Timed Sequence

Diagrams Require Three-Event Semantics. In Scenarios: Models, Transformations and Tools. 1–25.
Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. 2005b. STAIRS towards formal

design with sequence diagrams. Software and Systems Modeling (SOSYM) 4, 4 (Oct. 2005), 355–357.
DOI:http://dx.doi.org/10.1007/s10270-005-0087-0

Alexander Knapp and Jochen Wuttke. 2006. Model checking of UML 2.0 interactions. In Workshops and
Symposia at MoDELS 2006 (Lecture Notes in Computer Science), Vol. 4634. 42–51.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://dx.doi.org/10.1016/0196-6774(82)90023-2
http://www.springerlink.com/index/XYAMC31QHVLVCMCM.pdf
http://dx.doi.org/10.1016/j.scico.2008.09.001
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1318605
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1318605
http://dl.acm.org/citation.cfm?id=857171.857222
http://dx.doi.org/10.1016/j.entcs.2004.09.006
http://dx.doi.org/10.1007/s10270-005-0087-0

A Logic-based Approach for the Verification of UML Timed Models A:47

Sabine Kuske, Martin Gogolla, Hans-Jörg Kreowski, and Paul Ziemann. 2009. Towards an Inte-
grated Graph-based Semantics for UML. Software and Systems Modeling 8, 3 (2009), 403–422.
DOI:http://dx.doi.org/10.1007/s10270-008-0101-4

Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost Jacob, Jozef Hooman, Mark van der
Zwaag, Tamarah Arons, and Hillel Kugler. 2005. Formalizing UML Models and OCL Con-
straints in PVS. Electronic Notes in Theoretical Computer Science 115 (Jan. 2005), 39–47.
DOI:http://dx.doi.org/10.1016/j.entcs.2004.09.027

Kevin Lano. 2009. A compositional semantics of UML-RSDS. Software & Systems Modeling 8, 1 (Aug. 2009),
85–116. DOI:http://dx.doi.org/10.1007/s10270-007-0064-x

Edward A. Lee and Sanjit A. Seshia. 2011. Introduction to Embedded Systems, A Cyber-Physical Systems
Approach. http://LeeSeshia.org.

Johan Lilius and Ivan Porres Paltor. 1999. vUML: A tool for verifying UML models. Automated Software
Engineering (ASE) (1999). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=802301

Mass Soldal Lund and Ketil Stolen. 2006. A Fully General Operational Semantics for UML 2.0 Sequence
Diagrams with Potential and Mandatory Choice. In Formal Methods (FM). 380–395.

Frédéric Mallet. 2008. Clock Constraint Specification Language: Specifying Clock Constraints with UML/-
MARTE. Innovations in Systems and Software Engineering 4, 3 (2008), 309–314.

OMG MARTE. 2011. UML Profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE). (2011).

Zoltán Micskei and Hélène Waeselynck. 2011. The many meanings of UML 2 Sequence Diagrams: a
survey. Software and Systems Modeling (SOSYM) 10, 4 (2011), 489–514. http://dx.doi.org/10.1007/
s10270-010-0157-9

Alfredo Motta, Mohammad Mehdi Pourhashem Kallehbasti, Luciano Baresi, Angelo Morzenti, and Matteo
Rossi. 2017. Corretto UML. github.com/deib-polimi/Corretto. (2017).

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3 : An Efficient SMT Solver. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). 337–340.

Iulian Ober and Iulia Dragomir. 2010. OMEGA2: A new version of the profile and the tools.
International Conference on Engineering of Complex Computer Systems (ICECCS) (2010).
DOI:http://dx.doi.org/10.1109/ICECCS.2010.59

OMG. 2011. OMG Unified Modeling Language Superstructure. Technical Report August. http://www.omg.
org/spec/UML/2.4.1/

OMG. 2013. Concrete Syntax For A UML Action Language: Action Language For Foundational UML (ALF),
v1.0.1. http://www.omg.org/spec/ALF/1.0.1/

OMG. 2016. Semantics of a Foundational Subset for Executable UML Models (fUML), v1.2.1. http://www.
omg.org/spec/FUML/1.2.1/

Ivan Paltor and Johan Lilius. 1999. Formalising UML State Machines for Model Checking. In International
Conference on the Unified Modeling Language (UML) (LNCS), Vol. 1723. 430–445.

Zsigmond Pap, István Majzik, András Pataricza, and András Szegi. 2005. Methods of checking general safety
criteria in UML statechart specifications. Reliability Engineering & System Safety 87, 1 (Jan. 2005), 89–
107. DOI:http://dx.doi.org/10.1016/j.ress.2004.04.011

Ernesto Posse and Juergen Dingel. 2016. An executable formal semantics for UML-RT. Software & Systems
Modeling 15, 1 (2016), 179–217.

Matteo Pradella, Angelo Morzenti, and Pierluigi San Pietro. 2008. Refining Real-Time System Specifica-
tions through Bounded Model- and Satisfiability-Checking. IEEE/ACM International Conference on
Automated Software Engineering (Sept. 2008), 119–127. DOI:http://dx.doi.org/10.1109/ASE.2008.22

Matteo Pradella, Angelo Morzenti, and Pierluigi San Pietro. 2013. Bounded Satisfiability Checking of Metric
Temporal Logic Specifications. ACM Transactions on Software Engineering and Methodology (TOSEM)
22, 3 (2013), 20:1–20:54.

Matteo Rossi, Dino Mandrioli, Angelo Morzenti, and Luca Ferrucci. 2016. A temporal logic for micro- and
macro-step-based real-time systems: Foundations and applications. Theoretical Computer Science 643
(2016), 38–64.

Timm Schfer, Alexander Knapp, and Stephan Merz. 2001. Model Checking UML State Machines
and Collaborations. Electronic Notes in Theoretical Computer Science 55, 3 (2001), 357–369.
DOI:http://dx.doi.org/10.1016/S1571-0661(04)00262-2

Harald Störrle. 2003. Semantics of Interactions in UML 2.0. In IEEE Symposium on Human Centric Com-
puting Languages and Environments (HCC). 129–136.

Harald Störrle. 2004. Semantics of UML 2 . 0 Activities. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VLHCC).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://dx.doi.org/10.1007/s10270-008-0101-4
http://dx.doi.org/10.1016/j.entcs.2004.09.027
http://dx.doi.org/10.1007/s10270-007-0064-x
http://LeeSeshia.org
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=802301
http://dx.doi.org/10.1007/s10270-010-0157-9
http://dx.doi.org/10.1007/s10270-010-0157-9
https://github.com/deib-polimi/Corretto
http://dx.doi.org/10.1109/ICECCS.2010.59
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/FUML/1.2.1/
http://www.omg.org/spec/FUML/1.2.1/
http://dx.doi.org/10.1016/j.ress.2004.04.011
http://dx.doi.org/10.1109/ASE.2008.22
http://dx.doi.org/10.1016/S1571-0661(04)00262-2

A:48 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

Jérémie Tatibouët, Arnaud Cuccuru, Sébastien Gérard, and François Terrier. 2014. Formalizing Execution
Semantics of UML Profiles with fUML Models. In International Conference on Model Driven Engineer-
ing Languages and Systems. Springer, 133–148.

Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti. 2011. A state/event-based
model-checking approach for the analysis of abstract system properties. Science of Computer Program-
ming 76, 2 (Feb. 2011), 119–135. DOI:http://dx.doi.org/10.1016/j.scico.2010.07.002

Min Zhang, Frédéric Mallet, and Huibiao Zhu. 2016. An SMT-Based Approach to the Formal Analysis of
MARTE/CCSL. In International Conference on Formal Engineering Methods. Springer, 433–449.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://dx.doi.org/10.1016/j.scico.2010.07.002

A Logic-based Approach for the Verification of UML Timed Models A:49

A. A SHORT INTRODUCTION TO TRIO AND ZOT
TRIO [Ciapessoni et al. 1999] is a first-order linear temporal logic that supports a met-
ric on time. TRIO formulae are built out of the usual first-order connectives, operators,
and quantifiers, as well as a single basic modal operator, called Dist, that relates the
current time, which is left implicit in the formula, to another time instant: given a
time-dependent formula F (i.e., a term representing a mapping from the time domain
to truth values) and a (arithmetic) term t indicating a time distance (either positive
or negative), the formula Dist(F, t) specifies that F holds at a time instant whose dis-
tance is exactly t time units from the current instant. Dist(F, t) is in turn also a time-
dependent formula, as its truth value can be evaluated for any current time instant,
so that temporal formulae can be nested as usual. While TRIO can exploit both dis-
crete and dense sets as time domains, in the C-UML semantics we assume the stan-
dard model of the nonnegative integers N as discrete time domain. For convenience
in the writing of specification formulae, TRIO defines a number of derived temporal
operators from the basic Dist, through propositional composition and first-order logic
quantification. Table IV defines some of the most significant ones, including those used
in defining the semantics of C-UML.

Operator Definition
Futr(φ, t) t ≥ 0 ∧Dist(φ, t)

Past(φ, t) t ≥ 0 ∧Dist(φ,−t)
Alw(φ) ∀d : Dist(φ, d)

AlwF(φ) ∀d ≥ 0 : Futr(φ, d)

AlwP(φ) ∀d ≥ 0 : Past(φ, d)

Somφ ∃d : Dist(φ, d)

SomF(φ) ∃d ≥ 0 : Futr(φ, d)

SomP(φ) ∃d ≥ 0 : Past(φ, d)

Lasts(φ, t) ∀d ∈ (0, t] : Futr(φ, d)

Lasted(φ, t) ∀d ∈ (0, t] : Past(φ, d)

WithinF(φ, t) ∃d ∈ (0, t] : Futr(φ, d)

WithinP(φ, t) ∃d ∈ (0, t] : Past(φ, d)

Until(ψ, φ) ∃d ≥ 0 : Futr(φ, d) and ∀i, 0 ≤ i < d Futr(ψ, i)

Since(ψ, φ) ∃d ≥ 0 : Past(φ, d) and ∀i, 0 ≤ i < d Past(ψ, i)

Table IV: TRIO derived temporal operators.

The TRIO specification of a system consists of a set of basic items, which are primi-
tive elements, such as predicates, time-dependent values, and functions, representing
the elementary phenomena of the system. The behavior of a system over time is de-
scribed by a set of TRIO formulae, which state how the items are constrained and how
they vary, in a purely descriptive (or declarative) fashion.

The goal of the verification phase is to ensure that the system S satisfies some de-
sired propertyR, that is, that S |= R. In the TRIO approach S andR are both expressed
as logic formulae Σ and ρ, respectively; then, showing that S |= R amounts to proving
that Σ⇒ ρ is valid.

TRIO is supported by a variety of verification techniques implemented in prototype
tools. In this paper we use Zot [Pradella et al. 2013], a bounded satisfiability checker

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:50 L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi

that supports verification of discrete-time TRIO models. Zot20 encodes satisfiability
(and validity) problems for discrete-time TRIO formulae as propositional satisfiability
(SAT) problems, which are then checked with off-the-shelf SAT solvers. More recently,
we developed more efficient encodings that exploit the features of Satisfiability Modulo
Theories (SMT) solvers [Baresi et al. 2016; Baresi et al. 2015]. Through Zot one can
verify whether stated properties hold for the modeled system (or parts thereof) or not;
if a property does not hold, Zot produces a counterexample that violates it.

As a simplest example on which to discuss the introduced concepts we consider a
so-called timer-reset-lamp (TRL, [Pradella et al. 2008]), i.e., a lamp with two buttons,
called ON and OFF. When the ON button is pressed the lamp is lighted and it remains
so for ∆ time units (t.u.) and then it goes off, unless the OFF button is pushed before
the ∆ time-out expires (in which case the light goes off immediately after the push of
the OFF button , even if this occurs before the end of the time-out period), or unless the
ON button is pressed again, before the time-out, in which case the lamp will remain
lighted for ∆ more t.u. (unless the OFF button is pressed before the time-out expires,
etc.). To ensure that the pressure of a button is always meaningful, it is assumed that
ON and OFF cannot be pressed simultaneously.

Fig. 28: A history for the timed lamp example.

An example of a trace of execution of the TRL system (a so-called history) is repre-
sented in Figure 28 , for the case ∆ = 5. The history shows typical behaviors of the
modeled system: the lamp being off is turned on by pushing button ON and then it
turns off “spontaneously" after ∆ t.u.; then the lamp is lighted again and then turned
off within ∆ t.u. by pressing button OFF; the lamp is kept on by pushing again button
ON before the ∆ time-out, and then it finally goes off spontaneously. The descriptive
model of the TRL is based on the following three propositional letters, with the indi-
cated meaning:

— L: the light is on.
— ON: the button to turn it on is pressed.
— OFF: the button to turn it off is pressed.

The model is made of two simple formulae. the first one states that the lamp is on (at
the current time) if and only if the ON button was pressed no more than ∆ time units
ago and since then the OFF button has not been pressed. In TRIO this is formalized
by the following formula:

(D1) L⇔WithinP(ON,∆) ∧ Since(¬OFF,ON)

The second formula expresses the mutual exclusion between the pressing of the ON
and OFF buttons, namely:

(D2) ¬(ON ∧OFF)

The descriptive model of the formula simply consists of the conjunction of these two
formulae, enclosed in a universal temporal quantification (an Alw operator) asserting

20github.com/fm-polimi/zot

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

https://github.com/fm-polimi/zot

A Logic-based Approach for the Verification of UML Timed Models A:51

that they hold for all instants of the temporal domain.

(DM) Alw(D1 ∧D2)

The descriptive model, despite its simplicity and succinctness, characterizes com-
pletely the TRL system: starting from it the history depicted in Figure 28 can be gen-
erated using the Zot tool, or one can prove that the following (conjectured) property

(P1) Alw(¬Lasts(L,∆ + 1))

(i.e., the lamp will never remain on for more than ∆ time units) does not hold, by
generating, through the Zot tool, a counter-example consisting of a history similar to
the one shown in Figure 28, including two push actions of the ON button at distance
less than ∆; the Zot tool can instead prove, from the descriptive model, the following
property

(P2) Alw(Lasts(L,∆ + 1)⇒WithinF(ON,∆ + 1))

(i.e., the lamp remains lighted for more than ∆ time units only if we have another
press action of the ON button at a distance of less than ∆ t.u.).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

	Introduction
	C-UML in Context
	C-UML
	Semantics
	Car Collision Avoidance System
	Class and Object Diagrams
	State Machine Diagrams
	Sequence Diagrams
	Activity Diagrams and Interaction Overview Diagrams
	Actions
	Shared Events
	Time Constraints

	Corretto
	Experimental evaluation
	Car Collision Avoidance System
	Automated Teller Machine
	Radar System
	Leader Election
	Fischer Protocol
	Summary of the Experimental Evaluation

	Related Work
	UML Behavioral Models
	Sequence Diagrams
	Activity Diagrams
	State Machine Diagrams
	Multiple Diagrams

	Conclusions
	A short introduction to TRIO and Zot

