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ABSTRACT
Sociotechnological and geospatial processes exhibit time varying
structure that make insight discovery challenging. �is paper pro-
poses a new statistical model for such systems, modeled as dynamic
networks, to address this challenge. It assumes that vertices fall
into one of k types and that the probability of edge formation at a
particular time depends on the types of the incident nodes and the
current time. �e time dependencies are driven by unique seasonal
processes, which many systems exhibit (e.g., predictable spikes in
geospatial or web tra�c each day). �e paper de�nes the model
as a generative process and an inference procedure to recover the
seasonal processes from data when they are unknown. Evaluation
with synthetic dynamic networks show the recovery of the latent
seasonal processes that drive its formation.
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1 INTRODUCTION & MOTIVATION
Many complex systems exhibit regular, time dependent, seasonal
pa�erns. For example, human movement pa�erns are driven by
the time of day [8], and vehicle tra�c densities exhibit predictable
increases at certain hours causing rush hours and decreases at
night [6]. �is same ‘seasonal’, time dependent e�ect occurs when
monitoring network bandwidth usage [13] or when counting the
number of clicks per day on a web page[2].

We look to bring the notion of seasonality to statistical net-
work modeling with a new kind of dynamic stochastic block model
(DSBM). A DSBM asserts that system components (nodes) are
grouped into several types, and the probability of observing a com-
ponent relation or interaction (edges) are determined by the types
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Figure 1: Example of seasonality in dynamic networks. In
this three class network, a latent seasonal process deter-
mines a probability of edge formation at times t1 and t2,
subject to both process and measurement noise. A di�er-
ent process (colored plates on the right) a�ect probabilities
for edges connecting unique pairs of node types. �e pa-
per presents a statistical model codifying these ideas, which
may be useful in comparison, prediction, and anomaly de-
tection tasks on dynamic complex systems.

of the incident nodes and time. Di�erent kinds of DSBM consider
di�erent assumptions about the network formation process [4, 9–
12], but none consider seasonality. A conceptual overview of the
model we propose is given in Figure 1. It fuses structural time series
(plates on the right of Figure 1) with a generative network model.
We call this a seasonal DSBM (SDSBM). �e model is transformed
to a state-space model for scalable ��ing to data by Kalman Filters,
and expectation-maximization is used for parameter learning.

2 MODEL SPECIFICATION
We �rst specify the model of the seasonal processes controlling edge
dynamics. We assume that time is discrete, with the current time t
representing a time period of some resolution. We also assume the
node types are provided. For each pair of node types a and b, we
consider a structural time series with a biasm(a,b)t establishing an
anchor for values of the time series and a seasonal o�set s(a,b)t that
shi�s the bias by the current seasonality position. �e process at
time t , denoted c

(a,b)
t , is

c
(a,b)
t =m

(a,b)
t + s

(a,b)
t (1)

with bias m
(a,b)
t described by m

(a,b)
t = m

(a,b)
t−1 + δm(a,b)t

where

δ
m(a,b)t

∼ N(0,q(a,b)m ) models possible process noise. �e set of sea-

sonal o�sets are stored in a vector s(a,b) = (s(a,b)1 , s
(a,b)
2 , ..., s

(a,b)
d )

having d components. d re�ects either the length or the resolution
of a seasonal process (e.g., d = 60 to model per minute changes
over a process that cycles per hour) and is assumed to be provided
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by the user of the model. �e components are:

s
(a,b)
t = −

d−1∑
i=1

s
(a,b)
t−i + δs (a,b)t

(2)

where δ
s (a,b)t

∼ N(0,q(a,b)s ). �is form enforces a zero-sum con-
straint to increase identi�ability [7]. It should be emphasized that
q
(a,b)
m and q

(a,b)
s control the noise of the underlying seasonal pro-

cess, where low noise represents a stable seasonality that does not
vary signi�cantly between realized periods.

To model how the seasonal processes govern the shape of a
dynamic network, we de�ne a random variable E

(a,b)
t ∈ [0, 1] as

the expected density of edges spanning node types (a,b) at time t :

E
(a,b)
t = c

(a,b)
t + ϵ

E (a,b)t
(3)

where ϵ
E (a,b)t

∼ N(0, r (a,b)) models possible measurement noise.
Next we de�ne an adjacency matrix At , where [At ]i j = 1 if there
exists an edge between nodes i and j at time t and [At ]i j = 0
otherwise. Denote A(a,b)t as the submatrix of At only containing
the rows and columns representing type a and type b nodes. �en
A
(a,b)
t is de�ned by the random variable:

[A(a,b)t ]i j ∼ Bernoulli(E(a,b)t ) (4)

Repeating this process for all blocks (a,b) and time steps t will
generate a desired dynamic network A = {A1,A2, ...,At }.

3 MODEL FITTING
We now describe an inference procedure to �t the model to an ob-
served A. Since seasonal processes are latent in data, the task is to
estimate a posterior distribution on each m

(a,b)
t and s

(a,b)
t for each

pair of node types (a,b). Kalman �lters [5] are an appropriate tool
for this task, but requires transforming the generative model into a
state-space model (SSM). A SSM is a time series model with hidden
and observed variables [7]; here we de�ne xt as hidden and wt as
observed variables, respectively. We can notice the bias and sea-
sonal o�sets from before were hidden, while the adjacency matrix
is observed, foreshadowing the structure to be de�ned. A SSM cre-
ates observations at time t by two linear models: An observation
model wt = hxt + ϵt and a transition model xt = Gxt−1 + ∆t .
Here, observations wt are generated by a transformation of the
output (de�ned by h) of the underlying transition model. �e tran-
sition model describes transformations within a hidden state space
where transitions from time t −1 to time t are de�ned by the matrix
G. Observations and transitions are to be subject to time depen-
dent random noise, which are modeled by Gaussian distributions
ϵt ∼ N(0,Rt ) and ∆t ∼ N(0,Qt )With Rt and Qt controlling the
amount of observation and transition noise, respectively. Assuming
parameters θt = {h,G,Rt ,Qt } are known, a Kalman Filter can be
used to derive the exact posterior Pr (xt |θt ,w1,w2, ...,wt ), i.e., the
probability of the hidden state value at time t given the observations
up to and including time t [7].

Now we transform the model speci�cation into a state space to
de�ne the transition model xt = Gxt−1 + ∆t . As we are assuming
edges of di�erent vertex types (a,b) are independent of each other,
we will formulate the inference in terms of a pairing (a,b). �e

full inference is completed by repeating the process for all pairs
(a,b). First we transform Equations 1 and 2 to de�ne the hidden
state variable xt and state transition G. �e hidden state will be
composed of the bias and vector of seasonal o�sets as ad×1 seasonal
state vector for a period of length d :

x(a,b)t =
[
m
(a,b)
t s

(a,b)
t s

(a,b)
t−1 . . . s

(a,b)
t−d+2

]T
(5)

Note that all the seasonal o�sets from s(a,b) are maintained in the
state for a given t , with the dth seasonal o�set implicitly de�ned
based on the zero-sum constraint. Now to perform the state transi-
tion from time t − 1 to time t we de�ne a d × d matrix G:

G =



1 0 0 . . . 0 0
0 −1 −1 . . . −1 −1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...
...

...
. . .

...
...

0 0 0 . . . 1 0


(6)

In G, we see that multiplication of the �rst row of G by x(a,b)t yields
Equation 1 without noise being added, as only the bias term is
updated. Multiplication of the second row of G by x(a,b)t will update
a single seasonal o�set as shown in Equation 2. �e remaining rows
of G serve to permute the remaining seasonal o�sets, such that
each o�set s(a,b)i is updated a�er a full period of d time steps. Each
time step will update the most current seasonal o�set, and shi�
the remaining o�sets right one index in the state vector. Next we
de�ne the d × 1 noise vector ∆t = [δm(a,b)t

,δ
s (a,b)t
, 0, . . . , 0]T where

the �rst element is the bias noise in Equation 1, the second element
is seasonal noise in Equation 2, and the remaining elements are all
0 as there is no additional noise for permuting the seasonal o�sets.
�ese noise values are sampled from a zero mean Gaussian withd×d
covariance matrix Q = diag[q(a,b)m ,q

(a,b)
s , 0, . . . , 0]. Assuming the

bias noise δ
m(a,b)t

and seasonal o�set noise δ
s (a,b)t

are independent,
the o�-diagonal elements of Q are zero. �e remaining elements are
all zero, re�ecting the lack of noise for the permutation operations.
We can assume Q is stationary, and drop the dependence on t . �is
complete formulation of the transition model is not new, and has
been completed by other researchers such as in [1].

Our next task is to transform Equations 3 and 4 into the observa-
tion model wt = hxt + ϵt . To do this, we will need to de�ne some
additional variables, and take advantage of a result of the central
limit theorem for a large number of vertices with types (a,b) to
create an approximate Gaussian transformation. First we need a
count of the number of possible edges in block (a,b), so if there are
|a | nodes of type a and |b | nodes of type b then de�ne:

n(a,b) =

{
a = b |a |( |a |−1)

2
a , b |a | |b |

(7)

Also de�ne the random variable p
(a,b)
t ∼ Binomial(E(a,b)t ,n(a,b))

as the number of formed edges in block (a,b) at time t , where E(a,b)t
is the expected edge density as determined by Equation 3. p(a,b)t
is simply a more mathematically convenient way to de�ne the
edge generation process from Equation 4 and does not change the
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overall model. Having a binomial random variable, for large enough
n(a,b)E(a,b)t we can apply the central limit theorem to approximate
the distribution of p(a,b)t as Gaussian:

p
(a,b)
t = n(a,b)E(a,b)t + ω

p(a,b)t
(8)

where ω
p(a,b)t

∼ N(0,n(a,b)E(a,b)t (1 − E(a,b)t )) is observation noise

that is time dependent on E
(a,b)
t . �is represents variation in the re-

peated binary decision process of whether pairs of complex system
components will interact. For example, in a geospatial context, a
seasonal process may dictate that people travel from home to work
at 8am, yet people individually decide the precise time they leave
for work. In this example, locations of the geospace are system
components (vertices), and movement between these locations are
interactions (edges). In the SDSBM, each system component will
have a type, such that each individual home is a vertex and all these
homes can have the same type of ‘residence’. �e sum of individual
departure time decisions creates variation captured in ω

p(a,b)t
.

Now that we have successfully transformed our edge sampling
procedure from Equation 4 to an approximately Gaussian formu-
lation in Equation 8, we can return to de�ning observation model
parameterswt and h. We will de�ne the observed variablew(a,b)t as
the number of formed edges p(a,b)t . To create h, de�ne a transforma-
tion which takes as input a seasonal state vector x(a,b)t and produces
as output the number of formed edges w(a,b)t . By combining the
operations of Equations 3 and 8 we de�ne:

h =
[
n(a,b) n(a,b) 0 . . . 0

]
(9)

Examining w
(a,b)
t = hx(a,b)t closer, we can see this multiplication

both sums the bias m(a,b)t and �rst seasonal o�set s(a,b)t follow-
ing Equation 3, and multiplies by n(a,b) to match the repeated
Bernoulli trials from Equation 8. Finally, we model the variance of
the measurement noise ϵt by summing measurement noise ϵ

E (a,b)t
and observation noise ω

p(a,b)t
. �is de�nition allowing for more

�exible modeling of many complex systems. ϵt is sampled from
a zero mean Gaussian distribution with time dependent variance
R
(a,b)
t = n(a,b)E(a,b)t (1 − E(a,b)t ) + (n(a,b))2r (a,b).

We have now transformed the generative procedure to the suit-
able SSM to allow easy inference via the Kalman Filter. Given an
initial Gaussian belief state Pr (x(a,b)0 ) with mean x(a,b)0 and vari-
ance Σ

(a,b)
0 , all subsequent belief states will be Gaussian as well.

�e closed-form updates for the posterior distribution
Pr (x(a,b)t |θ (a,b)t ,w

(a,b)
1 ,w

(a,b)
2 , ...,w

(a,b)
t ) are not de�ned in this pa-

per due to space constraints but are available in [7].
To estimate the unknown noise parameters of the SSM and

Kalman Filter θt = {Rt ,Q} from data, we derive an expectation-
maximization routine that iteratively converges to locally optimal
point estimates. �e update equations for Q can be found in other
research such as [3]. �e updates for Rt is a new formulation, which
deviates from the conventional EM routine for Kalman Filters, due
to our separation of noise parameter R(a,b)t into a combination of
E
(a,b)
t , n(a,b), and r (a,b). n(a,b) is assumed �xed and E

(a,b)
t can

Figure 2: Comparison of the inferred seasonality (posterior
distribution) compared to actual seasonality governing con-
nections between nodes of type x and y. �e underlying sea-
sonality follows a simple sine wave that is accurately recov-
ered from noisy observations.
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Figure 3: �e MSE between the estimated seasonal state vec-
tors to the true seasonal state vectors as a function of the
number of seasonal periods observed. �e error decreases
linearly with observation length.

be estimated using the prediction step of the Kalman Filter as de-
scribed in [11]. To estimate r (a,b), we set up an optimization routine,
which maximizes the log-likelihood of the complete joint distri-
bution Pr (x(a,b)1 , ..., x(a,b)t ,w

(a,b)
1 , ...,w

(a,b)
t ). �is optimization is

completed each iteration of EM, until a locally optimal estimate for
both Q and Rt is found.

4 RESULTS
To demonstrate the �delity of the SDSBM, we perform several ex-
periments on a synthetic dynamic network A = {A1,A2, ...,AT }
generated following the process de�ned in Section 2. �e net-
work is de�ned with k = 3 vertex types, creating 6 unique pairs
(a,b). �ere are approximately 32 nodes of each type, creating
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Figure 4: �e MSE between the estimated seasonal state vec-
tors to true seasonal state vectors as we increase the amount
of observation noise rt for each pair of node types. �e x-
axis is log scale while the y-axis is continuous. �e errors
appear to increase exponentially with the level of observa-
tion noise.
the number of possibles edges for each (a,b) as n(a,b) = 1000.
All pairings (a,b) have the same underlying true seasonality. We
start with an initial bias m(a,b)0 and initial vector of seasonal o�-
sets s(a,b) = (s(a,b)1 , s

(a,b)
2 , ..., s

(a,b)
d ). We set m(a,b)0 = 0.5, and the

seasonal o�sets as samples from a sine wave with amplitude 0.3.
�is will create expected block densities E

(a,b)
t ∈ [.2, .8], where

noisy samples may cover the full range [0, 1]. For example, in some
of the experiments, we set the length of seasonality as 8, creating
s(a,b) = (.2, .3, .2, 0,−.2,−.3,−.2, 0). To determine the noise level
of the system, we set bias variance q

(a,b)
m = 10−8 and seasonal

o�set variance q(a,b)s = 10−8. �ese are set very low to re�ect the
expectation of near constant seasonality. If we set the number of
possible edges of types (a,b) as n(a,b) = 1000, we de�ne a ‘medium’
amount of noise at r (a,b) = 5.5 ∗ 10−3, which will result in a stan-
dard deviation of the number of formed edges of 75. Repeating the
operations in Equations 1-4 T times will form the desired synthetic
dynamic network A.

To infer the underlying seasonal processes, thus ��ing the model
to A, the user needs to provide values for seven hyperparameters.
We assume the user knows both the node labels and desired length
of seasonality d . Initial guesses need to be provided for the remain-
ing hyperparameters of initial state mean x(a,b)0 , state variance
Σ
(a,b)
0 , measurement variance r (a,b), bias variance q(a,b)m , and sea-

sonal o�set variance q(a,b)s . �ese can be defaulted to initial values
such as 1, without having a signi�cant consequence on the �delity
performance. A more formal exploration of the sensitivity of the
model to these hyperparameters is le� as future work. We present
the results of three experiments. First we simply infer the hidden
seasonal state vectors x(x,y)t for a speci�c pairing (x ,y) and for all
t , to qualitatively demonstrate the goodness of �t of the algorithm.
A visual of the seasonal state vector transformed to expected edge
counts is given in Figure 2. �e underlying seasonality is estimated

well, as the estimates shown as blue squares, closely follow the
true seasonality of the solid red line. In the second experiment,
we look to demonstrate the model’s ability to recover the seasonal
state vector with di�ering numbers of observations as controlled
byT , the length of the dynamic network. We start withT = 2d and
increase the number of observed periods until T = 10d . To assess
performance we calculated the mean-squared error (MSE) between
the true x(a,b)t and estimated x̂(a,b)t seasonal vectors for all t . In
Figure 3 a negative linear dependence between MSE and number of
observations is demonstrated in all pairs (a,b). �e model becomes
increasingly accurate for larger datasets. In the third experiment,
we again evaluate the MSE between truth and estimated seasonality,
but this time we vary the amount of measurement noise r (a,b). We
start with a low r (a,b) = 5 ∗ 10−4 and increasing a half order of
magnitude (e.g., 5 ∗ 10−4,1 ∗ 10−3, 5 ∗ 10−3, etc…) until a high level
of noise at 5 ∗ 10−2. In Figure 4 we see the exponential dependence
on the noise level. �e performance of this model on real data may
thus be sensitive to this measurement noise value.

5 CONCLUSION
�is paper proposed a new statistical model for dynamic networks,
leveraging the bene�ts of structural time series and stochastic block
models. �e generative speci�cation and inference procedure are
de�ned. We demonstrate the capabilities of the model on a synthetic
dataset, showing some properties of the model such as the negative
linear dependence to the number of observed seasonal periods.
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