
A Hierarchy-Aware Approach to Faceted
Classification of Object-Oriented
Components

E. DAMIANI
Università Statale di Milano—Polo di Crema
M. G. FUGINI
Politecnico di Milano
and
C. BELLETTINI
Università Statale di Milano

This article presents a hierarchy-aware classification schema for object-oriented code, where
software components are classified according to their behavioral characteristics, such as
provided services, employed algorithms, and needed data. In the case of reusable application
frameworks, these characteristics are constructed from their model, i.e., from the description
of the abstract classes specifying both the framework structure and purpose. In conventional
object libraries, the characteristics are extracted semiautomatically from class interfaces.
Characteristics are term pairs, weighted to represent “how well” they describe component
behavior. The set of characteristics associated with a given component forms its software
descriptor. A descriptor base is presented where descriptors are organized on the basis of
structured relationships, such as similarity and composition. The classification is supported
by a thesaurus acting as a language-independent unified lexicon. The descriptor base is
conceived for developers who, besides conventionally browsing the descriptors hierarchy, can
query the system, specifying a set of desired functionalities and getting a ranked set of
adaptable candidates. User feedback is taken into account in order to progressively ameliorate
the quality of the descriptors according to the views of the user community. Feedback is made
dependent of the user typology through a user profile. Experimental results in terms of recall
and precision of the retrieval mechanism against a sample code base are reported.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval

This work was partially supported by the Italian National Research Council in the framework
of “Progetto Coordinato Ambienti di Supporto alla Progettazione di Sistemi Informativi,”
1995–1998.
Authors’ addresses: E. Damiani, Università Statale di Milano—Polo di Crema, Via Bramante
65, Crema (CR), Italy; email: edamiani@crema.unimi.it; M. G. Fugini, Dipartimento di
Elettronica e Informazione, Politecnico di Milano, Via Ponzio 34/5, Milano, 20133, Italy; email:
fugini@elet.polimi.it; C. Bellettini, Dipartimento di Scienze dell’Informazione, Università
Statale di Milano, Via Comelico 39, Milano, 20100, Italy; email: belletc@dsi.unimi.it.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1049-331X/99/0700–0215 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999, Pages 215–262.

ACM
Please note:The printed version of this article, appearing in the 8(3) 1999 issue of "Transactions on Software Engineering and Methodology", contained a printer's error: Text was missing from several figure captions.This PDF version of the article has been corrected, and does not include those errors.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F310663.310665&domain=pdf&date_stamp=1999-07-01

General Terms: Documentation

Additional Key Words and Phrases: Code analysis, component repositories, component re-
trieval, software reuse, user feedback

1. INTRODUCTION
Research about classification and retrieval techniques for software compo-
nents has undergone a notable development in recent years. The original
view of software reuse and commercial interest in object-oriented technol-
ogy were centered on reuse of single components [Cox 1986]. In this view,
the critical issues are the identification of the appropriate granularity of
the reusable component [Biggerstaff and Perlis 1989] and the understand-
ing and adaptation of reuse components to new application requirements.
Meanwhile, some organizations have already based their development
process on large internally developed software libraries (for example, the
Bell Northern Research library [Cashin 1991] and the Asset Aerospace
library [Lillie 1991]). Nowadays, various projects and commercial systems
exist, supporting the concept of huge reusable components malls; a review
of techniques for library management is presented in Mili et al. [1998].
Today, among the most promising approaches toward reuse, the paradigm
of application frameworks is gaining wide acceptance in the object-oriented
community [Johnson 1997]. Application frameworks are application skele-
tons that can be customized by the application developer. They can still be
considered as components, in that they are sold as products and that an
application can use various frameworks. However, they are a more power-
ful concept which can spare the effort of composing and adapting heteroge-
neous components in order to build a new application. In fact, they provide
mechanisms such as custom composition of selected subclasses and imple-
mentation of methods which either plug into, or override, methods in the
superclasses. Moreover, they provide a reusable domain for finer-granular-
ity components because, within a framework, each component makes
assumptions about its environment and can hence be readily used together
with other components.

Currently both styles of reuse, that is, traditional, library-based reuse
and framework-based reuse, exist jointly in real development environ-
ments, and borders are often blurred. Therefore, in this article we address
both styles and make explicit distinctions when appropriate. Whatever the
reuse technique, the problem arises of locating and adapting the useful
candidates on the basis of some specification of their behavior [Krueger
1992; D’Souza and Wills 1997; Mili et al. 1997]. These problems have
recently assumed relevance in projects requiring access to large-scale
systems of components and frameworks, as reported for instance in Bäumer
et al. [1996].

Classification and selection are considered as a key success factor for
software reuse projects, especially when reuse involves also software arti-

216 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

facts, besides code [Basili and Rombach 1991; Prieto-Díaz 1993; Pfleeger
1996; Damiani et al. 1997]. Moreover, we believe that correct component
classification can help to address several other problems, besides reuse,
such as code comprehension for reverse engineering, dynamic domain
modeling, evaluation of programming language dependencies, and usage
patterns. It is the purpose of this article to propose two consistent models,
respectively, for classification and retrieval of class libraries and applica-
tion frameworks stored in an object-oriented code base. These models have
been conceived based on the following six principles:

(1) descriptor-based behavioral classification

(2) controlled granularity,

(3) language independence,

(4) trainable user-adaptive response,

(5) support for both query and navigational interfaces, and

(6) thesaurus-based controlled vocabulary.

Both models are based on software descriptors (SDs) which have an
attribute part describing usual nonbehavioral characteristics of code (for
instance, author, programming language, execution environment, and per-
formance data). SDs contain also a term-list-based part, representing
behavioral properties, such as provided services, employed algorithms, and
needed data. This article focuses on this second portion of SDs, which play
much the same role as sets of open class keywords [Maarek et al. 1991] or
type models [D’Souza 1996] describing the component behavior. Moreover,
they are indeed structured, since their elements are not single keywords
but weighted pairs of related terms (features). Weights are the mechanism
allowing for highlighting the characteristics that are particularly relevant
to the specification of the component behavior with respect to more generic
or less important ones. The weights system makes it possible to pose
queries where the user asks for a set of characteristics expected from the
component. To each feature, the user associates a weight expressing the
importance of its presence in the retrieved components.

In the classification model, in order to build SDs features, we rely on
semiautomatic extraction of terms from code. SDs are manually partitioned
by the system maintainers, called application engineers, according to preset
contexts (or facets or categories [Prieto-Díaz and Freeman 1987]), thus
supporting a language-independent, faceted classification technique.

In the two reuse models (component based and framework based), SDs
are associated by the extraction procedure respectively to those components
that are considered by the application engineer as reuse units, or to the
framework hierarchy as a whole. An initial setting for weights values is
provided by a feature weighting function (FWF) adapted from the one
proposed in Salton and Buckley [1988]. Weights, and the whole system of
descriptors, attain their correct values along the system life cycle by

A Hierarchy-Aware Approach to Faceted Classification • 217

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

observing the user reactions to query answers. This mechanism ensures
user-adaptive response, at least after an adequate training phase.

In the retrieval model, we exploit partial matchings between the set of
weights associated to the query and those associated to available compo-
nents. A similarity index is defined as the level of matching between the
query, and candidates are returned according to their similarity to the
searched component(s). This takes into account the fact that, while the
“perfect” candidate seldom exists in the code base, components are often
available which provide the desired functionalities “to some extent.” We use
the term compatibility (rather than similarity) due to asymmetry in the
object model: the functionalities of children classes are also the functional-
ities provided by their ancestor(s) in the Is-a hierarchy, while the reverse
usually does not hold.

The whole lexicon of terms used in the SDs is stored in a thesaurus. The
thesaurus semiautomatic initialization consists of computing the relevance
of each term in all contexts using a context relevance function (CRF)and
exploiting the results to evaluate synonymy between pairs of terms. This
allows for automatic query expansion based on synonymy, avoiding in
many cases unwanted system silence; but the thesaurus also proved useful
as a browsable controlled vocabulary, putting the user in touch with the
system lexicon.

The article is organized as follows. In Section 2, the faceted construction
of hierarchical SDs is described together with the weighting procedure for
features. In Section 3, the notion of compatibility between SDs is intro-
duced as the basis for component analysis. In Section 4, procedures for the
automatic initialization of the thesaurus and for its semiautomatic filtering
are described. In Section 5, a method for adaptive tuning of the approach
according to user feedback is presented, and the semantics used for query
formulation is briefly discussed. In Section 6, a suite of test queries and
their results in terms of recall and precision parameters are examined. In
Section 7 a comparison of our approach with other related approaches in
the fields of software engineering, information systems, and information
retrieval is given. Finally, in Section 8 some concluding remarks, imple-
mentations issues, and observation on future work are given. In the
Appendix, a sample query block used for retrieval validation and an
evaluation of the thesaurus are presented.

2. SOFTWARE DESCRIPTORS

The role of software descriptors in our approach is to give a synthetic view
of the behavioral properties of components. SDs are constructed from
components and other available documentation. By component we mean
either a class or class cluster or an application framework which constitute
a classification and retrieval unit. An SD is a list of terms pairs, called
features, describing the component behavior. Each feature in the list has an
associated weight computed using a relevance assignment technique
adapted from information retrieval [Salton 1989]. The two-term structure

218 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

for features allows for a richer semantics than the usual single-term
description [Salton 1989], while remaining simple enough to avoid the need
for a formal grammar and semantics definition of a component description
language. It is worth remarking, that, from the lexical point of view, our
feature list is equivalent to more complete documents extracted from code
by means of natural-language parsers [Etzkorn and Davis 1997] and
therefore can be processed using techniques adapted from information
retrieval methods. In fact, automatic construction of documents from code
relies on some well-known nomenclature conventions used in OO program-
ming environments [Booch 1994], which ensure that in the object interfaces
there is a high percentage of active verb phrases, i.e., of verbs, nouns, and
adjectives. While those approaches [Biggerstaff et al. 1994; Etzkorn and
Davis 1997] aim at reconstructing a document structure from code by
adding connectives, such as articles and prepositions, our weighting tech-
nique operates satisfactorily also on SDs only. In fact, connectives would be
filtered out by any relevance computation technique.

Features in an SD are unique pairs. Consistency in the initial choice of
features is the responsibility of application engineers; some kind of thesau-
rus-aware editor may help to enforce it. Note that uniqueness of pairs does
not require or imply uniqueness in term usage, for instance, administer-
system is a different (and perfectly admissible) feature than administer-
network.

As far as classification granularity is concerned, i.e., the identification of
the code unit that deserves an SD, we observe that there are some basic
differences between the framework style and the more traditional, library-
based style of reuse. Indeed, traditional OOP reuse focuses on factoring out
common parts of behavior into superclasses, while implementing concrete
behavior in the derived classes. So, the behavior of the component is
specified for each component, at all levels of the hierarchy, and hence SDs
are attached to single classes or optionally to class clusters (computed with
methods analogous to those presented in Batory and O’Malley [1992],
Batini et al. [1993], Bellinzona et al. [1995], and Castano and De Antonellis
[1993]). In the framework style of reuse, the technique of the plug-in
methods is exploited as follows. In the top classes, i.e., in the more abstract
classes of the framework, methods are reported whose implementation is
deferred to lower levels of the hierarchy. Hence, the top classes contain all
the information necessary to provide an SD of the whole framework.

SDs may span over several contexts, each represented by a label, thus
supporting a faceted classification and retrieval technique. Contexts are
proposed in this article as a policy-free tool for the application engineer to
divide the descriptor base in a preset number of partitions; however, their
number can be increased according to later needs. While contexts are
considered as a flat list of labels when identifying the lexical properties of
the descriptor base, they can be used to support a variety of hierarchical
faceted or context-based techniques in the classification process. An appli-
cation of contexts to the faceted classification method is illustrated in the
following example. The descriptor base of a general-purpose set of low-level

A Hierarchy-Aware Approach to Faceted Classification • 219

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

components for Microsoft Windows applications development can be parti-
tioned according to the classification forest of facets shown in Figure 1.

After adopting such a classification forest, the application engineer
specifies the values that label the leaves of each tree in the classification,
obtaining a flat list of context values to be used for the lexical analysis of
the descriptor base. Often, a component will be classified under several
contexts; in fact, these contexts are refinements of views on the descriptor
base [Prieto-Díaz and Freeman 1987], as it is usually the case for faceted
classification. Moreover, the context list itself is extendible: if a bunch of
components for, say, network computing are to be added to the descriptor
base at a later stage, the new context value is added as a leaf to the
component type classification tree, and a Network entry is added to the
context list. Contexts can also be used to exploit for classification purposes
the concept of role used in some reuse paradigms [Bäumer et al. 1997]. In
fact, a component can be classified under all the contexts where it can play
a role without using the role itself, which is sometimes too fine grained, as
a classification category. For example, in a descriptor base partitioned in
two values of the functional areas [Prieto-Díaz and Freeman 1987] facets
Banking and Insurance , a Client component endowed with three roles
“Investor,” Borrower,” and “Policy-Holder” will be classified in both con-
texts, since the first two roles hint to the Banking context.

While maintaining the descriptors, application engineers view SDs as
lists of features describing component functionalities; while looking for
components, developers use SDs as requirement lists. In the former case,
SDs are statically associated to components, while in the latter case they
are dynamically associated to queries.

The flow of information in the classification system is depicted in Figure
2.

An extraction protocol examines the object code libraries and the thesau-
rus storing the available terms and context names. The protocol produces
SDs, which can be faceted and tuned by the application engineer. SDs are
then stored in a descriptor base. In the figure, the process of thesaurus
construction is also depicted: the extraction protocol extracts lists of terms
from the object libraries, and a suitable function (context relevance func-
tion (CRF)) computes the relevance of terms in the various contexts. The
CRF values are used to evaluate synonymy between pairs of terms produc-
ing an initialization of the thesaurus which can be later tuned by the
application engineer.

Procedural
Extended Data

Types (EDT)
Declarative

Component Type

File System and Interprocess

Communication Services
User Interface

Development

Programming Paradigm User Interaction Style

Graphic and

Drawing Support

Interactive

and Dialog

Fig. 1. Selection of contexts from a faceted classification.

220 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

2.1 Features

A descriptor SD associated to a software component or framework in the
descriptor base has the following format:

SD 5 C1 list of @feature : weight #

C2 list of @feature : weight #

. . .

CC list of @feature : weight #

List of
Contexts

Terms

Thesaurus

Software
Descriptor

Extraction
Protocol

Thesaurus
Construction

(CRF)

Application
Engineer

Initialization
and tuning

Manual Tuning

Object code
bases

Descriptor
Base

Fig. 2. Information flow in the classification system.

A Hierarchy-Aware Approach to Faceted Classification • 221

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

where (possibly empty) lists of features are not necessarily disjoint and
where feature 5 term1,term2 . Terms in the feature are ordered. Lists of
features in a context contain no duplicated features. The fact that a feature
can appear repeatedly in an SD is due to the fact that SDs are multicon-
text; as we will see, features can be attributed to several contexts.

Features are provided as a policy-free mechanism, and their use is bound
to the scope where the description is formulated. A possible use of the term
pairs consists in providing a signature-like behavioral specification, with
the advantage of a good degree of readability for the user. In fact, feature
terms can be read as a “Verb,Noun ” pair, where the Verb field describes
the type of functionality, or service, of the component and the Noun field
describes the type of component upon which the functionality is performed.
Examples of Verbs are edit , set , create , and initialize . Verbs can
also describe procedures of applications, such as handle letter and
check account . Examples of Nouns are bytestream , state , account ,
and document .

Although in the remainder of this article we will not elaborate on the
usage of term pairs, we remark that these categories of terms can be used
to organize the thesaurus in partitions to be searched separately allowing
synonymy to be computed only between terms belonging to the same
category. This partition can also facilitate the formulation of queries by
means of a thesaurus-aware editor: when a Verb is entered as the first
term of a query feature, the system suggests the list of Nouns that are
associated to this Verb in the descriptor base.

Another possible use is to include nonfunctional properties of a compo-
nent in its SD; in this case, a feature can be read as a “Noun,Adjective ”
pair. Examples are the features “maturity,high ” or “documentation,
good ” describing two nonfunctional properties of components. This kind of
feature may be obtained from documentation or, more frequently, is added
manually by the application engineer.

2.2 Features Extraction

The list of features composing the SD of each component is automatically
extracted from code and tailored by the application engineer (see Figure 2).
The extraction is performed with the assistance of a thesaurus-aware
editor. Here we describe an inheritance-aware protocol aimed at extracting
features from object-oriented code in both traditional and framework-based
reuse. Following Batory and O’Malley [1992] and Spanoudakis and Con-
stantopoulos [1994], among others, our classification schema follows a
hierarchical approach.

2.2.1 Extraction Protocol.

—The descriptor SDi for the ith component is constructed by deriving a
feature from each method. The method name is taken as the first term
term1 in the feature, and the first argument is taken as the second term

222 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

term2 (destructors are excluded). If a method takes no argument, the
second term of the feature takes the “null” value (represented by 2).

—The Is-a hierarchies are used to mirror components hierarchies into a
hierarchical organization of descriptors [Batory and O’Malley 1992]. As
the properties of a component are represented by the entire path in its
Is-a hierarchy, analogously its description can be traced back by follow-
ing the entire chain of descriptors in its classification hierarchy. Hence,
SDs are linked via Is-a connections: whenever a component is linked to
others in Is-a, these links are mapped into Is-a links of the corresponding
SDs.

—To deal with framework style reuse, calls to deferred methods are also
examined. An SD is obtained taking the name of the deferred method and
its first parameter. Regarding composition information, the SDs of a
component also include the SDs of its member classes.

—Other features of the SD can be extracted manually from the header of a
class and textual comments.

—Method names like store , print , which are found in almost every class,
are called generic terms or stop-words. These terms are filtered by the
weighting function, which assigns them a low weight.

For library-style reuse, the Is-a hierarchy of the object library is used to
produce the hierarchy of descriptors. In particular, the Is-a links existing in
the library are mirrored in Is-a links of the descriptor base among the
descriptors of the classified components. Hence, the hierarchy of SDs is a
subgraph of the original inheritance graph of the library. Regarding the
effect of inheritance upon the contents of SDs, the default is that features
are propagated to subclasses, so that each SD contains all the features of
its ancestor SDs although these are not explicitly shown. So, during
retrieval, the highest component in the hierarchy exhibiting the desired
features is returned. This is due to a mechanism of weights lowering along
Is-a hierarchies (see Section 2) that progressively decreases the weights of
inherited features from the ancestor into the SD of the descendant.

Now, we show some sample SDs constructed by examining the compo-
nents belonging to the standard Visual C11 Foundation Class Library.
The first SD is shown in Figure 3. It describes OLE Document, a versatile
component of the Microsoft Class library that can be used either as a
compound document implementation, i.e., a software communication device
between applications according to the OLE-DCOM standard, or as a
container for document items as a building block for specialized document-
processing applications. This SD is a typical example of descriptors for
library-based reuse, where most of the significant behavioral specifications
appear in the concrete classes, like the OLE Document one, at the lower
levels of the hierarchy while the top classes factor out only a limited
amount of behaviors. This component is also an example of repeated
features in different contexts. In fact, the component is classified under

A Hierarchy-Aware Approach to Faceted Classification • 223

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

four contexts: User Interface Development , FileSystem and Inter-
process Communication Services , Interactive and Dialog , and
Generic . The first two contexts are values of the component type facet
mentioned in the previous sections (see Figure 1); Interactive and

DocItem

Include
IsBlank

Document
Document

Add
Close
End
Modify
Open
Remove
Restore
Save
Set
Start
Update
Wait

View
Document
Cursor
Document
Document
View
Cursor
Document
Title
Cursor
View
Cursor

User Interface Development

Close
Close
Close
Close
Delete
Get
Get
Get
Get
Modify
Open
Open
Open
Open
Open
Report
Set
Set

ClientDocument
Document
OLEDocument
Frame
Content
Document
Pathname
Template
Title
Document
Client
ClientDocument
Document
Frame
OLEDocument
Exception
Flag
Pathname

FileSystem and Interprocess
Communication Services

OLE Document Component

Add
Get
Get
Remove
Start
Update

View
Position
View
View
Position
View

Interactive and Dialog

Add
Get
Remove

Item
Item
Item

Generic

part_of

Fig. 3. SD of the OLE Document component with features classified in four contexts. The SD
of the DocItem component is also shown; its features contribute to enrich the OLE Document
SD.

224 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

Dialog is a value of the user interaction style facet. The Generic context
copes with general-purpose features that carry limited behavioral informa-
tion, but can still be useful for browsing the descriptor base, as we will see
in the section devoted to retrieval.

Both User Interface Development and FileSystem and Interpro-
cess Communication Services contexts are inherited from the ancestor
document class which is a key component of the Microsoft Class library for
development of graphical applications with a windowing interface. Since
OLE Document provides some high-level user-interaction capabilities,
these have been classified under the Interactive and Dialog context.

The descriptor includes several multicontext features such as Modify,
Document and Open,Document which specify behavioral characteristics
that can be useful both in user interface development and as file-system-
related services in document-processing applications. Other multicontext
features are Add,View and Update,View in the Interactive and Dia-
log and User Interface Development contexts. Moreover, in this SD the
extraction method includes the features of member classes like DocItem,
that is, Include,Document and IsBlank,Document . This contributes to
make the SD a characterization of the component behavior which is richer
than the interface alone. The length of the SD, which amounts to about 80
terms, is a rather typical value for this kind of component.

Coming to framework style reuse [D’Souza 1996], where deferred meth-
ods are included in the top-most level classes, we notice that it provides
even lexically richer SDs.

As an example, in Figure 4, we show a simplified yet lexically rich SD
constructed from TControl, an abstract class of a well-known application
framework (the Virtual Component Library defined by Borland’s Delphi
development environment [Cantù 1996]). TControl is the root of a class
hierarchy comprising TWinControl , used by Delphi programmers as the
basic building block for Windows application development (and the compo-
nent has no part-of links). As one could expect when dealing with frame-
work style reuse, we observed that these features are shared by nearly all
the control components belonging to the framework. The descriptor was
extracted both from TControl’s published properties and methods. For the
sake of simplicity, this component belongs to a single context (User
Interface Development).

2.3 Contexts Propagation

Manual tuning of faceted SDs can be a tedious and time-consuming task for
the application engineer. This burden can be partially relieved by the
following interactive procedure which, under an initial choice of contexts
performed by the application engineer, performs automatic propagation of
contexts in the SDs following the Is-a hierarchy of the descriptors. This
must be regarded as a minimal, although sometimes sufficient, context
assignment technique. The result can then be manually enriched by the
application engineer.

A Hierarchy-Aware Approach to Faceted Classification • 225

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

Align
Begin
Bound
BringTo
Can
Contain
Count
Count
Create
Destroy
Drag
Enable
End
Find
Free
Hide
Index
Insert
Insert
Invalidate
Remove
Scaleby
Scroll
SendTo
Set
Set
Set
Set
Set
Set
Set
Set
Show
Show
Show
Show
Show
Show
Show
Show
Show
Show
Tab
Tab
Test
Test
Translate
Translate
Update

Center
Drag
Rectangle
Front
Focus
Control
Components
Control
Instance
Instance
Cursor
Control
Drag
Component
Component
Control
Components
Component
Control
Control
Component
Dimension
Content
Back
Bounds
Caption
Focus
Font
Handle
Height
Textbuf
Width
Bottomrightcorner
Caption
Color
Control
Handle
Hint
Name
Owner
Parent
Topleftcorner
Order
Stop
Handle
Dragging
ClientCoordinates
ScreenCoordinates
Control

User Interface Development

TControl Component

Fig. 4. SD of the TControl component belonging to the “Virtual Component” library. Only
one context is shown for this SD.

226 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

This procedure puts into relation the Is-a hierarchy of a library with the
classification tree used to select contexts. It works by considering that in
the hierarchy of components, a descendant has partially the same behavior
of its ancestors, as defined by inherited, nonmasked features. For example,
a graphical editor component behaves as an editor, and therefore its
inherited behavior is classified under the “text management” context
(which is, for instance, a value of the component type facet). However,
normally, a descendant exhibits its own behavior by locally defining new or
masked methods. This new behavior can bring the component to belong to a
new context. Most of the new methods of the graphical editor deal with
graphical functionalities, making it belong to the Graphic and Drawing
Support context as well. Accordingly, our propagation procedure automat-
ically classifies inherited features under the same contexts they had in the
ancestors, while leaving the application engineer free to assign contexts to
the new behavior. This procedure is particularly suited for traditional style
reuse where SDs have to be attributed to single components of a hierarchy.
For framework style reuse, the procedure is often not necessary, since its
coarser granularity allows for manual context attribution based on the top
class descriptors.

As a first step, a set C of contexts is initialized for the descriptor base by
the application engineer, following one of the approaches regarding the use
of labels presented in the previous sections.

To further clarify how this context propagation works, we give an
example (see Figure 5).

Suppose a geometric library is classified under the context Cinit 5
MATH. The root of the library hierarchy is a Coordinate_System compo-
nent with a “compute,distance ” feature. At the first level of the Is-a
hierarchy, a component managing Cartesian_Coordinates is included
and since it performs matrix manipulation, the application engineer de-
cides to assign it to the new context LINEARMATH. However, since the
“compute,distance ” feature is inherited (not masked) from the ancestor
which is in the MATH context, “compute,distance ” is kept in the MATH
context as well. Instead, in the Polar_Coordinates component, the “com-
pute,distance ” feature is masked (i.e., the corresponding method is
redefined in the component); consequently the feature is included in the
LINEARMATH context, since its implementation is local to the
Polar_Coordinates component. Suppose now that the descendant of the
Cartesian_Coordinates component is Cartesian_Axes . Since this com-
ponent draws the axes on the screen, the application engineer assigns it to
the GRAPHICS context. The “compute,distance ” feature is inherited,
and MATH is propagated along the Is-a hierarchy. On the other hand,
consider the descendant of Polar_Coordinates , i.e., Polar_Axes . Since it
redefines the method associated to “compute,distance ”, the “compute,
distance ” feature is inserted in the SD of Polar_Axes under the
GRAPHICS context, together with the other locally defined features. In

A Hierarchy-Aware Approach to Faceted Classification • 227

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

other terms, the context propagation procedure supports the classification
of components under multiple contexts.

Going back to our example taken from the Microsoft library, consider
context inheritance for the ancestor component of OLE Document (whose
SD is shown in Figure 3), that is, Document, whose SD is shown in Figure
6. Moving along the Is-a hierarchy, inherited nonmasked features are
repeated in the same contexts. New or masked features are classified in a
suitable context of the classification tree. In traditional reuse, new facet
values are usually necessary when descending along the Is-a hierarchy; in
our example, this occurs for the Interactive and Dialog context. In
framework-based reuse, instead, the complete set of facet values is speci-
fied for the top classes already.

2.4 Fuzzy Weights

The assignment of weights to features in the descriptor SDi of the ith
component is done automatically by the following algorithm.

2.4.1 Weight Assignment Algorithm.

(1) First, a weighting function is used in order to associate a weight wi,k to
each feature fk in SDi. A suitable function is the following feature
weighting function (FWF):

Coordinate _System

MATH

 compute, distance

Cartesian_Coordinates

MATH

 compute, distance

LINEAR MATH

 rotate, angle

 translate, vector

 transform, matrix

MATH

Polar_Coordinates

LINEAR MATH

 compute, distance

GRAPHICS

LINEAR MATH

Polar_Axes

GRAPHICS

 compute, distance

 draw, axes

 set, labels

 set, scale

MATH

 compute, distance

GRAPHICS

 draw, axes

 set, labels

 set, scale

Cartesian_Axes

Fig. 5. Controlled context propagation for a geometric library: components are progressively
classified in the MATH, LINEARMATH, and GRAPHICS contexts. Bold lines represents the
Is-a hierarchy.

228 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

wi, k 5

ni, k logSN

nk
D

ÎO
z51

F Sni, z logSN

nz
DD2

which is the classical weighting function [Salton and Buckley 1988]
used for relevance computation in document bases. In FWF, wi,k is the
weight of the kth feature with respect to the ith component, and n i,k is
the frequency of the kth feature in that component; N is total number
of components, and nk is the number of components exhibiting that
feature. F is the total number of distinct features in the component
base. The summation in the denominator, taken over all features of the
descriptor base, is used as in Salton et al. [1994] for length normaliza-
tion over SDs to ensure that all components have equal chance of being
retrieved.
Schematically, FWF operates as follows: it assigns a weight wi,k to a
feature fk which depends on the ratio between the number of SDs where
fk occurs and the total number of occurrences of fk in the whole

Modify
Open
Remove
Restore
Save
Set
Start
Update
Wait

Document
Document
View
Cursor
Document
Title
Cursor
View
Cursor

User Interface Development

Close
Close
Delete
Get
Get
Get
Get
Report
Set
Set

Document
Frame
Content
Document
Pathname
Template
Title
Exception
Flag
Pathname

FileSystem and Interprocess
Communication Services

Document Component

Add
Get
Remove

Item
Item
Item

Generic

Fig. 6. SD of the document component.

A Hierarchy-Aware Approach to Faceted Classification • 229

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

descriptor base. These values are different because fk can be repeated
in the same descriptor in different contexts.
—Is-a Hierarchies: Along Is-a hierarchies, features are inherited with

their contexts from the ancestor SD to the descendant SD. The weight
of an inherited feature decreases of 1/2h, where h is the distance
between the ancestor and the descendant on the inheritance graph.1

Such a mechanism does not apply when features are redefined in the
descendant; it is aimed at retrieving only the highest components in
the hierarchy exhibiting a required feature fk, rather than the entire
chain of descendants where fk is inherited.

The purpose of FWF is to highlight, within a descriptor, the
features which are more relevant, i.e., more descriptive of the
component behavior. Highlighting is obtained by taking into ac-
count the sum of the weights of all the features in each SDi and
increasing the weights of features belonging to descriptors having a
low total weight.
Consequently, wi, k turns out to be higher when the difference
between the total number of occurrences and the number of compo-
nents exhibiting a feature fk is obtained for a lower number of SDs.
For example, Figure 7 represents the situation where segments AB
and CD have the same length, i.e., the same difference between
occurrences and number of descriptors, but feature x will be as-
signed less weight than feature y.

1In case of multiple inheritance, the selected value of h is the shortest inheritance path.

A

B

D

C

occurences

feature x feature y
features

total occurrences
in a descriptor

descriptors where
feature appears in
at least a context

Fig. 7. Behavior of FWF.

230 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

(2) Second, exploiting contexts, we compute a refinement of FWF, namely
wi, k, j by considering the products of wi, k times nj/N, for j 5 1, 2,
. . . , C, where nj is the number of components in the jth context
exhibiting the kth feature; N is the total number of components, and C
is the number of contexts. We call this parameter nj/N context impor-
tance. Each wi, k, j is the weight of the kth feature with respect to the
ith component in the jth context.

Of course, some contexts might be empty in SDi. Moreover, the case of
SDs with no context can be dealt with simply by introducing a “generic”
context.

(3) The sets of all the weights in the descriptor SDi of the ith component is
now interpreted as a family W of fuzzy sets W1, W2, . . . , WC. The
family W is depicted in Figure 8.

f11 w11

f21 w21

f31 w31

i-th
component

f12 w12

f22 w22

f1j w1j

f2j w2j

f3j w3j

context cj

context c2

context c1

SDi

W

Fig. 8. Family W of fuzzy sets associated to contexts in the descriptor SDi of the ith
component.

A Hierarchy-Aware Approach to Faceted Classification • 231

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

The family W has characteristic functions wi, k, j, j 5 1, 2, . . . , C.
When using the fuzzy weights for component analysis, the union
offamily members øjWj will be computed corresponding to the contexts
specified by the user. If no context is specified, the “generic” context is
assumed.

In order to use fuzzy weights for our analysis, the set Wj corresponding to
the selected context must be later defuzzified by extracting a value by
means of a suitable function. Defuzzification will be described in Section 3.

3. COMPATIBILITY

Compatibility between SDs is an (asymmetrical) fuzzy relation called
confidence value:

CV : SD 3 SD 3 @0,1#

It may well be seen as a function between components, in the sense of Yu
[1975] or an extension of the boolean component match predicate defined in
Moormann Zaremski and Wing [1997]. Fuzzy matching is one of the
classical methods used in computing conceptual distance between objects
descriptions (see for instance Bouchon-Meunier et al. [1996]). The main
difference between our fuzzy compatibility and a classical matching func-
tion is asymmetry. Given two SDs R and D, in general we have that
CV~D, R! Þ CV~R, D!. Asymmetry of the compatibility relation mirrors
the fact that inheritance among components itself is asymmetrical: an
instance of a parent class can always be replaced by an instance of a
derived one, but not vice-versa. In fact, a child class exhibits all the
features of the parent class but not vice-versa. Consequently, in a reposi-
tory of object-oriented components, while a specialized item must be
retrievable in response to a query for a more general one, a general
component must not be retrieved when the descriptor base is queried for a
specialized one.

Asymmetry influences many formal properties of compatibility, which
closely resemble those of Is-a hierarchies; namely, it is a transitive,
reflexive, and partial-order relation.

By this construction, values of importance in an SD can be seen as fuzzy
logic (FL) values. FL (see for instance Klir and Folger [1988] and Kosko
[1992]) is equipped with standard operators (AND, OR, f , N). Let us
now see how the CV value of compatibility is computed. For each step, we
provide a running example.

Let S be a query which can be seen as a source component whose SD is
composed of U weighted features ~S1~u!, S2~u!!, u 5 1, 2, . . . U, where
S1~u! and S2~u! are the first and second term of the Uth feature,
respectively. Let T be a target component described by V features (T1~v!,
T2~v!, v 5 1, 2, . . . , V.

232 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

A weight is associated to T depending on the contexts specified in the
query. Compatibility between S and T is computed by comparing feature
terms, accessing the thesaurus to check synonymy values between them.

For the sake of brevity, our example considers the following query S

manage-graphics: 0.7
edit-text: 0.8

and a target component T

open-document: 0.2
insert-text: 0.4
draw-picture: 0.6

The comparison is carried out with respect to the position of terms in the
feature, i.e., comparing the first and second terms among themselves only.
Next, we compute two fuzzy relations represented by matrices called
respectively Equivalence (EQ) and Implication (IMP). The dimensions of
these matrices depend on the source SD S. These relations are fuzzy sets of
features pairs, the first one taken from S and the second one taken from T.
In the case of our example, IMP is the null 2 3 3 matrix.

As far as EQ is concerned, its (fuzzy) characteristic function is computed
as follows:

fEQ~S~u!, T~v!! 5 min~SYNON~S1~u!, T1~v!!, SYNON~S2~u!, T2~v!!!

where SYNON is the matrix storing synonymy values. As the reader may
notice, this relation operates conservatively, querying the thesaurus for
synonymy values between features with pairwise-corresponding terms and
taking the smallest return value. In other words, EQ is a fuzzy version of
the classical crisp identity relation; if two terms are equal, it returns 1; if
they are different (i.e., not interchangeable) it returns 0. Otherwise, it
returns the minimum value read in the thesaurus. In our example, suppose
the following synonym values hold (synonym terms are separated by
commas):

manage, open: 0.5
manage, insert: 0.5
manage, draw: 0.2
manage, open: 0.3
manage, insert: 0.3
manage, draw: 0.6

A Hierarchy-Aware Approach to Faceted Classification • 233

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

graphics, document: 0.2
graphics, text: 0.3
graphics, picture: 0.8
text, document: 0.8
text, text: 1
text, picture: 0.3

then we obtain the EQ shown in Table I.
IMP, i.e., the fuzzy implication, can be computed as follows:

fIMP~S~u!, T~v!! 5 min~1, max$w~T~v!!, w~S~u!!%!@EQ~u, v!#

where each w is the feature weight. According to IMP relation, inter-
changeability with respect to a feature is perfect if the required importance
value for that feature is less or equal to the value found in the descriptor
base. In our example, we obtain the relations shown in Table II.

Now, transposing IMP and right-multiplying it times EQ one obtains a
matrix whose trace is called satisfaction set, or SAT. In the example, we
obtain the following matrix:

0.1 0.114 0.1
0.114 0.135 0.114
0.1 0.114 0.1

SAT is as follows: {0.1,0.135,0.1}.
Being the result of the computation of a fuzzy implication, this set

expresses the (fuzzy) interchangeability between S and T. SAT may itself
be weighted by multiplying each element times the corresponding compo-
nent of the normalized weights vector W9, defined as follows:

W9 5
w~T~k!!

O
i51

V w~T~i!!
, k 5 1, . . . , V

The role of W9 is to enhance the effect of matching of relevant (with high
weight) features in the target component T during the computation of CV.

In our case, W9 5 $0.16,0.32,0.5%.
Thus we obtain a final set SIM which is again the result of the

implication enhanced by a supplementary weighting. In the example, SIM
5 $0.016,0.043,0.05%.

Table I.

EQ open-document insert-text draw-picture

manage-graphic 0.2 0.3 0.2
edit-text 0.3 0.3 0.3

234 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

By extracting a value from SIM by means of a defuzzification function D,
one obtains the desired CV. In our model, defuzzification functions are
attached to descriptors: each component is associated with its own function
D. Our default choice for D is the triangular function, which is initially
associated to all components. Its behavior is shown in Figure 9.

The values of SIM characteristic function, denoted by CV1, CV2, . . . ,
CVK are arranged in increasing order and positioned at points t 5 1/K
1 1, 2/K 1 1, . . . , K 2 1/K 1 1, K/K 1 1.

Now, CV is obtained as:

CV 5 10O
i51

k

DiCVi

where 10 is a rescaling factor avoiding managing of small decimal values in
the system. Obviously, being a uniform rescaling factor, it has no effect on
the system operation. In our example, K 5 3, and hence we obtain CV 5
0.76.

A basic property that D should possess is to ensure weak monotonicity of
CV with respect to the same query. This property can be stated as follows:
given two components having the same description SD1 5 SD2, with w1k

w2k for k 5 1,2, . . . , K, where K is the number of features in these
SDs, we must have:

CV~SD1! # CV~SD2!

in response to the same query.
This technique of defuzzification ensures weak monotonicity of CV. As an

example, consider the values of Di that we have used, i.e., 0.5, 1 and 0.5
obtained for K 5 3. Recalling, that, as a result of the query we have the
following values of SIM, sim1, 1 5 0.16, sim1, 2 5 0.43, sim1, 3 5 0.5,
now we consider a second component T9, with the following SIM values:
sim92, 1 5 0.1, sim92, 2 5 0.3, and sim92, 3 5 0.4. Computing the CV for
both components T and T9, we obtain CV~T9! 5 0.55 , CV~T! 5 0.76.

The illustrated technique is suitable for code reuse, code understanding
for restructuring or reengineering, or for search of services over a network
of distributed providers. The basis for these applications is component
retrieval, which allows the developers to analyze code bases in an effective
and user friendly way. The information flow in a retrieval system is
depicted in Figure 10.

Table II.

IMP open-document insert-text draw-picture

manage-graphics 0.14 0.21 0.14
edit-text 0.24 0.24 0.24

A Hierarchy-Aware Approach to Faceted Classification • 235

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

Queries submitted to the descriptor base are forwarded to the thesaurus
where the SYNON matrix is consulted for synonymy values used to expand
the user query with synonyms. Then, the query is expanded to include the
new terms and is further processed, and the compatibility is computed.
Selected SDs, representing (partially) matching components, are presented
to the application developer and eventually used as input to the object code
bases, for extraction of the suitable components.

0 CV1 CV2 CVk-1 CVk 1

1

D1 Dk

D2 Dk-1

D

Fig. 9. The triangular defuzzification function D.

Application
Developer

1

Descriptor
base

Object code
bases

6

Q
u
er

y

R
an

k
ed

 S
D

s
o
f can

d
id

ates

Function
match

3

2
terms

Thesaurus

EQ
IMP4

Synonymy

5

Compatibility

8
Ranked selected

components

7

Selected SDs

Fig. 10. Retrieval mechanism.

236 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

4. TERM PREPROCESSING AND THESAURUS INITIALIZATION

Sometimes terms used in the code (such as variable and method names) are
semantically poor and seem useless when included in a descriptor that
should instead enhance code comprehension.

Therefore, a thesaurus is necessary, allowing terms to be made uniform
through a naming discipline. Such a tool should support relationships
among terms, such as synonymy, broader term (BT), narrower term (NT),
related term (RT), etc., as defined in classical text retrieval thesauri [Salton
1971] in order to provide flexibility to the retrieval system.

In our opinion it is advisable to integrate an automatic initialization
phase and a manual filtering phase.

Automatic support, based on a purely syntactic approach, has the advan-
tage of considering the whole available vocabulary. However, obviously, it
introduces a lot of noise (falsely related terms). Moreover, automatically
adding semantics to terms seems a very difficult task even if more informa-
tion about the code were available than it is usually provided.

On the other hand, building a thesaurus that relies only on human
inspection of code results in an error-prone task that is very unlikely to be
adopted in practice. The proposal described in this article can be outlined
as follows: first, an automatic support for thesaurus construction extracts
terms from the software descriptors, and preprocesses them in order to
obtain a controlled vocabulary. Then, by exploiting contexts, a term fre-
quency analysis is performed that allows us to compute a tentative synon-
ymy matrix. Such a matrix is used to initialize the thesaurus and is the
input for manual filtering. The purpose of the synonymy matrix is to
maximize thesaurus recall (as will be defined in the Appendix).

The application engineer has the following tasks:

—filter out the false synonyms;

—classify the obtained synonyms as BT, NT, and RT.

Although long and tedious, these tasks are surely more feasible than
building the whole thesaurus from scratch. Moreover, the proposed tech-
nique prevents forgetting terms or relationships. The thesaurus presented
here is seen as a tool for query expansion, in order to avoid system silence.
Although query expansion can increase noise, we believe noise here to be
preferable to silence, since it can be then filtered using methods such as
limiting the number of returned candidates. In this section, we show how
the thesaurus is initialized, taking contexts into account (Section 4). The
results of experimental validation of the thesaurus are reported in the
Appendix.

4.1 Thesaurus Construction

Automatic thesaurus construction in a text retrieval system is traditionally
performed by statistical analysis of term distribution, exploiting filtering
and clustering techniques [Salton and Buckley 1988]. In software analysis,
no true corpus of documents describing individual software components can

A Hierarchy-Aware Approach to Faceted Classification • 237

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

be assumed; moreover, accompanying documentation may be unfit for
statistical analysis on term distribution. Hence we cannot rely on the
statistical approach alone for thesaurus construction. Instead, we will
exploit contexts, seen as facets of the classification of individual compo-
nents. As discussed before, the SD of each component is partitioned in
contexts representing the characterization in a specific application domain.
Our basic assumption is that the cardinality of the jth partition in SDi, i.e.,
the number of features belonging to the jth context in that SDi hints to the
relevance of the component to that particular context. Following a method
outlined in Yu [1975], we construct a term-context matrix. The following
context relevance function (CRF) initializes the matrix:

CRFl, j 5 pj~l!
terml, j

terml

The relevance of the lth term in the jth context depends on the percent-
age of terms (percentile pj) in the jth context having occurrences less or
equal to those of the lth term in j, multiplied by the ratio between the
occurrences of the lth term in the jth context and the total occurrences of
the lth term over all contexts. This definition ensures that values of CRFl, j

are not dependent on the relative context sizes. In fact, values depend on a
percentile, i.e., a percentage of terms in the contexts, that can be the same
even in contexts having a different number of terms. Moreover, CRFl, j #

1 for every l, j. If a term never appears in a context, CRFl, j simply
evaluates to zero.

The initialization procedure goes as follows:

—First a term-context matrix is built, having a row for each term and a
column for each context. It has dimension Nterm 3 C. Our CRF will
classify as relevant the terms corresponding to peaks in a profile, while
compensating with respect to the relative context dimension. No provi-
sion is made at this level for the elimination of stop-words. In our
opinion, a preliminary filter for stop-words is simpler and more effective
than introducing “across contexts” dependency in CRF computation.

—Then, for each given value of l~j! we interpret CRFl, j, 1 # l # Nterm,
and 1 # j # C as the characteristic function of a fuzzy set, obtaining two
families of (possibly not disjoint) fuzzy sets. So we have term sets,
corresponding to rows, and context sets, corresponding to columns. Here
it is important to notice that there is no need for application engineers to
deal explicitly with building this matrix; when adding a descriptor to the
descriptor base, an SD editor may well update the vocabulary on the
basis of the SD of the new component.

—Given two row vectors ~a1, a2, . . . , aj, . . . , aC! and ~b1, b2, . . . , bj,
. . . , bC!, representing terms A, B we define the rows representing A
ø B and A ù B by means of the usual fuzzy sets operators.

238 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

—We are now ready to define mj (weight of a match) as follows:

mj 5
1

1 1 Dj

when both aj and bj are positive for j 5 1, 2. . . , C and zero otherwise.
D j is the difference ?aj 2 bj?. Moreover, we define mj

* (weight of a
mismatch) as

mj
* 5

Dj

1 1 Dj

when either aj or bj are zero for j 5 1, 2, . . . , C. The mismatch weight
is zero otherwise. When aj 5 bj 5 0, neither a match nor a mismatch
results, and both mj and mj

* are zero. So we have

M 5 O
j51

C

mj

and

M* 5 O
j51

C

mj
*.

—By computing the fuzzy union of all contexts where each of our two terms
A and B appear, and then computing matches and mismatches between
resulting sets, we also obtain M9 (total weight of context matches) and
M*9 (total weight of context mismatches).

—Next, we define the synonymy relation. A desirable property for this
relation is to be nonincreasing in the number of context and terms
mismatches and nondecreasing in the number of context and terms
matches [Yu 1975]. Our fuzzy synonymy is defined as follows:

f 5 minS1,
1

2
USM 2 M*

M 1 M*
1

M9 2 M *9

M9 1 M *9DUD
for M* or M*9 Þ 0. If M* 5 M*9 5 0 and A Þ B, in order to avoid false
synonyms, we set

f 5 *
M

nterm

2
M9

nctx

M

nterm

1
M9

nctx

*.

A Hierarchy-Aware Approach to Faceted Classification • 239

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

Although our thesaurus initialization technique exploits contexts, the
resulting SYNON matrix is bidimensional, i.e., it is not itself faceted.
Devising an alternative method in order to obtain a tridimensional matrix,
thus adding a context dimension to the thesaurus, is theoretically possible,
but in our opinion the additional computational burden makes the ap-
proach unpractical. We propose instead to take contexts into account while
using the thesaurus, allowing a nonzero synonymy value to be returned
only if the two terms appear in the same context for at least one of the
contexts. Practical deployment of the above-described techniques suggested
that synonymy values are not dynamically computed at query-processing
time, but rather are saved in a long-term storage structure, called the
SYNON matrix. SYNON has a slow-variating life cycle. Its update is done
upon arrival of groups of terms, typically upon inclusion of a new library.
Updates constitute a bordering of the original matrix. The comparison with
the already present values is done under a mod-min interpretation (i.e., as
the fuzzy intersection).

5. USER FEEDBACK

We intend to make our classification and retrieval system sensitive to user
feedback. In our approach, user feedback is a long term learning process
leading to permanent modification to the system in order to adapt it to the
needs of the user community. In fact, our method is aimed at improving the
overall performance of the classification system rather than optimizing a
single query. Users are considered as experts whose opinions are polled
simply by registering their choices. The superposition of expert opinions is
a moot point in fuzzy weighting research [Bardossy et al. 1993]. In our
model, user feedback does not change weights, but the shape of the defuzzi-
fication function D is modified as a consequence of users choices. User
opinions polling is obtained as follows. Suppose that the ranked list of
components has been presented to the user, and that the user does not
select the first component in the list, but rather the component presented
in the kth position. Then, all defuzzification functions D~t! corresponding
to components occupying positions from the first to the ~k 2 1!th will be
affected by the following reshaping function, called quality function (QF):

Dnew~t! 5 ~1 2 b!Dold~t! 1 bDcorr~t!

where Dcorr~t! 5 ~1 1 g!t 2 g for t # 0.5 and Dcorr~t! 5 2~1 1 g!~1 2
t! 2 g for t . 0.5. In turn, the chosen component will be affected by the
opposite reshaping, namely Dcorr~t! 5 2~1 2 g!t 1 g for t # 0.5 and
Dcorr~t! 5 ~1 2 g!~1 2 t! 1 g for t . 0.5.

Figure 11 shows depreciation and appraisal modification of the defuzzifi-
cation function as a result of our user feedback mechanism. Parameter g,
which can be tuned by the application engineer, expresses system reactiv-
ity as well as the total variation scope. In fact, the higher is g, the faster
the system can modify the shape of the defuzzification function and the

240 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

broader the total possible variations that can occur as a consequence of
user feedback [Damiani and Fugini 1995]. The confidence granted to user
opinion is expressed by parameter b, since variations of the function shape
must only occur as a cumulative effect, normally b ,, 1. Thus, user
feedback will cause a slow modification of the shape of the defuzzification
function D, biasing it to reflect, in the fullness of time, the views of the user
community about the reuse potential of the component it is associated to.

In order to set the value of b appropriately, the notion of user must be
specified in more detail. First of all, even without taking into account the
special role of the application engineer, not all application developers in the
user community are at the same level of expertise; moreover their functions
and responsibilities are not fixed but depend on the specific software
process adopted at their site. The software engineering process is indeed a
complex one, especially if a reuse policy is in force [Bellinzona et al. 1995]
and can be organization, process or even product specific. The notion of
user, seen as a part of the software development process, is a structured
one. It depends on the process model adopted and may evolve in time
following model evolution or change. Hence, we introduce the notion of a
user profile as an indicator of a user’s skills. This profile is a vector $a1,
a2, a3% of (possibly time-dependent) numerical values comprised between 0
and 1. These values express a user’s domain, task, and strategy skills [Mi
and Scacchi 1990], and depends on the development environment in terms
of the currently adopted software process model, i.e., on the software
process model currently in use. Task skill, for instance, can be measured by
the number of development groups in which a user is involved; domain skill
can be computed from the number of projects he is involved in the specific
application domain, while strategy skill is related to his responsibility role
in the team. Each time a user logs on to our system, skills must be
aggregated in order to compute the single parameter b used in our
feedback mechanism. The most general way of doing so is by using a
generic weighted average (WA) operator, as follows:

g

-g

ap
pr

ai
sa

l
d
e
p
re

c
ia

tio
n

0 1

1

D

CV

Fig. 11. The possible depreciation and appraisal of the defuzzification function D.

A Hierarchy-Aware Approach to Faceted Classification • 241

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

b 5 HO
i51

3

wiai

with the constraint O
i51
3 wi 5 1. H is a bounding factor whose role is to keep

b ,, 1. It must be set to the maximum value allowed for b; in our
experimentation, we set H 5 0.1. The weights wi allow the application
engineer to tune the feedback mechanism with respect to the composition of
the development team which uses the system.

Suppose for instance the development team of a software house to be
composed by two project managers leading a group of six senior and 12
junior programmers. The project managers’ profiles show high strategy and
domain but limited task skills (a1 5 0.8, a2 5 0.1, a3 5 0.8); senior pro-
grammers have moderate strategy skills, but high domain and task skills
~a1 5 0.8, a2 5 0.6, a3 5 0.2! while juniors have adequate task skills
but lack significant knowledge of domain and strategy ~a1 5 0.1, a2 5
0.8, a3 5 0.1!. It is reasonable to assume that project managers (and, up
to a certain extent, senior programmers) can estimate the opportunity of
reusing a component on the basis of their full awareness of the company’s
strategic reuse policy, which depends on several (external) factors, such as
market and organizational issues. On the other hand, the number of junior
programmers in the team could make their views prevail, potentially
endangering the reuse policy. In order to compensate for this unwanted
effect, the application engineer could privilege strategy and, to a lesser
extent, domain skills by setting w1 5 0.3, w2 5 0.2, w3 5 0.4. This
would make b 5 0.058 for project managers, b 5 0.044 for senior pro-
grammers, and b 5 0.023 for juniors. The same line of reasoning supports
our default setting for weights wi, which suggests to the application
engineer weight values that outline skills which are less frequent in the
development team. Namely, we set

wi 5
OjÞiOk51

n aj, k

2O
k51

n aj, k

where n is the total number of users, and a j, k is the jth skill value of the
kth user. Reconsidering the above example, we see that this formula gives

w1 5
O

k51

20 a2, k 1 O
k51

20 a3, k

2~O
k51

20 a1, k 1 O
k51

20 a2, k 1 O
k51

20 a3, k!

5
2~.1! 1 6~.6! 1 12~.8! 1 2~.8! 1 6~.2! 1 12~.1!

2~2~.8! 1 6~.8! 1 12~.1! 1 2~.1! 1 6~.6! 1 12~.8! 1 2~.8! 1 6~.2! 1 12~.1!!

5 0.34.

242 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

The same computation for the other weights gives w2 5 0.23 and w3 5
0.42, so that in this case default values almost coincide with those
estimated previously by the application engineer.

An idea of the cumulative effect of our user feedback mechanism is given
by Figure 12, depicting the drift of the compatibility values of three
components, Document , OleDocument , and OleClientDocument after 100
repetitions of query Q4 shown in Section 6. In our experimentation, 38 of
the 100 queries were posed by project managers, 30 by senior, and 32 by
junior programmers; all three categories of users showed a marked prefer-
ence for OleDocument (chosen about 80% of the time), followed by Docu-
ment (10%) and OleClientDocument (10%). As an effect of the users’
attitude, the compatibility values of Document and OleDocument show
respectively a sharp decrease (increase) and remain very close until an
overtaking occurs. By biasing the defuzzification function D, we obtain the
same effect on compatibility as the modification of features weights in the
descriptors, but attain a flexibility with respect to the software process
model.

5.1 User-Defined Query Semantics and Query Language

In our retrieval system query formulation requires the user to set up a
simple list of the features the desired component should possess, together
with their weights. Although this mechanism is very simple, this way of
stating queries allows for a wide variety of query semantics. In our system,
weights represent the relative importance of the listed properties. However
weights could also be interpreted as fulfillment degrees of performance or
other nonfunctional properties that must be guaranteed by the retrieved
component. We explored the possibility of varying the query semantics
according to the user needs in Bosc et al. [1998]. At the expense of
simplicity, the retrieval environment can be endowed with a structured
query language allowing the user to express the query semantics explicitly.
This can be useful in some industrial applications and has been experi-

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Document

OleDocument

OleClientDocument

0 100
Query repetition

CV

Fig. 12. Compatibility value (CV) changes as a consequence of user feedback (100 repetitions
of the query).

A Hierarchy-Aware Approach to Faceted Classification • 243

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

mented for example in the Prosa system where a fuzzy component query
language has been built on top of a relational database system holding SDs
[Fusaschi and Montini 1997].

Weights are chosen in a query by the user according to the relative
importance semantics. For example, in an initial formulation of a query,
high weights are assigned to highlight the most relevant features, and
lower weights can be used to keep the search space limited while including
borderline, potentially useful components. Practical experience (see Dami-
ani et al. [1997]) leads us to observe, that, users often formulate queries in
the framework of query sessions, rather than posing standalone, occasional
queries because the user has an explorative attitude and needs to evaluate
several alternative reuse candidates. During query sessions, the user has
two ways to modify the queries during the search: by varying the features
and by varying the weights. By imagining these two variations as two axes,
usually the developer will follow a path in the plane. The idea is to focus
the search by adding or deleting features, and then to fine tune the retrieve
set by means of the weights.

In general, adding features to a query limits the search space, while
adding features with low weights serves to moderate this limitation,
keeping some borderline component in the candidate component set. This
usage pattern by developers corresponds to the above-mentioned attitude of
search, especially useful against large components bases where components
offering side functionalities also can be sometimes useful. Experience with
the retrieval system shows that this usage pattern can be straightforwardly
and easily understood and learned by reasonably experienced developers.

6. EXPERIMENTAL RESULTS

In this section, we present some experimental results obtained from a tool
suite employing a set of fast C routines. This tool suite is intended as a
rapid prototype aimed at testing the approach and not as a complete
classification and retrieval facility. It is not aimed at testing the system
usability nor the user friendliness of the interface of a potential prototype
based on theses techniques (as done in other systems, for example in
Henninger [1997]).

The overall procedure of code analysis, descriptor querying, and naviga-
tion follows the cycles depicted in Figure 13.

Table III. Characteristics of the Testbed Descriptor Base

All Generic Graphic Services Interactive Interface EDT

Number of SDs 95 3 37 43 13 32 19
Minimum Length of SDs 1 5 1 1 1 1 1
Maximum Length of SDs 112 14 76 43 43 32 21
Average Length of SDs 15.8 9 9.78 7.95 15.76 10.9 11.36
Number of Features 1501 27 362 342 205 349 216
(Distinct) 771
Number of Terms 464 20 235 223 162 216 70

244 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

6.1 Code Base Construction

The base of code descriptors used by our tool suite consists of SDs obtained
from the standard Visual C11 Foundation rel. 2.0 Class Library (version
3). This is a general-purpose library, not biased by a specific context but
rather composed of heterogeneous classes providing a common ground for
application development. Moreover, a well-known naming discipline exists
in this library. The characteristics of the descriptor base are summarized in
Table III (the “Services” context includes components for memory and file
support, run-time support, and exception handling; the “EDT” context
stands for “Extended Data Types”).

In the experimental classification procedure the following choices were
made:

(1) Each SD has the class name and includes features extracted from the
class interface according to the method presented in the previous
sections.

(2) The thesaurus is built from the whole base lexicon. Moreover, in the
tool suite presented here synonymy values are computed only for verbs.
This is due to the fact that, in our experience [Bellinzona et al. 1995;
Fäustle et al. 1996], methods names tend to appear repeatedly in the

Application
Engineer

Application
Developer

1. Granularity
Tuning

2. Initial Context
Setting

3. Feature Extraction
and Tuning

4. Thesaurus
Update

5. Descriptors Hierarchy
Check

Is-A Propagation

6. Descriptors
Insertion and

Faceting

Analysis Cycle

1. Query
Setup

2. Candidate
Selection

3. Component
Retrieval

Query Session

Query Refinement

Query Cycle

Fig. 13. Usage steps and user categories.

A Hierarchy-Aware Approach to Faceted Classification • 245

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

code base, while data structures are more local to classes and are hence
less reused.

(3) In order to achieve a conservative result set, no manual filtering was
performed on the obtained thesaurus.

Some results on the thesaurus intended to measure its quality and
performance as a standalone tool were obtained on a larger code base and
are reported in the Appendix.

6.2 Hierarchical Faceting

For the sample code base, Cinit is set to “GRAPHIC” and “INTERFACE.”
Some classes in the hierarchy tree are classified also under other contexts;
for some classes, features are assigned disjointly to different contexts by
manual intervention.

The Is-a hierarchy of descriptors in the sample code base is depicted in
Figure 14, where names of contexts are repeated in the descendants when
the descendants exhibit some features of their own in that context. Refer-
ring to the SDs shown in the figure, for example, CommandTarget includes
Graphic because it has its own features (e.g., “start,cursor ”) belonging
to that contexts.

Inherited contexts are not shown: for instance, Window Application
inherits the Graphic context which is not shown, while its own features
are classified under the Services and Interactive contexts.

6.3 Query Formulation Protocol

In order to test our approach thoroughly, we have included in our suite a
retrieval tool relying on the algorithms described in Section 3. Preliminary
experiences with a previous version of the tool are reported in Fäustle et al.
[1996]. Here we undertook an empirical evaluation aimed at enlarging and
confirming those experiments and to test the effectiveness of the thesaurus.

Let us now describe how we performed the evaluation of the retrieval
mechanism. We shall compare our results to those obtained from a baseline
system based on the Unix grep family of commands (see Maarek et al.
[1991]). As outlined in Section 5, the developer begins a query session by
formulating a query composed of few obviously relevant features, and
assigning to them weights based on relative importance semantics [Dami-
ani and Fugini 1997]. The user can proceed in the search session by varying
the features and/or weights.

6.3.1 Query Setup. This first set of tests does not include the thesaurus,
in order to test the effectiveness of the retrieval mechanism alone and to
obtain numerical values for recall and precision.

The experimental set of queries has been defined using the same experi-
mental protocol used in Fäustle et al. [1996], which was now executed
against the new component base. We have set up three blocks of five

246 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

queries each and executed them against the component base. The total
number of queries is comparable to the number used in Maarek et al.
[1991], given the size of our repository. In order to obtain a meaningful
number of runs, the queries have been executed each three times, at
different threshold values for the ranked returned list. Our test queries
were prepared off-line and then submitted to the system in succession. No
substitution or reformulation of queries on the basis of their results is
allowed. A different approach was undertaken in the evaluation of the
compared baseline system, where query feedback is allowed on query
formulation.

Within each block, the queries are related in order to reproduce the
human behavior outlined in Section 5. Each block is a retrieval session
where the user progressively refines an initial query to search for a certain
kind of component.

Each query was submitted to the judgment of a human expert acquainted
with the component base who marked the components which should have
been retrieved. These components constitute the query control set. The
same query was then submitted to the system.

As in Fäustle et al. [1996] and Maarek et al. [1991], recall and precision
are defined as follows:

recallT 5
of retrieved components belonging to the control set

cardinality of the control set

precisionT 5
of retrieved components belonging to the control set

of retrieved components

Fig. 14. Partial Is-a hierarchy of the code base.

A Hierarchy-Aware Approach to Faceted Classification • 247

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

6.3.2 Query Execution. For each query block Bi, i 5 1, . . . , 3 we exe-
cuted the queries Qi1, . . . , Qi3 and computed the recall values ~ri1, . . . ,
ri3! and the precision values ~pi1, . . . , pi3!. Each block has been executed
three times, with threshold values 0.1, 0.4, and 0.5 respectively for the
ranked list. A sample query block is reported together with its precision
and recall values in the Appendix.

Then, we ordered the recall-precision pairs for increasing values of recall,
taking the median of precisions for the same recall value. This is repeated
for the three threshold values. Across query blocks, we averaged the
precision values for each obtained recall value. This procedure is analogous
to the procedure outlined in Maarek [1991].

The results of precision and recall for the 0.5 threshold are plotted in
Figure 15. Also, in the figure the results of the baseline, grep-based system
Infoexplorer [IBM 1990] are shown as a basis for comparison only, since the
results of that system have been obtained by selecting the best results out
of a much wider set of queries.

We observe that the system shows a good behavior at the lower/upper
limits of the considered range of recall values, while keeping satisfactory
precision values in the central portion of the range.

6.4 Usage of the Thesaurus

Since the purpose here is to test the impact of the synonymy relationship,
we use a set of test based on single-query probes. Query sessions with the
thesaurus are conducted as follows. Queries are formulated by an applica-
tion developer, aware of the application requirements, of the available

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Our system InfoExplorer
P

re
c
is

io
n

Recall

Fig. 15. Precision and recall of the test set at 0.5, compared with precision and recall of a
baseline system.

248 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

contexts and of the system lexicon, but with only the knowledge of the list
of available component names. The developer is also helped by the verb-
noun semantics, in that when he or she enters a verb the corresponding list
of names which are actually coupled to it in the descriptors are proposed.
On the other hand, the developer is unaware of synonymy values.

Five basic queries are formulated. Each is repeated on all the possible
combinations of the contexts chosen by the user plus the default execution
over the entire descriptor base. The total queries are 28, each submitted
twice, respectively without and with thesaurus support. Hence, the total
number of queries, given the size of our code base, is comparable with the
size of test suites used for the validation of other systems. It is important to
underline, that, in order to obtain a conservative evaluation, the system is
tested shortly after completion of the classification procedure. So, recall
and precision are measured without the support of the adaptive system.

The queries are the following:

(Q1) This query is aimed at retrieving an object of type Window to edit text
documents. The query is

enable-window: 0.8
edit-text: 0.8
select-text: 0.5
find-text: 0.7

submitted under the Interface , Services , and Interactive con-
texts. Q1 is therefore executed 8 times without the thesaurus and 8
times with the thesaurus enabled. The control set of Q1 is {Window,
View, ScrollView, EditView, EditWindow, FormView, FrameView}.

(Q2) This query is aimed at retrieving an exception handler. The query is

implement-exception: 0.8
cause-exception: 0.7
process-exception: 0.8

submitted under the Services context. Q2 is therefore executed 2
times without the thesaurus and 2 times with the thesaurus enabled.
The control set of Q2 is {MemoryException, Exception, FileException,
ArchiveException, UsrException, OleException, NotSupportedExcep-
tion, ResourceException, CommandTarget}.

(Q3) This query is aimed at retrieving a ToolBar object that can be
decorated by user-defined bitmaps. The query is

set-button: 0.8
create-bitmap: 0.5
handle-bitmap: 0.5
draw-icon: 0.4

A Hierarchy-Aware Approach to Faceted Classification • 249

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

submitted under the Interface , Interactive , and Graphic con-
texts. Q3 is therefore executed 8 times without the thesaurus and 8
times with the thesaurus enabled. The control set of Q3 is {ToolBar,
Menu, FrameView}.

(Q4) This query is aimed at retrieving a document manager object. The
query is

open-document: 0.7
save-document: 0.7
modify-document: 0.8
add-item: 0.5

submitted under the Interface , Interactive , and Services con-
texts. Q4 is therefore executed 8 times without the thesaurus and 8
times with the thesaurus enabled. The control set of Q4 is {Document,
DocTemplate, OleDocument, OleServerDoc, OleClientDoc}.

(Q5) This query is aimed at retrieving a resizable array class. The query is

access-index: 0.8
get-bound: 0.3
get-size: 0.3
set-size: 0.3

submitted under the EDT context. Q5 is therefore executed 2 times
without the thesaurus and 2 times with the thesaurus enabled. The
control set of Q5 is {Byte Array, Double Word Array, Object Array, Ptr
Array, String Array}.

6.5 Results

The results of query execution are presented in Figure 16, where the values
of recall and precision are reported for the five queries. The above results
clearly show that thesaurus enabling causes a notable increase in recall, at
least doubling it but in other cases increasing it as much as four times. As
one would expect, this increase is usually obtained at the expense of
precision (with the exception of Q5). This noise effect, however, is largely
due to the fact that the thesaurus was used “as initialized,” without any
manual filtering. Such an increase is not always obtainable, as shown by
the results of Q2, where the query formulation results are focused with
respect to the code base, and hence the control set is retrieved at the first
run. However, thesaurus enabling does not worsen the precision value that
much. This suggests that the thesaurus usually enhances the retrieval
effectiveness, and only leaves the values unaltered when the query is
properly focused, e.g., because the queries are issued by users who are
expert of the domain. Practical experience with the system shows that
accurate thesaurus tuning is essential to limit noise.

250 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

7. RELATED WORK

The two related but distinct problems of component classification and
selection of suitable components have been first dealt with in the domain of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5

Precision Precision with thesaurus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5

Recall Recall with thesaurus

Fig. 16. Recall and precision values without and with the thesaurus.

A Hierarchy-Aware Approach to Faceted Classification • 251

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

repository-based software reuse, itself a much investigated subject [Banker
et al. 1993]. Context-oriented libraries, such as mathematical libraries
[Hopkins and Phillips 1988], were a first basic solution to the classification
aspect. From early flat classification schemes, libraries later evolved to
hierarchical faceted schemes [Prieto-Díaz 1991]. Object-orientation and the
availability of class libraries brought further developments: the semantic of
reusable objects is now commonly used in object-oriented libraries, such as
in Eiffel [Meyer 1990] and Delphi [Cantù 1996]. Richer semantic models,
and more structured organizations (e.g., including refinement levels and
views), are proposed for example in AT&T’s LaSSIE [Devanbu et al. 1991],
in ConceptBase [Jarke 1993], and Lin [Batini et al. 1993], while software
patterns are proposed as a standard representation of successful solutions
to common software problems [Schmidt et al. 1996]. Reuse at the level of
code specification is often based on the concept of component matching; a
complete survey about specification matching, i.e., the process of determin-
ing if two software components are related, can be found in Moormann
Zaremski and Wing [1997].

Organization of software in hypertext systems with the purpose of
enhancing the visual interaction has been applied to a number of systems
[LeVan 1996; Mi and Scacchi 1990; Jarke 1993]. The idea of storing (and/or
using for classification) software artifacts, such as development documents,
has also been proposed to increase reuse effectiveness [Batory and
O’Malley 1992]. From the retrieval point of view, the components selection
aspect of all those systems relied mainly on information retrieval and
database-oriented techniques. Selection/retrieval methods can be classified
as formal methods, database-oriented retrieval (Cactis of the Arcadia
environment [Taylor et al. 1988], PCTE [Boudier et al. 1988], Vague [Motro
1988]), knowledge-based retrieval [Devanbu et al. 1991; Mi and Scacchi
1990; Ostertag et al. 1992], hypertext navigation (e.g., DIF and CHARLIE
[Mi and Scacchi 1990; LeVan 1996]), and finally as general-purpose ap-
proaches combining some of the above methods. Other approaches try to
compute similarity coefficients to better focus the search [Ostertag et al.
1992]; for example, an approach based on the analogy paradigm is pre-
sented in Maiden [1991]. The similarity between the concepts of two classes
is often quantified in terms of conceptual distance. Such a metric is used to
minimize the conceptual entropy of class hierarchies which undergo fre-
quent changes; for example, in Dvorak [1994], the conceptual distance is a
metric to measure the similarity among Smalltalk classes and to run a
subclass restructuring algorithm. Another technique based on analogous
reuse is presented in Spanoudakis and Constantopoulos [1994], with spe-
cial attention on how to capture similarity between software artifacts
organized in a conceptual repository. The signature-matching approach
[Moormann Zaremski and Wing 1995] appears to be especially suited for
code-level components, as it tries to exploit type information to compute a
matching function between them. In Moormann Zaremski and Wing [1997],
a complete survey of specification matching for software components is
presented as the process of determining if two software components are

252 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

related, for a number of application development purposes, such as re-
trieval, reuse, substitution, and subtype identification. A list of tasks,
besides retrieval, which can benefit from a reuse system is described in Sen
[1997]. In several of the above approaches, the classification/retrieval
problem is tackled in the domain of a repository, seen as a part of a
development information system [Bellinzona et al. 1995].

Several contributions propose quick-and-simple keyword-based classifica-
tion techniques, relying on term extraction from source code or artifacts. In
Maarek et al. [1991], terms are extracted from software using an informa-
tion retrieval approach applied to program comments, but the classification
system is not hierarchy aware. In Paul and Prakash [1994], who tackle the
issue of code search for maintenance, the approach is pushed further in
order to attain a mechanism to understand what the code does. The
approach employs a specification language, embedded in the SCRUPLE
tool, to describe and to pose queries about a program’s structure. Tech-
niques for document analysis for automatic knowledge acquisition are also
related work; for example, in Tang et al. [1994], a technique is proposed to
extract design knowledge that can help in program understanding.

While our approach may be described under the above framework, we are
even more interested in abstracting features and describing their relevance
in order to express code behavior, thus enhancing code comprehension and
improving domain modeling. Not all the above-described approaches ap-
pear to be well suited to this more general aim. Our protocol for extracting
meaningful features with controlled granularity in order to describe object-
oriented code, besides retrieving adaptable components, is intended to help
the developer to understand the history of past developments. In both
respects, fuzzy weights give flexibility to the system: code components can
be easily described in terms of more or less relevant (dominant) character-
istics, while our fuzzy calculus substitutes reasoning as used in Span-
oudakis and Constantopoulos [1994].

It is interesting to remark that our features, extracted from source code,
might well be complemented with others, describing different properties of
software (such as its static structure as represented by a compiler, and/or
its dynamic properties as seen by a test execution) during the classification
and retrieval phases. For instance, the approach described in Podgurski
and Pierce [1993] is based on the execution of reusable software; others
capture the functionalities of components by using specifications during the
retrieval process, thus addressing the aspect of precision in the retrieval.
An example is the PARIS system [Katz et al. 1987], where specifications
drive the retrieval. A more recent example is described in Mili et al. [1997],
where refinement ordering between specifications is used to drive the
selection of programming solution.

Another moot subject is how to deal with the system vocabulary. To this
respect, we observe that a well-established technology already exists:
thesauri have long since been used as a support for text retrieval, espe-
cially in large document bases. In fact, querying mechanisms based on
string matching, however efficient, may prove completely unsatisfactory if

A Hierarchy-Aware Approach to Faceted Classification • 253

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

users do not know precisely which terms to use when formulating queries.
Using the “wrong” (even if semantically equivalent) terms in queries may
prevent the retrieval of documents the user would be interested in.

Such difficulties can lead users to rapidly loose confidence and, in the
end, to abandon the system altogether. Conventional thesauri, i.e., collec-
tions of semantically equivalent terms, may relieve this problem but are
expensive and slow to build and maintain by hand. So, many attempts were
made, with mixed results, to automate their construction.

The basic assumption of computer-aided thesaurus construction for text
retrieval systems is that differences between the statistical frequency
distribution characteristics of terms in the overall document base and the
frequency distribution of the same terms in a retrieval subset are, to a
great extent, directly related to semantic factors [Yu 1975; Salton 1971;
Salton and Buckley 1988].

First, the vocabulary of terms is filtered to retain only relevant ones and
then equivalence classes with respect to a suitable relation between terms
are computed.

Roughly, this relation (cooccurrence) is computed by weighting the num-
ber of times two relevant terms appear together in the document base
against the number of times they appear by themselves.

Then, considering the Cartesian product of the filtered vocabulary of
terms, a binary matrix is built, setting to 1 entries corresponding to couples
of terms whose cooccurrence is above a threshold value, and setting to 0
entries corresponding to couples of terms whose cooccurrence is below the
threshold.

Determining a way to compute this threshold other than by trial and
error is still an unsolved problem in text retrieval research. Clustering
techniques consider this matrix as the adjacency matrix of a graph whose
nodes represent terms. Then, by computing all complete subgraphs
(cliques) of this graph, the desired equivalence classes are obtained. Clus-
ters partition the vocabulary in a (possibly not disjoint) family of crisp
subsets. While surely unfit for constructing ready-to-use thesauri, this
approach was used with not completely unsatisfactory results to build
“quick and dirty” specialized thesauri to be later manually filtered by
experts of the field [Salton 1971].

Considering software components as text documents, and refraining
ourselves to thesaurus initialization, we believe that some version [Salton
et al. 1994] of automatic construction techniques can be applied. We leave
to manual filtering the task of improving the thesaurus quality at a
satisfactory level; the filtering effort should however be considerably less
than building a thesaurus from scratch. Anyway, text retrieval techniques
need to be specialized in order to automatically initialize a thesaurus on
the lexicon used in software components. In fact, statistical analysis of
term distribution is not suitable for source code, since the copresence of
terms (language terms, variable names, etc.) does not imply any semantic
relation. However, some semantic relations may be spotted by considering

254 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

contexts and the relevance of terms in that context. This is particularly
true for object-oriented code, where class names and methods usually have
names semantically relevant for their description [Etzkorn and Davis
1997].

8. CONCLUDING REMARKS

In this article, we have described a suite of conceptual techniques for
software classification and retrieval based on the use of descriptors stored
in a structured repository. Descriptors are employed as compact analysis
documents which can be handled more effectively than components them-
selves while retaining most of the information about components and their
relationships in the application. The code classification model described in
the article relies on a faceted, hierarchy-aware technique and on thesaurus
support for the analysis of object-oriented code bases. Synonymy is used to
further expand the model flexibility, in that the code base can be searched
also for candidates that “resemble” the needed one because they are
described with synonym terms. Experimental evidence is provided to
validate the system and to show the results of thesaurus enabling. A
mechanism of user feedback is outlined, aimed at tuning the system
according to the views of the repository users.

Many of the ideas described in the article are suited for immediate
implementation while others need to be adapted to specific application
environments. Currently, the proposed suite of techniques is being used as
the basis of some industrial repository-based environments. For example,
in Fusaschi and Montini [1997] the whole basis of techniques has been
integrated into an industrial large-scale development environment (more
than two million lines of object-oriented code in the last three years).
Namely, the repository has been implemented on a relational database
endowed with a Web front-end. In that system, a component query lan-
guage (CQL) has been introduced as a fuzzy extension to conventional SQL;
linguistic variables are used instead of numerical weights, to facilitate user
interaction. The user feedback part has been adapted to include a reward
mechanism aimed at encouraging reuse through monetary compensation to
developers.

The characteristic of providing conceptual toolkits to be later adapted
and implemented depending on the needs of an organization is shared with
many other research approaches. For example, a retrieval system named
Selection Tool has been implemented during the EEC Ithaca project [Bell-
inzona et al. 1995] embedding the described classification and retrieval
mechanism. The purpose of the prototype has been to perform a first
evaluation of the approach using the Telos knowledge representation
language as a host environment, and studying the interface of the mecha-
nisms with the Ithaca tools environment. The Telos prototype, internally,
converts the symbolic values of weights at the user interface—belonging to
the set VeryHigh , High , Medium, Low, VeryLow —into numeric values,
corresponding to fuzzy values. Similarly, the CodeFinder system presented

A Hierarchy-Aware Approach to Faceted Classification • 255

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

in Henninger [1997] is defined as a design-level prototype of a retrieval
system explicitly meant to suggest useful solutions to software repository
implementers and designers.

The definition of toolkits of techniques proves useful in a wide range of
applications. The presented approach can be employed to organize software
artifacts for code comprehension, reverse engineering, and domain model-
ing, analogously to the applications described in Sen [1997] and Moormann
Zaremski and Wing [1997]. In fact, thanks to contexts and to the control of
classification granularity, the descriptor base can be seen as a first basic
representation of the application domain knowledge. Moreover it can
support systematic exploration of large and distributed repositories of
components in order to identify desired services on the basis of functional
and nonfunctional information about them. Some of these aspects have
been presented here; on other aspects of our research we are currently
investigating, such as on run-time server identification over a network.
Regarding this last issue, we have developed a prototype of a Trader for
run-time selection of CORBA Servers [Bosc et al. 1998].

In general, we are aware that software artifacts classification has a cost
in terms of time and resources. However, the presented techniques aim to
minimize the effort required to set up and maintain the classification
system because they rely on automatic tools whenever possible. Moreover,
when properly coupled with a navigational environment, the proposed
system can efficiently support both querying and browsing in order to get
acquainted with the content and organization of code bases. Hence, the
system can be smoothly integrated with a development environment.

APPENDIX

A. SYSTEM AND THESAURUS VALIDATION

We show a sample query block prepared and tested using the protocol
described in Section 6.

In this retrieval session, the developer is looking for component(s)
managing graphical windows (see Table IV).

In the graph of Figure 17, we show the results of the block of queries in
terms of precision and of recall.

We are now ready to describe the thesaurus validation procedure.
In the experimental evaluation of our techniques for thesaurus initializa-

tion, we processed several libraries of object-oriented code, namely the NIH
library [Gorlen et al. 1990] of extended data types, the Windows library of
graphical objects of Borland C11 compiler rel. 4.0, and the Visual C11 rel.
2.0 class library. In order not to be biased toward any particular program-
ming language we also examined some Smalltalk and Eiffel libraries. We
obtained a total of about 150 SDs. This analysis led us to the following
considerations:

—Thesaurus terms: The controlled vocabulary includes 90 terms, thus
turning out to be small enough to be easily handled by the system and

256 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

easy for the users to get acquainted with. This in spite of the relatively
large number of classes which have been analyzed. Filtering was limited
to the minimum and consisted in eliminating programming language
keywords such as elementary type names. Moreover, we applied the
verb-noun paradigm.

—Influence of the number of samples over lexical quality: We observed that
an increase of the number of analyzed components leads to a better
quality of the context relevance semantics. This appears to be true under
the hypothesis that the lexicon of the system eventually reaches a stable
size. In fact, in an operational setting of the descriptor base it is likely

Table IV.

Q1
activate-window: 0.8
destroy-window: 0.8
create-window: 0.8
Q2
activate-window: 0.8
destroy-window: 0.8
create-window: 0.8
build-multidoctemplate: 0.5
activate-mdichildwindow: 0.5
Q3
activate-window: 0.8
destroy-window: 0.8
create-window: 0.8
build-multidoctemplate: 0.5
activate-mdichildwindow: 0.5
show-scrollbar: 0.8
set-background: 0.3
Q4
activate-window: 0.8
destroy-window: 0.8
create-window: 0.8
build-multidoctemplate: 0.5
activate-mdichildwindow: 0.5
show-scrollbar: 0.8
set-background: 0.3
tile-mdiframewindow: 0.3
resize-parent: 0.5
Q5
activate-window: 0.8
destroy-window: 0.8
create-window: 0.8
build-multidoctemplate: 0.5
activate-mdichildwindow: 0.5
show-scrollbar: 0.8
set-background: 0.3
tile-mdiframewindow: 0.3
resize-parent: 0.5
attach-window: 0.3
detach-window: 0.3

A Hierarchy-Aware Approach to Faceted Classification • 257

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

that components refer to a few, related contexts. Thus, upon arrival and
assimilation of new libraries, the associated lexicon usually evolves
toward a sufficiently rich and expressive domain vocabulary. So, updates
made after a certain (domain-dependent) stability threshold of the lexi-
con has been reached can be considered as performed with constant
lexicon.

—Synonymy quality assessment: We measured the quality of our thesaurus
initialization employing the following procedure. We randomly chose 10
terms and had a human expert mark their synonyms blindly on the
controlled vocabulary. These sets of synonyms are called the control sets
associated to each term. Next, we considered the rows of the SYNON
atrix corresponding to the terms and computed the following two param-
eters at two different threshold values T of synonymy:

recallT 5
of retrieved synonyms belonging to the control set

cardinality of the control set

precisionT 5
of retrieved synonyms belonging to the control set

of retrieved synonyms

These parameters are tailored versions of the classical precision and
recall measures used in information retrieval. Table V shows the preci-
sion and recall values for some terms randomly extracted from the
thesaurus at different threshold values.
The average values of recall and precision at the 0.70 threshold are 0.75
and 0.20 respectively. We observe that the 0.70 value was chosen for the
lower threshold because even lower values, while pushing the recall to 1,

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

recall precision

Query

Fig. 17. Precision and recall of query block.

258 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

lead to virtually 0 precision. This would obviously be equivalent to select
synonyms manually. On the other hand a high value of the threshold (.
0.8), while possibly slightly increasing precision, excludes many true
synonyms. This effect happens because terms used in exactly the same
contexts are not necessarily the best synonyms even if they are consid-
ered semantically related by our CRF. Anyway, the 0.70 threshold filters
out on average the 90% of the terms, allowing the application engineer
during the subsequent tuning phase to select the real synonyms in a
restricted set of candidates instead of browsing the whole vocabulary.
Thus, this method proved to be an effective initialization technique.
Of course, the threshold tuning must be done for the lexicon pertaining to
each context, and should be recomputed upon substantial system updat-
ing.

ACKNOWLEDGMENTS

We thank the partners in the project “Progetto Coordinato Ambienti di
Supporto alla Progettazione di Sistemi Informativi” for useful discussions.

We also want to thank the anonymous referees of this article for their
useful suggestions.

REFERENCES

BANKER, R. D., KAUFFMAN, R. J., AND ZVEIG, D. 1993. Repository evaluation of software
reuse. IEEE Trans. Softw. Eng. 19, 4 (Apr.), 379–389.

BARDOSSY, A., DUCKSTEIN, L., AND BOGARDI, I. 1993. Combination of fuzzy numbers represent-
ing expert opinions. Fuzzy Sets Syst. 57, 2 (July), 173–181.

Table V. Values of Precision and Recall for Randomly Chosen Terms of the Thesaurus

Term Threshold Recall Precision

answer 0.80 0.3 0.13
0.70 0.81 0.16

compare 0.80 0.4 0.15
0.70 0.4 0.15

array 0.80 0.5 0.5
0.70 0.78 0.35

edit 0.80 0.2 0.28
0.70 0.7 0.2

arrange 0.80 0.28 0.15
0.70 0.71 0.18

create 0.80 0.16 0.2
0.70 1 0.18

remove 0.80 0.31 0.18
0.70 0.75 0.15

size 0.80 0.4 0.3
0.70 0.8 0.25

window 0.80 0.45 0.3
0.70 0.82 0.21

write 0.80 0.28 0.15
0.70 0.7 0.2

A Hierarchy-Aware Approach to Faceted Classification • 259

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

BASILI, V. R. AND ROMBACH, H. D. 1991. Support for comprehensive reuse. Softw. Eng. J. 6, 5
(Sept. 1991), 303–316.

BATINI, C., DI BATTISTA, G., AND SANTUCCI, G. 1993. Structuring primitives for a dictionary of
entity relationship data schemas. IEEE Trans. Softw. Eng. 19, 4 (Apr.), 344–365.

BATORY, D. AND O’MALLEY, S. 1992. The design and implementation of hierarchical software
systems with reusable components. ACM Trans. Softw. Eng. Methodol. 1, 4 (Oct. 1992),
355–398.

BÄUMER, D., GRYCZAN, G., KNOLL, R., LINIENTHAL, C., RIEHLE, D., AND ZÜLLIGHOVEN,
H. 1997. Framework development for large systems. Commun. ACM 40, 10 (Oct.), 53–59.

BÄUMER, D., KNOLL, R., GRYCZAN, G., AND ZÜLLIGHOVEN, H. 1996. Large scale object-oriented
software-development in a banking environment: An experience report. In ECOOP’96—
Object-Oriented Programming, 10th European Conference (Linz, Austria, July), P. Cointe,
Ed. Springer-Verlag, New York.

BELLINZONA, R., FUGINI, M. G., AND PERNICI, B. 1995. Reusing specifications in OO
applications. IEEE Softw. 12, 2 (Mar.), 65–75.

BIGGERSTAFF, T. J. AND PERLIS, A. J., Eds. 1989. Software Reusability: Vol. 1, Concepts and
Models. ACM Press, New York, NY.

BIGGERSTAFF, T. J., MITBANDER, B. G., AND WEBSTER, D. E. 1994. Program understanding and
the concept assignment problem. Commun. ACM 37, 5 (May 1994), 72–82.

BOOCH, G. 1994. Object-Oriented Analysis and Design with Applications. 2nd
ed. Benjamin-Cummings Publ. Co., Inc., Redwood City, CA.

BOSC, P., DAMIANI, E., AND FUGINI, M. G. 1998. Dynamic service identification in a CORBA
like environment. In Proceedings of the 1st International Workshop on Innovative Internet
Information Systems (Pisa, Italy, June), D. M. Schwartz, Ed.

BOUCHON-MEUNIER, B., RIFQI, M., AND BOTHOREL, S. 1996. Towards general measures of
comparison of objects. Fuzzy Sets Syst. 84.

BOUDIER, G., GALLO, F., MINOT, R., AND THOMAS, I. 1988. An overview of PCTE and
PCTE. SIGPLAN Not. 24, 2 (Feb.), 248–257.

CANTÙ, M. 1996. Delphi 2.0. McGraw-Hill, Inc., New York, NY.
CASHIN, P. 1991. Bnr remains at the fore front of computing technology. Telesis 92.
CASTANO, S. AND DE ANTONELLIS, V. 1993. A constructive approach to reuse of conceptual

components. In Proceedings of 2nd ACM/IEEE International Workshop on Software
Reusability (Lucca, Italy, Mar.). ACM, New York, NY.

COX, B. J. 1986. Object-Oriented Programming—An Evolutionary Approach. 1st
ed. Addison-Wesley, Reading, MA.

DAMIANI, E. AND FUGINI, M. G. 1995. Automatic thesaurus construction supporting fuzzy
retrieval of reusable components. In Proceedings of ACM SIG-APP Conference on Applied
Computing (SAC ’95, Nashville, Feb.). ACM Press, New York, NY.

DAMIANI, E. AND FUGINI, M. G. 1997. Fuzzy identification of distributed components. In
Computational Intelligence—Theory and Applications, B. Reusch, Ed. Springer Lecture
Notes in Computer Science, vol. 1226. Springer-Verlag, New York, 550–552.

DAMIANI, E., FUGINI, M. G., AND FUSASCHI, E. 1997. A descriptor-based approach to OO code
reuse. IEEE Computer 30, 10 (Oct.), 73–80.

DEVANBU, P., BRACHMAN, R., AND SELFRIDGE, P. G. 1991. LaSSIE—A knowledge-based
software information system. Commun. ACM 34, 5 (May), 34–49.

D’SOUZA, D. 1996. Java: Design and modeling opportunities. J. Obj. Orient. Program. 9, 5
(Sept.).

D’SOUZA, D. F. AND WILLS, A. C. 1997. Catalysis: Component and Framework-Based
Development. Addison-Wesley, Reading, MA.

DVORAK, J. 1994. Conceptual entropy and its effect on class hierarchies. IEEE Comput. 27, 6
(June 1994), 59–63.

ETZKORN, L. H. AND DAVIS, C. G. 1997. Automatically identifying reusable OO legacy
code. IEEE Computer 30, 10 (Oct.), 66–71.

FÄUSTLE, S., FUGINI, M. G., AND DAMIANI, E. 1996. Retrieval of reusable components using
functional similarity. Softw. Pract. Exper. 26, 5, 491–530.

260 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

FUSASCHI, E. AND MONTINI, A. 1997. The ESSI/PROSA systems. Tech. Rep.
EtnoTeam. http://www.cee.etnoteam.it/prosa

GARG, P. AND SCACCHI, W. 1989. Ishys: Designing an intelligent software hypertext
system. IEEE Expert.

GORLEN, K. E., ORLOW, S. M., AND PLEXICO, P. S. 1990. Data Abstraction and Object-Oriented
Programming in C1. John Wiley & Sons, Inc., New York, NY.

HENNINGER, S. 1997. An evolutionary approach to constructing effective software reuse
repositories. ACM Trans. Softw. Eng. Methodol. 6, 2, 111–140.

HOPKINS, T. AND PHILLIPS, C. 1988. Numerical Methods in Practice: Using the NAG
Library. International Computer Science Series. Addison-Wesley, Reading, MA.

IBM. 1990. IBM AIX Version 3 for RISC System/6000: Command reference. T. J. Watson
Research Center, IBM, Yorktown Heights, NY.

JARKE, M. 1993. Vision driven systems engineering. In Proceedings of IFIP TC8/Wg8.4
Working Conference on Information System Development Process (Como, Italy), N. Prakash,
C. Rolland, and B. Pernici, Eds. North-Holland Publishing Co., Amsterdam, The Nether-
lands.

JOHNSON, R. 1997. Frameworks 5 (Components 1 Patterns). Commun. ACM 40, 10 (Oct.),
39–42.

KATZ, S., RICHTER, C. A., AND THE, K.-S. 1987. PARIS: A system for reusing partially
interpreted schemas. In Proceedings of the 9th International Conference on Software
Engineering (Monterey, CA, Mar. 30–Apr. 2), W. E. Riddle, Ed. IEEE Computer Society
Press, Los Alamitos, CA, 377–385.

KLIR, G. J. AND FOLGER, T. A. 1988. Fuzzy sets, Uncertainty, and Information. Prentice-Hall,
Inc., Upper Saddle River, NJ.

KOSKO, B. 1992. Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to
Machine Intelligence. Prentice-Hall, Inc., Upper Saddle River, NJ.

KRUEGER, C. W. 1992. Software reuse. ACM Comput. Surv. 24, 2 (June 1992), 131–183.
LEVAN, H. 1996. Charlie: System for retrieving and reusing C11 classes. In Proceedings of

TOOLS Europe ’96 (Paris, France).
LILLIE, C. 1991. Now is the time for a national software repository. In Proceedings of AIAA

on Computing in Aerospace (Baltimore, MD, Oct.).
MAAREK, Y. S., BERRY, D. M., AND KAISER, G. E. 1991. An information retrieval approach for

automatically constructing software libraries. IEEE Trans. Softw. Eng. 17, 8 (Aug. 1991),
800–813.

MAIDEN, N. 1991. Analogy as a paradigm for specification reuse. Softw. Eng. J. 6, 1 (Jan.
1991), 3–15.

MEYER, B. 1990. Eiffel: The Libraries. Prentice-Hall, Inc., Upper Saddle River, NJ.
MI, P. AND SCACCHI, W. 1990. A knowledge-based environment for modeling and simulating

software engineering processes. IEEE Trans. Knowl. Data Eng. 2, 3 (Sept.), 283–294.
MILI, R., MILI, A., AND MITTERMEIR, R. T. 1997. Storing and retrieving software components: a

refinement based system. IEEE Trans. Softw. Eng. 23, 7, 445–460.
MILI, A., MILI, R., AND MITTERMEIR, R. 1989. A survey of software reuse libraries. Ann. Softw.

Eng. 5.
MOORMANN ZAREMSKI, A. AND WING, J. M. 1995. Signature matching: A tool for using software

libraries. ACM Trans. Softw. Eng. Methodol. 4, 2 (Apr. 1995), 146–170.
ZAREMSKI, A. M. AND WING, J. M. 1997. Specification matching of software components. ACM

Trans. Softw. Eng. Methodol. 6, 4, 333–369.
MOTRO, A. 1988. VAGUE: A user interface to relational databases that permits vague

queries. ACM Trans. Off. Inf. Syst. 6, 3, 187–214.
OSTERTAG, E., HENDLER, J., DÍAZ, R. P., AND BRAUN, C. 1992. Computing similarity in a reuse

library system: An AI-based approach. ACM Trans. Softw. Eng. Methodol. 1, 3 (July 1992),
205–228.

PAUL, S. AND PRAKASH, A. 1994. A framework for source code analysis using program
patterns. IEEE Trans. Softw. Eng. 20, 6 (June), 463–475.

PFLEEGER, S. L. 1996. Measuring reuse: A cautionary tale. IEEE Softw. 13, 4 (July),
118–125.

A Hierarchy-Aware Approach to Faceted Classification • 261

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

PODGURSKI, A. AND PIERCE, L. 1993. Retrieving reusable software by sampling behavior. ACM
Trans. Softw. Eng. Methodol. 2, 3 (July 1993), 286–303.

PRIETO-DÍAZ, R. 1991. Implementing faceted classification for software reuse. Commun. ACM
34, 5 (May), 88–97.

PRIETO-DÍAZ, R. 1993. Status report: Software reusability. IEEE Softw. 10, 3 (May), 61–66.
PRIETO-DÍAZ, R. AND FREEMAN, P. 1987. Classifying software for reusability. IEEE Softw. 4, 1

(Jan.), 6–16.
SALTON, G. 1971. Experiments in automatic thesaurus construction for information

retrieval. In Proceedings of the IFIP Congress Foundations of Information Processing
(Aug.). IFIP, Laxenburg, Austria.

SALTON, G., Ed. 1988. Automatic Text Processing. Addison-Wesley Series in Computer
Science. Addison-Wesley Longman Publ. Co., Inc., Reading, MA.

SALTON, G. AND BUCKLEY, C. 1988. Term-weighting approaches in automatic text
retrieval. Inf. Process. Manage. 24, 5 (1988), 513–523.

SALTON, G., ALLAN, J., AND BUCKLEY, C. 1994. Automatic structuring and retrieval of large
text files. Commun. ACM 37, 2 (Feb. 1994), 97–108.

SCHMIDT, D., FAYAD, M., AND JOHNSON, R. 1996. Software patterns. Commun. ACM 3, 10
(Oct.).

SEN, A. 1997. The role of opportunism in the software design reuse process. IEEE Trans.
Softw. Eng. 23, 7, 418–436.

SPANOUDAKIS, G. AND CONSTANTOPOULOS, P. 1994. On evidential feature salience. In Database
and Expert Systems Applications, Proceedings of the 5th International Conference on Expert
Systems Applications (DEXA ’94, Athens, Greece, Sept. 7–9), D. Karagiannis, Ed. Lecture
Notes in Computer Science, vol. 856. Springer-Verlag, New York, 153–157.

TANG, Y. Y., YAN, C. D., AND SUEN, C. Y. 1994. Document processing for automatic knowledge
acquisition. IEEE Trans. Knowl. Data Eng. 6, 1 (Feb.), 3–21.

TAYLOR, R. N., BELZ, F. C., CLARKE, L. A., OSTERWEIL, L., SELBY, R. W., WILEDEN, J. C., WOLF,
A. L., AND YOUNG, M. 1988. Foundations for the Arcadia environment
architecture. SIGPLAN Not. 24, 2 (Feb.), 1–13.

YU, C. 1975. A formal construction of term classes. J. ACM 22, 1.

Received: January 1997; revised: July 1997 and July 1998; accepted: December 1998

262 • E. Damiani et al.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1999.

