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Using a solid software configuration management (SCM) is mandatory to establish and
maintain the integrity of the products of a software project throughout the project’s software
life cycle. Even with the help of sophisticated tools, handling the various dimensions of SCM
can be a daunting (and costly) task for many projects. The contribution of this article is to (1)
propose a method (based on the use creational design patterns) to simplify SCM by reifying
the variants of an object-oriented software system into language-level objects and (2) show
that newly available compilation technology makes this proposal attractive with respect to
performance (memory footprint and execution time) by inferring which classes are needed for
a specific configuration and optimizing the generated code accordingly.
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software configuration management
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1. INTRODUCTION

In software configuration management (SCM) [Estublier and Casallas
1995; Tichy 1994] revisions are defined as the steps a configuration item
goes through over time (historical versioning), whereas variants are the
various implementations that remain valid at a given instant in time. The
reasons why a given software design may have different implementations,
all valid at a given instant in time, are manifold. But the basic idea is to be
able to handle environmental differences, from the hardware level to the
marketing context (range of products) and through specificities in the
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target operating systems, compiler differences, user preferences for graph-
ical user interfaces (GUI) and internationalization issues. Managing all the
combinations between these variability factors can soon become a night-
mare: in some cases the part of the software dealing with the configuration
can be as large as the software itself.

One of the most primitive “solutions” to these problems was to patch the
executable program at installation time to take into account some variants.
Device drivers are a more elaborate example of configurability common to
almost all operating systems, but this is limited to code that run in kernel
mode. Another widely used technique for making small real-time programs
configurable is the static configuration table. Since they are purely declar-
ative with no language-defined semantics, constraint verification and con-
sistency checking can be difficult, let alone error checking. For larger
systems, one of the most popular approach consists in using conditional
compilation (or assembly), implemented with, for example, a preprocessor
like CPP. But this kind of code can rapidly become difficult to maintain
[Ray 1995]. Static and dynamic configuration informations are completely
intermingled, which makes it hard to change one’s mind on what should be
static or dynamic. Furthermore, to add support for a new OS, one needs to
review all the already written code looking for relevant #ifdef parts. Even
with the help of sophisticated tools [Leblang 1994], handling the various
dimensions of SCM can be a daunting (and costly) task for many projects.

The contribution of this article is to (1) propose a method to simplify SCM
by reifying the variants of an object-oriented software system into lan-
guage-level objects (Section 2) and (2) show that newly available compila-
tion technology makes this proposal attractive with respect to performance
(memory footprint and execution time) by inferring which classes are
needed for a specific configuration and optimizing the generated code
accordingly (Section 3). We also discuss the interests, limitations, and
drawbacks of our approach, as well as related works (Section 4) before
concluding on the perspectives open by our approach.

2. REIFYING VARIANTS

2.1 Object-Oriented Modeling of Variants

Using an object-oriented analysis-and-design approach, it is natural to
model the commonalities between the variants of a configuration item in an
abstract class (or interface) and express the differences in concrete sub-
classes (each variant implements the interface in its own way).

The choice of which variant(s) to use for a configuration item can be made
either at compile time or at runtime, with the very same source code: the
idea is to rely on (conceptual) dynamic binding for the design of the system
and don’t care now for static versus dynamic distinction. Dynamic loaders
would then be able to load only the chosen variants, or compilers could
figure out which ones to load and then compile out the dynamic dispatch.
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2.2 The Mercure Case Study

As a case study for evaluating the interest of our approach, we consider the
Mercure project, which is an SMDS (Switched Multi-Megabits Data Ser-
vice) server whose design and implementation have been described in
Jézéquel [1996; 1998]. It can abstractly be described as communication
software delivering, forwarding, and relaying “messages” from/to a set of
network interfaces connected onto an heterogeneous distributed system.?

Mercure must handle variants for five configuration items: any number
(V:) of network interface boards, V, specialized processors, V, levels of
functionality, and support for V,; languages (internationalization). Consid-
ering that a given variant of the Mercure software might be configured
with support for any number of the V; network interfaces and V, languages,
and one of V, kinds of processors, one of the V, levels of network
management, and one of the V, GUlIs, the total number of Mercure variants
is

V=V,xV,xV,x2VtV2

which, for V;, =16, V, =4, V, =8, V, =5, and V, = 24, gives more
than several trillions possible variants (43,980,465,111,040 to be precise).

2.3 Object-Oriented Design of Mercure

In the Mercure software, consider for example the case of the network
interface boards. Whatever the actual interface (ATM, DQDB, Ethernet,
etc.), we must be able to poll it for incoming messages, to read them into
memory buffers, to send outgoing messages, and to set various configura-
tion parameters. So this abstract interface, valid for all kinds of network
interface boards, could be expressed as an abstract class called NETDRIVER.
The idea underlying this kind of object-oriented design is that a method
(such as read_msg in the class NETDRIVER above) has an abstractly defined
behavior (e.g., read an incoming message from the lower level network
interface and store it in a buffer) and several differing concrete implemen-
tations, defined in proper subclasses (e.g., NETDRIVER]1, NETDRIVERZ...
NETDRIVERN). This way, the method can be used in a piece of code
independently of the actual type of its receiver, i.e., independently of the
configuration (e.g., on which kind of interface board do we actually read a
message):
if driver.is_msg_available then

driver.read_msg

outgoing_address: = routing(driver.last_msg)

if drivers.valid_address(outgoing_address) then

forward(drivers.item(outgoing_address),
driver.last_msg)

The trimmed-down source code of Mercure (where only critical-path computations and
configuration-management-related issues have been kept) is available at http:/ /www.irisa.fr/
pampa/EPEE/SCM.
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Fig. 1. Class diagram modeling the Mercure software in UML.

end -- if
end -- if

Using the same idea for handling the variants of the other configuration
items in Mercure, we can model Mercure’s design? as illustrated in Figure 1
through a UML (unified modeling language) class diagram. This UML
diagram basically says that a Mercure system is an instance of the class of
MERCURE, aggregating an ENGINE (that encapsulates the actual work that
Mercure has to do on a particular processor of the target distributed
system), a collection of NETDRIVERS, a collection of MANAGERs that repre-
sent the range of functionalities available, and a Gul that encapsulates the
user preference variability factor. A Gul has itself a collection of supported
languages, and among them, the currently selected language.

20n this diagram, only a rather flat inheritance hierarchy is suggested, but obviously the
designer should factorize the commonalities between subclasses in an inheritance graph as
deeply as required.
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Fig. 2. Dynamic configuration of the Mercure software (UML sequence diagram).

2.4 Applying Creational Design Patterns

With this design framework, the actual configuration management can be
programmed within the target language: it boils down to only create the
class instances relevant to each configuration item of a given configuration.
Creational Patterns as proposed in Gamma et al. [1995] can help make this
process easily customizable by uncoupling the system from how its constit-
uent objects get created, composed and represented. In our simple case, we
use an Abstract Factory, called MERCURE_FACTORY to define an interface for
creating variants of Mercure’s five configuration items.

The class MERCURE_FACTORY features one Factory Method for each of our
five variability factors. The Factory Methods are parameterized to let them
create various kinds of products (i.e., variants of a type), according to the
dynamic Mercure configuration selected at runtime. These Factory Meth-
ods are abstractly defined in the class MERCURE FACTORY and are given
concrete implementations in its subclasses—e.g., FullMercure, Custom-
Mercure, and MiniMercure—(see Figure 1) called concrete factories. A
concrete factory starts by creating a MERCURE instance, which calls back
the concrete factory to configure its components (see Figure 2).

Obtaining an actual variant of the Mercure software then consists in
implementing the relevant concrete factory. By restricting at compile time,
i.e., in the source code of a concrete factory the range of products that a
Factory Method can dynamically create, we can choose to build specialized
versions of the general-purpose Mercure software.
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The selection of a given concrete Mercure factory as the application entry
point allows the designer to specify the Mercure variant he or she wants.
Since this is done at compile time, it should be possible to generate an
executable code specialized toward the selected Mercure variant. In the
next section, we show how this can be done automatically with current
compiler technology.

3. COMPILATION TECHNOLOGY AND PERFORMANCE RESULTS

3.1 Principle of Type Inference and Code Specialization

Compilation techniques based on type inference consist in statically com-
puting the set of dynamic types a reference may assume at a given method
call site. In the most favorable case this set is a singleton, and thus the
method can be statically bound, and even in-lined in the caller context. In
less favorable cases, the set may contain several types. However, the
compiler is still able to compute the reduced set of methods that are
potentially concerned, and generate specialized code accordingly. This can
be implemented as an if-then-else block or a switch on the possible dynamic
types of the reference to select the relevant method to call. In either case,
the cost of the (conceptual) dynamic dispatch can be mostly optimized out
(and the cache miss implied by dynamic binding is no longer a fatality).
This idea is implemented for example in GNU SmallEiffel [Zendra et al.
1997], a free Eiffel compiler distributed under the terms of the GNU
General Public License as published by the Free Software Foundation.? So
we have implemented the Mercure software with Eiffel and used the
SmallEiffel compiler to take a number of measures. Eiffel [Meyer 1992] is a
pure OO language featuring multiple inheritance, static typing and dy-
namic binding, genericity, garbage collection, a disciplined exception mech-
anism, and an integrated use of assertions to help specify software correct-
ness properties in the context of design by contract. However, our approach
is not really dependent on Eiffel and could be applied to any class-based
languages without dynamic class creation, e.g., C++ (with the compiler
optimization known as the elimination of virtual), Ada95, or Java.

3.2 Specialized Code Generation in SmallEiffel

In Eiffel, the programmer specifies the entry point of an application by
singling out a specific class (the root class, here a given concrete Mercure
factory) along with one of its creation procedures.* When a program is run,
a single instance of the root class is created (the root object), and the
specified creation procedure is called. In our case, it leads to the execution
trace presented in Figure 2.

To compile such a program, the GNU SmallEiffel compiler starts by
computing which parts of the Eiffel source code may or may not be reached

3GNU SmallEiffel can be downloaded from http://www.loria.fr/projets/SmallEiffel.
4A creation procedure corresponds to a class constructor in the C++ terminology.
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from the application root, classifying them as living code, i.e., code which
may be executed, and dead code, i.e., which cannot be executed within this
configuration (see Zendra et al. [1997] for more details). By analogy with
the terms dead and living code, a living type is a class for which there is at
least one instantiation instruction in the living code. Conversely, a dead
type is a class for which no instance may be created in living code.

Code is generated in C for living types only. An object is classically
represented by a structure (C struct ) whose first field is the number that
identifies the corresponding living type (corresponding to the C++ RTTI).

A Dynamic Type Set can thus be represented as a set of integers. Taking
back the example of calling the method read_msg on a NETDRIVER object,
the generated C code has the following structure:

void XrNETDRIVERread_msg(void *C) /* C represents the receiver */
int id =((TO*)C)- =>id; /* the Dynamic Type ldentifier, aka RTTI */
switch (id) {
/* call read_msg defined in NETDRIVER1, whose RTTI is 123 */
case 123: rNETDRIVER1read_msg((NETDRIVER1*)C); break;

/* call read_msg defined in NETDRIVER2, whose RTTI is 124 */
case 124: rNETDRIVERZ2read_msg((NETDRIVER2*)C); break;

case 138: rNETDRIVER16read_msg((NETDRIVER16*)C); break;
}

}

Depending on the knowledge the compiler has on the possible actual
dynamic types of the NETDRIVER, the number of branches in the switch can
be reduced, or the switch itself could even be replaced by a sequence of
if-then-else. If the Dynamic Type Set for the receiver is a singleton (e.g.,
NETDRIVERS whose id is 127), GNU SmallEiffel further specializes the
generated code by optimizing out the runtime type test completely and
substituting the call to XrNETDRIVERread msg by a direct call to
rNETDRIVER5read_msg .

3.3 Performance Results for Mercure

We consider three versions of Mercure to compare the effect of the special-
ization of the code generation: FullMercure, the general-purpose version of
the program (where anyone of the trillions of Mercure variants can be
dynamically configurated at runtime), a more restricted version called
CustomMercure, and MiniMercure, a minimal version of the software, with
only one of each configurable part available. These three variants use
exactly the same software baseline. The only difference is that a different
Mercure concrete factory is selected as the root class, i.e., the class
containing the entry point of the application (see Figure 1).

The left part of Figure 3 compares various compile time statistics for
these three Mercure versions: the number of lines of code (LOC) for
describing the configuration (i.e., the number of LOC of the relevant
Mercure concrete factory, ranging from 36 to 96), the size of the full Eiffel
source code (in kilolines of code), the size of the generated C code (kLOC),
and finally, the type inference score. This score is the ratio of dynamic calls
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Fig. 3. Compile time and runtime statistics.

that could be replaced by direct calls at compile time. It ranges from 91% to
more than 99% in MiniMercure. This means that the GNU SmallEiffel
compiler has been able to early bind most of the (conceptually) dynamic
binding in the MiniMercure version.

Since the dynamic configuration we choose for the Mercure and Custom-
Mercure variants is the same as the one selected at compile time in
MiniMercure, all versions have exactly the same dynamic behavior. Yet the
compiler is able to use type inference to detect what is in fact configured
statically in specialized versions of Mercure factories to generate a more
compact and efficient code. For example, in the MiniMercure case, the call
to the (pure virtual) routine read_msg from the class NETDRIVER has been
compiled to a direct call to INETDRIVER5read_msg, i.e., the version defined
in the class NETDRIVERS. Actually, if we look in the generated code, we can
check that it has even been in-lined in the context of the caller. More
generally, the generated code has the same structure as the one that would
have been obtained with a preprocessor-based method. This is illustrated in
the right part of Figure 3, with the memory footprints (in tens of kilobytes)
of our three versions of Mercure, as well as the mean time spent (in us) in
delivering, forwarding, and relaying SMDS messages (see Jézéquel [1998]
for more details on our experimental conditions).

The substantial performance improvement (up to 18%) brought by type
inference in MiniMercure can be linked to the fact that in Mercure the
variants of configuration items located on the critical path are relatively
small classes made of simple methods. Without optimizations, the time the
system would spend into dynamic dispatch (and the related cache misses)
would not be negligible. Clearly this is not always the case. For instance,
we applied the ideas of this article to the configuration management of
UMLAUT, a toolbox for handling UML models. In UMLAUT the configura-
tion items are multiple parsers (CDIF, MDL, Java/C+ +/Eiffel, etc.) and
corresponding generators, as well as the supported OS, compilers, and
levels of functionality. In contrast to the Mercure case, the variants of these
configuration items are rather large and complex classes. The relative time
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spent in optimizable dynamic dispatch is then much less important, and
the overall performance improvement of specialized versions is negligible.
On the other hand, the difference in footprint is much bigger: from ten to
one between the general-purpose version of UMLAUT and the most special-
ized one.

Another way to look at the performance differences between MiniMer-
cure and FullMercure is to consider that it represents the maximum price
that the designer would have to pay for trading time and space perfor-
mances for dynamic configuration capabilities. Even more interestingly,
the designer can easily choose his own trade-off between these two proper-
ties: he or she has just to select the relevant concrete factory, yet keeping
the very same software baseline.

4. DISCUSSION AND RELATED WORK

4.1 Discussion

Our approach is not the ultimate solution to all SCM problems. For one
thing, it does not make variants disappear: on the contrary they are made
first-class objects, so that both the engineer and the compiler can reason
about it.

Since some SCM issues (variant management) are now considered at the
design level, you can even show your client a UML diagram with the
variants made explicit. It is then much easier and less error prone (due to
static type checking) to introduce new variants of configuration items and
to select and evolve them using standard OO design patterns (e.g., Abstract
Factory).

Because the configuration is expressed in a uniform manner (no more
static versus dynamic distinction at the design level), the designer can
easily change his or her mind (should language selection be static or
dynamic?) without changing the design, and let the compiler generate the
best code out of it. This is particularily helpful for software with rapidly
changing requirements.

For the compiler to reason about variants with type inference, it must
have access to the full code. It is clear that in our approach we cannot deal
efficiently with libraries of classes compiled in .0 or .a forms. However, .o
and .a Unix formats are anyway not very usable in an OO context because
they lack type information. They were used in the past to solve a number of
problems, that are now dealt with at another level:

—Enforcing modularity for procedural programs: this is now superseded by
OO concepts.

—Speed of compilation: while this still holds for small programs, it is well
known that large C++ compilations actually spend most of their time in
link editing. So having .0 or .a files no longer reduces much the overall
edit/compile/link/test time.
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—Source protection: having access to the full code does not mean full source
code, because the source can be precompiled in a “distributable” format,
e.g., Java .class formats or Eiffel “precompiled” formats from some
vendors. Alternatively, sophisticated encryption technology could be used
to protect the source code.

Our approach does not remove the need for classical configuration
management tools. We still have to deal with revisions (new features, bug
corrections, etc.) and possibly concurrent development activities. However,
concurrent development activities are minimized by the fact that a variant
part is typically small and located in its own file: someone responsible for a
product variant would not have to interfere with other people modifica-
tions, and conversely. Thus in our experience, a simple tool such as RCS or
CVS (equipped with automatic symbolic naming of versions) should be
enough for many sites.

Doing all the configuration in the target language eliminates the need to
learn and use yet another complex language used just for the configuration
management. On the other hand, actually programming the concrete
factories to specify the configuration is quite tedious, albeit straightfor-
ward: some kind of simple automatization scheme would be useful.

4.2 Related Work

This work can be seen as an application of ideas circulating in the “Partial
Evaluation” community for years. Actually, it can be seen as taking benefit
of the fact that the type of configurable parts have bounded static varia-
tions (i.e., the sets of possible types are known at compile time). Because
this partial evaluation only deals with the computation of dynamic type
sets, it is also clearly related with the domain of type inference [Agesen
1996].

Related work from the SCM point of view has already been extensively
discussed in this article. With respect to approaches trying to leverage the
object-oriented or object-based technologies, our idea of designing the
application in such a way that the SCM is simplified is not new [Bendix
1992; Gallagher and Berman 1993]. But previous works needed a dedicated
tool to handle the actual SCM. Since in our approach the SCM is done
within the OO programming language, there is no need for such an ad hoc
tool: the compiler itself handles all the work.

5. CONCLUSION

Our contribution in this article was to propose a method to simplify
software configuration management by reifying the variants of configura-
tion items in an object-oriented software system into language-level objects
and to show that newly available compilation technology makes this
proposal attractive with respect to performance (memory footprint and
execution time). The trick for the compiler is to infer which classes are not
needed for a specific configuration and to optimize the generated code
accordingly. This approach opens the possibility of leveraging the good
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modeling capabilities of object-oriented languages to deal with fully dy-
namic software configuration, while being able to produce a space- and
time-efficient executable when the program contains enough static configu-
ration information.

We have demonstrated the interest of this idea on a case study from the
telecommunications domain. In the most favorable cases, the GNU Small-
Eiffel compiler was able to infer the type of the receiver in more than 99%
of the cases, and thus to optimize out the dynamic binding. Even if
performance improvements resulting from type inferences look especially
good in this example (due to the fine grain of its variants), we found it
worthwhile to start applying this idea to all our new projects. Still, reifying
variants of configuration items cannot become a widely accepted practice in
software configuration management until more mainstream compilers in-
corporate type inference technologies. This actually seems to be work in
progress for several compilers for C++ and Java.
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