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Abstract

We use ideas from distributed computing and game theory to study dynamic and decentralized

environments in which computational nodes, or decision makers, interact strategically and with limited

information. In such environments, which arise in many real-world settings, the participants act as both

economic and computational entities. We exhibit a general non-convergence result for a broad class

of dynamics in asynchronous settings. We consider implications of our result across a wide variety of

interesting and timely applications: game dynamics, circuit design, social networks, Internet routing,

and congestion control. We also study the computational and communication complexity of testing the

convergence of asynchronous dynamics. Our work opens a new avenue for research at the intersection of

distributed computing and game theory.

1 Introduction

Dynamic environments where decision makers repeatedly interact arise in a variety of settings, such as
Internet protocols, large-scale markets, social networks, and multi-processor computer architectures. Study
of these environments lies at the boundary of game theory and distributed computing. The decision makers
are both strategic entities with individual economic preferences and computational entities with limited
resources, working in a decentralized and uncertain environment. To understand the global behaviors that
result from these interactions—the dynamics of these systems—we draw on ideas from both disciplines.

The notion of self stabilization to a “legitimate” state in a distributed system parallels that of convergence
to an equilibrium in a game. The foci, however, are very different. In game theory, there is extensive
research on dynamics that result from what is perceived as natural strategic decision making (e.g., best-
or better-response dynamics, fictitious play, or regret minimization). Even simple heuristics that require
little information or computational resources can yield sophisticated behavior, such as the convergence
of best-response dynamics to equilibrium points (see [20] and references therein). These positive results
for simple game dynamics are, with few exceptions (see Section 2), based on the sometimes implicit and
often unrealistic premise of a controlled environment in which actions are synchronous and coordinated.
Distributed computing research emphasizes the environmental uncertainty that results from decentralization,
but has no notion of “natural” rules of behavior. It has long been known that environmental uncertainty—in
the form of both asynchrony [15, 30] and arbitrary initialization [10]—introduces substantial difficulties for

This is the authors’ version of this work. The definitive version will be published in ACM Trans. Econ. Comput. A preliminary
version of some of this work appeared in Proceedings of the Second Symposium on Innovations in Computer Science (ICS
2011) [25]. Authors’ addresses: A. D. Jaggard, Formal Methods Section (Code 5543), U.S. Naval Research Laboratory, email:
aaron.jaggard@nrl.navy.mil; part of this work was carried out while Jaggard was at DIMACS, Rutgers University and visiting
Colgate University; N. Lutz, Department of Computer Science, Rutgers University, email:njlutz@rutgers.edu; M. Schapira,
School of Computer Science and Engineering, Hebrew University of Jerusalem, email: schapiram@huji.ac.il; R. N. Wright,
Department of Computer Science and DIMACS, Rutgers University, email: rebecca.wright@rutgers.edu.

1

http://arxiv.org/abs/1509.02955v2


protocol termination in distributed systems. Our work bridges the gap between these two approaches by
initiating the study of game dynamics in distributed computing settings. We take the first steps of this
research agenda, focusing primarily on systems in which the decision makers, or computational nodes, are
deterministic and have bounded recall, meaning that their behavior is based only on the “recent history” of
system interaction. Our model is asynchronous in the sense of allowing, at every timestep, an adversarially
chosen subset of nodes to be activated.

Our main contribution is a general impossibility result (Theorem 1) for asynchronous environments,
showing that a large and natural class of bounded-recall dynamics can fail to converge whenever there
are at least two “equilibrium points” of the dynamics. We prove this result using a valency argument
(a now-standard technique in distributed computing theory [30, 14]). We discuss the implications of this
result for game dynamics and describe its applications to asynchronous circuit design, social networks,
interdomain routing protocols such as BGP, and congestion control in networks. We also explore the impact
on convergence guarantees of asynchrony that is bounded, and we present complexity hardness results for
checking whether an asynchronous system will always converge: we show that it is PSPACE-hard and requires
exponential communication.

2 Related Work

Our work relates to many ideas in game theory and in distributed computing. Here, we discuss game-
theoretic work on the dynamics of simple strategies and on asynchrony, distributed computing work on fault
tolerance and self stabilization, and other connections between game theory and computer science (for more,
see [18]). We also highlight the application areas we consider.

Algorithmic game theory. Since our work draws on both game theory and computer science, it may be
considered part of the broader research program of algorithmic game theory (AGT), which merges concepts
and ideas from those two fields [35]. Three main areas of study in AGT have been algorithmic mechanism
design, which applies concepts from computer science to economic mechanism design [34]; the “price of anar-
chy,” which describes the efficiency of equilibria and draws on approximability research [27]; and algorithmic
and complexity research on the computation of equilibria [36]. Analyzing the computational power of learn-
ing dynamics in games has been of particular interest (see, e.g., [6, 26, 2, 37]). Our work creates another link
between game theory and computer science by drawing on two previously disjoint areas, self-stabilization
in distributed computing theory and game dynamics, to explore broader classes of dynamics operating in
adversarial distributed environments.

Adaptive heuristics. Much work in game theory and economics deals with adaptive heuristics (see [20]
and references therein). Generally speaking, this long line of research explores the “convergence” of simple
and myopic rules of behavior (e.g., best-response/fictitious-play/no-regret dynamics) to an “equilibrium”.
However, with few exceptions (see below), such analysis has so far primarily concentrated on synchronous
environments in which steps take place simultaneously or in some other predetermined order. In this work, we
explore dynamics of this type in asynchronous environments, which are more realistic for many applications.

Game-theoretic work on asynchronous environments. Some game-theoretic work on repeated games
considers “asynchronous moves.” Often, as in [31], this asynchrony merely indicates that players are not all
activated at each time step, and thus is used to describe environments where only one player is activated at a
time (“alternating moves”), or where there is a probability distribution that determines which player(s) are
activated at each timestep. Other work does not explore the behavior of dynamics, but has other research
goals (e.g., characterizing equilibria, establishing folk theorems); see [29, 42], among others, and references
therein. To the best of our knowledge, we are the first to study the effects of asynchrony (in the broad
distributed computing sense) on the convergence of game dynamics to equilibria.

Fault-tolerant computation. We use ideas and techniques from work in distributed computing on protocol
termination in asynchronous computational environments where nodes and communication channels are
possibly faulty. Protocol termination in such environments, initially motivated by multi-processor computer
architectures, has been extensively studied in the past three decades [15, 3, 9, 4, 23, 39], as nicely surveyed
in [30, 14]. Fischer, Lynch and Paterson [15] showed, in a landmark paper, that a broad class of failure-
resilient consensus protocols cannot provably terminate. Intuitively, the risk of protocol non-termination in
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that work stems from the possibility of failures; a computational node cannot tell whether another node is
silent due to a failure or is simply taking a long time to react. Our non-convergence result, by contrast,
applies to failure-free environments. In game-theoretic work that incorporated fault tolerance concepts,
Abraham et al. [1] studied equilibria that are robust to defection and collusion.

Self stabilization. The concept of self stabilization is fundamental to distributed computing and dates
back to Dijkstra 1974 [8] (see [10] and references therein). Convergence of dynamics to an “equilibrium” in
our model can be viewed as the self stabilization of such dynamics (where the “equilibrium points” are the
legitimate configurations). Our formulation draws ideas from work in distributed computing (e.g., Burns’
distributed daemon model [5]) and in networking research [17] on self stabilization.

Applications. We discuss the implications of our non-convergence result across a wide variety of applica-
tions, that have previously been studied: convergence of game dynamics (see, e.g., [21, 22]); asynchronous
circuits (see, e.g., [7]); diffusion of innovations, behaviors, etc., in social networks (see [33, 24]); interdomain
routing [17, 40]; and congestion control [16].

3 Asynchronous Dynamic Interaction

In this section we present our model of asynchronous dynamic interaction. Intuitively, an interaction system
consists of a collection of computational nodes, each capable of selecting actions that are visible to the
other nodes. The state of the system at any time consists of each node’s current action. Each node has a
deterministic reaction function that maps system histories to actions. At every discrete timestep, each node
activated by a schedule simultaneously applies its deterministic reaction function to select a new action,
which is immediately visible to all other nodes.

Definition An interaction system is characterized by a tuple (n,A, f):

• The system has n ∈ Z+ computational nodes, labeled 1, . . . , n.

• A = A1 × . . . × An, where each Ai is a finite set called the action space of node i. A is called the
state space of the system, and a state is an n-tuple a = (a1, . . . , an) ∈ A. A history of the system is a
nonempty finite sequence of states, H ∈ Aℓ, for some ℓ ∈ Z+. The set of all histories is A

+ =
⋃

ℓ∈Z+
Aℓ.

• f : A+ → A is a function given by f(H) = (f1(H), . . . , fn(H)), where fi : A
+ → Ai is called node i’s

reaction function.

We now describe the asynchronous dynamics of our model, i.e., the ways that a system’s state can evolve
due to interactions between nodes. Informally, there is some initial state, and, in each discrete time step
1, 2, 3, . . ., a subset of the nodes are activated according to a schedule. The nodes that are activated in a
given timestep react simultaneously; each applies its reaction function to the current state to choose a new
action. This updated action is immediately observable to all other nodes.1

Definition Let S ⊆ [n] be a set of nodes. Define the function fS : A+ → A by fS(H) = (f̂1(H), . . . , f̂n(H)),

where each function f̂i : A
+ → Ai is given by

f̂i(a
0, . . . , aℓ) =

{

fi(a
0, . . . , aℓ) if i ∈ S

aℓi otherwise .

A schedule is a function σ : Z+ → 2[n] that maps each t to a (possibly empty) subset of the computational
nodes.2 If i ∈ σ(t), then we say that node i is activated at time t.

Since the reaction functions are deterministic, an initial history and a schedule completely determine the
resulting infinite state sequence; we call these state sequences trajectories.

1This model has “perfect monitoring.” While this is clearly unrealistic in some important real-life contexts (e.g., some of the
environments considered in Section 5), this restriction only strengthens our main results, which are impossibility results.

2[n] denotes {1, . . . , n}, and for any set S, 2S is the set of all subsets of S.
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Definition Let H = (a0, . . . , aℓ) ∈ A+ be a history, and let σ be a schedule. The (H,σ)-trajectory of the
system is the infinite sequence a0, a1, a2, . . . extending H such that for every t > ℓ,

at = fσ(t)(a
0, . . . , at−1)

The history (a0, . . . , at−1) is the length-t prefix of the (H,σ)-trajectory.

3.1 Fairness and Convergence

Our main theorem is an impossibility result, in which we show that an adversarially chosen initial history
and schedule can prevent desirable system behavior. Notice that an arbitrary schedule might never allow
some or all nodes to react, or might stop activating them after some time. Hence, we limit this adversarial
power (thereby strengthening our impossibility result) by restricting our attention to fair schedules, which
never permanently stop activating any node.

Definition A fair schedule is a schedule σ that activates each node infinitely many times, i.e., for each
i ∈ [n], the set {t ∈ Z+ : i ∈ σ(t)} is infinite. A fair trajectory is one that is the (H,σ)-trajectory for some
history H and some fair schedule σ.

We are especially interested in whether a system’s fair trajectories converge, eventually remaining at a
single state forever.

Definition A trajectory a0, a1, a2, . . . converges to a state b if there exists some T ∈ Z+ such that, for all
t > T , at = b. The system is convergent if every fair trajectory converges. A state b is a limit state of the
system if some fair trajectory converges to b.

Note that it is possible for a trajectory to visit a limit state without converging to that state, meaning
that limit states are not necessarily “stable” or “absorbing.” They may, however, have basins of attraction,
in the sense that reaching certain histories might guarantee convergence to a given limit state.

Definition A history H is committed to a limit state b if, for every fair schedule σ, the (H,σ)-trajectory
converges to b. An uncommitted history is one that is not committed to any state.

3.2 Informational Restrictions on Reaction Functions

This framework allows for very powerful reaction functions. We now present several possible restrictions on
the information they may use. These are illustrated in Fig. 1.

Our main theorem concerns systems in which the reaction functions are self-independent, meaning that
each node ignores its own past and present actions when reacting to the system’s state. In discussing self
independence, we use the notation

A−i = A1 × . . .×Ai−1 ×Ai+1 × . . .×An ,

the state space of the system when i is ignored. Similarly, for a state a, a−i ∈ A−i denotes

(a1, . . . , ai−1, ai+1, . . . , an) ,

and given a history H = (a0, . . . , aℓ−1), we write H−i for (a
0
−i, . . . , a

ℓ−1
−i ). Using this notation, we formally

define self independence.

Definition A reaction function fi is self-independent if there exists a function gi : A+
−i → Ai such that

fi(H) = gi(H−i) for every history H ∈ A+.

A reaction function has bounded recall if it only depends on recent states.

Definition Given k ∈ Z+ and a history H = (a0, . . . , at−1) ∈ At with t ≥ k, the k-history at H is
H|k := (at−k, . . . , at−1), the k-tuple of most recent states. A reaction function fi has k-recall if it only

depends on the k-history and the time counter, i.e., there exists a function gi : A
k × Z+ → Ai such that

fi(H) = gi(H|k, t) for every time t ≥ k and history H ∈ At.
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We sometimes slightly abuse notation by referring to the restricted-domain function gi, rather than fi, as
the node’s reaction function.

A bounded-recall reaction function is stationary if it also ignores the time counter.

Definition We say that a k-recall reaction function is stationary if the time counter t is of no importance.
That is, if there exists a function gi : A

k → Ai such that fi(H) = gi(H|k) for every time t ≥ k and history
H ∈ At. A reaction function fi is historyless if fi is both 1-recall and stationary. That is, if fi only depends
on the nodes’ most recent actions.

While seemingly very restricted, historyless dynamics capture the prominent and extensively studied best-
response dynamics from game theory (as we discuss in Section 5.1). We show in Section 5 that historyless
dynamics also encompass a host of other applications of interest, ranging from Internet protocols to the
adoption of technologies in social network.
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Figure 1: Shading shows the information about past and current actions available to node 3 at time t given
different reaction function restrictions. Left: self-independent. Node 3 can see the entire record of other
nodes’ past actions, but not its own. The length of this record gives the current timestamp t. Center:
2-recall. Node 3 can see only the two most recent states. Unless the reaction function is stationary, it may
also use the value of the current timestamp. Right: self-independent and historyless. Node 3 can only see
other nodes’ most recent actions and cannot even see the value of the current timestamp.

4 General Non-convergence Result

We now present our main theorem, a general impossibility result for convergence of nodes’ actions under
bounded-recall dynamics in asynchronous, distributed computational environments.

Theorem 1 (Main theorem). In an interaction system where every reaction function is self-independent
and has bounded recall, the existence of multiple limit states implies that the system is not convergent.

We prove this theorem in Section 4.1 by using a valency argument. In Section 4.2, we show that the
hypotheses of Theorem 1 are necessary. We then discuss in Section 4.3 the connections of this work to the
famous result of Fischer et al. [15] on the impossibility of resilient consensus.

Note that system convergence is closely related to self stabilization, which is a guarantee that the system
will reach and remaining within a set of legitimate states. For a set L ⊆ A, we say that a system self-
stabilizes to L if, for every fair trajectory a0, a1, a2, . . ., there is some T ∈ Z+ such that, for every t > T ,
at ∈ L. In systems satisfying its hypotheses, Theorem 1 precludes self stabilization to any set containing
only committed states.

4.1 Proof of Main Theorem

In proving this theorem, we use the following sequence of lemmas. We first show in Lemma 1 that it is
sufficient to consider systems with 1-recall reaction functions. Then in Lemma 2, we argue that such a
system can be convergent only if every fair trajectory has no committed prefix. To show the existence of
a fair trajectory with no committed prefix, we show that in any such system, uncommitted histories exist
(Lemma 3), and can be extended to a longer uncommitted histories in a way that activates any given node
(Lemma 4). This means that committed prefixes can be avoided forever on a trajectory that activates every
node infinitely many times, i.e., a fair trajectory.
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Lemma 1. If there exists a convergent interaction system with bounded-recall, self-independent reaction
functions and multiple limit states, then there is also a convergent interaction system with 1-recall, self-
independent reaction functions and multiple limit states.

Proof. Assume that Γ = (n,A, f) is a convergent system with self-independent, k-recall reaction functions and
multiple limit states, for some k ∈ Z+. Consider a 1-recall system Γ′ = (n,A′, f ′), where A′ = Ak

1 × . . .×Ak
n

and f ′ : A′ × Z+ → A′ is given by

f ′
i((a

1
1, . . . , a

k
1), . . . , (a

1
n, . . . , a

k
n), t) =

[

fi((a
1
1, . . . , a

1
n), . . . , (a

k
1 , . . . , a

k
n), kt)

]k
.

Informally, a state in Γ′ is the transpose of a k-history for Γ. The reaction function f ′
i applies fi to

this transpose and repeats the output k times. Notice that Γ′ has self-independent reaction functions.
Furthermore, if (a1, . . . , an) is a limit state of Γ, then ((a1, . . . , a1), . . . , (an, . . . , an)) is a limit state of Γ′, so
Γ′ also has multiple limit states.

Let σ : Z+ → 2[n] be a fair schedule, and let H ∈ (Ak)ℓ be a history of Γ′ for some ℓ ∈ Z+. Define the
schedule σ′ : Z+ → 2[n] by

σ′(t) =

{

σ(t/k) t/k ∈ Z+

∅ otherwise .

Notice that σ′ is also fair. Let H ′ ∈ Akℓ be the history for Γ formed by concatenating the k-tuples in H . It
is easy to see that the (H,σ)-trajectory of Γ′ converges if and only if the (H ′, σ′)-trajectory of Γ converges.
Since we assumed that Γ is convergent, it follows that Γ′ is also.

Lemma 2. Let Γ be a convergent system with self-independent, 1-recall reaction functions. Then every fair
trajectory in Γ has a committed finite prefix.

Proof. Assume there exist some history H and fair schedule σ for Γ such that the (H,σ)-trajectory converges
to a state a = (a1, . . . , an) but has no committed finite prefix. We will construct a fair schedule σ′ such that
the (H,σ′)-trajectory does not converge, giving a contradiction.

Let u0,u1,u2, . . . be the (H,σ)-trajectory. Then there is some t0 ∈ Z+ such that ut = a for all t ≥ t0.
The fairness of σ implies that there is some t1 > t0 such that every node is activated by σ between t0 and
t1, i.e.,

⋃

t0<t<t1
σ(t) = [n]. By assumption, (u0, . . . ,ut1) is not committed to a, which means there is some

time t2 ≥ t1 and node i ∈ [n] such that fi(a, t2) 6= ai. The fairness of σ also implies that there is some t3 > t2
such that i ∈ σ(t3). Since t3 ≥ t0, we must have fi(a, t3) = ai. By self-independence, then, fi(a

′, t3) = ai
for all a′ such that a′−i = a−i.

We use these facts to iteratively build our fair schedule σ′. In the (H,σ′)-trajectory v0,v1,v2, . . ., the
system will repeatedly enter and exit the state a. First, let σ′(t) = σ(t) for all 1 ≤ t ≤ t0, so that vt0 = a.
Define σ′(t) on values t0 < t ≤ t2 as follows.

σ′(t) =

{

σ(t) t0 < t < t2
{i} t2 ≤ t ≤ t3 .

By our choices of t0, t2, and t3, this partial schedule activates every node and induces a segment

(vt0+1, . . . ,vt3 )

of the (H,σ′)-trajectory such that vt = a whenever t0 < t < t2 or t = t3, but v
t2 6= a.

Now set t0 = t3, select new t1, t2, i, and t3 relative to this t0, and iterate this process to define σ′(t) for all
values t ∈ Z+. Notice that σ′ is fair and that the (H,σ′)-trajectory v0,v1,v2, . . . does not converge, which
contradicts the assumption that the system is convergent. Therefore every fair trajectory in the system must
have a committed finite prefix.

We will use the following consequence of self independence in the course of proving Lemmas 3 and 4.

Observation 2. Let H ′ = (a0, . . . , aℓ) and H ′ = (b0, . . . ,bℓ) be committed histories in an system with
self-independent, 1-recall reaction functions. If aℓ−i = bℓ

−i for some i ∈ [n], then H and H ′ are committed
to the same limit state.
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Proof. Let H = (a0, . . . , aℓ) and H ′ = (b0, . . . ,bℓ) be committed histories such that, for some i ∈ [n],
aℓ−i = bℓ

−i, as in Fig. 2. Let σ be any fair schedule such that σ(ℓ + 1) = {i}, and consider the (H,σ)-
and (H ′, σ)-trajectories. When node i is activated, it will choose the same action regardless of whether the
history is H or H ′, by self independence. As the reaction functions have 1-recall, this means that both
these trajectories are identical after time ℓ + 1. Thus, since H and H ′ are both committed, they must be
committed to the same limit state.

aℓ = (aℓ1, . . . , a
ℓ
i , . . . , a

ℓ
n)

bℓ = (aℓ1, . . . , b
ℓ
i , . . . , a

ℓ
n)

{i}

{i}

Figure 2: Activating {i} from H = (a0, . . . , aℓ) or H ′ = (b0, . . . ,bℓ) will have the same outcome.

Lemma 3. Every interaction system with 1-recall, self-independent reaction functions and more than one
limit state has at least one uncommitted history.

Proof. Suppose that every history of length one is committed, and consider two such histories (a) =
((a1, . . . , an)) and (b) = ((b1, . . . , bn)). Observation 2 implies that, for all 1 ≤ i < n, the histories
((a1, . . . , ai−1, bi, . . . , bn)) and ((a1, . . . , ai, bi+1, . . . , bn)) are committed to the same limit state, and therefore
that a and b are committed to the same limit state. Thus, all histories of length one must be committed
to the same limit state, and it follows that all histories must be committed to the same limit state. This
contradicts the system having more than one limit state.

Lemma 4. Let (n,A, f) be an interaction system with self-independent, 1-recall reaction functions and more
than one limit state, let H = (a0, . . . , aℓ−1) ∈ Aℓ be an uncommitted history, for some ℓ ∈ Z+, and let i ∈ [n]
be a node. Then there exist some t ≥ ℓ and schedule σ such that i ∈ σ(t) and the length-(t+ 1) prefix of the
(H,σ)-trajectory is uncommitted.

Proof. Assume for contradiction that no such t and σ exist. Consider all histories that result from activating
a set containing i at history H . By assumption, each of these histories is committed. Notice that for all
S ⊆ [n] and j ∈ [n], the states fS(H) and fS∪{j}(H) can only differ at coordinate j. Hence, we can iteratively
apply Observation 2, much as in the proof of Lemma 3, to see that all these histories must be committed to
the same limit state, which we call b.

Let σ be any fair schedule, and let a0, a1, . . . be the (H,σ)-trajectory. For each t ∈ Z+, let Ht =
(a0, . . . , at), and notice that Hℓ−1 = H . For each t ≥ ℓ, let vt = fσ(t)∪{i}(H

t−1), and let It = (Ht−1,vt).
Since i ∈ σ(t) ∪ {i}, our assumption implies that each history It is committed. Let wt = f{i}(H

t−1), and
note that by self independence, f{i}(I

t−1) = wt also, as illustrated in Fig. 3. Let J t = (It−1,wt).
We now show by induction on t that, for every t ≥ ℓ, the history It is committed to b. This holds for

t = ℓ by our definition of b. Fix t > ℓ, and suppose that It−1 is committed to b. Then J t is also committed
to b. Consider all histories that result from activating a set containing i at history Ht−1. As before, our
assumption implies that all these histories are committed, and iterative application of Observation 2 shows
that they are all committed to the same limit state. In particular, It must be committed to the same limit
state as J t, namely b.

Since σ is a fair schedule, there is some time t for which i ∈ σ(t). For this t, we have Ht = It, so
Ht is committed to b. Thus for every fair schedule σ, the (H,σ)-trajectory converges to b, contradicting
the assumption that H is uncommitted. We conclude that our assumption was false and that the lemma
holds.

Proof of Theorem 1. It follows from Lemmas 3 and 4 that, in every system with 1-recall, self-independent
reaction functions and multiple limit states, it is be possible to activate each node infinitely many times
without ever reaching a committed history. This means that every such system has a fair trajectory with no
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H Hℓ

Jℓ+1Iℓ

Hℓ+1

Jℓ+2Iℓ+1

. . .

σ(ℓ)

σ(ℓ) ∪ {i} {i}

{i}

σ(ℓ + 1)

σ(ℓ + 1) ∪ {i} {i}

{i}

Figure 3: All histories in the bottom row are committed to the same limit state b.

committed prefix. By Lemma 2, this implies that no such system may be convergent. The theorem follows
immediately by Lemma 1.3

4.2 Tightness of Main Theorem

The following two examples demonstrate that the statement of Theorem 1 does not hold if either the self-
independence restriction or the bounded-recall restriction is removed.

Example The self-independence restriction cannot be removed.
Consider a system with one node, with action space {α, β}. When activated, the node always re-selects its
own current action. Observe that the system is convergent despite having two limit states.

Example The bounded-recall restriction cannot be removed.
Consider a system with two nodes, 1 and 2, each with the action space {α, β}. The self-independent reaction
functions of the nodes are as follows: node 2 always chooses node 1’s action; node 1 will choose β if node
2’s action changed from α to β in the past, and α otherwise. Observe that node 1’s reaction function has
unbounded recall: it depends on the entire history of interaction. We make the observations that the system
is convergent and has two limit states. Observe that if node 1 chooses β at some point in time due to the
fact that node 2’s action changed from α to β, then it will continue to do so thereafter; if, on the other hand,
1 never does so, then from some point in time onwards, node 1’s action is constantly α. In both cases, node
2 will have the same action as node 1 eventually, and thus convergence to one of the two limit states, (α, α)
and (β, β), is guaranteed. Hence, two limit states exist and the system is convergent nonetheless. Notice
also that node 1’s reaction functions requires only two states, so the bounded-recall restriction cannot be
replaced by a memory restriction.

4.3 Connection to Consensus Protocols

We now discuss the relationship of our main result (Theorem 1) to the seminal result of Fischer et al. on
the impossibility of fault-resilient consensus protocols. The consensus problem is fundamental to distributed
computing research. We give a brief description of it here, and we refer the reader to [15] for a detailed
explanation of the model.

Fischer et al. studied an environment in which a group of processes, each with an initial value in {0, 1},
communicate with each other via messages. The objective is for all non-faulty processes to eventually agree
on some consensus value x ∈ {0, 1}, where x must match the initial value of some process. Fischer et al.
established that no consensus protocol is resilient to even a single failure. Their proof of this breakthrough
non-termination result introduced the idea of a valency argument. They showed that there exists some initial
configuration that is bivalent, meaning that the resulting consensus could be either 0 and 1 (the outcome
depends on the asynchronous schedule of message transmission), and that this bivalence can be maintained.
Our proof of Theorem 1 also uses a valency argument, where uncommitted histories play the role of bivalent
configurations.

3Although our primary focus is on discrete state spaces, we note that in continuous metric spaces, the standard notion of
convergence only requires indefinite approach; the limit point might never be reached. Accordingly, given a metric d on an
infinite state space A, one could modify Definition 3.1 to say that a trajectory a0,a1,a2, . . . converges to a state b if for every
ε > 0 there exists some T ∈ Z+ such that, for all t > T , d(at,b) < ε. If we require every limit state to have a committed
neighborhood, then our proof of Theorem 1 still holds in this setting.
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Intuitively, the risk of protocol non-termination in the environment studied by Fischer et al. stems
from the possibility of failures; a computational node cannot tell whether another node is silent due to
a failure or is simply taking a long time to react. Our non-convergence result concerns environments in
which nodes/communication channels do not fail. Thus, each node is guaranteed that all other nodes will
eventually react. Observe that in such an environment reaching a consensus is easy; one pre-specified node
i (the “dictator”) waits until it learns all other nodes’ inputs (this is guaranteed to happen as failures are
impossible) and then selects a value vi and informs all other nodes; then, all other nodes select vi. By
contrast, the possibility of non-convergence shown in Theorem 1 stems from limitations on nodes’ behaviors.
Hence, there is no immediate translation from the result of Fischer et al. to ours (and vice versa).

5 Applications: Games, Circuits, Social Networks, and Routing

We present implications of our impossibility result, Theorem 1, for several well-studied environments: game
dynamics, circuit design, social networks, and Internet protocols. For most of these applications, the reaction
functions are historyless. Recalling Definition 3.2, this means that they react only to the current state of
the system.

5.1 Asynchronous Game Dynamics

Traditionally, work in game theory on game dynamics (e.g., best-response dynamics) relies on the explicit or
implicit premise that players’ behavior is somehow synchronized (in some contexts play is sequential, while
in others it is simultaneous). Here, we consider the realistic scenario that there is no computational center
than can synchronize players’ selection of strategies. We describe these dynamics in the setting of this work
and exhibit an impossibility result for best-response, and more general, dynamics.

A game is characterized by a triple (n, S,u). There are n players, 1, . . . , n. Each player i has a strategy
set Si. S = S1× . . .×Sn is the space of strategy profiles s = (s1, . . . , sn). Each player i has a utility function
ui : S → R, where u = (u1 . . . un). Intuitively, player i “prefers” states for which ui is higher. Informally, a
player is best responding when it has no incentive to unilaterally change its strategy.

Definition In a game U = (n, S,u), player i is best responding at s ∈ S if ui(s) ≥ ui(s
′) for every s′ ∈ S

such that s−i = s′−i. We write si ∈ BRU
i (s). A strategy profile s ∈ S is a pure Nash equilibrium (PNE ) if

every player is best responding at s.

There is a natural relationship between games and the interaction systems described in Section 3. A
player with a strategy set corresponds directly to a node with an action space, and a strategy profile may be
viewed as a state. These correspondences are so immediate that we often use these terms interchangeably.

Consider the case of best-response dynamics for a game in which best responses are unique (a generic
game): starting from some arbitrary strategy profile, each player chooses its unique best response to other
players’ strategies when activated. Convergence to pure Nash equilibria under best-response dynamics is the
subject of extensive research in game theory and economics, and both positive [38, 32] and negative [21, 22]
results are known. If we view each player i in a game (n, S,u) as a node in an interaction system, then
under best-response dynamics its utility function ui induces a self-independent historyless reaction function
fi : S−i → Si, as long as best responses are unique. Formally,

fi(a−i) = argmax
α∈Si

ui(a1, . . . , α, . . . , an) .

Conversely, any system with historyless and self-independent reaction functions can be described as
following best-response dynamics for a game with unique best responses. Given reaction functions f1, . . . , fn,
consider the game where each player i’s utility function is given by

ui(a) =

{

1 if fi(a) = ai
0 otherwise .

Best-response dynamics on this game replicate the dynamics induced by those reaction functions. Thus
historyless and self-independent dynamics are exactly equivalent to best-response dynamics. Since pure
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Nash equilibria are fixed points of these dynamics, the historyless case of Theorem 1 may be restated in the
following form.

Theorem 3. If there are two or more pure Nash equilibria in a game with unique best responses, then
asynchronous best-response dynamics can potentially oscillate indefinitely.

In fact, best-response dynamics are just one way to derive reaction functions from utility functions, i.e.,
to translate preferences into behaviors. In general, a game dynamics protocol is a mapping from games to
systems that makes this translation. Given a game (n, S,u) as input, the protocol selects reaction functions
f = (f1, . . . , fn), and returns an interaction system (n, S, f). The above non-convergence result holds for a
large class of these protocols. In particular, it holds for bounded-recall and self-independent game dynamics,
whenever pure Nash equilibria are limit states. When cast into game-theoretic terminology, Theorem 1
says that if players’ choices of strategies are not synchronized, then the existence of two (or more) pure
Nash equilibria implies that this broad class of game dynamics are not guaranteed to reach a pure Nash
equilibrium. This result should be contrasted with positive results for such dynamics in the traditional
synchronous game-theoretic environments. In particular, this result applies to best-response dynamics with
bounded recall and consistent tie-breaking rules (studied by Zapechelnyuk [43]).

Theorem 4. If there are two or more pure Nash equilibria in a game with unique best responses, then all
bounded-recall self-independent dynamics for which those equilibria are fixed points can fail to converge in
asynchronous environments.

5.2 Asynchronous Circuits

The implications of asynchrony for circuit design have been extensively studied in computer architecture
research [7]. By regarding each logic gate as a node executing an inherently historyless and self-independent
reaction function, we show that an impossibility result for stabilization of asynchronous circuits follows from
Theorem 1.

In this setting there is a Boolean circuit, represented as a directed graph G, in which the vertices represent
the circuit’s inputs and logic gates, and the edges represent the circuit’s connections. The activation of the
logic gates is asynchronous. That is, the gates’ outputs are initialized in some arbitrary way, and then
the update of each gate’s output, given its inputs, is uncoordinated and unsynchronized. A stable Boolean
assignment in this framework is an assignment of Boolean values to the circuit inputs and the logic gates
that is consistent with each gate’s truth table. We say that a Boolean circuit is inherently stable if it is
guaranteed to converge to a stable Boolean assignment regardless of the initial Boolean assignment.

To show how Theorem 1 applies to this setting, we model an asynchronous circuit with a fixed input as a
historyless interaction system with self-independent reaction functions. Every node in the system has action
space {0, 1}. There is a node for each input vertex, which has a constant (and thus self-independent) reaction
function. For each logic gate, the system includes a node whose reaction function implements the logic gate
on the actions of the nodes corresponding to its inputs. If any gate takes its own output directly as an input,
we model this using an additional identity gate; this means that all reaction functions are self-independent.
Since every stable Boolean assignment corresponds to a limit state of this system, this instability result
follows from Theorem 1:

Theorem 5. If two or more stable Boolean assignments exist for an asynchronous Boolean circuit with a
given input, then that asynchronous circuit is not inherently stable on that input.

5.3 Diffusion of Technologies in Social Networks

Understanding the ways in which innovations, ideas, technologies, and practices disseminate through social
networks is fundamental to the social sciences. We consider the classic economic setting [33] (which has
lately also been approached by computer scientists [24]) where each decision maker has two technologies
{X,Y } to choose from and wishes to have the same technology as the majority of its “friends” (neighboring
nodes in the social network). We exhibit a general asynchronous instability result for this environment.

In this setting there is a social network of users, represented by a connected graph in which users are
the vertices and edges correspond to friendship relationships. There are two competing technologies, X and
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Y . Each user will repeatedly reassess his choice of technology, at timesteps separated by arbitrary finite
intervals. When this happens, the user will select X if at least half of his friends are using X and otherwise
select Y . A “stable global state” is a fixed point of these choice functions, meaning that no user will ever
again switch technologies. Observe that if every user has chosen X or every user has chosen Y , then the
system is in a stable global state.

The dynamics of this diffusion can be described as asynchronous best-response dynamics for the game in
which each player’s utility is 1 if his choice of technology is consistent with the majority (with ties broken
in favor of X) and 0 otherwise. This game has unique best responses, and the strategy profiles (X, . . . , X)
and (Y, . . . , Y ) are both pure Nash equilibria for this game. Thus Theorem 3 implies the following result.

Theorem 6. In every social network with at least one edge, the diffusion of technologies can potentially
oscillate indefinitely.

5.4 Interdomain Routing

Interdomain routing is the task of establishing routes between the smaller networks, or autonomous systems
(ASes), that make up the Internet. It is handled by the Border Gateway Protocol (BGP). We abstract a
recent result of Sami et al. [40] concerning BGP non-convergence and show that this result extends to several
BGP-based multipath routing protocols that have been proposed in the past few years.

In the standard model for analyzing BGP dynamics [17], there is a network of source ASes that wish
to send traffic to a unique destination AS d. Each AS i has a ranking function <i that specifies i’s strict
preferences over all simple (loop-free) routes leading from i to d. Each AS also has an export policy that
specifies which routes it is willing to make available to each neighboring AS. Under BGP, each AS constantly
selects the “best” route that is available to it (see [17] for more details). BGP safety, i.e., guaranteed
convergence to a stable routing outcome, is a fundamental desideratum that has been the subject of extensive
work in both the networking and the standards communities. We now cast interdomain routing into the
terminology of Section 3 to obtain a non-termination results for BGP as a corollary of Theorem 1.

Each AS acts as a computational node. The action space of each node i is the set of all simple routes
from i to the destination d, together with the empty route ∅. For every state (R1, . . . , Rn) of the system, i’s
reaction function fi considers the set of routes S = {(i, j)Rj : j is i’s neighbor and Rj is exportable to i}.
If S is empty, fi returns ∅. Otherwise, fi selects the route in S that is optimal with respect to <i. Observe
that this reaction function is deterministic, self-independent, and historyless, and that a stable routing tree
is a limit state of this system. Thus Theorem 1 implies the following result of Sami et al.

Theorem 7 (Sami et al. [40]). If there are multiple stable routing trees in a network, then BGP is not safe
on that network.

Importantly, the asynchronous model of Section 3 is significantly more restrictive than that of Sami et
al., so the result implied by Theorem 1 is stronger. Theorem 1 implies an even more general non-safety
result for routing protocols that depend on ASes that act self-independently and with bounded recall. In
particular, this includes recent proposals for BGP-based multi-path routing protocols that allow each AS to
send traffic along multiple routes, e.g., R-BGP [28] and Neighbor-Specific BGP (NS-BGP) [41].

5.5 Congestion Control

We now consider the fundamental task of congestion control in communication networks, which is achieved
through a combination of mechanisms on end-hosts (e.g., TCP) and on switches/routers (e.g., RED and
WFQ). We briefly describe the model of congestion control studied by Godfrey et al. [16].

There is a network of routers, represented by a directed graph G, in which vertices represent routers,
and edges represent communication links. Each edge e has capacity ce. There are n source-target pairs of
vertices (si, ti), termed “connections”, that represent communicating pairs of end-hosts. Each source-target
pair (si, ti) is connected via some fixed route, Ri. Each source si transmits at a constant rate γi > 0.4

For each of a router’s outgoing edges, the router has a queue management, or queuing, policy, that dictates
how the edge’s capacity should be allocated between the connections whose routes traverse that edge. The

4This is modeled via the addition of an edge e = (u, si) to G, such that ce = γi, and u has no incoming edges.
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network is asynchronous, so routers’ queuing decisions can be made simultaneously. An equilibrium of the
network is a global configuration of edges’ capacity allocation such that the incoming and outgoing flows
on each edge are consistent with the queuing policy for that edge. Godfrey et al. show that, while one
might expect flow to be received at a constant rate whenever it is transmitted at a constant rate, this is
not necessarily the case. Indeed, Godfrey et al. present examples in which connections’ throughputs can
potentially fluctuate ad infinitum, never converging an equilibrium.

We model such a network as a historyless interaction system to show that every network with multiple
equilibria can oscillate indefinitely. The computational nodes of the system are the edges. The action space of
each edge e intuitively consists of all possible ways to divide traffic going through e between the connections
whose routes traverse e. More formally, for every edge e, let N(e) be the number connections whose paths
go through e. Then e’s action space is Ae =

{(

x1, . . . , xN(e)

)

: each xi ≥ 0 and Σixi ≤ ce
}

. We assume
that the xi have bounded precision, meaning that the state space is finite.

Edge e’s reaction function fe models the queuing policy according to which e’s capacity is shared: for
every N(e)-tuple of nonnegative incoming flows (w1, . . . , wN(e)), fe outputs an action (x1, . . . , xN(e)) ∈ Ae

such that for every i ∈ [N(e)], xi ≤ wi—a connection’s flow leaving the edge cannot exceed its flow entering
the edge. These reaction functions are historyless and self-independent, and an equilibrium of the network
is a limit state of this system. Using Theorem 1, then, we can obtain the following impossibility result.

Theorem 8. If there are multiple capacity-allocation equilibria in the network, then dynamics of congestion
control can potentially oscillate indefinitely.

6 Complexity of Asynchronous Dynamics

We now turn to the communication complexity and computational complexity of determining whether a
system is convergent. We present hardness results in both models of computation even for the case of
historyless interaction. Our computational complexity result shows that even if nodes’ reaction functions
can be succinctly represented, determining whether the system is convergent is PSPACE-complete. Alongside
its computational implications, this intractability result implies that (unless PSPACE ⊆ NP) we cannot hope
to have short, efficiently verifiable certificates that guarantee a system’s convergence.

6.1 Communication Complexity

The following result shows that, in general, determining whether a system is convergent cannot be done
efficiently.

Theorem 9. Determining if a system with n nodes, each with 2 actions, is convergent requires communi-
cating Ω(2n) bits. This holds even if all nodes have historyless and self-independent reaction functions.

Proof. To prove our result we present a reduction from the 2-party set disjointness problem, a well-known
problem in communication complexity theory: There are two parties, Alice and Bob. Each party holds a
subset of [q]; Alice holds the subset A and Bob holds the subset B. The objective is to determine whether
A ∩B = ∅. This problem instance is denoted Disj

q(A,B). The following is well known.

Theorem 10. Determining whether A,B ⊆ [q] are disjoint requires (in the worst case) the communication
of Ω(q) bits. This lower bound applies to randomized protocols with bounded 2-sided error and also to
nondeterministic protocols.

We now present a reduction from 2-party set disjointness to the question of determining whether a system
with historyless and self-independent reaction functions is convergent. Given an instance Disj

q(A,B), we
construct a system with n nodes, each with two actions, as follows. (The relation between the parameters
q and n is to be specified later.) Let the action space of each node be {0, 1}. We now define the reaction
functions of the nodes. Consider the possible action profiles of nodes 3, . . . , n, i.e., the set {0, 1}n−2. Observe
that this set of actions profiles is the (n−2)-hypercube Qn−2, and thus can be visualized as the graph whose
vertices are indexed by the binary (n− 2)-tuples and such that two vertices are adjacent if and only if they
differ in exactly one coordinate. The reaction functions are based on following a snake in this hypercube.
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Definition A snake in a hypercube Qn is a simple cycle S = (v0, . . . , vk) that is chordless, i.e., for each
vi, vj on S, if vi and vj are neighbors in Qn, then vj ∈ {vi−1, vi+1}.

Let S be a maximal snake in Qn−2, and let q = |S|. We now show our reduction from Disj
q. We identify

each element j ∈ [q] with a unique vertex vj ∈ S. Without loss of generality, we assume that 0n−2 is on
S. For ease of exposition we also assume that 1n−2 is not on S. (Getting rid of this assumption is easy.)
Orient the edges in S to form a cycle. For any edge that has exactly one endpoint in S, orient the edge
toward S. An example is given in Fig. 4. Orient all other edges arbitrarily. For each i = 3, . . . , n, this
orientation induces a function gi : Qn−2 → {0, 1}, where gi(a3, . . . , an) is determined by the direction of the
edge {(a3, . . . ai−1, 0, ai+1, . . . , n), (a3, . . . ai−1, 1, ai+1, . . . , n)}. The nodes’ self-independent and historyless
reaction functions are as follows.

f1(a1, . . . , an) =

{

0 if a2 = 1 and (a3, . . . , an) = vj for some j ∈ A
1 otherwise

f2(a1, . . . , an) =

{

0 if a1 = 1 and (a3, . . . , an) = vj for some j ∈ B
1 otherwise

fi(a1, . . . , an) =

{

gi(a3, . . . , an) if a1 = a2 = 0
1 otherwise

Informally, the aim is for nodes 3, . . . , n to follow the snake S to vertices corresponding to each value j ∈ [q].

0001 0011

0101 0111

1001 1011

1101 1111

0000 0010

0100 0110

1000 1010

1100 1110

Figure 4: An acceptable orientation of the edges on Q4. The solid edges form a cycle on a maximal snake
S, and no edge is directed away from S.

Observation 11. 1n is the unique limit state of the system.

In our reduction Alice simulates node 1 (whose reaction function is based on A), Bob simulates node 2
(whose reaction function is based on B), and one of the two parties simulates all other nodes (whose reaction
functions are based on neither A nor B). The theorem now follows from the combination of the following
two claims.

Claim 12. In an oscillation there must be infinitely many time steps in which both node 1 and 2’s actions
are 0.

Proof. Suppose that from some moment forth it is never the case that both node 1 and 2’s actions are 0.
Observe that from that time onwards the nodes 3, . . . , n will always choose the action 1 when activated.
Hence, after some time has passed the actions of all nodes in {3, . . . , n} will be 1. Observe that whenever
nodes 1 and 2 are activated thereafter they shall choose the action 1, so we have convergence to the limit
state 1n.
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Claim 13. The system is convergent iff A ∩B = ∅.

Proof. If A ∩ B 6= ∅, initialize the system to a state (0, 0, a3, . . . , an), where (a3, . . . , an) = v1. Consider a
schedule that activates {3, . . . , n} in every timestep until (a3, . . . , an) = vj for some j ∈ A ∩ B. When that
happens, the schedule activates {1, 2} for two consecutive timesteps, then resumes activating {3, . . . , n}. The
functions gi ensure that, for each j ∈ [q], the vector (a3, . . . , an) will be equal to vj within a finite number of
timesteps. Since there is some j ∈ A∩B, nodes 1 and 2 will eventually be activated, so this schedule is fair.
This initial state and schedule clearly produce an oscillation, so the system is not convergent in this case.

Now assume for contradiction that A∩B = ∅ and the system is not convergent. we know from Claim 12
that if there is an oscillation, then there are infinitely many time steps in which both node 1 and 2’s actions
are 0. We argue that this implies that there must be infinitely many time steps in which both nodes select
action 0 simultaneously. Indeed, node 1 only chooses action 0 if node 2’s action is 1, and vice versa, and so
if both nodes never choose 0 simultaneously, then it is never the case that both nodes’ actions are 0 at the
same time step, a contradiction. Now, when is it possible for both 1 and 2 to choose 0 at the same time?
Observe that this can only be if the actions of nodes 3, . . . , n constitute an element that is in both A and B.
Hence, A ∩B 6= ∅, another contradiction.

We have reduced Disj
q(A,B), which requires Ω(q) bits of communication, to the problem of checking

convergence of an n-node system with historyless and self-independent reaction functions. As q was defined
as the length of a maximal snake in Qn, a classical combinatorial result due to Evdokimov shows that
q = Ω(2n).

Theorem 14 (Evdokimov [12]). Let z ∈ Z+ be sufficiently large. Then, the size |S| of a maximal snake in
the z-hypercube Qz is at least λ2z for some λ > 0.

This completes the proof of Theorem 9.

6.2 Computational Complexity

The above communication complexity hardness result required the representation of the reaction functions
to (potentially) be exponentially long. What if the reaction functions can be succinctly described? We now
present a strong computational complexity hardness result for the case that each reaction function fi is
historyless, and is given explicitly in the form of a Boolean circuit.

Theorem 15. When the reaction functions are given as Boolean circuits, determining whether a historyless
system with n nodes is convergent is PSPACE-complete.

Proof. Our proof is based on the proof of Fabrikant and Papadimitriou [13] that checking BGP safety is
PSPACE-complete. Importantly, that result does not imply Theorem 15, since the model of asynchronous
interaction considered in that work does not allow for simultaneous activation of nodes. We prove our
theorem by reduction from the problem of determining whether a linear space-bounded Turing machine
(TM) will halt from every starting configuration.

For n ∈ Z+, let M be a TM that can only access the first n tape cells. Let Q be M ’s machine state
space, Γ its tape alphabet, and δ : Q×Γ→ Q×Γ×{−1, 0, 1} its transition function. A configuration of M
is a triple (q, a, j) where, q ∈ Q is a machine state, a ∈ Γn describes the tape contents, and j ∈ [n] gives the
location of the control head.

Then we say that 〈M, 1n〉 is in shc (for space-bounded halting from all configurations) if, for every
configuration, M will halt if it begins its computation from that configuration. As Fabrikant and Papadim-
itriou [13] argue, the problem of checking whether a space-bounded TM will accept a blank input is reducible
to shc, and thus shc is PSPACE-hard.

We now reduce shc to the problem of determining whether a historyless interaction system is convergent.
Given n ∈ Z+ and a TM M that can only access the first n tape cells, we construct a historyless system
that is convergent if and only if 〈M, 1n〉 is in shc. The system has a cell node for each of the first n tape
cells and a head node to represent the control head. The cell nodes 1, . . . , n each have the action space Γ,
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and the head node n+1 has action space Q×Γ× [n]×{−1, 0, 1}. For a ∈ Γn, each cell node i ∈ [n] has the
reaction function

fi(a, (q, γ, j, d)) =

{

γ if i = j
ai otherwise .

For the head node, fn+1(a, (q, γ, j, d)) is given by the following procedure.

if aj = γ then

if j + d ∈ [n] then
j ← j + d;

(q, γ, d)← δ(q, aj);

return (q, γ, j, d);

Observe that (a, (q, γ, j, d)) is a limit state of this system if and only if q is a halting machine state for M .
Suppose the system is convergent, and let (q, a, j) be a configuration of M . Consider the system trajectory
that begins at state (a, (q, aj , j, 0)) and follows the schedule that activates every node in every round. This
trajectory will reach a limit state, and it corresponds directly to a halting run of M that begins from (q, a, j),
so 〈M, 1n〉 is in shc.

Conversely, suppose that 〈M, 1n〉 is in shc, and let (a, (q, γ, j, d)) be a system state. Suppose that aj = γ.
Then consider the computation byM that begins at configuration (q, a, j′), where j′ = min{max{j+d, 1}, n}.
This computation will reach a halting machine state, and any fair trajectory from (a, (q, γ, j, d)) will go
through the same sequence of machine states as this computation, which means that the trajectory will
converge to a limit state. If aj 6= γ, then the system state will remain the same until j is activated and
takes action γ, after which the above argument applies. Thus the system is convergent. We conclude that
checking whether the system is convergent is PSPACE-hard. Since it is straightforward to check convergence
in polynomial space, this problem is PSPACE-complete.

In a preliminary version of this work [25], we conjectured that the above PSPACE-completeness result
also holds for the case of self-independent reaction functions.

Conjecture 16. Determining whether a system with n nodes, each with a deterministic self-independent
and historyless reaction function, is convergent is PSPACE-complete.

This conjecture has since been proved by Engelberg et al. [11].

7 Conclusions and Future Research

In this paper, we have taken the first steps towards a complete understanding of strategic dynamics in
distributed settings. We proved a general non-convergence result and several hardness results within this
model. We also discussed some important aspects such as the implications of fairness and randomness, as
well as applications to a variety of settings. We believe that we have only scratched the surface in the
exploration of the convergence properties of game dynamics in distributed computational environments,
and many important questions remain wide open. We now outline several interesting directions for future
research.

Other limitations, convergence notions, and equilibria. We have considered particular limitations on
reaction functions, modes of convergence, and kinds of equilibria. Understanding the effects of asynchrony
on different classes of reaction functions (e.g., uncoupled dynamics, dynamics with outdated information)
and for other types of convergence (e.g., of the empirical distributions of play) and equilibria (e.g., mixed
Nash equilibria, correlated equilibria) is a broad and challenging direction for future research.

Other notions of asynchrony. We believe that better understanding the role of degrees of fairness, ran-
domness, and other restrictions on schedules from distributed computing literature, in achieving convergence
to equilibrium points is an interesting and important research direction.

Characterizing asynchronous convergence. We still lack characterizations of asynchronous convergence
even for simple dynamics (e.g., deterministic and historyless). Our PSPACE-completeness result in Section 6
eliminates the possibility of short witnesses of guaranteed asynchronous convergence unless PSPACE ⊆ NP,
but elegant characterizations are still possible.
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Topological and knowledge-based approaches. Topological [4, 23, 39] and knowledge-based [19] ap-
proaches have been very successful in addressing fundamental questions in distributed computing. Can these
approaches shed new light on the implications of asynchrony for strategic dynamics?

Further exploring the environments of Section 5. We have applied our main non-convergence result
to the environments described in Section 5. These environments are of independent interest and are indeed
the subject of extensive research. Hence, the further exploration of dynamics in these settings is important.
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