
ar
X

iv
:1

70
3.

10
69

2v
1

 [
cs

.D
B

]
 3

0
M

ar
 2

01
7

Knowledge Rich Natural Language Queries over
Structured Biological Databases

Hasan M. Jamil
Department of Computer Science

University of Idaho
jamil@uidaho.edu

ABSTRACT

Increasingly, keyword, natural language and NoSQL queries
are being used for information retrieval from traditional as
well as non-traditional databases such as web, document,
image, GIS, legal, and health databases. While their popu-
larity are undeniable for obvious reasons, their engineering is
far from simple. In most part, semantics and intent preserv-
ing mapping of a well understood natural language query
expressed over a structured database schema to a struc-
tured query language is still a difficult task, and research
to tame the complexity is intense. In this paper, we pro-
pose a multi-level knowledge-based middleware to facilitate
such mappings that separate the conceptual level from the
physical level. We augment these multi-level abstractions
with a concept reasoner and a query strategy engine to dy-
namically link arbitrary natural language querying to well
defined structured queries. We demonstrate the feasibility
of our approach by presenting a Datalog based prototype
system, called BioSmart, that can compute responses to ar-
bitrary natural language queries over arbitrary databases
once a syntactic classification of the natural language query
is made.

CCS Concepts

•Information systems → Query optimization; Query
languages for non-relational engines; Query planning;
Semi-structured data; Web interfaces; •Human-centered
computing →Graphical user interfaces; Web-based in-
teraction; Graph drawings; •Applied computing →Bioin-
formatics; Genomics; •Computing methodologies →
Logic programming and answer set programming;

1. INTRODUCTION
An overwhelming majority of scientific databases use tra-

ditional database query interfaces such as SQL and XQuery,
or predesigned graphical query interfaces to grant access
to their contents. As the information contents of these
databases grow more complex in representation, interpreta-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

tion and analysis, query interfaces needed to access them
are also becoming increasingly complicated. Often time,
the only convenient method is a predesigned graphical inter-
face through which all accesses are facilitated even though it
severely limits the usefulness of these rich information repos-
itories. Although widely used in Life Sciences, these inter-
faces do not allow ad hoc or spontaneous queries, or inves-
tigative queries in ways a natural language interface (NLI)
would allow. An encouraging sign is that NLIs are increas-
ingly being used to provide non traditional query responses
in various types of databases such as knowledge repositories
[8, 18, 15], text based information repositories [51, 19, 23],
biological and clinical databases [62, 24, 52], GIS databases
[46] and of course traditional relational databases [65, 47,
48] with limited scopes.

From the standpoint of end users in Life Sciences, flat
view of data is perhaps the most acceptable of all formats
while some forms of shallow nesting were also welcomed.
Therefore, it can be argued that the relational data model
fits well with the practice and end user psychology well in
this domain. While XML is creeping its way up in use,
querying such data sets using languages such as XQuery or
XPath is considered truly difficult still. Therefore, without
an abstraction that flattens the nested structure of XML,
the natural language processing (NLP) interfaces to such
databases [65, 47, 48] do not appear to have a serious influ-
ence. As argued in works such as BioBike [17, 16], for over
40 years biologists have voted overwhelmingly not to em-
brace computer programming as a basic tool through which
to look at their world that led to BioBike’s development
(and many other that followed, e.g., [62, 24, 52]) that tried
to use NLP as a means to gain access to needed information
from the vast array of Life Sciences repositories. But the re-
ality is that such a high level interface still remains illusive
mostly because of the representation hurdles, highly inter-
pretive nature of Life Sciences data1, translation from natu-
ral language to database queries, and the inherent difficulty
in processing NLP queries. A practical approach, we argue,
is providing a flat relational view of complex data such as
XML so that users can comprehend and query the infor-
mation repositories at their disposal in the well understood
model of flat relations as a middle ground2. Once chosen,
the question remains, how do we facilitate comprehension of

1Tool applications are essential before an understanding can
be gained for most biological data such as DNA sequences,
protein structure, or pathways. Simple read off of the data
as in relational model does not reveal any information in
general.
2This is not to say that other data models are not useful,

http://arxiv.org/abs/1703.10692v1
10.1145/1235

a natural language query in a given context, device a strat-
egy to compute its response, and implement the strategy as
a traditional query over structured relations stored in local
or remote information repositories?

In this paper, our goal is to show that a prudent design
of multiple abstraction layers to separate the lower level
structural details from the upper conceptual level aids in
developing a sophisticated reasoning mechanism to analyze
the semantic characterization of database objects and their
inherent relationships. Once the natural language query’s
(NLQ) structural characterization is completed, a rule rea-
soner can be used to analyze the layered representation to
map the NLQ to a structured query that not only imple-
ments the intent of the upper level query, it does so in a co-
operative manner that no traditional query languages such
as SQL or XQuery do. By that we mean, we can now actu-
ally respond to queries in much the same way a human might
do and thereby reflect a deeper semantic understanding of
the queries and their true intents. The diagram in figure 1
shows a bird’s eye view of the interrelationships between the
components in different abstraction layers, the machineries
involved, and the conceptual model how the entire system
functions to produce near human response to natural lan-
guage queries.

Figure 1: System components.

As a next logical step, we believe it is possible to extend
this system toward a cooperative information repository that
is capable of sensing the context of a query and carrying the
context over an entire investigative session. To that end,
we also envision a system where concepts are learned in a
query session, and the interrelationship among them and the

but to emphasize that flat relations make it possible to use
powerful deductive query engines such as Prolog, XSB [64]
and F-Logic [42] without much effort as we demonstrate in
this paper. In fact, the ORAKEL system [13] has been de-
veloped entirely in F-Logic.

constraints they impose can be made to influence the can-
didate set of responses. In an early research on SmartBase
[67], we have shown that non-monotonic inheritance of con-
straints (SQL’s where clause conditions) related to concepts
in a query to the next query as a logical conjunct simu-
lates the possible world semantics of databases [26, 44] in a
practical and computable way yet offers a better and richer
approach to interactive query processing and cooperative re-
sponse than systems such as [56, 49, 10] or earlier research on
cooperative query processing [12, 58, 20]. We claim that con-
textual and knowledge rich NLP query processing remains
as an extremely difficult proposition in contemporary ap-
proaches and the NLP model we propose in this paper can
be adapted to include SmartBase query processing features
to support a truly contextual NLQ interface.

1.1 A Motivating Example
Consider a protein/gene function database consisting of

two base tables – UniProt Protein Table and Entrez Gene
Table as shown in figures 2(a) and 2(b) respectively. Now
consider answering queries of the form

1. “List all F-box domain protein 2 sequences”, or

2. “What are the functions of UniProt proteins Q9UKT8
and Q9NVA1”?

In a conventional relational database, these two natural lan-
guage queries will most likely map to the following to two
SQL queries to return the answer sets shown in figures 2(c)
and 2(d) respectively.

select DNASequence

from Entrez as e, UniProt as u

where u.ProteinID=e.UniProtProteinID and

ProteinName="F-box domain protein 2"

select Function

from UniProt

where ProteinID in {Q9UKT8, Q9NVA1}

The scientific fact here is that the UniProt protein Q60584,
with corresponding gene name FBXW2, is a mouse protein.
Functionally, Q60584 is identical to UniProt protein Q9UKT8

and have the same gene name, FBXW2, is a human pro-
tein. Furthermore, they also have almost identical DNA
sequences. This similarity can be computed – (i) by ho-
mology of the two sequences corresponding to the UniProt
IDs Q60584 and Q9UKT8 as shown in Entrez Gene Table, (ii)
knowing that these two genes are orthologs, (iii) by deter-
mining that they have identical gene names in Entrez Gene
Table, (iv) by consulting a ID mapping database such as
GeneCard [1] and finding their equivalence, or (v) by con-
sulting the Gene Ontology (GO) database [21], among many
other ways. If such background knowledge is used, then
it becomes possible to return the tables shown in figures
2(e) and 2(f) with an additional response in each table, as
knowledge derived responses. Notice that such inferences are
not directly possible in traditional relational databases, but
these responses are valid, and useful. The BioBike system
actually takes this approach.

In contrast, in BioBike, users must specifically perform
a homolog computation in order to receive the responses
shown in figures 2(e) and 2(f). The system only provides
the computational means. The novelty of our system is that

ProteinName ProteinID Function
Putative replication O85067 Plasmid maintenance
Ubiquinol-cytochrome c reductase Q9NVA1 Cytoplasmic vesicle
F-box domain protein 2 Q60584 Substrate recognition

(a) Protein Table “UniProt”

GeneName GeneID UniProtProteinID DNASequence ...
FBXW2 30050 Q60584 CTCTTTCTTTCG
repA1 1246500 O85067 ACCCTTGGAAACCC... ...
FBXW2 26190 Q9UKT8 CTCTTTCTTTCT
UQCC 55245 Q9NVA1 TTTTGGGGCCCCAAA... ...

(b) Gene Table “Entrez”

DNASequence
CTCTTTCTTTCG ...

(c) Query 1 Response

Function
Cytoplasmic vesicle

(d) Query 2 Response

DNASequence
CTCTTTCTTTCG ...
CTCTTTCTTTCT ...

(e) Enhanced Response 1

Function
Cytoplasmic vesicle
Substrate recognition

(f) Enhanced Response 2

Figure 2: Queries over UniProt and Entrez databases.

such knowledge is derived by the system on its own and
no explicit requests need to be made. In a more recent
work [32, 31], it was shown that an ontology based logi-
cal query language ConLog can be used to non-intrusively
capture semantic knowledge and query response generated
without such explicit knowledge entailed response compu-
tation. In this paper, our goal is to show that a canonical
representation, as shown in figures 3(a) through 3(f), can
be used to compose queries in a logic based language such
as Datalog without user intervention. More importantly, we
show that natural language sentences can be classified into
sentence structure templates, and these templates can be
used to select appropriate query predicates to fire to com-
pute intended responses. In the next few sections, we present
a detailed discission how our approach works.

1.2 Related Research
Our research in this paper is mainly influenced by the Bio-

Bike project [66, 17] at Virginia Commonwealth University.
In our own lab, we are focused on developing smart declara-
tive querying and workflow engines for distributed and het-
erogenous scientific databases. We have developed a declar-
ative query language for data integration called BioFlow
[38, 39] based on which we have developed two visual inter-
faces called VizBuilder [33, 28] and VisFlow [55, 53, 54] to
support distributed workflow queries for Life Sciences data
management and querying system called the LifeDB [9]. To
complement LifeDB, we have also develop an ID mapping
database called the MapBase [35] and phylogenetic database
PhyloBase [37, 36].

The promise of knowledge rich query interfaces in Life Sci-
ences inspired us to explore if systems could detect query in-
tent, especially in exploratory settings such as in SmartBase
in which we developed a contextual query processor capable
of recognizing the query skyline [43] from a set of successive
queries. Augmenting structured databases with semantic
knowledge for the purpose of knowledge rich queries have
been studied in the context of NLQs [32, 31], and struc-
tured database integration [34]. Despite many such efforts,
articulating application description by domain scientists in
Biology to facilitate knowledge rich queries remain a signif-
icant challenge. This, we believe, is mainly due to a com-

plex regiment of interpretive tools needed to analyze the raw
data, the domain specific knowledge that leads to many al-
ternative and approximate response to a query, and so on.
From these standpoints an NLP interface seems to be very
attractive for this community and BioBike stands out as an
interesting model as it demonstrated its ability to respond
to Biological queries in an intuitive way. In this paper, our
goal is to fuse these two approaches to be able to respond to
natural language queries over arbitrary biological databases.

While interesting in its approach, BioBike still seems to
have encoded the query processing logic into the system
in a way that did not support good enough abstractions
that made it a less likely candidate for a viable architecture
that designers could just adopt as a generalized engine for
widespread use. To a large extent, it still remained a seri-
ously hard wired programming application. Though NLP in-
terfaces for traditional structured databases are extensively
studied in the literature (e.g., [65, 47, 48]), knowledge rich
queries using NLP [40, 41] have been rarely and tangen-
tially explored. Mostly existing NLP systems map NLQs to
structured queries only when the database structures, appli-
cation domain and the interpretation of the data are known
and well understood. Although NLP is being increasingly
used to return possible answers [14, 6, 22], we stand out in
the way we conceptualize the database, represent them in
a canonical form, and allow an intelligent and user specific
analysis of the content of the database to map the NLQ to
a target declarative query language. We are unaware of any
system that follow this approach including BioBike.

The remainder of the paper is organized as follows. In
section 1.1, we have already presented an overview of the
system and discussed its various components on intuitive
grounds. Then to illustrate the functionalities of our system,
we discuss several expository examples and their execution
in reference to the system components just presented in sec-
tion 2. In contrast with many NLP based query processing
system, we aim to support description based query process-
ing in which a set of sentences together describe a complete
workflow of an application in the direction of SmartBase.
The type of NLP queries we support are introduced in sec-
tion 3 and demonstrate that the type of queries we support
covers a wide class of queries, and they can be nested to

ConceptA ConceptB
Gene Protein

(a) Derivatives: der

TableX TableY ColumnX ColumnY
Entrez UniProt UniProtProteinID ProteinID

(b) Foreign Keys: forK

ConceptX ConceptY Relation
Gene Gene Ortholog, Paralog, Duplication

(c) Similar Concepts: simCon

Relation Operation
Ortholog BLAST, ORSCAN
Paralog GENCODE

(d) Tools: cTool

Concept PrimaryKey AttributeName AttributeValue
Gene 1246500 GeneName repA1
Gene 1246500 UniProtProteinID O85067
Gene 1246500 DNASequence ACCCTTGGAAACCC...
Gene 1246500 GeneID 1246500
Gene 55245 GeneName UQCC
Gene 55245 UniProtProteinID Q9NVA1
Gene 55245 DNASequence TTTTGGGGCCCCAAA...
Gene 55245 GeneID 55245
Protein O85067 ProteinID O85067
Protein O85067 Function Plasmid maintenance
Protein O85067 ProteinName Putative replication
Protein Q9NVA1 Protein ID Q9NVA1
Protein Q9NVA1 Function Cytoplasmic vesicle
Protein Q9NVA1 ProteinName Ubiquinol-cytochrome c reductase
...

(e) Canonical Database: canDB

ConceptName TableName Key Attributes
Gene Entrez GeneID GeneName, DNASequence, ...
Protein UniProt ProteinID Function, ProteinName, ...

(f) Structural Ontology (sO)

Figure 3: Internal representations and meta data for knowledge rich queries.

pose more semantically rich queries. Our goal is to build
a middleware that is capable of interpreting the problem
description by recognizing the intent of the overall work-
flow, and offer a near NLP experience and return a more
cooperative response than traditional databases. From this
standpoint, we also highlight the salient features of our sys-
tem that distinguishes it from the leading contemporary sys-
tems. In section 4, we discuss the heart of our system BioS-
mart, its concept reasoner that helps compute knowledge
rich queries using domain specific knowledge. The method
to incorporate application specific desktop or online com-
putational tools in Datalog are also discussed since custom
designed and generic computational tools play a significant
role in biological data processing. In section 4.4, we discuss
Java specific calls to facilitate invocation of computational
tools from XSB, the reasoning platform we use in BioSmart.
In section 5, we discuss a more generic and more powerful
approach to modeling external function calls in the form of
a database engine using workflows. Finally we summarize
and discuss possible future research in section 6.

2. BIOSMART SYSTEM OVERVIEW
Representation and interpretation of biological data are

complex, and analyzing them requires domain specific knowl-
edge which may vary from user to user. To support such a
fluid and knowledge driven querying environment, we offer a
free-from NLP interface called BioSmart. In this interface,
users may ask arbitrary queries that are parsable as a valid

natural language sentence. We then categorize these sen-
tences into several classes that fit into predefined syntactic
templates3. These templates are then analyzed in the con-
text of the underlying database structures and and assigned
an interpretation entailed by its logical meaning. We expect
the analysis to yield a query and a query execution plan in
a declarative language such as SQL, Datalog, or BioFlow.

2.1 Components and Overview of the System
Let us introduce the architecture of the NLQ engine we

envision with the help of an example. Consider the query Q

below.

“Find the photosynthetic genes of cyanobacteria
Prochlorococcus sp. strain (known also as MED4)”.

Prochlorococcus is an extremely small Chl b-containing light-
harvesting cyanobacterium antenna system sometimes con-
stituting up to 50% of the photosynthetic biomass in the
oceans [25]. So, the query above is interesting at many
levels. First, although there is a fairly recent database on
cyanobacteria called CKB [60], it is not so simple to dig
out the information this query seeks from this database.
The search term Prochlorococcus does not pull up any in-
formation from CKB. But, from the literature [25] we know
3We defer the discussion on the specific mapping algorithm
from natural language to categorized templates in this paper
for the sake of brevity. Instead, we mainly focus on how
such templates once generated are interpreted to respond to
queries.

that Prochlorococcus has two strains, MED4 and MIT9313 that
are representatives of high and low-light adapted ecotypes,
characterized by their low or high Chl b/a ratio, respec-
tively. Furthermore, MED4 is more recently evolved and has
about 1,686 protein coding genes while MIT9313 belongs to
the most deeply branching lineage of Prochlorococcus with
2,200 genes. The Prochlorophyte Chlorophyll-Binding pro-
teins (PCBs) responsible for photosynthesis in Prochlorococ-
cus are encoded by a single gene in all the low b/a strains,
whereas multigene families have been found in several high
b/a strains. It is also known that pcb is a gene in the high
light-adapted MED4, and pcb1 and pcb2 are two genes in low
light-adapted MIT9313 strain for photosynthesis.

However, it is not possible to isolate these genes from
CKB using pcb as the search term to know if their func-
tion is photosynthesis. To discover this knowledge, one must
sift through to select all rows having pcb as a column, and
link the gene names to either UniProt of KEGG databases
to see if their functions include photosynthesis. Two such
gene names are PMM0627, and pcbA or Pro0783 that are
listed to have photosynthesis as their functions in KEGG
and UniProt databases respectively. So the innocent looking
query is not that simple at all to compute without knowing
all these details from the literature in the first place and thus
obviating the need for querying. Even when one wants to
learn more, starting off with a wrong database or inappropri-
ate search term may throw the search in a wrong direction.
Finally, phylogenetically the closest relative of Prochlorococ-
cus is the organism Synechococcus, and there is great deal of
information on this organism that can be leveraged to learn
details about photosynthetic genes of Prochlorococcus indi-
rectly. Therefore, we believe the novelty of BioSmart is that
given a query Q, a database D and a knowledgebase K, it
computes the response to the query as the entailment rela-
tion D ∪K |=Q A, which to our knowledge no other leading
databases or query answering system in Life Sciences do.

2.2 The Generative Process
The entailment relation we have introduced above is cap-

tured in the schematic architecture of BioSmart shown in
figure 1. The natural language sentences in BioSmart are ac-
cepted and parsed by its NLP Interface (NLI) and mapped
to predefined sentence or query templates. It is possible that
a sentence will be broken down into several such templates
that capture the meaning. The Query Mapper (QM) compo-
nent transforms the templates into a logical query using the
information in the Structural Ontology (SO) in the context
of the underlying database – identifies the tables, the anal-
ysis tools needed, and the possible joins needed to compute
the query.

In the SO, we maintain concepts and their properties in-
dependent of their structural affiliation in tables or their
specificity as objects in a table. For example, the two ta-
bles Entrez Gene Table and UniProt Protein Table in figures
2(a) and 2(b) will be described in SO as a meta-data table
as shown in figure 3(f). The concepts in SO (e.g., Gene and
Protein in column ConceptName) can now be linked to nat-
ural language concepts independent of their table affiliation,
which now can actually be discovered from the table in fig-
ure 3(f) using column name TableName. Other components
such as Query Mapper (QM), Concept Reasoner (CR) and
Query Plan Generator (QPG) also use the services by and
the information maintained in SO.

2.3 Query Mapping
The CR subsystem uses a set of axioms to discover how re-

sponses can be generated using the objects in the database
for a given natural language sentence templates. This is
the component that also discovers relationships that can be
used to construct alternative responses, either directly or in-
directly. It also discovers any need for tool applications to
find query responses. The interesting aspect of this compo-
nent is that the axioms used in CR are not domain specific,
and so, the system can be used for other domains as is. How-
ever, domain/concept specific knowledge (DSK) in the form
of a knowledge base can be supplied as a plug-in to tailor
the functionality and bring specificity to the system. Better
or more richer the knowledge-base is, more sophisticated re-
sponse it is capable of generating. The union of DSK, CR
and SO serves as the knowledgebase K in the entailment re-
lation D∪K |=Q A, and the response A is as rich as entailed
by K.

The query specification generated by the CR is then for-
warded to the QPG which in consultation with the SO trans-
forms the specification into a set of database specific exe-
cutable queries in a language of choice. QPG achieves this
goal by using the canonical representation of the existing
data sources. In the canonical representation, we represent
the underlying database in a triple form similar to RDF [4].
All the tables from the user-specified database are broken
up in a 〈concept, attribute type, attribute value〉 triple for-
mat. Concept is a combination of the concept types and
the primary key for a conceptual object. Attribute type is
the column name from the original data table and attribute
value is the value stored in that column for a particular con-
cept. Canonical representation of the data sources shown
in the figures 2(a) and 2(b) is presented in figure 3(e). The
steps involved in the mapping process is outlined in algo-
rithm 1 at a very high level.

Algorithm 1: Mapping NLQ Q to executable knowl-
edge rich query Qe.

Input: A natural language query Q
Output: Executable declarative query Qe

Perform syntactic analysis of Q to generate a parse
tree T ;

Perform structural analysis of T to match a sentence
template s ∈ S;

Generate logical equivalent L of s;
Apply DSK to L to generate conceptual plan C;
Generate executable script Qe from C;
Execute Qe;
if Qe succeeds then

Return result A;
Exit;

else
Try alternate mapping, if possible;

3. QUERY TYPES
Since interpretation of arbitrary natural language sen-

tences are difficult, keeping in mind that most flat and struc-
tured databases use a set based model, natural language sen-
tences that mimic select-project-join (SPJ) queries are
our priority. Such queries have limited interpretive scopes in
terms of what they allow. For example, queries are mostly
about objects and their properties, and their relationships

with other objects. Often, we need to construct complex
objects by piecing together parts from various tables. We
believe almost all such query structures can be admitted if
we recognized three basic types of sentence structures – it-
erative, conditional, and imperative or interrogative natural
language queries. Keeping the admissible sentence struc-
tures set simple and small, we actually follow SQL’s foot-
steps in which complex and more expressive queries can be
built by nesting simple structures arbitrarily. Thus, most of
the biological queries potentially can be expressed by one of
these types, or by a combination of them. In BioSmart, we
do so by allowing series of queries in succession in a context.

3.1 Iterative Queries
Consider expressing a query in English in two different

but semantically equivalent ways.

“List the functions of all human genes”

and,

“For all Homo sapiens genes, list their functions.”

These two seemingly two structurally different queries in
English actually map identical structured queries in SQL,
or at least can be expressed by a single query from table
2(a). But as a query type, these natural language queries ask
to retrieve objects that satisfy certain properties (including
empty properties). If we parse these queries in a syntax tree
as shown in figure 4, we will discover that each of these query
types roughly adhere to one of the parse tree structures in
this figure, we call sentence templates. The queries above
can be parsed to resemble the template shown in figure 4(a),
or the iterative type.

An iterative, or loop, type natural language query, and
thus its template, starts with a prepositional phrase (PP),
followed by a noun phrase (NP) and then a verb phrase
(VP). The prepositional phrase usually includes the phrase
“for all”, or its variants. The noun phrase essentially points
to the objects or entities we are to apply the verb phrase,
i.e., properties or actions. The parse tree for the query

“For all genes of cyanobacteria find homologs”

is shown in figure 5(a) which actually is an instance of the
iterative query template in figure 4(a). In this query the NP
is all genes of cyanobacteria and the VP is find homologs.

3.2 Conditional Queries
Iterative queries are not required to satisfy any constraint.

In other words, they can be viewed as a simple projection
query in SQL (i.e., select from), possibly with a simple
where clause condition for the purpose of object or property
identification. In contrast, a conditional query specifies an
arbitrary precondition that the objects must satisfy in the
form of an if then structure as shown in the query template
in figure 4(b). In such queries, a NP-VP sequence follows
the if condition (i.e., the S′ subtree), and the VP following
the NP captures the action clause, where the NP-VP se-
quence has a simple subject-verb-object sentence structure.
The VP after the then has a verb-object imperative sentence
structure. Figure 5(b) shows the parse tree for the query

“If gene UQCC is protein coding, then find its
protein”,

as an instance of the template in figure 4(b). In this example
“is protein coding” is the VP for the if condition, and “find
its protein” is the VP for the then inference.

(a) Iterative

(b) Conditional (c) Imperative

(d) The noun phrase structure

Figure 4: Natural language query templates.

3.3 Imperative Queries
Imperative sentences or queries are basically a verb phrase

(VP) consisting of a verb (VB) and an object (NP) on which
the verb is to be applied. The template representing an im-
perative query is shown in figure 4(c). These type of sen-
tences are used as standalone queries or as a part of more
complex iterative of conditional queries. Usually the object
(NP) has a structure of the form “attribute of element” as in
figure 4(d). As an example, consider the query

“List all genes of cyanobacteria”,

and its parse tree shown in figure 5(c). Here the verb is
List and the object is genes of cyanobacteria in conformance
with the structure of figure 4(d). As discussed in section
2.1, we will be correct to return genes of Prochlorococcus
and Synechococcus, and MED4 and MIT9313, such as pcb and
pcbA.

4. KNOWLEDGE RICH QUERYING
The query identification and processing apparatus we have

introduced earlier can now be leveraged to respond to the
simple knowledge rich query

“Find the function of gene repA1”

in Escherichia coli. Though this query appears simple, as
discussed in section 2.1, finding answer to it may require
the use of multiple biological data sources and tools. A user
can go to NCBI GenBank to find its function. Failing to find
the answer in GenBank, she can find its UniProt ID P03066

(a) Iterative

(b) Conditional

(c) Imperative

Figure 5: Natural language query examples.

and try to find its function from UniProt database, and a
full annotation can also be obtained from GO database. In
UniProt, the function for repA (Replication initiation pro-
tein) is listed as plasmid replication, and copy control,
whereas GO annotation includes {DNA replication, plasmid

maintenance}. In the event none of these databases pro-
duced any useful information, she could try to use NCBI
BLAST search to find the orthologs of repA1 and then find
the function of those orthologs.

Such approaches require a user to be familiar with all these
details, and complex queries require even more complex and
intricate interwoven knowledge will be essential. Moreover,
different resources and tools have unique representation and

naming policy which makes it even more difficult to find an-
swers. For example, the GeneCards database assigns RPA1

as the ID for repA1, which is supposed to be an authorita-
tive site for finding the IDs for repA1 in various databases.
Apparently, repA1 gene symbol has been discontinued and
replaced with the name RPA1. To aid biologists in such a
confusing landscape, in BioSmart, we approach the compu-
tation of the query in several steps. We use the Stanford
parser to first parse the query submitted to BioSmart NLI
and attempt a mapping to one of the query templates in
figure 4 as resulting in the imperative query parse tree in
figure 6, with action Find on attribute function of element
gene repA1.

Figure 6: Parsed tree of example query.

4.1 Direct Concept Reconstruction
From the discussion in section 1.1 it may not have been

apparent that we actually do not use the base tables in fig-
ure 2. Instead, we always use the derived tables in figure
3. In particular, all tables are collapsed into the canonical
database form in figure 3(e) that allows reconstruction of the
objects in any table using an object identifier, the primary
key of each table represented as a concept. The remaining
set of tables in figure 3 forms the DSK and SO components.
The reconstruction process depends on the query type, and
the complexity of the query and its interpretation assigned.

In the query above, the goal is to compute the function
(a property) of a gene (a concept/object) named repA1 (at-
tribute value) corresponding to another property (i.e., gene
name). QM uses this interpretation to map the properties (
to the attribute AttributeName, the concept to the attribute
Concept, and attribute value to AttributeValue. Essentially,
we are trying to compute the pair 〈function, AttributeValue〉
for the concept gene having 〈GeneName, repA1〉 as an entry
in the canonical database CanDB. Logically, the response
can be constructed by an equi-join of the CanDB table on
the column PrimaryKey for the Concept gene. In general,
the reconstruction is captured in the following CR rule,

1: res(Con, Pk, AttName, AttVal) :-

canDB(Con, Pk, AttName, AttVal).

and with the conjunctive query below that is equivalent to
the equi-join above.

? res(’Gene’, Pk, ’GeneName’, ’repA1’),

res(’Gene’, Pk, ’Function’, Val).

If k number of attributes of a concept were needed to be
computed, we would be required to write a k-way conjunc-
tive query in this approach.

Obviously, this query will fail. But, had the query been,

? res(’Gene’, Pk, ’GeneName’, ’repA1’),

res(’Gene’, Pk, ’UniProtProteinID’, Val).

it would have succeeded producing a binding O85067 for Val.
It failed because the concept gene does not have a function in
the base table Entrez, and consequently in the table CanDB.
Therefore, the response remains empty unless CR tries an
alternative evaluation.

4.2 Indirect Response Generation
The query above failed because concept gene does not

have a property called function. Biologically, we know that
genes encode proteins, and thus gene functions are mani-
fest as protein functions, and thus are synonymous. Such
knowledge are captured in the table der in figure 3(a). A
transitive closure of this relationship captures what we can
compute as substitutes for a given concept, as captured in
the axioms in rules 3 and 4 below.

2: res(Con, Pk, AttName, AttVal) :-

rel(Con, Der, Pk, PkD),

res(Der, PkD, AttName, AttVal).

3: rel(Con, Der, PkC, PkD) :- der(Con, Der),

sO(Con, TabC, KeyC, AttsC),

member(ColC, AttsC),

sO(Der, TabD, KeyD, AttsD),

member(ColD, AttsD),

forK(TabC, TabD, ColC, ColD),

canDB(Con, PkC, ColC, ValC),

canDB(Der, PkD, ColD, ValC).

4: rel(Con, Der, PkC, PkD) :-

rel(Con, DerC, PkC, PkDC),

sO(DerC, TabC, KeyC, AttsC),

member(ColC, AttsC),

sO(Der, TabD, KeyD, AttsD),

member(ColD, AttsD),

forK(TabC, TabD, ColC, ColD),

canDB(DerC, PkDC, ColC, ValC),

canDB(Der, PkD, ColD, ValC).

5: member(Mem, [Mem|_]).

6: member(Mem, [_|Tail]) :- member(Mem, Tail).

To reconstruct the extended object, for the property pair
〈function, AttributeValue〉 from the corresponding concept
Protein, we need to establish the fact that Protein indeed
is a substitute (in the der table in figure 3(a)), UniProt-
ProteinID O85067 corresponds to GeneID 1246500 (in table
Entrez in figure 2(b)), and that the Protein O85067 has the
pair 〈Function, AttributeValue〉 in table CanDB, by virtue
of table UniProt in figure 2(a). We do so in rule 2 above
by asserting a transitive relationship between the concepts
Gene and Protein, and making sure they are connected by
a foreign key relationship.

The rules 3 and 4 are a bit involved, but are conceptually
simpler. These rules basically say, two objects are connected
by a derived relationship is they have a direct foreign key
relationship (rule 3), or a transitive foreign key relationship
between the concept C and S such that C has a direct foreign
key relationship with some concept D in der table and a

foreign key relationship between the derived concept D and
some other concept S. The rules 5 and 6 are necessary
axioms to test list memberships used in rules 3 and 4 to
inspect the base tables have the required attributes. Adding
rules 2 through 6 will now help us evaluate the subquery

res(’Gene’, Pk, ’Function’, Val)

to be true with a binding Plasmid maintenance for the vari-
able Val, essentially computing the Function for the gene

repA1, via ProteinID O85067, and GeneID 1246500.

4.3 Interpretive Queries
The indirect responses in the previous section are actually

a class of queries that use conceptual substitutions to derive
responses, i.e., property of proteins for genes know that they
are substitutable as captured in the table der as a deriva-
tive. In fact any such biological knowledge can be encoded
in BioSmart by creating a new rule for the predicate rel/4
to link objects or concepts through their identifying keys.
The independence of the rel/4 predicate from how the an-
tecedent is represented, makes it possible to make the map-
ping algorithm abstract and generic. For example, Scandi-
navian males, especially 33%-45% Swedish males, carry the
I1 haplotype. We could then link genes of an offspring to
his geographic origin, or to someone in that region, to dis-
cover possible properties. In such cases too, the predicate
rel/4 can be leveraged to link seemingly unrelated pieces of
information to derive knowledge.

But such relationships are required to be in one of the
database tables as ground values. In other words, no new
information is actually generated, they are only linked in a
meaningful and informative way. In BioSmart, we do allow
a third kind of queries that actually allows generation of new
knowledge not available in the database as ground facts us-
ing computational tools or functions. Applications of such
tools have the potential to reveal new relationship among the
database objects previously unknown, or discover new prop-
erties of objects in it. As shown in figure 7, species, as well
their genes and morphologies, are related via genetic and
morphological homology such as orthologs, paralogs, and
horizontal gene transfer.

�����������
�����������
�����������
�����������

Figure 7: Example phylogenetic tree.

Aside from storing base facts in tables such as in Phy-
lomeDB [29] or TreeBASE [71], we can actually apply com-
putational tools to compute these relationships and infer

new properties. For example, orthologs can be computed
using BLAST like tools such as Ortholog-Finder [27], OR-
CAN [73] or GENCODE [59], and phylogeny construction
tools such as MEGA [45], PAUP [68] or PHYLIP [50]. New
relationships can also be established using databases such
as GeneCards [63], and MapBase using ID mapping. In
BioSmart, we allow such tool application based on back-
ground knowledge to link objects and then use the direct
and indirect construction of properties using discovered re-
lationships. For example, for the gene repA1, there are sev-
eral orthologs that can be computed or retrieved from En-
trez database or by using tools such as Ortholog-Finder or
ORCAN: Gene ID 327491 in zebra fish, Gene ID 68275 in
mouse, and Gene ID 417563 in chicken, each one of which
could be used to decipher properties for the gene repA1. It
is interesting to note that recent studies show that although
repA1 does not have paralogs in animals, it has paralogs in
plants: RPA1A to RPA1E in Arabidopsis thaliana, and RPA1B

in Glycin max, RPA1C in Sorghum bicolor, and so on [5].
This result is only available as of today in scientific litera-
ture, and not in any database, indicating that a text mining
tool such as GeneView [69] may be appropriate to discover
this knowledge.

Calling such external functions from logic based languages
such as Datalog, Prolog or XSB, is application specific. In
general, they are called foreign codes or functions, and have
specific protocols for implementation. In BioSmart, we use
XSB [61] as a reasoning platform for its set based process-
ing strategy, and Interprolog [11, 2] Java API for proce-
dure calls. Interface javaMessage() of Interprolog binds XSB
predicates with Java procedures. The rule implementing in-
terpretive queries thus take the form below.

7: res(Con, PkC, AttNameR, AttValR) :-

res(Con, PkC, _, _), simCon(Con, RelCon, Reln),

cTool(RelnO, Ops), member(RelnO, Reln),

res(RelCon, PkR, AttNameR, AttValR),

member(Op, Ops), applyOp(Op, PkC, PkR).

The rule 7 above basically asserts that we can derive the
pair 〈AttNameR, AttValR〉 for a object Con with a identifier
PkC, if it is related to another object via the relationship in
simCon table and an external call to the tool Op can verify
the stated relationship with object RelCon with identifier
PkR having the pair 〈AttNameR, AttValR〉 as its property.

4.4 Computational Tool Integration with XSB
Predicate applyOp() in rule 7 above is a foreign func-

tion for XSB which is implemented procedurally in Java. It
invokes different types of functions depending on the argu-
ment Op, i.e., it may access databases such as PhylomeDB,
TreeBase, GeneCards or MapBase, it may initiate a compu-
tation by running desktop tools such as MEGA, PHYLIP,
or PAUP, or look up the information in an web accessible
tool such as WebPHYLIP or ORCAN. We use the Inter-
prolog [2] API to switch between the XSB reasoner and the
procedural Java environment. Interface javaMessage() of In-
terprolog binds XSB predicates with Java procedures. The
general form of javaMessage() interface is shown bellow.

javaMessage(Target, Result, Exception, MessageName,

ArgList, NewArgList)

Interface javaMessage() synchronously calls a method of a
Java object Target, then waits for its Result, catching any

Exception that may occur. ArgList specifies the arguments
necessary for the function call, which must be of the proper
Java-compatible types. NewArgList contains the same ob-
jects in ArgList reflecting possible state changes after the
function has been processed. Here, MessageName is the in-
voked method of object Target.

A Java class called MessageCaller has been implemented
to model the functions of javaMessages invoked by XSB. A
method named performOperation() of MessageCaller calls
online tools such as BLAST, ORCAN,WebPHYLIP, or GEN-
CODE based on the operations specified (sent as the argu-
ment list ArgList by javaMessage). For example, to com-
pute homology of genes by the online tool BLAST, method
performOperation() uses the NCBI BLAST Java Interface
[3]. Given the ID of a gene, BLAST returns the IDs of the
orthologs as an XML file. We then parse the XML file to
retrieve the GeneIds of the orthologous genes and send them
back to XSB as Result. An alternative technique for sending
results is to store them in a database table and use an XSB
predicate to retrieve those results within the XSB reasoner.

To be precise, the applyOp(Op, PkC, PkR) call in XSB is
handled by the javaMessage() operation as follows. XSB ini-
tiates the javaMessage() call with the instantiations Target
to MessageCaller, Result to PkR, MassageName to perfor-
mOperation(), and ArgList to 〈Op, PkC 〉. Exception and
NewArgList are returned by Java as appropriate. Note that,
the argument Op depends on the adornment of the vari-
able by XSB before the call and depends on the tool list
Ops in the cTool predicate. Eventually, method perform-
Operation() of class MessageCaller applies the appropriate
tool to perform the intended operation expected in the ap-
plyOp(Op, PkC, PkR) predicate.

5. ACCESSING ONLINE TOOLS AND

DATABASES
In BioSmart, we leverage another level of abstraction for

the interpretive class queries that opens up the possibility
endless ways computing them, and infer knowledge in un-
precedented ways. That also means the Java MessageCaller
will need to be implemented on a case by case, which we
believe is a daunting task. To avoid such unique imple-
mentation for each call type, we have decided to use the
power of the abstraction encoded into the BioFlow language
introduced earlier. This language, and its variants, have
been leveraged in our implementation of LifeDB, MapBase,
VizBuilder and VizFlow. In BioFlow, tools, databases and
online web interfaces are viewed as function calls and are
abstracted uniformly. Therefore, depending on the invoca-
tion and the specific tool, it is capable of customizing the
evaluation.

In most tool applications, database processing and web
applications, some form of selection conditions are applied
(input arguments to a function), and results are extracted
(output of the operation) before and after the operations
are performed. There is also some form of schema mis-
match between the terminologies used in the XSB program
and the target system. Without the abstraction, users and
the Java application writers will need to be fully aware
of these terminologies and resolve the disparities manually.
The BioFlow syntax already includes the machineries needed
for schema matching and wrapping, in addition to accessing
remote sites. The statement to access deep web resources in

BioFlow is the extract statement with the following syntax,

extract A1, . . . , Ak

using matcher µ wrapper ω filler φ
from ϕ submit r where θ

where θ is the form condition, A1, . . . , Ak is the projec-
tion list, µ is the schema matcher (e.g., PruSM [57]), ω is
the wrapper (e.g., FastWrap [7]), φ is the form filler (e.g.,
iForm [70]), and ϕ is the web form address or the form func-
tion. Note that this statement returns a table by submitting
columns from each row in r to the deep web database at ϕ.
When a matcher, wrapper or filler isn’t necessary, the cor-
responding clauses can be omitted. This statement can be
constructed using the stepwise mapping of a resource such
as d1. Note that, in the case of a web service at ϕ, a form
filler and a wrapper are not needed as the web service it-
self handles these functions, and no form conditions (θ) are
necessary either. But a transformation function τ may be re-
quired to convert XML to flat list of attributes, which could
be made available in BioSmart library and help BioFlow ex-
tract the target fields automatically with a statement similar
to the one below.

extract A1, . . . , Ak

using matcher µ transformer τ
from ϕ submit r

Analogously, when the text data are delimited in some way
and are flat, we can expect a statement similar to the one
below when inputs are not needed and hence the submit

clause can be omitted, but a wrapper ω is required to be
able to read the data.

extract A1, . . . , Ak

using matcher µ wrapper ω
from ϕ

These features of BioFlow allow users to write applications
without having to worry about the details of extraction
methods, location, technology specific nuances, format, and
schema heterogeneity. The adoption of BioFlow also allows
us to implement complex workflows using the applications
similar to VisFlow. Users now can conceptualize a complete
workflow at the highest abstraction level keeping a global
scheme in mind knowing that the underlying data manage-
ment and integration apparatus will be able to map her ap-
plication onto potentially heterogeneous resources correctly
and efficiently without any loss in query semantics.

For the call applyOp(BLAST, repA1, PkR), we will con-
struct the following BioFlow statement to execute.

extract GeneID
using matcher PruSM wrapper FastWrap filler iForm
from ’http://blast.ncbi.nlm.nih.gov/Blast.cgi’
submit ArgRel

In the above expression, we will supply repA1 as the lone
tuple in the table ArgRel. In fact, BioFlow can process set
of inputs and thus is capable of a set based processing which
can be utilized to speed up XSB predicate evaluation using
external functions.

6. SUMMARY AND FUTURE RESEARCH
While there is a great deal of opportunities and interests

in non-traditional data management and querying using key

word based, NoSQL or natural language over unstructured
databases, querying of structured databases using these ap-
proaches are also equally interesting. In this paper, and
in our earlier research, we have demonstrated that interest-
ing knowledge rich queries can be answered using such ap-
proaches, especially in investigative applications. Our con-
tention is that users need not go to unimaginable lengths to
dig out information just because they did not know how to.
The BioSmart system we propose demonstrates the oppor-
tunities that exist and what is possible.

The concept reasoner, and domain specific knowledgebase
we have leveraged is one of the major tool boxes that make
BioSmart actually smart. But designing these components
are manual, often application specific and tedious. But it
also makes it possible to apply BioSmart to other scientific
domains just by changing these components. Opportunities
exists to use ontologies such as GO and SnoMed CT [30,
72] to help users frame effective natural language queries
by allowing terminology independence. This will require
mapping mapping query terms to conceptual terms in the
ontologies and use the standardized terms in the mapped
queries. We are investigating an approach designing the CR
and DSK components, at least partially, automatically from
these components.

In Schema-Free SQL [48], meta information such as re-
lation trees were used to aid query processors to tolerate
mismatch or errors in schema information, and in BioVis
[34] and ConLog [31] conceptual structures were leveraged
to map queries properly to underlying scheme. In BioSmart
the need for such a structure to appropriately select parts
of schema to frame the queries is much greater. Currently,
the engineering of this structure is application specific and
manual. Developing a similar conceptual structure gener-
ation scheme at least semi-autonomously will significantly
improve usability of BioSmart. These are some of the issues
we plan to continue as our future research.

7. REFERENCES

[1] GeneCards: The Human Gene Compendium.
http://www.genecards.org/.

[2] InterProlog 2.1.2: a Java front-end and enhancement
for Prolog. http://www.declarativa.com/interprolog/.

[3] NCBI BLAST Java Interface (Concordia University).

http://users.encs.concordia.ca/̃f kohant/ncbiblast/.

[4] Web Services Description Language (WSDL) Version
2.0. http://www.w3.org/TR/wsdl20/.

[5] B. Aklilu and K. Culligan. Molecular evolution and
functional diversification of replication protein a1 in
plants. Frontiers in Plant Science, 7(33), January
2016.

[6] N. Aletras, D. Tsarapatsanis, D. Preotiuc-Pietro, and
V. Lampos. Predicting judicial decisions of the
european court of human rights: a natural language
processing perspective. PeerJ Computer Science,
2:e93, 2016.

[7] M. S. Amin and H. M. Jamil. An efficient web-based
wrapper and annotator for tabular data. IJSEKE,
20(2):215–231, 2010.

[8] Y. Amsterdamer, A. Kukliansky, and T. Milo. A
natural language interface for querying general and
individual knowledge. PVLDB, 8(12):1430–1441, 2015.

[9] A. Bhattacharjee, A. Islam, M. S. Amin, S. Hossain,

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.genecards.org/
http://www.declarativa.com/interprolog/
http://users.encs.concordia.ca/~f_kohant/ncbiblast/
http://www.w3.org/TR/wsdl20/

S. Hosain, H. M. Jamil, and L. Lipovich. On-the-fly
integration and ad hoc querying of life sciences
databases using LifeDB. In DEXA, pages 561–575,
2009.

[10] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur,
C. Ré, and D. Suciu. Mystiq: a system for finding
more answers by using probabilities. In SIGMOD,
pages 891–893, 2005.

[11] M. Calejo. InterProlog: Towards a declarative
embedding of logic programming in Java. In IEEE
International Conference on Robotics and Automation,
pages 714–717. Springer, 2004.

[12] W. W. Chu. Cobase: A cooperative query answering
facility for database systems. In DEXA, Prague, Czech
Republic, September 6-8, pages 134–145, 1993.

[13] P. Cimiano, P. Haase, J. Heizmann, M. Mantel, and
R. Studer. Towards portable natural language
interfaces to knowledge bases - the case of the
ORAKEL system. DKE, 65(2):325–354, 2008.

[14] B. L. Cook, A. M. Progovac, P. Chen, B. Mullin,
S. Hou, and E. Baca-Garcia. Novel use of natural
language processing (NLP) to predict suicidal ideation
and psychiatric symptoms in a text-based mental
health intervention in madrid. Comp. Math. Methods
in Medicine, 2016:8708434:1–8708434:8, 2016.

[15] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and
J. Lehmann. AskNow: A framework for natural
language query formalization in SPARQL. In ESWC,
Heraklion, Crete, Greece, May 29 - June 2, pages
300–316, 2016.

[16] J. Elhai. Humans, computers, and the route to
biological insights: Regaining our capacity for
surprise. Journal of Computational Biology,
18(7):867–878, 2011.

[17] J. Elhai, A. Taton, J. Massar, J. K. Myers, M. Travers,
J. Casey, M. Slupesky, and J. Shrager. BioBIKE: A
Web-based, programmable, integrated biological
knowledge base. Nucl. Acids Res., 37:W28–32, 2009.

[18] S. Ferré. Sparklis: An expressive query builder for
SPARQL endpoints with guidance in natural
language. Semantic Web, 8(3):405–418, 2017.

[19] P. A. Fontelo, F. Liu, and M. J. Ackerman.
askmedline: a free-text, natural language query tool
for medline/pubmed. BMC Med. Inf. & Decision
Making, 5:5, 2005.

[20] T. Gaasterland and C. Sensen. Using multiple tools
for automated genome interpretation in an integrated
environment. Trends in Genetics, Feb. 1996.

[21] Gene Ontology Consortium. Gene ontology: tool for
the unification of biology. Nat. Genet., 25:25–29, 2000.

[22] D. Gkatzia, O. Lemon, and V. Rieser. Natural
language generation enhances human decision-making
with uncertain information. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, Berlin,
Germany, Volume 2: Short Papers, 2016.

[23] E. J. Goldsmith, S. Mendiratta, R. Akella, and
K. Dahlgren. Natural language query in the
biochemistry and molecular biology domains based on
cognition search. Nature, 2008.

[24] T. Hamon, N. Grabar, and F. Mougin. Querying
biomedical linked data with natural language

questions. Semantic Web, 8(4):581–599, 2017.

[25] W. R. Hess, G. Rocap, C. S. Ting, F. Larimer,
S. Stilwagen, J. Lamerdin, and S. W. Chisholm. The
photosynthetic apparatus of Prochlorococcus: Insights
through comparative genomics. Photosynth Res,
70(1):53–71, 2001.

[26] J. Hintikka. Knowledge and Belief. Cornell University
Press, 1962.

[27] T. Horiike, R. Minai, D. Miyata, Y. Nakamura, and
Y. Tateno. Ortholog-Finder: A tool for constructing
an ortholog data set. Genome Biology and Evolution,
8(2):446, 2016.

[28] S. Hossain and H. M. Jamil. A visual interface for
on-the-fly biological database integration and
workflow design using VizBuilder. In DILS, pages
157–172, July 2009.

[29] J. Huerta-Cepas, S. Capella-Gutiérrez, L. P. Pryszcz,
M. Marcet-Houben, and T. Gabaldón. PhylomeDB v4:
zooming into the plurality of evolutionary histories of
a genome. Nucleic Acids Research,
42(Database-Issue):897–902, 2014.

[30] IHTSDO. SNOMED-CT.
http://www.ihtsdo.org/snomed-ct. Accessed: May 14,
2016.

[31] H. Jamil. A natural language interface plug-in for
cooperative query answering in biological databases.
BMC Genomics, 13(Suppl 3):S4, 2012.

[32] H. M. Jamil. Toward a cooperative natural language
query interface for biological databases. In IEEE
BIBM, Atlanta, GA, November 2011.

[33] H. M. Jamil. Designing integrated computational
biology pipelines visually. TCBB, 10(3):605–618,
May/June 2013.

[34] H. M. Jamil. Mapping abstract queries to big data
web resources for on-the-fly data integration and
information retrieval. In ICDE Workshops, Chicago,
IL, USA, March 31 - April 4, pages 62–67, 2014.

[35] H. M. Jamil. Improving integration effectiveness of ID
mapping based biological record linkage. IEEE/ACM
TCBB, 12(2):473–486, 2015.

[36] H. M. Jamil. Pruning forests to find the trees. In
SSDBM, Budapest, Hungary, July 18-20, pages
18:1–18:12, 2016.

[37] H. M. Jamil. A visual interface for querying
heterogeneous phylogenetic databases. IEEE/ACM
TCBB, 14(1):131–144, 2017.

[38] H. M. Jamil and A. Islam. The power of declarative
languages: A comparative exposition of scientific
workflow design using BioFlow and Taverna. In IEEE
SWF, pages 322–329, July 2009.

[39] H. M. Jamil, A. Islam, and S. Hossain. A declarative
language and toolkit for scientific workflow
implementation and execution. IJBPIM, 5(1):3–17,
2010.

[40] S. W. Joseph and R. Aleliunas. A knowledge-based
subsystem for a natural language interface to a
database that predicts and explains query failures. In
ICDE, April 8-12, Kobe, Japan, pages 80–87, 1991.

[41] E. Kaufmann and A. Bernstein. Evaluating the
usability of natural language query languages and
interfaces to semantic web knowledge bases. J. Web

http://www.ihtsdo.org/snomed-ct

Sem., 8(4):377–393, 2010.

[42] M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. Journal
of ACM, 42(4):741–843, 1995.

[43] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: An online algorithm for skyline queries. In
VLDB, August 20-23, Hong Kong, China, pages
275–286, 2002.

[44] S. Kripke. Semantical analysis of modal logic. Logik
und Grundlagen der Mathematik, 1963.

[45] S. Kumar, M. Nei, J. Dudley, and K. Tamura. MEGA:
a biologist-centric software for evolutionary analysis of
DNA and protein sequences. Briefings in
Bioinformatics, 9:299–306, 2008.

[46] C. Lawrence and S. Riezler. NLmaps: A natural
language interface to query openstreetmap. In
COLING, December 11-16, Osaka, Japan, pages 6–10,
2016.

[47] F. Li and H. V. Jagadish. Understanding natural
language queries over relational databases. SIGMOD
Record, 45(1):6–13, 2016.

[48] F. Li, T. Pan, and H. V. Jagadish. Schema-free SQL.
In SIGMOD, Snowbird, UT, USA, June 22-27, pages
1051–1062, 2014.

[49] Y. Li, C. Yu, and H. V. Jagadish. Enabling
schema-free xquery with meaningful query focus.
VLDB J., 17(3):355–377, 2008.

[50] A. Lim and L. Zhang. WebPHYLIP: a web interface
to PHYLIP. Bioinformatics, 15(12):1068, 1999.

[51] C. D. Maio, G. Fenza, V. Loia, and M. Parente.
Natural language query processing framework for
biomedical literature. In IFSA-EUSFLAT-15, Gijón,
Spain., June 30., 2015.

[52] B. McKnight and I. B. Arpinar. Linking and querying
genomic datasets using natural language. In BIBM,
Philadelphia, PA, USA, October 4-7, 2012, pages 1–4.

[53] X. Mou, H. M. Jamil, and X. Ma. Visflow: A visual
database integration and workflow querying system. In
ICDE, San Diego, CA, USA, April 19-22, 2017. To
appear.

[54] X. Mou, H. M. Jamil, and R. Rinker. Visual
orchestration and autonomous execution of distributed
and heterogeneous computational biology pipelines. In
IEEE BIBM Shenzhen, China, December 15-18, pages
752–757, 2016.

[55] X. Mou, H. M. Jamil, and R. Rinker. Implementing
computational biology pipelines using visflow. IJDMB,
2017. Accepted for publication.

[56] A. Nandi and H. V. Jagadish. Qunits: queried units in
database search. In CIDR, 2009.

[57] T. H. Nguyen, H. Nguyen, and J. Freire. PruSM: a
prudent schema matching approach for web forms. In
CIKM, pages 1385–1388, 2010.

[58] L. N. P. Godfrey, J. Minker. An architecture for a
cooperative database system. In ADBy, pages 3–24,
1994.

[59] B. Pei, C. Sisu, A. Frankish, C. Howald, L. Habegger,
X. J. Mu, R. Harte, S. Balasubramanian, A. Tanzer,
M. Diekhans, A. Reymond, T. J. Hubbard, J. Harrow,
and M. B. Gerstein. The GENCODE pseudogene
resource. Genome Biology, 13(9):R51, 2012.

[60] A. P. Peter, K. Lakshmanan, S. Mohandass,
S. Varadharaj, S. Thilagar, K. A. Abdul Kareem,
P. Dharmar, S. Gopalakrishnan, and U. Lakshmanan.
Cyanobacterial knowledgebase (CKB), a compendium
of cyanobacterial genomes and proteomes. PLOS
ONE, 10(8):1–12, 08 2015.

[61] P. Rao, K. Sagonas, T. Swift, D. Warren, and
J. Freire. XSB: A System for Efficiently Computing
Well-Founded Semantics. In LPNMR, pages 430–440.
Springer, 1997.

[62] L. Safari and J. D. Patrick. Restricted natural
language based querying of clinical databases. Journal
of Biomedical Informatics, 52:338–353, 2014.

[63] M. Safran, I. Dalah, J. Alexander, N. Rosen,
T. Iny Stein, M. Shmoish, N. Nativ, I. Bahir,
T. Doniger, H. Krug, A. Sirota-Madi, T. Olender,
Y. Golan, G. Stelzer, A. Harel, and D. Lancet.
GeneCards Version 3: the human gene integrator.
Database, 2010(0):baq020–, 2010.

[64] K. Sagonas, T. Swift, and D. S. Warren. XSB as an
efficient deductive database engine. SIGMOD Rec.,
23(2):442–453, 1994.

[65] D. Saha, A. Floratou, K. Sankaranarayanan, U. F.
Minhas, A. R. Mittal, and F. Özcan. ATHENA: an
ontology-driven system for natural language querying
over relational data stores. PVLDB, 9(12):1209–1220,
2016.

[66] J. Shrager. The evolution of BioBike: Community
adaptation of a biocomputing platform. Studies in
History and Philosophy of Science, 38:642Ű656, 2007.

[67] K. Z. Sultana, A. Bhattacharjee, M. S. Amin, and
H. M. Jamil. A model for contextual cooperative
query answering in e-commerce applications. In
FQAS, Roskilde, Denmark, October 2009.

[68] D. L. Swofford. PAUP*: Phylogenetic Analysis Using
Parsimony (*and Other Methods). Version 4. Sinauer
Associates, Sunderland, Massachusetts, 2003.

[69] P. Thomas, J. Starlinger, A. Vowinkel, S. Arzt, and
U. Leser. GeneView: a comprehensive semantic search
engine for PubMed. Nucleic Acids Research,
40(W1):W585–W591, 2012.

[70] G. A. Toda, E. Cortez, A. S. da Silva, and E. S.
de Moura. A probabilistic approach for automatically
filling form-based web interfaces. PVLDB,
4(3):151–160, 2010.

[71] R. A. Vos, H. Lapp, W. H. Piel, and V. Tannen.
TreeBASE2: Rise of the Machines. Nature Precedings,
(713), 2010.

[72] H. Wasserman and J. Wang. An applied evaluation of
SNOMED CT as a clinical vocabulary for the
computerized diagnosis and problem list. In AMIA,
Washington, DC, USA, November 8-12, 2003.

[73] A. Zielezinski, M. Dziubek, J. Sliski, and W. M.
Karlowski. ORCAN - a web-based meta-server for
real-time detection and functional annotation of
orthologs. Bioinformatics, ePub, 2017. doi:
10.1093/bioinformatics/btw825.

	1 Introduction
	1.1 A Motivating Example
	1.2 Related Research

	2 BioSmart System Overview
	2.1 Components and Overview of the System
	2.2 The Generative Process
	2.3 Query Mapping

	3 Query Types
	3.1 Iterative Queries
	3.2 Conditional Queries
	3.3 Imperative Queries

	4 Knowledge Rich Querying
	4.1 Direct Concept Reconstruction
	4.2 Indirect Response Generation
	4.3 Interpretive Queries
	4.4 Computational Tool Integration with XSB

	5 Accessing Online Tools and Databases
	6 Summary and Future Research
	7 References

