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Abstract

The increasing accumulation of healthcare data provides researchers with ample opportunities to 

build machine learning approaches for clinical decision support and to improve the quality of 

health care. Several studies have developed conventional machine learning approaches that rely 

heavily on manual feature engineering and result in task-specific models for health care. In 

contrast, healthcare researchers have begun to use deep learning, which has emerged as a 

revolutionary machine learning technique that obviates manual feature engineering but still 

achieves impressive results in research fields such as image classification. However, few of them 

have addressed the lack of the interpretability of deep learning models although interpretability is 

essential for the successful adoption of machine learning approaches by healthcare communities. 

In addition, the unique characteristics of healthcare data such as high dimensionality and temporal 

dependencies pose challenges for building models on healthcare data. To address these challenges, 

we develop a gated recurrent unit-based recurrent neural network with hierarchical attention for 

mortality prediction, and then, using the diagnostic codes from the Medical Information Mart for 

Intensive Care, we evaluate the model. We find that the prediction accuracy of the model 

outperforms baseline models and demonstrate the interpretability of the model in visualizations.
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1 INTRODUCTION

Health care is undergoing a revolution. The accumulation of big data in health care such as 

electronic health records (EHR) and claims data has enabled researchers to use machine 

learning techniques to learn from these data and build clinical decision support tools. Such 

capabilities facilitate timely and accurate predictions of medical risks of patients with regard 

to readmissions or deaths, and thus improve the quality and efficiency of clinical 
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interventions. Several studies have demonstrated that health information technologies have 

improved the quality of health care [10; 11; 17].

Although healthcare data analytics offer promising opportunities for improving health care, 

key challenges remain unsolved regarding how to appropriately model healthcare data. Such 

data, such as EHR, have unique characteristics, including high dimensionality and temporal 

dependencies. With regard to the former, for example, a standard coding system of 

diagnosis, the International Classification of Diseases (ICD-9-CM), contains approximately 

20,000 codes; and with regard to the latter, for example, the existence of one disease might 

increase the risk of one patient having certain diseases in the future. In addition, representing 

healthcare data is not a trivial task since medical histories vary greatly in length and contain 

hierarchical structures. That is, a typical healthcare record of one patient is a variable-sized 

set of discrete elements such as diagnostic codes with variable numbers.

An ideal model for healthcare data should not only appropriately model the unique structure 

of healthcare data but also maintain a balance between accuracy and interpretation. 

Conventional predictive models of clinical decision support rely heavily on feature 

engineering, such as ranking and selecting features based on certain criteria [12; 15; 31], 

which results in classifier-dependent features and task-specific models. An alternative to 

models that rely on feature engineering is deep learning, which has attracted considerable 

attention because of its impressive accuracy in a wide range of tasks [1; 20; 33] and its 

ability to generalize high-level representation of raw data even without domain knowledge 

[22]. However, resistance to and criticism of deep learning approaches still persist, which 

primarily results from its lack of interpretability. That is, to infer the importance of 

individual features on model outputs, people find it difficult to follow the reasoning of deep 

learning models. For clinical decision support, lack of model interpretability will meet 

resistance to such models by medical communities. Fortunately, the interpretability problem 

can be mitigated by the attention mechanism [5], which mimics the visual attention of 

human cognition by learning a set of attention weights that represent the relative importance 

of individual features on certain time steps or locations to the final prediction.

Researchers have recently begun to apply deep learning in health care. Some pioneer studies 

have focused on identifying patterns from healthcare data with deep learning. Lasko et al. 

were the first to apply deep learning in health care, and they demonstrated the capability of 

deep learning to generalize patterns from serum uric acid measurements with autoencoders 

[21]. Miotto et al. utilized denoising autoencoders to produce a compact and general 

representation of electronic health records that demonstrated better prediction accuracy 

when used in downstream analysis than the representation produced by conventional 

dimensional reduction approaches [26]. Some recent studies have characterized the temporal 

dependencies of EHR data using sophisticated gated recurrent neural networks, but these 

models suffer from lack of interpretation. Pham et al. used a sophisticated model built on 

long short-term memory (LSTM) to model the interaction between diagnosis and medication 

[30]. Nguyen et al. employed convolutional neural networks to extract “clinical motifs” from 

medical records and predict clinical outcomes [27]. Choi et al. were the first to introduce 

attention mechanism in health care, and they proposed a model that uses two recurrent 

neural networks (RNN) that separately produce attention weights [7]. Our work continues to 
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explore the possibilities and advantages of introducing the attention mechanism to facilitate 

interpretation of prediction results.

To generate interpretable predictions of clinical outcomes, our work develops a gated 

recurrent unit (GRU)-based RNN with hierarchical attention (GRNN-HA). We use the 

GRNN-HA to address the following challenges: (1) handling the high dimensionality of 

medical codes, (2) modeling the temporal dependencies of healthcare events, (3) 

characterizing the hierarchical structure of healthcare data, and (4) improving the 

interpretability of predictive models. To handle the high dimensionality of medical codes, 

our model learns a low-dimensional representation of medical codes with word2vec [25]. To 

model temporal dependencies, we use bidirectional GRUs to encode temporal information 

from healthcare data. To characterize the hierarchical structure of healthcare data and to 

improve the interpretability of models, our model organizes visit- and code-level information 

hierarchically and learns hierarchical attention weights on both levels dependently to 

represent the visit- and code-level importance, respectively. We validate our model on 

MIMIC-III (Medical Information Mart for Intensive Care) [16], which is a publicly available 

database that contains rich information about critical care from a large hospital, and compare 

mortality predictions of our model to those of several baseline models. To illustrate the 

interpretable results generated by our model, we also provide visualizations.

2 METHODS

2.1 Recurrent Neural Networks and GRU

A recurrent neural network (RNN) belongs to a class of neural networks suitable for 

modeling sequential data, which is enabled by the recurrent structure of RNNs in which the 

activation of the hidden state of the current time step is dependent on that of the previous 

time step. Specifically, given a sequence x= (x1, x2, …, xt), an RNN updates its current 

hidden state ht as

ℎt = ϕ xt, ℎt − 1 ,

in which ϕ is a nonlinear activation function that can be either as simple as sigmoid or as 

sophisticated as LSTM [14]. The purpose of introducing sophisticated activation functions is 

to overcome the vanishing gradient problem, which causes difficulties of training an RNN to 

capture long-term dependencies [2; 13].

To overcome the vanishing gradient problem, we apply a gated recurrent unit (GRU)-based 

RNN that encodes input sequences of variable length as vectors of fixed length. The GRU, 

proposed by Cho et al. [6], has been proven to outperform LSTM in a set of tasks [9]. 

Although similar to LSTM, GRU provides a simpler alternative, using two types of gates, 

the reset gate rt and the update gate Zt, to control the information flow of hidden states 

without a separate memory gate. The reset gate determines part of the past information, 

which will remain in the current hidden state, and the update gate determines part of the new 

information, which will be added to the current hidden state. The detailed calculation of 

GRU is defined by the following equations:
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rt = σ W rxt + Urℎt − 1 + br ,

zt = σ W zxt + Uzℎt − 1 + bz ,

ℎt = tanh W hxt + rt ⊙ Uhℎt − 1 + bℎ ,

ℎt = 1 − zt ⊙ ℎt − 1 + zt ⊙ ℎt,

in which σ(∙) is a sigmoid function, xt is the sequence input at time t, ht is the value of the 

hidden state at time t, and ℎt is the candidate value of the hidden state at time t. The 

computation of candidate hidden states is similar to that of a traditional RNN, except that the 

information of ht-1 is gated by rt. ht is calculated as a linear interpolation between ht-1 and ℎt.

2.2 Low-dimensional Representation of Medical Codes

Motivated by considerable successful applications of word2vec [25] in learning word 

representations for a wide range of natural language processing (NLP) tasks [6; 18; 32], we 

extend word2vec to learn a representation of diagnostic codes in ICD-9. ICD codes are often 

sequential in healthcare datasets. For example, in the MIMIC data database, ICD codes 

assigned to different hospital admissions are chronically ordered, and the ICD codes 

assigned to one hospital admission are ordered based on priority. Because of the 

sequentiality of ICD codes, we observe an analogy between them and natural languages. 

That is, we can naturally view the sequence of ICD codes of one admission as a sentence 

and an ICD code as a word and then apply the continuous bag-of-words (CBOW) 

architecture of word2vec. CBOW constructs representations of words by optimizing the 

prediction of a center word from its context words. With wo denoting a center word and wI 

denoting a context word of the center word, the objective of CBOW is to maximize

p wO wI ,

which is computed based on

p wO wI =
exp v′wO vT wI

∑O′ = I
C exp v′wO′ vT wI

′

in which Vw and Vw’ are two vector representations of word w, respectively, and C is the 

number of words in the vocabulary. The vector representations of words learned by 

word2vec tend to retain the semantic meanings of words so that words with similar 

meanings are close to each other in the vector space.
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2.3 Hierarchical Attention

Our work applies a hierarchical attention model with a similar structure to that proposed by 

[35] to predict the outcome of a patient based on longitudinal diagnostic codes. The 

architecture of the model is illustrated in Figure 1. Suppose that a patient has L hospital 

visits, each of which is assigned T diagnostic codes. We denote each diagnostic code as wit, 

which represents the t-th ICD code in the i-th visit of this patient, with i ∈ [1, L] and t ∈ [1, 

T]. We represent wit with a low-dimensional vector through

xit = Vwit, t ∈ 1, T ,

in which V is an embedding matrix obtained through word2vec as described in 2.2. Then we 

encode each ICD code using a bidirectional GRU that summarizes the information of a 

sequence of ICD codes in one hospital visit from both directions through

ℎ lt = GRU xit , t ∈ 1, T ,

ℎlt = GRU xit , t ∈ T, 1 ,

ℎit = ℎlt, ℎlt .

Bidirectional GRUs increase the amount of input information by enabling future information 

to be accessible by the current state. The purpose of introducing bidirectional GRUs is to 

mimic the behavior of a physician examining a patient’s medical history both forwards and 

backwards.

Since each ICD code does not contribute equivalent information to one hospital visit, we 

introduce the code-level attention mechanism, which enables the model to pay more 

attention to informative ICD codes than other ICD codes. To implement the code-level 

attention mechanism, we first compute the hidden representation of hit, denoted as uit, to 

derive the attention of individual ICD codes αit as the similarity of uit and a code-level 

context vector uc, and then encode each hospital visit vi as a weighted sum of hit through

uit = tanh W cℎit + bc ,

αit =
exp uitTuc

∑texp uitTuc
,

vi = ∑tαitℎit .
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For each visit vector vi, we also encode it with a bidirectional GRU as follows:

ℎl = GRU vi ,

ℎl = GRU vi ,

ℎi = ℎl, ℎl .

Similarly, since individual visits do not contribute equivalent information to predictions, we 

introduce the visit-level attention mechanism to render the model capable of focusing more 

on those visits that contribute more to the prediction of patient outcomes than other visits. To 

implement the visit-level attention mechanism, we introduce a visit-level context vector uv 

and use it to calculate the visit-level attention αi as follows:

ui = tanh W vℎi + bv ,

αi =
exp uiTuv

∑iexp uiTuv
,

s = ∑iαiℎi .

Finally, to represent features, we use s and build a binary classifier as

P = sigmoid W S + b ,

and we use the cross-entropy as our loss function, defined as

L = ∑
i

pi × logpi,

in which pi is the predicted probability of a sample belonging to class i, and pi is the true 

probability of the sample belonging to that class.

3 EXPERIMENTS

3.1 Description of Dataset

The dataset we use in this study comes from MIMIC-III (Medical Information Mart for 

Intensive Care), which is a freely accessible critical care database [16]. MIMIC-III contains 
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data associated with 46,250 distinct patients admitted to the critical care units of a large 

tertiary hospital. The types of data include demographics, vital signs, diagnostic codes, and 

laboratory tests. Because of the wide availability of diagnostic codes in healthcare data and 

the ease of demonstrating the results produced by the model without excessive medical 

domain knowledge, we focus on diagnostics codes in this study. To ensure enough medical 

information about each patient, we include 7,537 patients who had at least two hospital 

admissions in MIMIC-III and then extract the diagnostic codes of each chosen patient. In 

addition, we maintain both the temporal order of diagnostic codes from multiple admissions 

and the priority-based order of diagnostic codes within one admission. We use these 

sequential diagnostic codes to predict mortality. Whether a patient died or not is recorded in 

MIMIC-III, and we find that 1,462 out of the selected 7,537 patients had died. To maintain 

the original proportion of mortality in both the training and test data, we use stratified 

sampling to set one-third of the dataset as a test set and the rest as a training set. We have 

repeated this stratified sampling three times to generate three sets of test and training data.

3.2 Model Implementation and Training

Here we describe the details of model implementation and training. We implement both the 

GRU-based RNN with hierarchical attention (GRNN-HA) and a GRU-based RNN without 

attention (GRNN) using keras 1.2.0 [8] with Theano 0.8.2 as the backend [3]. By training 

the CBOW version of word2vec on the training dataset, we obtain 200-dimentional 

representations of diagnostic codes. Then we use stratified sampling to set one-fifth of the 

training set for validation. We use the validation set to tune the hyperparameters of the 

models. The hyperparameters we have adjusted include the number of hidden units in GRUs 

at the visit and code levels. We vary the number of hidden units in GRUs over a range of 50 

to 200 with a step size of 10. For model training, we minimize the loss function by using 

mini-batch stochastic gradient descent with a momentum of 0.9 and a batch size of 12. To 

evaluate the accuracy of mortality prediction given a relatively low mortality rate in our 

dataset, we use the Matthews correlation coefficient (MCC) in addition to commonly used 

measures, including the area under the receiver operating characteristic curve (AUROC) and 

the F1 score. MCC is an appropriate indicator of the quality of binary classification even 

when the sizes of both classes in a dataset significantly differ [24].

3.3 Baseline Models

Here we describe how we build our baseline models. To construct features for the baseline 

models, we derive n-grams from our data. An n-gram is a consecutive sequence of n items 

from sequential data such as text [4]. Because of their simplicity and ability to capture local 

contexts, N-gram-based features have been widely used in natural language processing [19; 

23; 28]. To avoid model overfitting and computational infeasibility resulting from longer and 

more expressive n-grams, our study includes only the most frequent 5,000 unigrams and 

bigrams in the dataset to build a feature profile. After deriving the n-gram feature profile, we 

use either the number of occurrences of n-grams or the term frequency–inverse document 

frequency transformation (tf-idf) of n-grams as values for the feature profile. After 

constructing the features, we use logistic regression and support vector machines (SVM) as 

classifiers to build our baseline models. To select hyperparameters for the baseline models, 

we use a grid search over a parameter space through four-fold cross-validation on the 
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training set. The hyperparameters of logistic regression include types of regularization and 

regularization parameters. We vary regularization over L1 and L2 and regularization 

parameter C over the logarithmic range of [10−3, 100]. Likewise, the hyperparameters of 

SVM include gamma (the inverse of the standard deviation of kernel function) and 

regularization penalty parameter C when we use the Radial Basis Function (RBF) as the 

kernel function. When we use linear SVM as the kernel function, the hyperparameters of 

SVM include only regularization penalty parameter C. We choose gamma over the 

logarithmic range of [10−2, 1] and regularization penalty parameter C over the logarithmic 

range of [10−2, 10]. We implement these baseline models with scikit-learn 0.18.1[29].

4 RESULTS

We show the results of mortality prediction on the MIMIC dataset by both the baseline and 

advanced methods in Table 1, in which “Logreg” is short for logistic regression. For all three 

metrics, the two advanced models, GRNN and GRNN-HA, demonstrate significantly better 

prediction results than those of the baseline models. Specifically, the average MCC of 

GRNN-HA is 11.71% higher than that of the highest average MCC of the baseline models. 

Even without the attention mechanism, the MCC of GRNN is still 7.32% higher than that of 

the highest average MCC of the baseline models. Using Steiger’s test [34], which is a 

statistical test for comparing two dependent correlations, we find the two comparisons of 

MCC are both statistically significant (p<0.05). The superior results generated by the two 

GRNN-based advanced models demonstrate the advantages of utilizing word2vec to handle 

the high dimensionality of medical codes and GRNN for appropriate modeling of the 

temporal dependencies of healthcare data. Comparing the prediction results of two GRNN-

based models, we find that GRNN-HA has higher MCC and F1 score values than GRNN. 

The AUROC of GRNN-HA is slightly lower than that of GRNN. Since AUROC is not 

sensitive for binary classification on imbalanced datasets, we argue that the prediction 

results of GRNN-HA are better than those of GRNN. That is, in our case, the attention 

mechanism is able to improve prediction results. In addition to producing accurate 

predictions, GRNN-HA generates interpretable results that are suitable for visualization. 

Figure 2 provides an example visualization for the results of the prediction about one patient 

in one of the test sets. This patient has three recorded hospital admissions, shown as three 

horizontal bars colored in blue of different intensities. The intensity of the color is 

proportional to the corresponding visit-level attention weight. The multiple diagnostic codes 

associated with each hospital admission are represented by lines of various lengths, the 

vertical order of which, from top to bottom, corresponds to the priority-based order of these 

codes. These lines, representing multiple diagnostics associated with one admission, are 

contained within the horizontal bar of the corresponding hospital admission. The length of a 

horizontal line is proportional to the attention weight of the diagnostic code to which the line 

corresponds.

From Figure 2, we observe that among the three hospital admissions, Visit 3, the last visit of 

this patient, dominates visit-level attention. This finding is reasonable because recent clinical 

conditions are usually more informative of a clinical outcome than early conditions. We also 

observe that two diagnostic codes, pneumonia and acute respiratory failure, dominate the 

code-level attention of the last hospital admission. To validate whether the interpretation of 
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prediction by GRNN-HA is reasonable, we read the clinical notes linked to this patient and 

find out that the patient suffered mainly from acute respiratory failure, which is probably the 

consequence of multifocal pneumonia with suspected sepsis. Therefore, by assigning high 

attention weights of pneumonia and acute respiratory failure, GRNN-HA determines that 

this patient has a high risk of mortality, which is consistent with the clinical notes written by 

the medical experts.

To further evaluate the interpretability of the GRNN-HA model, we illustrate the distribution 

of attention weights of several representative and frequent diagnostic codes from the 

prediction results of the test dataset in Figure 3. Since the diagnostic codes receiving high 

attention weights tend to have more impact on the final prediction of mortality, we 

hypothesize that generally, diagnostic codes with high attention weights should represent 

diseases that are more life-threatening. Among the six diagnostic codes whose distribution 

we select to visualize, congestive heart failure and acute respiratory failure, which are life-

threatening conditions, have attention weights with distribution shifted more to the right of 

the x-axis than the remaining ones (Figure 3a and 3c). The remaining conditions include 

chronic conditions such as diabetes mellitus and tobacco use disorder. Despite their risk to 

health, these conditions tend not to be determinants of mortality (Figure 3d and 3e). 

Although pneumonia receives a high attention weight in the example shown in Figure 2, 

most attention weights of pneumonia of patients from test set are below 0.2. This 

observation implies that GRNN-HA infers the attention weight of one diagnostic code in the 

context of medical history and suggests the potential of this model for personalized clinical 

decision support.

5 DISCUSSION

To predict mortality on diagnostic codes from the MIMIC 3 database, our work uses a GRU-

based RNN with hierarchical attention. This model frees researchers from manual feature 

engineering that usually results in classifier-dependent features and task-specific models and 

achieves both high prediction accuracy and interpretability that make it suitable for clinical 

decision support. The interpretability of the model relies on attention weights, determined 

from relative importance of diagnostic codes on prediction, assigned to individual diagnostic 

codes and hospital visits. We notice that the attention weights for one specific condition 

form a distribution rather than a fixed value. This observation suggests that the model 

embraces the idea of personalized clinical decision support by inferring relative importance 

of one diagnostic code based on the context of the medical history of a patient. We envision 

an application scenario of the GRNN-HA model in which the GRNN-HA model scans the 

medical history of a new patient admitted into a hospital, generates a risk assessment, and 

provides an annotated visualization for physicians that can help them prioritize the order in 

which they will see patients.

We will address several limitations in our work in the future. First, the dataset may not be an 

optimal choice for our model to fully utilize longitudinal information because the MIMIC3 

database contains limited longitudinal medical information of patients. That is, most of the 

patients in the dataset contain only two or three admissions. In addition, the MIMIC3 dataset 

may not capture information about patients’ visits to other hospitals. Second, the number of 
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samples is relatively small with respect to the need for large training sets of deep learning 

methods. Although the GRNN-HA significantly outperforms baseline models with respect to 

available data, we still expect to see improvement in its prediction accuracy and more 

reasonable attention weights if we have a larger sample size and longer medical histories of 

patients. Finally, we analyze only diagnostic codes for ease of interpretation of results. In 

future work, we aim to extend our analysis over other data types such as vital signs and 

laboratory tests.
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Figure 1: 
The architecture of the GRNN-HA model
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Figure 2: 
The visualization of the prediction result of a patient by GRNN-HA.

Sha and Wang Page 14

ACM BCB. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
The distributions of the code-level attention weights of the following six diseases: (a) 

congestive heart failure, unspecified, (b) atrial fibrillation, (c) acute respiratory failure, (d) 

diabetes mellitus without mention of complication, type II or unspecified type, not stated as 

uncontrolled, (e) pneumonia, organism unspecified, and (d) tobacco use disorder.

Sha and Wang Page 15

ACM BCB. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sha and Wang Page 16

Table 1:

The results of mortality predictions

Model MCC F1 score AUROC

Logreg + count 0.3664±0.01 35 0.4604±0.02 51 0.7884±0.02 28

Logreg + tf-idf 0.3509±0.02 03 0.4457±0.03 30 0.7979±0.00 94

SVM + count 0.3234±0.02 41 0.4157±0.06 79 0.7726±0.02 67

SVM + tf-idf 0.3549±0.02 18 0.4404±0.02 27 0.7899±0.01 18

GRNN + word2vec 0.4396±0.04 86 0.5074±0.06 13 0.8650±0.01 00

GRNN-HA + word2vec 0.4835±0.05 85 0.5766±0.06 23 0.8603±0.01 67
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