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Abstract

Background: Cancer Tissue Heterogeneity is an important consideration in cancer research as it can give insights
into the causes and progression of cancer. It is known to play a significant role in cancer cell survival, growth and
metastasis. Determining the compositional breakup of a heterogeneous cancer tissue can also help address the
therapeutic challenges posed by heterogeneity. This necessitates a low cost, scalable algorithm to address the
challenge of accurate estimation of the composition of a heterogeneous cancer tissue.

Methods: In this paper, we propose an algorithm to tackle this problem by utilizing the data of accurate, but high
cost, single cell line cell-by-cell observation methods in low cost aggregate observation method for heterogeneous
cancer cell mixtures to obtain their composition in a Bayesian framework.

Results: The algorithm is analyzed and validated using synthetic data and experimental data. The experimental data
is obtained from mixtures of three separate human cancer cell lines, HCT116 (Colorectal carcinoma), A2058
(Melanoma) and SW480 (Colorectal carcinoma).

Conclusion: The algorithm provides a low cost framework to determine the composition of heterogeneous cancer
tissue which is a crucial aspect in cancer research.

Keywords: Cancer tissue heterogeneity, Bayesian modeling, Metropolis algorithm, Kernel density estimation

Background
Cancer tissue heterogeneity is a very important aspect in
cancer research with widespread implications. It is a phe-
nomenon observed in almost all cancers including breast
cancer [1], colon cancer [2], skin cancer, etc. Some of
the apparent influences of cancer tissue heterogeneity are
inhibition of immune cell attacks on cancer, active con-
struction of local blood flow to the cancer and stimulation
of cancer cells’ epithelial to mesenchymal transition [3, 4].
These actions enable cancer cell survival, proliferation and
metastasis. As a consequence, heterogeneity is an impor-
tant aspect of precision medicine and poses therapeutic
challenges. The impact of heterogeneity on therapeutics
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for different types of cancer is presented in [5]. It is one of
the causes of acquired drug resistance [6]. Acquired drug
resistance is attributed to a drug resistant subpopulation
of the heterogeneous cancer tissue becoming dominant
after the drug successfully kills the initial dominant sub-
population. Taking this into consideration, an approach
for cancer therapy mentioned in [7] relies on sustain-
ing a particular tumor population instead of destroying
as much tumor as possible. It concentrates on maintain-
ing a dominant ratio of chemosensitive subpopulation
which suppresses the growth of chemoresistant subpopu-
lation. As a result, the tumor does not become resistant to
chemotherapy. Tracking the ratio of subpopulations over
time is central to this approach of therapy. Hence deter-
mining the compositional breakup of a heterogeneous
cancer tissue is an important challenge to address.
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In [8] an accurate, but high cost, optical approach was
suggested to determine the compositional breakup of a
heterogeneous cancer tissue. In this method, all the cells
in the heterogeneous tissue were imaged individually and
their red, green and blue fluorescence were measured.
Imaging individual cells is a complex method as it requires
high resolution imaging followed by complex image pro-
cessing algorithms. In the proposed algorithm, we aim to
develop a mathematical framework to reduce the exper-
imental cost by relying on aggregate observations and
minimizing the need for individual cell-by-cell observa-
tions. Aggregate observations are the summation of the
contribution of individual cells in a heterogeneous tissue.
For a setup like in [8], aggregate observations would be
the separate summations of red fluorescence due to all the
cells, green fluorescence due to all the cells and blue flu-
orescence due to all the cells in the heterogeneous cancer
tissue. This would be a much simpler observation to cap-
ture as it would not require imaging the individual cells
and would just need the total fluorescence hence circum-
venting the need for high resolution imaging and complex
image processing algorithms.

In this paper we extend the gene expression based
methods presented in [9, 10] so that the aggregate opti-
cal measurements from the above described technology
can be used instead of gene expression measurements in
order to determine the compositional breakup of the tis-
sue under observation. Although the experimental results
are provided for an experimental setup similar to the one
in [8], the algorithm, however, is generic and can take
any measurable quantity as an input as long as the aggre-
gate observation can be expressed as a summation of
individual cell-by-cell contributions.

The proposed algorithm requires the expensive cell-by-
cell observation of individual subpopulations only once
and can then be used to determine the composition of
any number of heterogeneous cancer tissues composed of
those subpopulations.

Methods
Let us assume that we need to study heterogeneous can-
cer tissues composed of a given set of n different cell lines
represented as C = (C1, C2, . . . , Cn). Let there be m dif-
ferent quantitatively measured attributes. These attributes
are chosen such that they are independent and the differ-
ent cell lines have dissimilar attribute profiles. The idea
of the algorithm is to use the expensive cell-by-cell obser-
vation of attributes to create a database of the mean and
standard deviation of the attributes for these n cell lines in
isolation. This is only a one time process as the mean and
the standard deviation of the attributes of the cell lines are
assumed to remain consistent for different heterogeneous
cancer tissues. This is under the assumption that the cells
in a heterogeneous cancer tissue do not affect the attribute

value of each other. Once this is done we can analyze
any heterogeneous cancer tissue composed of any subset
of these n cell lines by collecting only low cost aggregate
attribute observations. The algorithm takes as an input the
mean and standard deviation of the attributes for the cell
lines from the database and the aggregate attribute obser-
vations of the heterogeneous cancer tissue and gives the
compositional breakup of the heterogeneous tissue as the
output.

Parameters of the attributes
The first step of the algorithm is to profile (estimate the
mean and standard deviation of the attributes) each of
these n cell lines by making high cost cell-by-cell attribute
observations for them. To do this, we measure the value
of the m attributes for individual cells of a particular cell
line. We do this separately for all the n different cell lines.
For a particular cell line, say ith cell line, these individ-
ual cell observations are considered to be the samples
of the random attribute vector Ei = (Ei1, Ei2, . . . , Eim).
The algorithm uses the sample mean and sample stan-
dard deviation as the estimate of the mean and standard
deviation of the attributes.

μ̂ij = 1
p

p∑

k=1
eijk (1)

σ̂ij =
√∑p

k=1
(
eijk − μ̂ij

)2

p − 1
(2)

where eijk are the samples of the random variable Eij. Let μ

and σ be n x m matrices whose elements are μij and σij, the
true mean and true standard deviation of the attributes for
different cell lines. It is important to have sufficiently large
number of samples to arrive at an accurate estimate of the
mean and standard deviation.

Bayesian analysis of heterogeneous cancer tissue
Assume that the true composition of the heterogeneous
tissue is given by N = (N1, N2, . . . , Nn) where Ni repre-
sents the number of cells of cell line Ci in the tissue. Let
the corresponding ratio be represented by π .

π = N∑n
i=1 Ni

(3)

Assume that the aggregate attribute vector is represented
by Esum which is the sum of the attributes of all the cells
in the mixture. The objective of the algorithm is to take
Esum, μ̂ij and σ̂ij as an input for 1 ≤ i ≤ n, 1 ≤ j ≤ m
and generate an accurate estimate of N and π represented
as N̂ and π̂ respectively. In other words, the algorithm
takes as an input the sum of unknown number of samples
generated from n different random vectors with indepen-
dent components and the mean and standard deviation of
each component of those random vectors. From this sum,
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mean and standard deviations it estimates how many
samples of different random vectors were added to get
this sum.

Now we focus on Esum which is an m-dimensional vec-
tor. Let the jth component of Esum be represented by Esumj
for 1 ≤ j ≤ m. As a hypothetical example, let us consider
the case shown in Fig. 1. In this example, the heteroge-
neous tissue has 3 cell lines, represented by a circle, square
and hexagon. Also, the attribute vector has 3 components,
red, green and blue. The aggregate attribute value of each
of the red, green and blue components can be represented
as the summation of the contribution of cells from cell
lines 1, 2 and 3. This can be seen in the figure as each of the
red, green and blue attributes of the heterogeneous cancer
tissue has contributions coming from cell line 1, 2 and 3.
Hence, in general, Esumj can be written as:

Esumj =
n∑

i=1
Eisumj, 1 ≤ j ≤ m (4)

where Eisumj is the contribution of ith cell line in the jth
attribute of the aggregate attribute vector.

There are Ni cells of the ith cell line in the heteroge-
neous mixture and the summation of the jth attribute of
each of these cells gives Eisumj. The jth components of
the attribute vector of each of these cells are indepen-
dent, as the attribute value of one cell does not affect the
attribute value of another cell. They are also identically
distributed with the same distribution as Eij. Hence, by
Central Limit Theorem, for sufficiently large Ni, Eisumj can
be approximated by a Gaussian Distribution with mean
Niμij and variance Niσ

2
ij . There is an inherent assumption

that the μ̂ij and σ̂ij from the first step remains valid for the
mixture analysis too. This calls for a precaution in exper-
iment design. The experimental setup for the aggregate
measurements needs to be the same as the one used for
cell-by-cell analysis as any variation might alter the mean
and standard deviation and will result in poor estimate
of N. For practical purposes, the cell lines which form a
significant part of heterogeneous cancer tissue satisfy the
condition of large Ni. Hence, Eisumj has a Gaussian Dis-
tribution irrespective of the distribution of Eij. This is a
very important implication as it gives the independence
of choosing any feature as a part of the attribute vector
irrespective of the probability distribution of the same.

Fig. 1 Heterogeneous cancer tissue and the attributes
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The only condition is that the aggregate attribute value
of the heterogeneous cancer tissue should be given by
the summation of the attributes of individual cells in the
tissue.

Eisumj for different values of i in Eq. 4 are independent.
Hence Esumj can be approximated as Gaussian with mean∑n

i=1 Niμij and variance
∑n

i=1 Niσ
2
ij . The probability of

Esumj can be approximated by:

P(Esumj|N , μ, σ) ≈ 1
√

2π
(∑n

i=1 Niσ
2
ij

)e
− (Esumj−

∑n
i=1 μijNi)

2

2
∑n

i=1 Niσ2
ij

(5)

As the components of Esum are independent, the probabil-
ity of Esum is given by:

P(Esum|N , μ, σ) =
m∏

j=1
P(Esumj|N , μ, σ) (6)

This needs to be maximized over N in order to obtain a
maximum likelihood estimate of N. However the complex
expression makes it difficult to solve this problem analyti-
cally. Another approach can be to evaluate the expression
in Eq. 6 for different possible values of N. However, the
complexity of the algorithm will become exponential in
that case and hence it will be infeasible when the num-
ber of different cell lines is large. Hence we use a Bayesian
approach to estimate N.

All the components of N are assumed to have a uniform
prior from 0 to an arbitrarily large number, say M. The
posterior probability of Ni is given by:

P(Ni|Esum,N−i, μ, σ)

= P(Esum|N , μ, σ)P(Ni|N−i, μ, σ)∫
P(Esum|N ′

i , N−i, μ, σ)P(N ′
i |N−i, μ, σ)dN ′

i
(7)

where N−i represents all the components of N excluding
the ith component and

P(Ni|N−i, μ, σ) = 1/M (8)

P(Esum|N , μ, σ) can be calculated from Eq. 6. However,
evaluating the denominator term of Eq. 7 is a complex
problem. This makes the problem of calculating the pos-
terior probability of Ni from Eq. 7 infeasible. To address
this issue, we resort to Metropolis algorithm which is
a Markov chain simulation to estimate the posterior
distribution [11].

Metropolis algorithm
The Metropolis algorithm comes in handy when it is diffi-
cult to exactly evaluate the posterior probability. In such a
scenario, if it is possible to sample directly from the poste-
rior distribution, we can generate independent identically

distributed samples and use them to approximate the pos-
terior probability distribution. However, in our case, it is
not possible to sample directly from Eq. 7. To circum-
vent this issue we use the full conditional of Ni which is
given by

P(Ni|Esum, N−i, μ, σ) ∝ P(Esum|N , μ, σ)P(Ni|N−i, μ, σ)

(9)

Suppose we have s samples of Ni from the posterior
distribution in the set (Ni1, . . . , Nis). We then consider
adding the proposal value N∗

i which is in the vicinity of
Nis. We follow the following steps:

1. N∗
i can be obtained by taking a sample from a

symmetric proposal distribution. For eg, N∗
i can be

sampled from uniform(Nis − δ, Nis + δ).
2. Compute the acceptance ratio

r = P(N∗
i |Esum, N−i, μ, σ)/P(Nis|Esum, N−i, μ, σ)

3. Assign Ni(s+1) = N∗
i with probability min(r, 1) or Nis

otherwise.

Substituting P(Esum|N , μ, σ) and P(Ni|N−i, μ, σ) from
Eqs. 6 and 8 in Eq. 9 while performing step 2, we see
that M cancels and hence the algorithm is independent of
M. The Markov chain formed by following the aforemen-
tioned steps has the same stationary distribution as the
posterior distribution of N. The Markov chain needs to
run for a few initial iterations before it reaches stationarity
and only after that the sampling has to be done. An impor-
tant consideration is the length of the neighborhood for
the proposal distribution. If the neighborhood is too small,
the Markov chain will take too long to reach stationarity
and the samples will be too close to each other. Too large
a neighborhood would result in too many samples being
rejected once the Markov chain has reached stationarity.
Hence the value of neighborhood parameter needs to be
tuned appropriately. We draw samples from this Markov
Chain after running it till it reaches stationarity. These
samples are used to estimate the posterior distribution of
N. To do this, we use a non parametric probability density
function estimation, Kernel Density Estimation.

Kernel density estimation
Let (Ni1, Ni2, . . . , Nik) be the samples of the posterior dis-
tribution of Ni drawn from the Metropolis algorithm. The
Kernel Density Estimate of the posterior distribution is
given by:

f̂Ni (ni|Esum, N−i, μ, σ) = 1
kh

k∑

j=1
K

(ni − Nij

h

)
(10)

Here, K is the Kernel function. Usually, K is a non-
negative function with mean 0 and it integrates to 1. In our
case, we will consider K to be standard normal.
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If K is smooth, the density estimate obtained is also
smooth which is the advantage offered by this density
estimation method. An important consideration for the
accuracy of density estimation is the value of the band-
width parameter, h. A low value of h results in high
variance in the estimation. A high value of h results in high
bias in the estimation. As derived in [12], the optimal value
of h which minimizes the squared error cost is given by:

hopt = Dk−1/5 (11)

where D = R(K)1/5
(
R(f ′′)σ 4

K
)(1/5) where R(g) = ∫

g2(x)dx.

Since it involves f, where f is the true posterior distribu-
tion, it is not possible to calculate the exact value of h. An
approximation for the optimal value of h can be obtained
assuming f to be Gaussian. This bandwidth is called the
plug in bandwidth and is given by the expression

ĥplugin = 1.06sk−1/5, s2 = 1
k − 1

k∑

j=1

(
Nij − N̄i

)2 (12)

Once the posterior density function estimation is done,
we can evaluate the posterior mean, the posterior mode,
the confidence interval, etc. Such properties of N can be
used to come to conclusions about the composition of the
heterogeneous cancer tissue. We use maximum a posteri-
ori probability (MAP) estimate (the mode of the posterior
distribution) of N, represented as N̂ .

Important practical considerations
There are important factors crucial for the implementa-
tion of the proposed algorithm. The algorithm needs to
know which cell lines can potentially be present in the
heterogeneous mixture which is an important research
problem in itself and has been widely studied. It is impor-
tant to see that the algorithm does not need the exact
number of different types of cell lines. Instead, it needs
all the possible cell lines that might be present, that is,
the cell lines considered by the algorithm can be all the
cell lines that are present in the heterogeneous tissue and
a few more. If any of these cell lines are not there in
the heterogeneous tissue, the algorithm will estimate very
low value of Ni for the corresponding cell line. There
are a variety of methods available to study the cell lines
present in a heterogeneous cancer tissue, some of which
are experimental whereas others are algorithmic. Fluo-
rescent in situ hybridization(FISH) or FISH coupled with
immunofluorescence, are methods based on amplification
of specific regions in the chromosome to detect hetero-
geneity. Another approach is to sequence genes known
to be frequently mutated for the cancer under study.
There have been other studies based on the study of
whole genomes. A good summary of the experimental
methods to detect the subpopulations of a heterogeneous

tissue is provided in [4]. There have also been algorithmic
approaches suggested based on clustering. There was a
classification method based on the gene expression values
from the Cancer Genome Atlas (TCGA) for the identi-
fication of various cell types in glioblastoma multiforme
[13]. The details of these methods are beyond the scope of
this paper. The important point is that these methods have
been applied for different kinds of cancer and the results
are available in literature, hence, such an analysis does not
need to be performed for the tissue under consideration.
To mention a few results, insights into breast cancer com-
position were provided in [14], for leukemia, the results
were provided in [15], prostate cancer heterogeneity is
discussed in [16], etc.

Another very crucial challenge is the sampling of het-
erogeneous cancer tissue. Heterogeneity is not uniformly
distributed in a tumor and hence normally a single sample
from the tumor is not representative of the whole tumor.
In such a scenario, analysis or heterogeneity requires mul-
tiple samples from different regions of the tumor. One
such example is presented in [17] where spatially sep-
arated samples of renal carcinoma are used to study
intratumor heterogeneity.

Results
Simulated data
In order to demonstrate the performance of the proposed
algorithm, we test its performance on synthetic data. We
consider a 10 cell lines, 10 attribute system. We look at the
effect of two parameters - the similarity of attribute mean
between the cell lines and variance on the performance of
the algorithm. The root square error, e, of estimation of π

is used as the parameter to evaluate the performance.

e =
√√√√

n∑

i=1

(
πi − π̂i

)2 (13)

Note that it is different from the traditional root mean
square error because π is constrained such that

∑n
i=1 πi = 1

and the root mean square error would decrease as the
number of cell lines increase. For the asymptotic case as
n → ∞, the root mean square error will approach zero
irrespective of the performance of the algorithm.

Table 1 Number of cells originally in the mixture and the
number of cells estimated by the algorithm

N (Original) N̂ (Estimated)

[500 500 500 500 500 500
500 500 500 500 ]

[503 498 496 503 495 503 503 504 501 498]

[100 200 300 400 500 600 700
800 900 1000]

[90 204 302 398 498 601 702 801 895 1010]

[100 0 200 0 300 0 400 0 500 0] [97 4 196 2 299 4 393 5 496 5]

[500 0 0 0 0 0 0 0 0 0] [474 9 2 3 3 7 2 2 2 3]
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We first look at the performance of the algorithm for
different cases of N. We set μ to be a cyclic matrix with
the first row being [100 200 300 400 500 600 700 800
900 1000]. This value of μ ensures that all the cell lines
contribute in all the attributes, making the problem chal-
lenging, and there is a difference in the attribute mean
for the different cell lines. We set the standard deviation
assuming constant coefficient of variation of 1. For the
cell-by-cell analysis we generate 2000 samples of each cell
line from a Gaussian distribution with the corresponding
mean and standard deviation. The algorithm estimates the
mean, μ̂ij and standard deviation σ̂ij from this cell-by-cell
data. Next, we generate the aggregate observation Esum by
generating Ni samples for the ith cell line for all the cell
lines. We add the attribute values of all the samples to
obtain Esum. Table 1 presents the results of executing the
algorithm for different cases of N. The first case is the one
where all the cell lines are present in equal proportion.
The second case is when the all the cell lines are present in
unequal proportions. The third case is when only half of
the cell lines are actually present in the mixture. The last
case is when there is only one cell line in the mixture. The
third and the last case demonstrate how the algorithm can
be used without knowing exactly how many cell lines are
present in the heterogeneous tissue.

Next, we analyze the performance of the algorithm by
varying the similarity in the attribute means of different
cell lines. We set μ to be a cyclic matrix with the first

element of first row being 1000k for 0 ≤ k ≤ 1, last
element being 1000 and the rest of the elements being
equally spaced between 1000k and 1000. For instance, for
k = 0.55, the first row is [550 600 650 700 750 800
850 900 950 1000] and the rest of the rows are obtained
through cyclic permutation of the first row. We set the
standard deviation assuming constant coefficient of vari-
ation of 1. Similarity of the attribute means is controlled
by the value of k. Higher value of k would imply more
similarity of the attribute means between cell lines. When
k = 1, there would be no difference in the attribute pro-
files of the cell lines and it would be impossible for the
algorithm to differentiate between the different cell lines.
We study the effect of similarity on the error performance
of the algorithm and the confidence interval. To test the
algorithm, we set N = [100 200 300 400 500 600 700 800
900 1000]. On expected lines, the error increases as shown
in Fig. 2 and the confidence interval becomes wider (evi-
dent from the change in scale of the posterior probability
distribution in Figs. 3 and 4) for increasing value of k.

We next analyze the effect of varying standard devia-
tion of the attributes on the performance of the algorithm.
For this analysis we set μ to be a cyclic matrix with the
first row being [100 200 300 400 500 600 700 800 900
1000]. We also set N = [100 200 300 400 500 600 700 800
900 1000]. We vary the coefficient of variation to study
its effect on the error performance of the algorithm and
the confidence interval. As is expected, the error increases
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Fig. 2 Error performance of the algorithm for varying similarity of attributes
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Fig. 3 Posterior probability distribution for k = 0.1

as shown in Fig. 5 and confidence interval becomes wider
(evident from the change in scale of the posterior prob-
ability distribution in Figs. 6 and 7) for increase in the
coefficient of variation.

Experimental data
The algorithm was validated using the heterogeneous
mixtures of three separate human cancer cell lines,

HCT116 (Colorectal carcinoma), A2058 (Melanoma) and
SW480 (Colorectal carcinoma). There were two differ-
ent mixtures. Mixture 1 was approximately mixed in the
ratio [1/3 1/3 1/3] and Mixture 2 was approximately mixed
in the ratio [7/20 3/20 1/2]. Each mixture was perturbed
and imaged under three different conditions: untreated,
treated with Lapatinib and treated with Temsirolimus.
Hence, overall there were six test cases. The experiment
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Fig. 4 Posterior probability distribution for k = 0.4
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Fig. 5 Error performance of the algorithm for varying coefficient of variation

involved imaging the single cell lines and the mixtures
on a cell-by-cell level. The attribute vector was composed
of red, green and blue fluorescence. Although we have
the cell-by-cell data for the mixtures too, the algorithm
only takes the summation of the attribute values as the

aggregate input. The cells were marked with fluorophores
such that red fluorescence was emitted only by HCT116
and green fluorescence was emitted only by A2058. The
blue fluorescence was used for detection of a cell and was
emitted by all the three cell lines.
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Fig. 6 Posterior probability distribution for coefficient of variation = 1
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Fig. 7 Posterior probability distribution for coefficient of variation = 5

Note that the estimated ratio from the proposed algo-
rithm can vary from the approximate ratio due to multiple
reasons. Firstly, the estimation done by the instrument to
populate the cell well is not accurate. Secondly, during
the time between the cell lines being mixed and fluores-
cence being recorded, the cells may multiply at different

rates leading to a change in the ratio. This effect might
vary in the three groups due to the impact of the drugs
on cell multiplication. Lastly, imaging only captures a por-
tion of the well and it might not be a representation
of the true ratio of cells in the mixture. Hence, instead
of comparing the estimated ratio from the proposed
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Fig. 8 Posterior probability distribution of N for untreated mixture
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Fig. 9 Posterior probability distribution of N for untreated mixture 2

aggregate observation based algorithm to the approxi-
mate ratio, we compare it to the result obtained using
cell-by-cell mixture analysis algorithm proposed in [8].
Let the estimate of the number of cells obtained from
[8] be N̂cbc.

The proposed aggregate attribute value based algorithm
was run for the six test cases. As an input, the algorithm
took the summation of the mixture cell-by-cell attribute
values as the aggregate input and the single cell line
cell-by-cell data for the corresponding group to estimate
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Fig. 10 Posterior probability distribution of N for mixture 1 treated with Lapatinib
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Fig. 11 Posterior probability distribution of N for mixture 2 treated with Lapatinib

the mean and the standard deviation of the attributes.
The output of the algorithm was the posterior probabil-
ity of the number of cells for each case as presented in
Figs. 8, 9, 10, 11, 12 and 13. The estimate of the number
of cells by the algorithm was given by the MAP estimate,
represented as N̂agg .

Table 2 presents the values of N̂cbc and N̂agg for 6 differ-
ent experiments. Table 3 shows the corresponding values
of πcbc, πagg and e. As it can be observed, the estimate of
the number of cells obtained from the algorithm is close to
the approximate number of cells obtained by cell-by-cell
analysis of the mixture for HCT116 and A2058.
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Fig. 12 Posterior probability distribution of N for mixture 1 treated with Temsirolimus
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Fig. 13 Posterior probability distribution of N for mixture 2 treated with Temsirolimus

However, the estimate of the number of cells of SW480
is very inaccurate. In particular, we see that the estimate
of number of SW480 cells is low for mixture 1 and high
for mixture 2. As per the experiment design, the blue
fluorescence of all the three cell lines impacts the esti-
mate of number of SW480 cells. Hence, we look at the
mean blue attribute value in the single cell line cell-by-
cell data and the mixture cell-by-cell data given in Table 4.
We observe that for mixture 1, for all the three groups,
the mean blue attribute value is less than the mean value
for each of the individual cell lines. This accounts for a
lower estimate of the number of SW480 cells in mixture
1. Similarly, we see that for mixture 2, the mean value of
blue attribute is greater than the mean value for each of
the individual cell lines for Lapatinib and Temsirolimus
experiments. This accounts for a higher estimate of
SW480 cells. For the untreated case for mixture 2, though

Table 2 Number of cells in the mixture obtained by cell-by-cell
analysis and aggregate attribute analysis

Experiment N̂cbc N̂agg

Untreated mixture 1 [3314 3710 2070] [3418 3543 14]

Untreated mixture 2 [1466 757 1557] [1509 688 1979]

Lapatinib mixture 1 [2440 3812 2060] [2613 3630 1287]

Lapatinib mixture 2 [1558 691 1782] [1494 679 2804]

Temsirolimus mixture 1 [2756 3833 1991] [2794 3855 98]

Temsirolimus mixture 2 [1767 741 1490] [1668 772 2397]

the mean value of blue attribute is a little lower than
the mean attribute value for SW480, it is still on the
higher side given that more than half the cells in the
mixture are either HCT116 or A2058. However, the dis-
crepancy is not big. As a result the estimate of the
number of SW480 cells is on the higher side but not
extremely inaccurate.

Hence, by this analysis, we observe that the algorithm
performs well if the parameters of the attribute vector
remain consistent in the single cell line cell-by-cell analysis
and the heterogeneous mixture. Variation in these param-
eters leads to inaccurate results.

Table 3 Ratios πcbc and πagg for cell-by-cell analysis and
aggregate attribute analysis respectively and error e

Experiment πcbc πagg e

Untreated
mixture 1

[0.364 0.408 0.228] [0.490 0.508 0.002] 0.2774

Untreated
mixture 2

[0.388 0.200 0.412] [0.361 0.165 0.474] 0.0761

Lapatinib mixture
1

[0.294 0.459 0.247] [0.347 0.482 0.171] 0.0955

Lapatinib mixture
2

[0.386 0.171 0.443] [0.300 0.136 0.564] 0.1525

Temsirolimus
mixture 1

[0.321 0.447 0.232] [0.414 0.571 0.015] 0.2667

Temsirolimus
mixture 2

[0.442 0.185 0.373] [0.344 0.160 0.496] 0.1592
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Table 4 Mean Blue Attribute Value for the three cell lines in
single cell line cell-by-cell Data, Mixture 1 Cell-by-Cell Data and
Mixture 2 Cell-by-Cell Data

Experiment Cell line Single Mixture 1 Mixture 2

Untreated HCT116 3.013 ×106 2.241×106 3.670×106

A2058 3.001 ×106

SW480 3.693 ×106

Lapatinib HCT116 4.324 ×106

4.215 ×106

6.167 ×106

A2058 4.620 ×106

SW480 5.422 ×106

Temsirolimus HCT116 2.670 ×106 2.570 ×106 3.839 ×S106

A2058 3.690 ×106

SW480 3.379 ×106

Discussion
The proposed algorithm enables low cost estimation of
the composition of heterogeneous cancer tissue which
is an important factor in cancer diagnosis and research.
As demonstrated by the simulation results, the algorithm
gives an accurate estimate of the different cell lines in the
tissue. A crucial aspect of the method proposed is the
accurate experiment design. An inconsistent experiment
design in the parameter estimation phase and aggregate
measurement phase may result in inaccurate estimates of
the composition of cell lines as is evident in the experi-
mental results for SW480 cell line. This calls for standard-
ization of the experiment design to ensure the scalability
of the algorithm.

Conclusion
In this work we address the challenge of determining the
composition of any heterogeneous cancer tissue. It uses
the advantage offered by the expensive cell-by-cell analy-
sis methods while actually utilizing the low cost aggregate
attribute methods. The algorithm takes as inputs the char-
acteristics of the attribute vector of the individual cell lines
and the aggregate attribute values of the heterogeneous
cancer tissue. Based on these inputs, the algorithm uses
a Bayesian approach to estimate the number of cells of
different cell lines that are present in the heterogeneous
mixture. In order to estimate the posterior probability,
the algorithm uses the Metropolis algorithm to gather
samples from the posterior distribution and Kernel Den-
sity Estimation to estimate the distribution from these
samples.
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