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Abstract

Background: Haplotype assembly is the task of reconstructing haplotypes of an individual from a mixture of
sequenced chromosome fragments. Haplotype information enables studies of the effects of genetic variations on an
organism’s phenotype. Most of the mathematical formulations of haplotype assembly are known to be NP-hard and
haplotype assembly becomes even more challenging as the sequencing technology advances and the length of the
paired-end reads and inserts increases. Assembly of haplotypes polyploid organisms is considerably more difficult
than in the case of diploids. Hence, scalable and accurate schemes with provable performance are desired for
haplotype assembly of both diploid and polyploid organisms.

Results: We propose a framework that formulates haplotype assembly from sequencing data as a sparse tensor
decomposition. We cast the problem as that of decomposing a tensor having special structural constraints and
missing a large fraction of its entries into a product of two factors, U and V; tensor V reveals haplotype information
while U is a sparse matrix encoding the origin of erroneous sequencing reads. An algorithm, AltHap, which
reconstructs haplotypes of either diploid or polyploid organisms by iteratively solving this decomposition problem is
proposed. The performance and convergence properties of AltHap are theoretically analyzed and, in doing so,
guarantees on the achievable minimum error correction scores and correct phasing rate are established. The
developed framework is applicable to diploid, biallelic and polyallelic polyploid species. The code for AltHap is freely
available from https://github.com/realabolfazl/AltHap.

Conclusion: AltHap was tested in a number of different scenarios and was shown to compare favorably to
state-of-the-art methods in applications to haplotype assembly of diploids, and significantly outperforms existing
techniques when applied to haplotype assembly of polyploids.

Keywords: Haplotype assembly, Tensor decomposition, Iterative algorithm

Background
Fast and accurate DNA sequencing has enabled unprece-
dented studies of genetic variations and their effect on
human health and medical treatments. Complete infor-
mation about variations in an individual’s genome is given
by haplotypes, the ordered lists of single nucleotide poly-
morphisms (SNPs) on the individual’s chromosomes [1].
Haplotype information is of fundamental importance for
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a wide range of applications. For instance, when the cor-
responding genes on a homologous pair of chromosomes
contain multiple variants, they could exhibit different
gene expression patterns. In humans, this may affect
an individual’s susceptibility to diseases and response to
therapeutic drugs, and hence suggest directions for med-
ical and pharmaceutical research [2]. Haplotype infor-
mation also enables whole genome association studies
that focus on the so-called tag SNPs [3], representa-
tive SNPs in a region of the genome characterized by
strong correlation between alleles (i.e., by high linkage
disequilibrium). Moreover, haplotype sequences can be
used to infer recombination patterns and identify genes
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under positive selection [4]. In addition to the SNPs and
minor structural variations found in a healthy individ-
ual’s genome, complex chromosomal aberrations such as
translocations and nonreciprocal structural changes –
including aneuploidy – are present in cancer cells. Can-
cer haplotype assembly enables identification of “driver”
mutations and thus helps to understanding the mech-
anisms behind the disease and discovery of its genetic
signatures.

Haplotype assembly from short reads obtained by
high-through-put DNA sequencing requires partitioning
(either directly or indirectly) the reads into K clusters
(K = 2 for diploids, K = 3 for triploids, etc.), each
collecting the reads corresponding to one of the chro-
mosomes. If the reads were free of sequencing errors,
this task would be straightforward. However, sequenc-
ing is erroneous – state-of-the-art platforms have error
rates on the order of 10−3 − 10−2. This leads to ambigu-
ities regarding the origin of a read and therefore renders
haplotype assembly challenging. For this reason, the vast
majority of haplotype assembly techniques attempts to
remove the aforementioned ambiguities by either dis-
carding or altering sequencing data; this has led to the
minimum fragment removal, minimum SNP removal [5],
maximum fragments cut [6], and minimum error cor-
rection formulations of the assembly problem [7]. Most
of the recent haplotype assembly methods (see, e.g., [8–
12]) focus on the minimum error correction (MEC) for-
mulation where the goal is to find the smallest number
of nucleotides in reads that need to be changed so that
any read partitioning ambiguities would be resolved. It
has been shown that finding optimal solution to the MEC
formulation of the haplotype assembly problem is NP-
hard [5, 12, 13]. In [14], the authors used a branch-and-
bound scheme to minimize the MEC objective over the
space of reads; to reduce the search space, they relied
on a bound on the objective obtained by a random par-
tition of the reads. Unfortunately, exponential growth of
the complexity of this scheme makes it computationally
infeasible even for moderate haplotype lengths. Integer
linear programming techniques have been applied to hap-
lotype assembly in [15], but the approach there fails at
computationally difficult instances of the problem. More
recently, fixed parameter tractable (FPT) algorithms with
runtimes exponential in the number of variants per read
[16, 17] were proposed; these methods are well-suited
for short reads but become infeasible for the long ones.
A dynamic programming scheme for haplotype assem-
bly of diploids proposed in [18] is also exponential in
the length of the longest read. A probabilistic dynamic
programming algorithm that optimizes a likelihood func-
tion generalizing the MEC objective is developed in [10];
this method is characterized by high accuracy but is sig-
nificantly slower than the previous heuristics. Authors

in [9, 11] aim to process long reads by developing algo-
rithms for the exact optimization of weighted variants
of the MEC score that scale well with read length but
are exponential in the sequencing coverage. These meth-
ods, along with ProbHap [10], struggle to remain accurate
and practically feasible at high coverages (e.g., higher
than 12 [10]).

The computational challenges of optimizing MEC score
has motivated several polynomial time heuristics. In a
pioneering work [19], a greedy algorithm seeking the
most likely haplotypes was used to assemble haplotypes
of the first complete diploid individual genome obtained
via high-throughput sequencing. To compute posterior
joint probabilities of consecutive SNPs, Bayesian methods
relying on MCMC and Gibbs sampling schemes were pro-
posed in [20] and [21], respectively; unfortunately, slow
convergence of Markov chains that these schemes rely on
limits their practical feasibility. Following an observation
that haplotype assembly can be interpreted as a clustering
problem, a max-cut formulation was proposed in [22]; an
efficient algorithm (HapCUT, recently upgraded to Hap-
CUT2 [23]) that solves it and significantly outperforms
the method in [19] was developed and has widely been
used. A flow-graph based approach in [24], HapCom-
pass, re-examined fragment removal strategy and demon-
strated superior performance over HapCUT. Other recent
diploid haplotype assembly methods include a greedy
max-cut approach in [25], convex optimization program
for minimizing the MEC score in [26], a communication-
theoretic interpretation of the problem solved via belief
propagation (BP) in [27], and methods that use external
reference panels such as 1000 Genomes to improve accu-
racy of haplotype assembly in [28, 29]. Note that deep
sequencing coverage provided by state-of-the-art high-
throughput sequencing platforms and the emergence of
very long insert sizes in recent technologies (e.g., fosmid
[25]) may enable assembly of extremely long haplotype
blocks but also impose significant computational burden
on the methods above.

Increased affordability, capability to provide deep cov-
erage, and longer sequencing read lengths also enabled
studies of genetic variations of polyploid organisms. How-
ever, haplotype assembly for polyploid genomes is consid-
erably more challenging than that for diploids; to illustrate
this, note that for a polyploid genome with k haplo-
type sequences of length m, under the all-heterozygous
assumption there are (k − 1)m different genotypes and
at least 2(m−1)(k − 1)m different haplotype phasings. In
part for this reason relatively fewer methods for solving
the haplotype assembly problems in polyploids have been
developed. In fact, with the exception of HapCompass
[24], SDhaP [26] and BP [27], the above listed meth-
ods are restricted to diploid genomes. Other techniques
capable of reconstructing haplotypes for both diploid
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and polyploid genomes include HapTree [30], a Bayesian
method to find the maximum likelihood haplotype shown
to be superior to HapCompass and SDhaP (see, e.g.,
[31] for a detailed comparison), H-PoP [8], the state-of-
the-art dynamic programming method that significantly
outperforms the schemes developed in [24, 26, 30] in
terms of accuracy, memory consumption, and speed,
and the recently proposed matrix factorization schemes
in [32, 33].

In this paper, we propose a unified framework for haplo-
type assembly of diploid and polyploid genomes based on
sparse tensor decomposition; the framework essentially
solves a relaxed version of the NP-hard MEC formula-
tion of the haplotype assembly problem. In particular,
read fragments are organized in a sparse binary tensor
which can be thought of as being obtained by multiply-
ing a matrix that contains information about the origin
of erroneous sequencing reads and a tensor that contains
haplotype information of an organism. The problem then
is recast as that of decomposing a tensor having special
structural constraints and missing a large fraction of its
entries. Based on a modified gradient descent method
and after unfolding the observed and haplotype informa-
tion bearing tensors, an iterative procedure for finding
the decomposition is proposed. The algorithm exploits
underlying structural properties of the factors to perform
decomposition at a low computational cost. In addition,
we analyze the performance and convergence proper-
ties of the proposed algorithm and determine bounds on
the minimum error correction (MEC) scores and correct
phasing rate (CPR) – also referred to as reconstruction
rate – that the algorithm achieves for a given sequenc-
ing coverage and data error rate. To the best of our
knowledge, this is the first polynomial time approxima-
tion algorithm for haplotype assembly of diploids and
polyploids having explicit theoretical guarantees for its
achievable MEC score and CPR. The proposed algorithm,
referred to as AltHap, is tested in applications to hap-
lotype assembly for both diploid and polyploid genomes
(synthetic and real data) and compared with several state-
of-the-art methods. Our extensive experiments reveal that
AltHap outperforms the competing techniques in terms
of accuracy, running time, or both. It should be noted that
while state-of-the-art haplotype assembly methods for
polyploids assume haplotypes may only have biallelic sites,
AltHap is capable of reconstructing polyallelic haplotypes
which are common in many plants and some animals,
are of particular importance for applications such as crop
cultivation [34], and may help in reconstruction of viral
quasispecies [35]. Moreover, while many state-of-the-art
haplotype assembly methods are computationally inten-
sive (e.g., [10, 15]), our extensive numerical experiments
demonstrate efficacy of AltHap in a variety of practical
settings.

Methods
Problem formulation
We briefly summarize notation used in the paper. Bold
capital letters refer to matrices and bold lowercase let-
ters represent vectors. Tensors are denoted by underlined
bold capital letters, e.g., M. M::1 and M denote the frontal
slice and the mode-1 unfolding of a third-order tensor
M, respectively. For a positive integer n, [ n] denotes the
set {1 . . . , n}. The condition number of rank-k matrix M
is defined as κ = σ1/σk where σ1 ≥ · · · ≥ σk > 0
are singular values of M. SVDk(M) denotes the rank k
approximation (compact SVD) of M computed by power
iteration method [36, 37].

Let H = {h1, . . . , hk} denote the set of haplotype
sequences of a k-ploid organism, and let R be an n×m SNP
fragment matrix where n denotes the number of sequenc-
ing reads and m is the length of haplotype sequences. R
is an incomplete matrix that can be thought of as being
obtained by sampling, with errors, matrix M that con-
sists of n rows; each row of M is a sequence randomly
selected from among k haplotype sequences. Since each
SNP is one of four possible nucleotides, we use the alpha-
bet A = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} to
describe the information in the haplotype sequences; the
mapping between nucleotides and alphabet components
follows arbitrary convention. The reads can now be orga-
nized into an n × m × 4 SNP fragment tensor which we
denote by R. The (i, j, :) fiber of R, i.e., a one-dimensional
slice obtained by fixing the first and second indices of the
tensor, represents the value of the jth SNP in the ith read.
Let � denote the set of informative fibers of R, i.e., the set
of (i, j, :) such that the ith read covers the jth SNP. Define
an operator P�(.) as

[
P�(R)

]
ij: =

{
Rij: (i, j, :) ∈ �

0, otherwise. (1)

P�(R) is a tensor obtained by sampling, with errors,
tensor M ∈ An×m having n copies of k encoded haplo-
type sequences as its horizontal slices. More specifically,
we can write M = UV�, where V ∈ Am×k contains haplo-
type information, i.e., the jth vertical slice of V, V:j:, is the
encoded sequence of the jth haplotype, and U ∈ {0, 1}n×k

is a matrix that assigns each of n horizontal slices of M to
one of k haplotype sequences, i.e., the ith row of U, ui, is an
indicator of the origin of the ith read. Let � = {e1, . . . , ek},
where el ∈ R

k is the lth standard basis vector having 1
in the lth position and 0 elsewhere. The rows of U are
standard unit basis vectors in R

k , i.e., ui ∈ �, ∀i ∈[ n].
This representation is illustrated in Fig. 1 where the (1, 1, :)
fiber of V specified with dashed lines is mapped to the
(1, 1, :) fiber of M which in turn implies that in the example
described in Fig. 1 we have u1 = e1.
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Fig. 1 Representing haplotype sequences and sequencing reads using tensors. Tensor V ∈ Am×k contains haplotype information while matrix
U ∈ {0, 1}n×k assigns each of the n horizontal slices of M to one of the k haplotype sequences, i.e., the ith row of U is an indicator of the origin of the
ith read

DNA sequencing is erroneous and hence we assume a
model where the informative fibers in R are perturbed ver-
sions of the corresponding fibers in M with data error rate
pe, i.e., if the (i, j, :) ∈ � fiber in M takes value el ∈ A,
Rij: with probability 1 − pe equals el and with probabil-
ity pe takes one of the other three possibilities. Thus, the
observed SNP fragment tensor can be modeled as R =
P�(M + N) where N is an additive noise tensor defined as

Nij: =
{

0, w.p 1 − pe
U(A\{Mij:}) − Mij:, w.p pe, (2)

where the notation U(A\{Mij:}) denotes uniform selec-
tion of a vector from A\{Mij:}. The goal of haplotype
assembly can now be formulated as follows: Given the SNP
fragment tensor R, find the tensor of haplotype sequences
V that minimizes the MEC score.

Next, we formalize the MEC score as well as the cor-
rect phasing rate, also known as reconstruction rate, the
two metrics that are used to characterize performance of
haplotype assembly schemes (see, e.g., [15, 18, 38, 39]).
For two alleles a1, a2 ∈ A ∪ {0}, we define a dissimilarity
function d(a1, a2) as

d(a1, a2) =
{

1, if a1, a2 �= 0 and a1 �= a2
0, otherwise. (3)

The MEC score is the smallest number of fibers in R that
need to be altered so that the resulting modified data is
consistent with the reconstructed haplotype V, i.e.,

MEC =
n∑

i=1
min

p=1,...,k

m∑

j=1
d(Rij:, Vjp:). (4)

The correct phasing rate (CPR), also referred to as the
reconstruction rate, can conveniently be written using the
dissimilarity function d(., .). Let Vt denote the tensor of
true haplotype sequences. Then

CPR = 1 − 1
mk

⎛

⎝min
M

m∑

i=1

k∑

j=1
d

(
M(V)ij:, Vt

ij:

)
⎞

⎠ , (5)

where M is a one-to-one mapping from lateral slices of V
to those of Vt , i.e., a one-to-one mapping from the set of
reconstructed haplotypes to the set of true haplotypes.

We now describe our proposed relaxation of the MEC
formulation of the haplotype assembly problem. Let pi ∈
[ k], ∀i ∈[ n] be defined as pi = arg minp

∑m
j=1 d

(
Rij:, Vjp:

)
.

Notice that for any j such that d
(
Rij:, Vjp:

) = 1, ‖Rij: −
Vjp:‖2

2 = 2. Therefore, by denoting � = ∪n
i=1�i where �i

the set of informative fibers for the ith read we obtain

pi = arg min
p

m∑

j=1
d

(
Rij:, Vjp:

)

= 1
2

arg min
p

m∑

j=1
‖Rij: − P�i

(
Vjp:

) ‖2
2

(a)= 1
2

arg min
p

‖Ri:: − P�i

(
V:p:

) ‖2
F

(b)= 1
2

arg min
p

‖vec(Ri::) − vec
(
P�i

(
V:p:

)) ‖2
2

(6)

where (a) follows from the definition of the Frobenius
norm and vec(.) in (b) denotes the vectorization of its
argument. Let ep be the pth standard unit vector ∀p ∈[ k].
It is straightforward to observe that the last equality in (6)
can equivalently be written as

pi = 1
2

arg min
p

‖vec(Ri::) − P�i

(
Vep

)� ‖2
2

where V is the mode-1 unfolding of the tensor V. Hence,

MEC = 1
2

n∑

i=1
‖vec(Ri::) − P�i

(
Vep

)� ‖2
2.

Let U ∈ {0, 1}n×k be the matrix such that for its ith row
it holds that ui = epi . In addition, notice that vec(Ri::)
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is the ith row of R. Therefore, from the definition of the
Frobenius norm and the fact that P�(R) = R we obtain

MEC = min
U,V

1
2

∥∥∥P�

(
R − UV�)∥∥∥

2

F
. (7)

The optimization problem in (7) is NP-hard since the
entries of V are binary and the objective function is non-
convex. Relaxing the binary constraint to Vi,j ∈ C, ∀i ∈
[ 4m] , ∀j ∈[ k], where C =[ 0, 1], results in the following
relaxation of the MEC formulation,

min
U,V

1
2

∥∥∥P�

(
R − UV�)∥∥∥

2

F

s.t. Vi,j ∈ C, ∀i ∈[ 4m] , ∀j ∈[ k]
ui ∈ �, ∀i ∈[ n] .

(8)

The new formulation can be summarized as follows. We
start by finding the so-called mode-1 unfolding of ten-
sors M and V and denote the decomposition M = UV�,
as illustrated in Fig. 2. As implied by the figure, after
unfolding, the entries of the (1, 1, :) fiber are mapped to
four blocks of M and V that correspond to the frontal
slices of tensors M and V, respectively. Then, to deter-
mine the haplotype sequence that minimizes the MEC
score, one needs to solve (8) and find the optimal tensor
decomposition.

The AltHap algorithm
Although the objective function in (8), i.e.,

f (U, V) = 1
2
‖P�

(
R − UV�)

‖2
F

is convex in each of the factors when the other factor is
fixed, f (U, V) is generally nonconvex. To facilitate compu-
tationally efficient search for the solution of (8), we rely on
a modified gradient search algorithm which exploits the
special structures of U and V and iteratively updates the
estimates (Ut , Vt) starting from some initial point (U0V0).
More specifically, given the current estimates (Ut , Vt), the
update rules are

Ut+1 = arg min
ui∈�

∑

(i,j)∈�

∥∥∥P�

(
R − UtV

�
t

)∥∥∥
2

F
(9)

Vt+1 = �C
(
Vt − α∇f (Vt)

)
, (10)

where ∇f
(
Vt

) = −
(
P�

(
R − Ut+1V�

t

))�
Ut+1 denotes

the partial derivative of f
(
U, V

)
evaluated at

(
Ut+1, Vt

)
,

α is a judiciously chosen step size, and �C denotes the
projection operator onto C. Notice that the optimization
in (9) is done by exhaustively searching over k vectors in
�. Since the number of haplotypes k is relatively small,
the complexity of the exhaustive search (9) is low. The
proposed scheme is formalized as Algorithm 1.

Algorithm 1 Structured Tensor Decomposition
Input: SNP fragment matrix R, step size α,
maximum number of iterations T
Output: V, an estimate of the true haplotype
tensor Vt

Preprocessing: Encode R to tensor R and find
the mode-1 unfolding, R
Initialization: Using power method, Compute
XDY� = SVDk

(
P�(R)

)
and let U0 = XD

1
2 ,

V0 = YD
1
2 . Define � = {e1, . . . , ek}

for t = 0, 1, 2, 3 . . . , T − 1 do
1. Ut+1 = arg minui∈�

∑
(i,j)∈� ‖P�

(
R − UtV�

t

)
‖F

2. ∇f
(
Vt

) = −
(
P�

(
R − Ut+1V�

t

))�
Ut+1

3. Vt+1 = �C
(
Vt − α∇f

(
Vt

))

end for
Decode VT to obtain V

Note that AltHap differs from a previously proposed
SCGD algorithm in [32] as follows: (i) AltHap’s novel
representation of haplotypes and sequencing reads using
binary tensors provides a unified framework for haplo-
type assembly of diploids as well as biallelic and polyal-
lelic polyploids. The method in [32] is not capable of
performing haplotype assembly of polyallelic polyploid

Fig. 2 Representing haplotype sequences and sequencing reads using unfolded tensors. Matrix V ∈ {0, 1}4m×k contains haplotype information
while matrix U ∈ {0, 1}n×k assigns each of the n rows of M to one of the k haplotype sequences, i.e., the ith row of U is an indicator of the origin of
the ith read
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genomes. (ii) Unlike [32], AltHap exploits the fact that
V is composed of binary entries by imposing the con-
straint Vi,j ∈ C in the MEC relaxation in (8). As our
results in Section 5 demonstrate, this leads to signifi-
cant performance improvements of AltHap over SCGD
in a variety of settings. (iii) Lastly, in Section 4 we pro-
vide analysis of the global convergence of AltHap and
derive explicit analytical bounds on its achievable perfor-
mance. Such performance guarantees do not exist for the
method in [32].

Convergence analysis of AltHap
In this section, we analyze the convergence properties of
AltHap and provide performance guarantees in different
scenarios.

In the Additional file 1 we show that, a judicious choice
of the step size α according to

α = C‖∇f
(
Vt

) ‖2
F∥∥∥P�

(
Ut+1∇f

(
Vt

)�)∥∥∥
2

F

, (11)

where C ∈ (0, 2) is a constant, guarantees that the value
of the objective function in (8) decreases as one alternates
between (9) and (10), which in turn implies that AltHap
converges. The key observation that leads to this result
is that f (U, V) is a convex function in each of the factor
matrices and that C =[ 0, 1] is a convex set; hence the pro-
jection �C in (10) leads to a reduction of f

(
Ut , Vt

)
in each

iteration t.
It is important however to determine the conditions

under which the stationary point of AltHap coincides with
the global optima of (8). To this end, we first provide the
definition of incoherence of matrices [40].

Definition 1 A rank-k matrix M ∈ R
n×m with singu-

lar value decomposition M = Û�V̂� is incoherent with
parameter 1 ≤ μ ≤ max{n,m}

k if for every 1 ≤ i ≤ n,
1 ≤ j ≤ m

k∑

l=1
Û2

il ≤ μk
n

,
k∑

l=1
V̂2

jl ≤ μk
m

. (12)

Let each fiber in MT be observed uniformly with prob-
ably p. Let Csnp

�= mp denote the expected number of
SNPs covered by each read, and Cseq

�= np denote the
expected coverage for each of the haplotype sequences.
Theorem 1 built upon the results of [41–43] states that
with an adequate number of covered SNPs, the solution
found by AltHap reconstructs M up to an error term that
stems from the existence of errors in sequencing reads.

Theorem 1 Assume M is μ-incoherent. Suppose the
condition number of M is κ . Then there exist numerical

constants C0, C1 > 0 such that if � is uniformly generated
at random and

Csnp > max
{

C0
3
√

μ4k14κ12Cseq,
pek2κ6

2C1

}
(13)

with probability at least 1− 1
m3 , the solution (U∗, V∗

) found
by AltHap satisfies

∥∥∥M − U∗V∗�∥∥∥
2

F
≤ C1κ4pekm

2Csnp
. (14)

The proof of Theorem 1 relies on a coupled perturbation
analysis to establish a certain type of local convexity of the
objective function around the global optima. Thus, under
(13) there is no other stationary point around the global
optima and hence, starting from a good initial point,
AltHap converges globally. We employ the initialization
procedure suggested by [42] – summarized in the initial-
ization step of Algorithm 1 – which is based on a low cost
singular value decomposition of R using power method
[36, 37] and with high probability lies in the described
convexity region of f (U, V).

Remark 1 Under the assumption of 1, the Condition
Csnp > C0 3

√
μ4k14κ12Cseq specifies a lower bound on the

expected number of covered SNPs, Csnp, that is required for
the exact recovery of M in the idealistic error-free scenario,
i.e., for pe = 0. With higher sequencing coverage, more
SNPs are covered by the reads and hence Csnp required for
accurate haplotype assembly scales with Cseq along with
other parameters. Moreover, the term C1κ4pekm

2Csnp
on the right

hand side of (14) is the bound on the error of the solution
generated by AltHap which increases with the sequencing
error rate pe and ploidy k, and decreases with Csnp and the
number of reads n, as expected.

Remark 2 If M is well-conditioned, i.e., M is char-
acterized by a small incoherence parameter μ and a
small condition number κ , the recovery becomes easier;
this is reflected in less strict sufficient condition (13) and
improved achievable performance (14). In fact, as we ver-
ified in our simulation studies, by using the proposed
framework for haplotype assembly, the parameters μ and κ

associated with M are close to 1 (the ideal case). Theorem 2
provides theoretical bounds on the expected MEC scores
and CPR achieved by AltHap. (See Additional file 1 for the
proof ).

Theorem 2 Under the conditions of Theorem 1, with
probability at least 1 − 1

m3 it holds that

E{MEC} ≤ 2pe
(
Cseqm + κ4C1k

)
. (15)
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Table 1 Performance comparison of AltHap, H-PoP, BP, HapTree, SCGD, and ILP applied to haplotype reconstruction of the CEU
NA12878 data set in the 1000 Genomes Project

AltHap H-PoP BP

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

1 97.4 2011 11.26 95.7 2264 5.22 99.1 2321 8.17

2 95.3 2562 12.22 95.6 2971 5.65 89.5 2897 9.83

3 93.3 2084 10.38 91.2 2312 6.99 74.3 2367 8.30

4 96.9 2368 12.16 97.0 2648 5.24 74.8 2613 6.76

5 97.2 1924 9.96 96.6 2103 4.67 88.2 2185 4.76

6 94.9 3687 14.17 95.2 3343 4.93 88.7 3588 6.94

7 97.0 1846 11.19 92.4 1986 4.24 81.1 2073 7.88

8 96.2 1634 9.63 94.7 1848 4.14 88.5 1857 8.01

9 97.1 1272 6.42 91.0 1462 3.36 89.8 1491 6.13

10 96.8 1584 7.97 94.5 1683 3.67 90.8 1839 7.18

11 93.3 1394 7.45 91.5 1553 3.71 75.6 1586 6.69

12 92.1 1423 7.12 90.3 1570 3.46 74.4 1589 6.48

13 97.0 1269 4.42 94.1 1440 2.89 89.1 1409 5.38

14 90.3 857 9.53 97.1 974 2.54 70.0 995 4.53

15 97.2 941 9.42 97.4 1039 2.40 74.6 1063 3.92

16 96.7 1198 5.40 93.5 1192 2.47 79.7 1269 4.42

17 97.5 1146 4.58 91.1 1244 1.98 92.4 1234 3.15

18 91.0 860 4.54 97.6 893 2.51 82.0 942 3.79

19 97.6 618 3.32 97.8 695 1.82 98.0 1060 2.47

20 97.3 703 3.53 95.0 719 2.00 97.1 796 2.74

21 97.4 470 2.51 97.0 512 1.70 97.5 532 1.86

22 97.3 367 1.98 98.3 427 1.44 90.7 438 1.72

Mean 95.8 1464 7.69 94.8 1585 3.50 85.0 1643 5.51

Sd 2.27 780 3.54 2.54 790 1.49 8.94 793 2.32

# best 9 0 0 5 0 5 3 0 0

HapTree SCGD ILP

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

1 84.1 2305 15.43 92.5 2456 3.62 95.6 1741 173.68

2 84.5 2875 17.59 92.6 3509 4.41 95.3 2219 190.37

3 85.2 2363 15.06 91.9 2498 3.40 95.6 1788 152.09

4 83.5 2604 18.67 92.7 3754 5.47 97.1 2048 168.56

5 84.8 2171 16.95 93.9 2750 3.54 95.4 1691 147.72

6 84.6 3583 23.86 93.0 5612 8.70 95.7 2643 181.51

7 84.7 2070 13.06 93.5 2826 3.95 95.4 1590 133.36

8 84.2 1838 14.81 90.7 1692 2.18 95.6 1472 136.60

9 85.1 1479 14.90 97.1 1885 2.94 95.2 1125 105.34

10 85.7 1823 12.13 92.6 1876 2.56 95.7 1354 120.89

11 83.6 1577 11.33 93.2 2265 2.95 95.2 1206 104.74

12 84.8 1589 9.97 92.3 1612 2.03 95.4 1214 103.88

13 82.8 1405 9.55 97.0 2947 3.31 95.5 1105 93.33

14 85.4 987 7.79 91.1 904 1.36 95.3 752 65.07



Hashemi et al. BMC Genomics 2018, 19(Suppl 4):191 Page 8 of 25

Table 1 Performance comparison of AltHap, H-PoP, BP, HapTree, SCGD, and ILP applied to haplotype reconstruction of the CEU
NA12878 data set in the 1000 Genomes Project (Continued)

AltHap H-PoP BP

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

15 83.6 1061 7.43 99.1 1041 1.21 94.1 809 66.52

16 85.1 1273 8.13 93.0 1305 1.79 95.5 920 77.81

17 84.8 1230 6.34 96.7 2123 2.61 96.1 943 47.99

18 84.1 941 7.13 90.3 933 1.16 95.2 720 71.49

19 84.6 765 5.26 97.2 1290 3.25 96.6 533 44.32

20 86.9 795 6.08 96.8 949 1.38 95.8 612 54.30

21 86.3 528 5.05 94.3 499 0.63 95.2 415 31.82

22 86.9 436 4.65 94.1 422 0.74 95.2 316 31.89

Mean 84.8 1623 11.42 93.9 2052 2.87 95.5 1237 104.69

Sd 1.03 802 5.23 2.3 1222 1.80 0.57 612 50.37

# best 0 0 0 1 0 17 5 22 0

The best results in each Chromosome and in all Chromosomes are in bolface font

Moreover, if the reads sample haplotype sequences uni-
formly, with probability at least 1 − 1

m3 it holds that

E{CPR} ≥ 1 − C1κ4pek
nCsnp

. (16)

Remark 3 The bound established in (15) suggests that
the expected MEC increases with the length of the hap-
lotype sequences, sequencing error, number of haplotype
sequences, and sequencing coverage. A higher sequencing
coverage results in a larger fragment data which in turn
leads to higher MEC scores.

Remark 4 As intuitively expected, the bound (16) sug-
gests that AltHap’s achievable expected CPR improves with
the number of sequencing reads and the SNP coverage; on
the other hand, the CPR deteriorates at higher data error
rates. Finally, assuming the same sequencing parameters,
(16) implies that reconstruction of polyploid haplotypes is
more challenging than that of diploids.

Results and discussion
We evaluated the performance of the proposed method
on both experimental and simulated data, as described
next. AltHap was implemented in Python and MATLAB,
and the simulations were conducted on a single core Intel
Xeon E5-2690 v3 (Haswell) with 2.6 GHz and 64 GB
DDR4-2133 RAM. The benchmarking algorithms include
Belief Propagation (BP) [27], a communication-inspired
method capable of performing haplotype assembly of
diploid and biallelic polyploid species, HapTree [30], inte-
ger linear programming (ILP) technique [15], SCGD [32],
and H-PoP [8], the state-of-the-art dynamic programming
algorithm for haplotype assembly of diploid and biallelic

polyploid species shown to be superior to HapTree [30],
HapCompass [24], and SDhaP [26] in terms of both accu-
racy and speed [8, 31]. Following the prior works on
haplotype assembly (see, e.g., [15, 18, 38, 39]) we use MEC
score and CPR to assess the quality of the reconstructed
haplotypes. For clarity, in the tables we report the CPR
percentage, i.e., CPR× 100.

Experimental data
We first tested performance of AltHap in an application
to haplotype reconstruction of a data set from the 1000
Genomes Project – in particular, the sample NA12878
sequenced at high coverage using the 454 sequencing
platform. In this work, we take the trio-phased variant
calls from the GATK resource bundle [44] as the true hap-
lotype sequences. We compare the MEC score, CPR, and
running time achieved by AltHap to those of H-PoP, BP,
HapTree, SCGD and ILP. All the algorithms used in the
benchmarking study were executed with their default
settings. The results are given in Table 1. As seen there,
among the considered algorithms AltHap achieves the
highest CPR for majority of the chromosomes (nine),
followed by H-PoP and ILP (five each). As expected, ILP
achieves the lowest MEC scores among all the methods
but this comes at a computational cost much higher than
that of AltHap. Notice that lower MEC score does not
necessarily imply better CPR. MEC is the error evaluated
on observed SNPs positions, i.e., the training data points,
while CPR is related to the generalization error that is
calculated on unobserved SNPs positions, i.e., the test
data points. Since the sequencing reads are erroneous,
an algorithm might over-fit while trying to minimize the
MEC score.

Fosmid pool-based sequencing provides very long frag-
ments and is characterized by much higher ratio of



Hashemi et al. BMC Genomics 2018, 19(Suppl 4):191 Page 9 of 25

Table 2 Performance comparison of AltHap, H-PoP, BP, HapTree, SCGD, and ILP applied to the Fosmid data set. HapTree could not
finish assembling haplotype of the 6th chromosome in 48 hours

AltHap H-PoP BP

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

1 95.5 9731 18.38 84.8 9845 2.13 87.6 9567 40.18

2 95.5 9589 38.89 90.4 9444 2.16 84.8 9698 42.90

3 91.7 7311 29.40 91.7 7182 1.79 84.7 7587 30.61

4 92.7 5508 26.69 92.6 5775 1.76 86.9 6288 31.10

5 92.0 6711 27.39 93.9 6910 1.95 86.3 6975 36.94

6 90.9 7213 33.68 88.5 7505 2.40 85.0 7590 41.20

7 90.7 6151 28.60 91.9 6829 1.68 85.8 6091 36.94

8 91.2 5927 23.82 90.2 6143 1.89 87.3 6282 38.87

9 91.8 5347 19.40 91.8 5719 1.76 85.1 5493 26.13

10 90.1 6044 24.07 92.4 6328 1.48 86.4 6503 27.65

11 90.8 5424 21.73 90.3 6432 1.68 85.8 5579 20.56

12 91.5 5456 24.25 91.4 5653 1.46 85.0 5706 24.19

13 90.4 3646 14.23 90.1 3708 1.54 82.7 3976 17.33

14 89.5 4156 18.64 89.1 4261 1.21 87.0 4004 14.84

15 90.0 4079 14.67 72.9 4001 1.06 82.3 4022 14.35

16 88.5 6197 26.28 71.5 6119 1.20 84.4 5112 29.51

17 89.7 4507 16.35 88.3 4911 1.22 87.6 4749 18.29

18 93.0 3080 12.68 90.8 3315 1.14 85.5 3457 13.31

19 85.7 4212 13.40 86.3 4115 0.84 83.5 3928 13.44

20 90.3 3512 13.64 90.0 4121 0.85 84.9 3814 15.97

21 92.7 1871 6.20 91.9 1974 0.68 87.2 1953 8.18

22 85.1 3654 17.24 87.8 3757 0.62 86.7 3910 14.72

mean 90.9 5424 21.35 88.6 5639 1.48 85.6 5558 25.33

Sd 2.5 1950 7.79 5.7 1934 0.50 1.5 1948 10.84

# best 13 0 0 4 0 9 0 0 0

HapTree SCGD ILP

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

1 91.5 9676 6501 95.1 10127 2.59 79.0 6889 80.33

2 92.3 9802 7196 94.5 9721 2.41 76.1 6700 76.60

3 90.7 7705 4847 88.6 7410 1.83 76.9 5122 79.50

4 90.8 6500 8392 87.6 5494 1.48 77.0 4072 51.49

5 90.8 7094 5670 89.6 7058 1.71 76.0 4637 54.39

6 - - - 90.4 7843 2.14 75.7 5248 63.37

7 91.5 6169 5589 89.4 6189 1.73 77.9 4174 46.85

8 91.2 6379 8316 87.4 5996 1.47 76.3 4301 53.57

9 91.7 5513 4465 90.0 5592 1.20 76.8 3974 42.41

10 88.9 6553 4838 92.8 6027 1.60 76.8 4508 59.25

11 90.5 5625 5183 90.1 5662 1.34 79.0 3903 45.45

12 91.3 5770 5654 90.5 5731 1.55 77.5 3907 48.76

13 89.8 4029 5367 87.6 3727 0.79 77.1 2669 32.09

14 90.6 4038 4103 92.9 4859 1.12 75.4 2814 39.61
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Table 2 Performance comparison of AltHap, H-PoP, BP, HapTree, SCGD, and ILP applied to the Fosmid data set. HapTree could not
finish assembling haplotype of the 6th chromosome in 48 hours (Continued)

AltHap H-PoP BP

Chromosome CPR MEC t(sec) CPR MEC t(sec) CPR MEC t(sec)

15 90.7 4116 3357 87.8 4442 0.88 78.7 2903 33.80

16 94.2 5142 9683 95.5 6474 1.60 79.8 3844 62.44

17 93.1 4806 3003 97.1 4843 1.01 80.8 3448 42.00

18 91.9 3493 2303 88.3 3478 0.71 76.9 2337 32.27

19 92.8 3953 1984 82.5 4204 0.87 78.6 2707 33.68

20 90.1 3886 1529 94.6 3790 0.83 78.7 2783 31.78

21 92.1 1979 1410 90.7 2042 0.36 77.2 1367 16.42

22 92.4 3307 1351 90.6 3495 1.06 77.0 2422 60.62

mean 91.4 5502 4797.19 90.6 5645 1.38 77.6 3851 49.39

Sd 1.2 1998 2392.54 3.4 1977 0.56 1.39 1360 16.82

# best 4 0 0 4 0 13 0 22 0

The best results in each Chromosome and in all Chromosomes are in bolface font

the number of SNPs to the number of reads than the
standard data sets generated by high-throughput sequenc-
ing platforms. We consider the fosmid sequence data for
chromosomes of HapMap NA12878 and again take the
trio-phased variant calls from the GATK resource bundle

[44] as the true haplotype sequences. We compare the
performance of AltHap to those of H-PoP, BP, HapTree,
SCGD and ILP and report the results in Table 2. As can
be seen from Table 2, AltHap achieves the best CPR for
most of the chromosomes (thirteen out of 22) followed by

Table 3 Performance comparison of AltHap, H-PoP, BP, HapTree, SCGD, and ILP on a simulated diploid data set from [39] with
haplotype block length m = 700. ILP could only finish assembly of haplotypes for two settings in 48 hours

AltHap H-PoP BP

Error rate Coverage CPR MEC t(s) CPR MEC t(s) CPR MEC t(s)

0.1 5 99.6 477 0.043 99.3 402 0.012 86.7 698 1.421

0.1 8 99.9 759 0.128 99.8 780 0.035 87.2 861 4.627

0.1 10 99.9 954 0.404 99.9 903 0.109 87.3 1130 13.58

0.2 5 90.9 941 0.061 87.7 1021 0.027 81.2 953 2.671

0.2 8 98.1 1458 0.141 88.9 1532 0.098 86.1 1847 6.897

0.2 10 99.1 1836 0.394 91.5 2023 0.201 86.7 2485 10.13

0.3 5 60.7 1228 0.069 61.8 1331 0.041 53.7 1677 3.235

0.3 8 67.7 2022 0.145 65.7 2250 0.098 57.2 2469 7.982

0.3 10 75.0 2558 0.375 71.2 2979 0.217 59.6 3114 15.32

HapTree SCGD ILP

Error rate Coverage CPR MEC t(s) CPR MEC t(s) CPR MEC t(s)

0.1 5 88.6 491 2.13 96.6 523 0.66 98.8 467 471

0.1 8 88.4 767 3.82 99.8 772 0.84 99.7 760 2004

0.1 10 87.3 963 4.03 99.9 965 0.97 - - -

0.2 5 76.2 988 9.36 76.1 979 0.72 - - -

0.2 8 80.8 1562 6.69 91.3 1531 1.18 - - -

0.2 10 82.7 1943 4.20 95.4 1902 1.50 - - -

0.3 5 64.6 1170 10.21 57.8 1136 0.73 - - -

0.3 8 65.7 2021 6.17 63.7 1998 1.14 - - -

0.3 10 65.1 2597 5.74 67.9 2574 1.44 - - -

The best results in each simulation setting are in bolface font
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Table 4 Performance comparison of AltHap, H-PoP, BP, and SCGD on a simulated biallelic triploid data set with haplotype block length
m = 1000. HapTree could not finish the simulations in 48 hours

AltHap H-PoP BP SCGD

Err Cov CPR MEC t(s) CPR MEC t(s) CPR MEC t(s) CPR MEC t(s)

0.002 10 98.2 322 30 71.5 3642 14 68.9 4210 132 69.7 11988 159

0.002 20 95.1 1986 59 73.1 7728 41 72.9 7762 416 51.8 35660 283

0.002 30 98.4 2412 109 70.8 12865 265 69.7 14751 1310 52.1 53248 422

0.01 10 91.7 1379 30 70.0 3786 14 68.1 4092 138 68.4 12108 161

0.01 20 97.7 1597 60 70.9 8375 42 68.9 8601 460 52.0 35606 295

0.01 30 98.9 3143 110 71.8 11769 266 68.1 15124 1301 52.7 53185 422

0.05 10 97.1 2802 31 70.1 3978 14 66.9 4227 135 67.5 13037 158

0.05 20 94.9 8222 59 70.3 9276 41 70.1 9484 460 51.7 35693 285

0.05 30 82.6 17284 110 71.3 13778 268 67.6 16876 1315 52.1 52499 431

The best results in each simulation setting are in bolface font

H-PoP (four). As with the 1000 Genome Project Data, ILP
achieves the best MEC scores but is much slower and sig-
nificantly inferior to AltHap in terms of CPR. Note that
since HapTree could not finish assembling haplotype of
the 6th chromosome in 48 hours, that result is missing
from the table.

Simulated data: the diploid case
To further benchmark performance of the proposed
scheme, we test it on the synthetic data from [39] often
used to compare methods for haplotype assembly of
diploids. These data sets emulate haplotype assembly
under varied coverage, sequencing error rates and haplo-
type block lengths. We constrain our study to the assem-
bly of haplotype blocks having length m = 700 bp (the
longest blocks in the data set). The results, averaged over
100 instances of the problem, are given in Table 3. As
evident from this table, AltHap outperforms other algo-
rithms for nearly all the combinations of data error rates
and sequencing coverage and is also much faster than

SCGD, ILP, BP and HapTree while being slightly slower
than H-PoP. Note that ILP could only finish assembling
haplotype of two settings with pe = 0.1 and coverages of
5 and 8, in 48 hours. Hence, the results for other settings
are missing from the table.

Simulated data: the biallelic polyploid case
The performance of AltHap in applications to haplotype
assembly for polyploids was tested using simulations; in
particular, we studied how AltHap’s accuracy depends
on coverage and sequencing error rate. The generated
data sets consist of paired-end reads with long inserts
that emulate the scenario where long connected haplo-
type blocks need to be assembled. We simulate sampling
of the entire genome using paired-end reads and gen-
erate SNPs along the genome with probability 1 in 300.
In other words, the distance between pairs of adjacent
SNPs follows a geometric random variable with param-
eter psnp = 1

300 (the SNP rate). To emulate a sequenc-
ing process capable of facilitating reconstruction of long

Table 5 Performance comparison of AltHap, H-PoP, BP, and SCGD on a simulated biallelic tetraploid data set with haplotype block
length m = 1000. HapTree could not finish the simulations in 48 hours

AltHap H-PoP BP SCGD

Err Cov CPR MEC t(s) CPR MEC t(s) CPR MEC t(s) CPR MEC t(s)

0.002 10 91.1 1113 43 70.7 3366 43 69.8 4568 290 67.1 14839 208

0.002 20 95.0 2113 87 73.4 7359 113 71.2 9434 540 51.7 41241 419

0.002 30 99.9 674 163 72.6 11693 598 71.5 12745 1496 51.8 61885 653

0.01 10 98.2 938 44 69.3 3511 46 66.4 6475 296 67.1 14819 213

0.01 20 99.3 1668 87 70.3 7882 114 66.9 10213 552 51.5 41712 414

0.01 30 95.3 6518 164 71.0 12392 597 68.4 13245 1485 51.5 61981 652

0.05 10 93.7 3905 44 67.7 4110 46 64.5 6869 306 65.0 15861 213

0.05 20 95.8 9645 89 69.1 9109 118 68.5 11477 623 51.9 41042 408

0.05 30 81.5 18690 165 70.0 14212 601 67.5 17681 1504 51.7 62261 643

The best results in each simulation setting are in bolface font
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Table 6 Performance of AltHap on simulated biallelic triploid
data set with haplotype block length m = 1000, data error rate
pe = 0.002, and different read lengths

Read length Cov CPR MEC t(s)

2× 250 10 98.2 322 30.74

2× 250 20 95.1 1986 59.65

2× 250 30 98.4 2412 109.73

2× 300 10 93.0 856 34.83

2× 300 20 97.9 1410 66.50

2× 300 30 97.7 3216 117.62

2× 500 10 95.5 682 39.36

2× 500 20 92.4 2605 66.37

2× 500 30 93.0 5869 116.69

haplotype blocks, we randomly generate paired-end reads
of length 2 × 250 with average insert length of 10,000 bp
and the standard deviation of 10%; sequencing errors are
inserted using realistic error profiles [45] and genotyp-
ing is performed using a Bayesian approach [44]. At such
read and insert lengths, the generated haplotype blocks
are nearly fully connected. Each experiment is repeated
10 times. AltHap is compared with H-PoP, BP and SCGD.
We also tried to run HapTree. However, HapTree could
not finish the simulations for the considered block size in
48 hours.

Table 4 compares the CPR, MEC score, and running
times of AltHap with those of H-PoP, BP and SCGD for
biallelic triploid genomes with haplotype block lengths
of m = 1000 for several combinations of sequencing
coverage and data error rates. As can be seen there,
in terms of CPR AltHap outperforms all other meth-

Table 7 Performance of AltHap on simulated polyallelic triploid
data set with haplotype block length m = 1000. H-PoP, BP,
HapTree, and SCGD cannot assemble polyallelic polyploid
haplotypes

Error rate Cov CPR MEC t(s)

0.002 5 83.2 1377 43.05

0.002 10 93.2 897 115.13

0.002 15 93.5 1799 173.55

0.002 20 95.2 2346 232.07

0.01 5 74.7 2341 58.13

0.01 10 94.4 1269 115.41

0.01 15 90.9 3755 173.38

0.01 20 85.5 7272 235.86

0.05 5 79.9 3076 57.77

0.05 10 89.4 3925 116.33

0.05 15 93.1 6100 174.37

0.05 20 93.9 9120 236.73

ods in all the scenarios while in terms of MEC score
it outperforms other methods in the vast majority of
the scenarios. Note that unlike H-PoP’s, the complexity
of AltHap scales gracefully with coverage (i.e., although
H-PoP is very fast at low coverages, at the highest cov-
erage AltHap becomes much faster than H-PoP). As
can be seen in Table 6, overall CPR score (MEC score)
of all algorithms decreases (increases) as the proba-
bility of error increases. This is expected – and also
reflected in our theoretical results – since with higher
data error rate haplotype assembly becomes more chal-
lenging. Additionally, MEC scores increases with cov-
erage since higher coverage implies more sequencing
reads. Therefore, the total number of observed SNP posi-
tions increases which in turn results in higher MEC
scores.

The results of tests conducted on simulated biallelic
tetraploid genomes are summarized in Table 5, where we
observe that AltHap outperforms the competing schemes
in terms of both accuracy and running time. To inves-
tigate how the performance and complexity of AltHap
vary with coverage and read length, in Table 6 we report
its CPR, MEC, and runtimes obtained by simulating
assembly of biallelic triploid haplotypes using paired end
reads of length 2 × 250, 2 × 300, and 2 × 500 and
coverage 10, 20 and 30 (block length is set to m =
1000 and data error rate is pe = 0.002). The results
imply that AltHap’s runtime scales approximately lin-
early with both read length and coverage over the con-
sider range of these two parameters. Additionally, as we
see in Table 5, MEC score slightly increases with read
length. The impact of read length in this matter is sim-
ilar to that of sequencing coverage. longer sequencing

Table 8 Performance of AltHap on simulated polyallelic
tetraploid data set with haplotype block length m = 1000.
H-PoP, BP, HapTree, and SCGD cannot assemble polyallelic
polyploid haplotypes

Error rate Cov CPR MEC t(s)

0.002 5 79.4 2380 109.00

0.002 10 86.5 2043 220.6

0.002 15 93.8 2148 328.49

0.002 20 96.3 2388 432.28

0.01 5 79.7 2398 113.08

0.01 10 84.1 2927 220.33

0.01 15 82.8 5787 327.10

0.01 20 99.2 2319 432.85

0.05 5 74.6 4721 113.38

0.05 10 89.0 5146 211.43

0.05 15 92.3 7555 327.20

0.05 20 92.0 13704 435.15
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reads provide more observed SNP positions and hence the
MEC might increase, as also predicted by our theoretical
results.

Simulated data: the polyallelic polyploid case
We further studied the performance of AltHap on triploid
and tetraploid organisms having polyallelic sites and the
results are summarized in Tables 7 and 8, respectively.
Notice that none of the competing schemes are capa-
ble of handling polyallelic genomes. Evidently, AltHap is
able to reconstruct underlying haplotype sequences with
competitive performance at a low computational cost.

The results of these extensive simulations imply that,
as expected, haplotype assembly becomes more chal-
lenging as the number of haplotype sequences (i.e., the
ploidy) increases. Nevertheless, in all the conducted stud-
ies, AltHap consistently reconstructs haplotype sequences
accurately and with practically feasible computational
cost. In addition, the results of Tables 4 and 5 demonstrate
that the computational time of AltHap grows significantly
slower with coverage than the computational time of the
competing schemes. In particular, for high coverages that
are characteristic of high-throughput sequencing tech-
nologies, AltHap is the most efficient among the consid-
ered algorithm.

CPR lower bound
Finally, we use the results obtained by running AltHap on
simulated biallelic triploid data (i.e., the results summa-
rized in Table 4) to examine tightness of the theoretical
bounds on the CPR stated in Theorem 2. In particular,
theoretical bounds on CPR are compared to the CPRs
empirically computed for various combinations of cover-
age and data error rates (averaged over 10 independent
problem instances). In Fig. 3, the theoretical bound and
experimental CPR results are shown as functions of the
data error rate for coverage 15. We observe that the
bound is reasonably close to the experimental results over
the considered range of data error rates. In Fig. 4, the
theoretical bound and experimental CPR results are plot-
ted against sequencing coverage for the data error rate
pe = 0.002. This figure, too, implies that the theoret-
ical CPR bound is relatively close to the experimental
results. Notice that as Fig. 3 shows, the CPR score as
well as the lower bound derived in Theorem 2 decrease
when the sequencing error increases. On the other hand,
Fig. 4 depicts that higher coverage improves AltHap’s CPR
score, which again is reflected in our theoretical results.

Conclusion
In this paper, we developed a novel haplotype assembly
framework for both diploid and polyploid organisms that
relies on sparse tensor decomposition. The proposed algo-
rithm, referred to as AltHap, exploits structural properties

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
PR

Fig. 3 Comparison of the theoretical and experimental results.
Comparison of the theoretical bound on CPR with the experimental
results when Cseq = 15 obtained by applying AltHap to the problem
of reconstructing biallelic triploid haplotypes (synthetic data)

of the problem to efficiently find tensor factors and
thus assemble haplotypes in an iterative fashion, alter-
nating between two computationally tractable optimiza-
tion tasks. If the algorithm starts the iterations from
an appropriately selected initial point, AltHap converges
to a stationary point which is with high probability in
close proximity of the solution that is optimal in the
MEC sense. In addition, we analyzed the performance
and convergence properties of AltHap and found bounds
on its achievable MEC score and the correct phasing
rate. AltHap, unlike the majority of existing methods for
haplotype assembly for polyploids, is capable of recon-
structing haplotypes with polyallelic sites, making it useful
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in a number of applications involving plant genomes. Our
extensive tests on real and simulated data demonstrate
that AltHap compares favorably to competing methods in
applications to haplotype assembly of diploids, and signif-
icantly outperforms existing techniques when applied to
haplotype assembly of polyploids.

As part of the future work, it is of interest to extend
the sparse tensor decomposition framework to viral qua-
sispecies reconstruction and recovery of bacterial haplo-
types from metagenomic data.

Additional file

Additional file 1: Supplement for “Sparse Tensor Decomposition for
Haplotype Assembly of Diploids and Polyploids”. Additional file 1 provides
details on derivation of the proposed step size, and derivation of MEC and
CPR bounds. (PDF 210 kb)
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