
Collaborative SQL-Injections Detection System with
Machine Learning

Moisés Lodeiro-Santiago, Cándido Caballero-Gil, Pino Caballero-Gil
Univesity of La Laguna, Avda. Astrofı́sico Francisco Sánchez s/n., San Cristóbal de La Laguna, Santa Cruz de Tenerife,

mlodeirs@ull.edu.es, ccabgil@ull.edu.es, pcaballe@ull.edu.es

Abstract—Data mining and information extraction from data
is a field that has gained relevance in recent years thanks to
techniques based on artificial intelligence and use of machine
and deep learning. The main aim of the present work is the
development of a tool based on a previous behaviour study
of security audit tools (oriented to SQL pentesting) with the
purpose of creating testing sets capable of performing an accurate
detection of a SQL attack. The study is based on the information
collected through the generated web server logs in a pentesting
laboratory environment. Then, making use of the common
extracted patterns from the logs, each attack vector has been
classified in risk levels (dangerous attack, normal attack, non-
attack, etc.). Finally, a training with the generated data was
performed in order to obtain a classifier system that has a
variable performance between 97 and 99 percent in positive
attack detection. The training data is shared to other servers
in order to create a distributed network capable of deciding if a
query is an attack or is a real petition and inform to connected
clients in order to block the petitions from the attacker’s IP.

I. INTRODUCTION

Computer security is a topic of growing interest in the
society due to the need to have secure systems that take care
of information and protect it from ”hackers”. It is usual to find
news in different media (TV, newspaper, Internet..) related to
attacks on large companies [1] that had vulnerable systems.
Nowadays, company projects or plans usually require a system
where the information must be stored, which is why they make
use of database engines that are often unprotected or using the
default and unsafe configuration. For years, [2] SQL attacks
have allowed information stealing due to logical failures and
a bad filter in the parameters and a non-validation of whether
a query can be executed or not. This type of techniques is
not only to the knowledge of the experts. In spite of being
something technical, it is common to find new vulnerabilities
day in day out in places like Packet Storm [3] and Exploit DB
[4] to reach and execute any exploit (vulnerability) with a few
clicks.

From a time there are tools that try to solve these problems.
One of them is AMNESIA [5] combining routine analysis
and monitoring for a model construction of different types of
real queries from an application. Queries that do not match
the generated patterns are prevented from access. In [6] it is
used a classifier tree based on tokens extracted from some
SQL queries and try to give a solution to incoming queries to
check whether it is an attack or not. However, possibly due to
the year of publishing, no cases are contemplated as a possible

bypass in the queries (WAF evasion techniques) like including
comments, hex transformation, etc.

In addition to this, several tools have been presented over
the last years based on the use of Machine Learning techniques
as a method to classify and evade intrusion in systems. Among
the most cited cases it is [7], proposing a detection SQL-based
attacks system based on the experience of the developers.
This information is helpful for a few cases but is not specific
or determinant today to avoid certain attacks. Furthermore,
tokens-based totality analysis is usually not very reliable
because a non-offensive query can contain statements like
where,or,and,etc.. As an improvement, our system has been
based on the heuristic and behaviour of SQL injection patterns
starting from the scratch to ending with a test laboratory where
the isolated information server was attacked by one of the
most prestigious and well-known tools for computer audit in
SQL engines, the SQLMap [8]. In [9] a classification and
analysis of the consequences of an attack by SQLIA as thefts
in systems of authorization, alteration of the confidentiality
and integrity are carried out. It also offers a rating based on
attack attempts to determine whether it is a modification query,
extraction query, schema definition, etc. Additionally, there are
other projects of similar characteristic like [10] and [11] where
an analysis of many types of web-oriented attacks (including
SQL engine attacks) based on the use of attack vectors to
identify SQL injections. The size of the used dataset for the
classification it is quite small even for query pattern detection
(< 1000). On the contrary, in our project, the number of tests
in the training dataset and the concept tests used in this paper
(reaching a reliability of approximately 99 %) reaches 80, 208
requests (where more than 75 % are SQL queries). In [12],
Michio proposes a statistical system close to how the statistical
systems behind machine learning could work, using vector
classifier systems with stochastic methods with approximation
methods in parameters.

All solutions discussed above are based on the learning
machine to distinguish actual requests for malicious requests
that make use (usually) of attack vector analysis. However,
none take into account factors such as the evolution of attack
patterns, the obsolescence of detection systems or training time
and the improvement of classifiers. This paper is based on the
hypothesis that there is a network of machines (computers) dis-
tributed on the Internet where each computer can be labelled
as a client, server or both at the same time. This network
shares the information of the logs generated by the clients in

ar
X

iv
:2

20
9.

06
55

3v
1 

 [
cs

.C
R

] 
 1

4 
Se

p 
20

22



order to be analysed by the servers to classify possible malign
requests. Also, if a client is affected, the other clients can be
protected against that menace using the information offered
by the analysis servers. The main aim is to create a prototype
based on emerging technologies such as FireBase [13] (created
by Google Inc.) as an instant connection socket between clients
and servers allowing rapid reaction and propagation by the
classifier servers.

The paper is structured as follows: In the II section, an
analysis of how the data have been collected in an empirical
way is done. In section III, it is shown how a distributed
system works and discusses an application of these distributed
systems for SQLIA detection. Finally, the work ends with the
conclusions IV where the future ideas of the current work are
also shown.

II. LABORATORY AND DATA EXTRACTION

Fig. 1. SQLIA Frequency attacks

Fig. 2. Frequency non-alphabetic analysis in SQLIA

In the cited papers in the introduction, a reference is made
on several occasions to the fact that the source of information
on the extraction of knowledge is based on the experience of
researchers. There is a lack of a scientific basis so, for the
present study, an ad-hoc laboratory has been done with the
single purpose of seeing the behaviour of some of the most
usual database audit tools. In particular, a private laboratory
with two machines has been carried out; The first machine is
one with an Apache server with the logs enabled, the another
machine (made up with docker) is a simple virtualised envi-
ronment with the SQL Map tool installed. SQLMap tool is one
of the most used tools for the detection of SQL vulnerabilities
since it allows the detection and even exploitation of vulner-
abilities. The tests were performed with the following query:
sqlmap− u”htt p : //IP/?id = 1”−−level = 5− risk = 3−
f orms− v5− threads = 2− random− agent− parse− errors
in order to obtain the real records used by the tool. The tool
is setted with level=5 and risk=3 (maximum values) and tests
are performed from simple inspections like ′or1 = 1−−′ to
more complex injection attempts such as uNiOn/∗∗/all
x0 · · · and so on. This generates in the Apache server a record
log file with a sum of 42,664 queries (malicious injections).
For the creation of ”legal” queries have been used records of
several servers with different types of application (WordPress
among them) with a total of approximately 8000 queries.

A. Preparing queries and creating a dictionary

In order to perform an automatic classification, a detection
of patterns and tokens based on an analysis of raw file frequen-
cies was done to divide the alphabetic characters Payload1 1
and separate the non-alphabetic characters Payload2 2. After
the data frequencies study, it has proceeded to the classification
into 4 different types (1 without risk, 2 small risk, 3 risk
and 4 high risk). Each sort of classification is based on the
weighted use of the extracted elements in the analysis where,
for instance, a level 4 (maximum) is equivalent to the use of a
unionall statement. Non-alphabetic complements modify the
previous level by adding +1 to the level in case of detection
of common elements used in injections
x,0x,<,>,etc. The algorithm followed to create the dictionar-
ies is the following one:

1) To start, using the list generated by SQLMap. All queries
are marked as dangerous

2) ilevel = 0, l = log f ile,s = symbol f ile
3) ∀lx ⊂ l and ∀p⊂ Payload1 /lx = minus(lx)

a) l1→ remove spaces(minus(l1))
b) l2→ htmlDecode(remove spaces(only chars(l1)))

4) i f (Payload1inl1)or(Payload2inl2) :
a) i f unionselect ⊂ Payload1 : level→ 4
b) i f level < 4andPayload1 ⊂ {all,chr,and,=

,where,or} : level→ 3
c) i f level < 3andPayload1 ⊂
{select,as, f rom, like, ...} : level→ 2

5) i f Payloadins :



• i f level < 4andPayload1in{
x,0x,′ ,”} : level→+1

• i f level < 3andPayload1in{.,<,>,(,),number} :
level→+1

• i f level < 2andPayload1in{∗,∗,%,#,−−, ;} :
level→+1

Once the classification process is finished, we have a vector
~x with 51 variables. The classification is represented by the
last variable. The 30 first variables in ~x[0 : 30] represents the
30 most common patterns (see Fig. 1). The remaining 20
elements (see Fig. 2) are the non-alphabetic chars commonly
used in injections. The variables (except the last one) represent
the number of matches of the Payload within the query. On
the contrary, the last variable is the final ranking with the
level value. So, for example a ~x = {1,0,3, . . .4} will represent
a query with one unionselect, zero all, three and and it is
classified as high risk (level 4).

B. Classifier and Performance

The training has been performed using the Python library
“sci-kit-learn” (a machine learning library) using the corre-
sponding to the file resulting from the classification seen in
the previous subsection with a total of 50,000 rows. The
classifiers have been trained by two different models known
as ”Naive Bayes Classifier” and a tree type classifier (see
Fig. 3). The Bayes classifier is popular for the classification
of information based on the Bayes theorem for supervised
probabilistic classification. Unlike other works, the sample
of 50k elements gives a very high effectiveness (the more
tests, the higher the probability of classifying correctly). Using
a Bayes classifier, an ”accuracy score” was obtained after
a prediction of 0.98 + α/α = ±0.1. In addition to this, a
tree classifier has been used obtaining classification results
that are very similar to those of Bayes which indicates that
the classification before training is entirely correct. For the
”decision tree” type classification, the entropy and a maximum
classification level of 10 (tree depth) have been used as
criterion element, with a set of tests of 0.3 (leaving 0.7 of
training).

III. COLLABORATIVE WORK

In this way, a computer can overcome geographical barriers
in order to work in a network of computers (or servers) with
the same tasks. For years, the user experience in database
engines has been improved, this is the case of Firebase in
real time. Firebase is a safe tools suite that allows multiple
functionalities such as having a non-SQL database that works
by connecting sockets between the client(s) and the server(s).
The best of it is that this database has real-time events like
listeners that notify of changes when they happens, at this
moment, the customers that are listening receive the changes
made.

A. Distributed Schema

When thinking about distributed systems it is common
to think about computers that work in remote geographic

situations. This concept fits the main idea of the paper which
is the creation of a distributed system (see Fig. 4) for the
classification of multiple clients based on the classifier system
discussed throughout the paper. The main idea is to create
a network where each node can be a client or a server. The
reason and the need for a distributed system for the protection
of services exposed to the internet is mainly the protection
of the data of the clients against hackers. It is understood
that a client is one who has a service exposed to the internet
(such as a web page, a store application, etc.). The incoming
requests are recorded not only in a log but also are stored in the
database (in this case, Firebase). The advantage of this is that
all the clients that are connected in the network send data to a
global-shared log in a machine. As discussed at the beginning
of the section, Firebase has a direct communication socket
system so when a client saves a record in the query database,
Firebase automatically notifies the servers that there are new
stored items (new queries). These queries can be analysed by
the network servers with different types of classifiers in order
to check whether the request is a type of attack or not. In the
case of a type of attack, an event would be notified through
Firebase to all the connected clients in order that the clients
can take the decision to block an intrusion prior to an attack.
The steps that the system would perform are described in the
following figure 4. Also, a brief description of each step is
included.

1) An attacker launches a malicious query to the client that
is accessible from internet (in this case, a web page).

2) The web page stores a record in the shared database that
is in the cloud (without knowing yet that it is an attack).

3) The Firebase engine notifies to any client or server that is
listening that there are changes in the database. Besides,
servers analyses the request(s) using some different
classifiers and notify Firebase of the classification of
that query.

4) Firebase notifies to all listener clients if this query is
legitimate or is dangerous.

The advantage of this system is that training times do not
affect the clients, but only the servers. Another advantage is
also that having a shared log system can have a very large
database in order to be able to offer a continuous training in
the servers improving the classifier with each stored query.

In a confusion matrix, the value related to Type I (or false
positive) occurs when a request is legitimate and classified
as dangerous or erroneously. These cases can be related to
queries that include tokens belonging to the SQL language
such as “union all” (for example: “union all values contained
in multiple lists”). According to our classifier, that query could
be malicious due to the containment of those tokens. However,
not only does it depends on these instructions for classification
but on other parameters for determining whether a query is
malicious or not. At present, the probability of detection of
a false positive (according to the dataset and training data) is
currently close to ±1%.



Fig. 3. Decision Tree Classifier

Fig. 4. Collaborative machine learning scheme

IV. CONCLUSIONS

This paper presents an improvement of current intrusion
detection systems based on the use of a frequency analysis and
the previous behavior of one of the most used database audit
software, SQL Map. The main result is a positive detection
(close to 99 % positive detection) based on thousands of test
and training data (almost 50,000 queries) used to improve
the performance of current systems. In addition to this, we
have performed a system for the management of intrusion
detection by using the above-mentioned tool. As future work,
we are working on improving both tools to offer an even
higher success rate (including decreasing the number of false
positives) and extending the analyses to other database engines
used today (based on relational and non-relational models).

ACKNOWLEDGEMENTS

Research supported by the Spanish Ministry of Economy
and Competitiveness, the European FEDER Fund, and the
CajaCanarias Foundation, under Projects TEC2014-54110-
R, RTC-2014-1648-8, MTM2015-69138-REDT and DIG02-
INSITU.

REFERENCES

[1] “Wired - wannacry [online],” https://www.wired.com/tag/wannacry/,
July 11, 2017.

[2] “Wasp top 10 [online],” https://www.owasp.org/index.php/Top 10 2017-
Top 10, July 10, 2017.

[3] “Packet storm [online],” https://goo.gl/X3v37z, July 9, 2017.
[4] “Exploit database [online],” https://www.exploit-db.com, July 14, 2017.
[5] W. G. Halfond and A. Orso, “Amnesia: analysis and monitoring for

neutralizing sql-injection attacks,” in Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. ACM,
2005, pp. 174–183.

[6] G. Buehrer, B. W. Weide, and P. A. Sivilotti, “Using parse tree validation
to prevent sql injection attacks,” in Proceedings of the 5th international
workshop on Software engineering and middleware. ACM, 2005, pp.
106–113.

[7] A. Makiou, Y. Begriche, and A. Serhrouchni, “Improving web appli-
cation firewalls to detect advanced sql injection attacks,” in 2014 10th
International Conference on Information Assurance and Security, Nov
2014, pp. 35–40.

[8] “Sql map [online],” http://sqlmap.org/, July 10, 2017.
[9] A. Tajpour, S. Ibrahim, and M. Masrom, “Sql injection detection

and prevention techniques,” International Journal of Advancements in
Computing Technology, vol. 3, no. 7, pp. 82–91, 2011.

[10] R. Komiya, I. Paik, and M. Hisada, “Classification of malicious web
code by machine learning,” in 2011 3rd International Conference on
Awareness Science and Technology (iCAST), Sept 2011, pp. 406–411.

[11] J. Choi, H. Kim, C. Choi, and P. Kim, “Efficient malicious code detection
using n-gram analysis and svm,” in 2011 14th International Conference
on Network-Based Information Systems, Sept 2011, pp. 618–621.



[12] M. Sonoda, T. Matsuda, and D. Koizumi, “On the approximate maxi-
mum likelihood estimation in stochastic model of sql injection attacks,”
in Systems, Man, and Cybernetics (SMC), 2016 IEEE International
Conference on. IEEE, 2016, pp. 000 802–000 807.

[13] “Firebase - google inc. [online],” https://firebase.google.com/, July 10,
2017.


	I Introduction
	II Laboratory and Data Extraction
	II-A Preparing queries and creating a dictionary
	II-B Classifier and Performance

	III Collaborative Work
	III-A Distributed Schema

	IV Conclusions
	References

