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Algorithm 985: Simple, efficient, and relatively accurate 
approximation for the evaluation of the Faddeyeva 
function  
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We present a new simple algorithm for efficient, and relatively accurate computation 
of the Faddeyeva function w(z). The algorithm carefully exploits previous 
approximations by Hui et al [1978] and Humlíček [1982] along with asymptotic 
expressions from Laplace continued fractions. Over a wide and fine grid of the 
complex argument, z=x+iy, numerical results from the present approximation show a 
maximum relative error less than 4.010-5 for both real and imaginary parts of w 
while running in a relatively shorter execution time than other competitive 
techniques. In addition to the calculation of the Faddeyeva function, w, partial 
derivatives of the real and imaginary parts of the function can easily be calculated 
and returned as optional output. 
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1. INTRODUCTION 
 

The complex probability function, commonly known as the Faddeyeva 
function, has gained wide interest in the literature due to its importance and 
application in many fields of physics such as plasma spectroscopy, atmospheric 
radiative transfer, nuclear physics, nuclear magnetic resonance, etc. A fairly extensive 
body of the literature has been developed discussing the properties and numerical 
evaluation of this function, some of them use different names [Faddeyeva and 
Terent’ev 1961, Young 1965; Armstrong  1967; Gautschi 1969; 1970; Hui et al. 1978; 
Humlíček 1982; Dominguez et al. 1987; Poppe and Wijers. 1990a,b; Lether and 
Wenston 1991; Schreier 1992; Shippony and Read 1993; Weideman 1994; Wells 1999; 
Luque et al. 2005; Letchworth and Benner 2007; Zaghloul 2007; Abrarov et al. 
2010a,b; Zaghloul and Ali 2011, Boyer and Lynas-Gray 2014, Zaghloul 2015]. In some 
practical applications, for example, in the line-by-line calculation of microwave and 
infrared radiative transfer from spectroscopic data, evaluation of the Faddeyeva 
function may account for a significant fraction of the execution time and the 
development of more efficient approximations continues to be a priority.  

The function is defined mathematically as the scaled complementary error 
function for a complex variable and can be expressed as, 
 








































0z m2e
tz
dtei

0z m
tz
dtei

erfc(-iz)ew(z)

2
2

2

2

z
t

t

(-iz)

π

π                                                                      (1) 

 
where z=x+iy is a complex argument and erfc(z) is the complementary error function. 
The real and imaginary parts of the function are known as the real and imaginary 
Voigt functions V(x,y) and L(x,y), that is,  
 

y)L(x,iy)V(x,iy)w(x  .                                                                                                   (2) 
 

The real part of the function, V(x,y), is widely used to represent spectral line 
shapes in many fields of physics such as astrophysics, atmospheric spectroscopy and 
radiative transfer, plasma physics, etc. The quantity x is the non-dimensional 
frequency and y is the damping parameter, both expressed in Doppler width units. 
The imaginary Voigt function L(x,y) is also useful as it allows for the calculation of 
the spectral line profile including line mixing.   

A closed form expression does not exist for the integral defining the Faddeyeva 
function and as a result a wide variety of algorithms have been developed to evaluate 
the function numerically. The accuracy and computational speed of these algorithms 
vary significantly and the choice of the appropriate algorithm will depend on the 



3 
 

particular application under consideration. For applications requiring huge numbers 
of evaluations (sometimes in excess of 1011) computational speed is the deciding factor 
and, when low accuracy evaluations are sufficient, implementations of the methods of 
Hui et al. [1978] and Humlíček [1982] are commonly used. Humlíček’s routine was 
introduced to overcome the inevitable failure of any rational approximation (similar 
to Hui’s algorithm) near the real axis; however, the two routines suffer from a loss of 
their claimed accuracies near the real axis as shown by many authors in the literature 
(see, for example, Wells [1999]; Zaghloul and Ali [2011]). Assessments, using Algorithm 
916, Zaghloul and Ali [2011] as a reference, indicate that Humlíček’s w4 algorithm 
satisfies its claimed accuracy of 9.610-5 only for y>10-6. 

It is also worth mentioning that Hui’s algorithm and Humlíček’s w4 algorithm 
form the basis of several other refinements [Schreier 1992; Kuntz 1997; Wells 1999; 
Imai et al 2010]. Following Karp’s [1978] suggestion, Schreier [1992] replaced Hui’s 
rational approximation for the real part of the Faddeyeva function by  

)x/(y)xexp(y)V(x, 22 π  for small y and y/x2<10-4. Nevertheless, large errors for 
intermediate x and small y values were not removed. A new implementation of 
Humlíček’s algorithm for approximating V(x,y), proposed by Kuntz [1997], claims to 
have improved efficiency over other implementations but the method suffers from a 
loss of accuracy for small y. A number of errors, in the Kuntz’ implementation, have 
been reported in [Ruyten 2004]. Wells [1999] and Imai et al [2010] reintroduced 
Humlíček’s w4 algorithm with redefined boundaries and added a new region (called 
Region 0) for |z| (i.e., far from the line center) where the simple expression 
w(z)~i/(z)1/2 gives adequate relative accuracy. Imai's algorithm for V(x,y) also loses 
accuracy for small y while Wells’ method replaces the w4 rational approximation in 
Region IV by the less efficient CPF12 algorithm [Humlíček 1979] to overcome this 
problem. Further, Wells’ code optionally provides the imaginary part of the 
Faddeyeva function and its derivatives. As well as being less efficient, the claimed 
accuracy 10-5 of Wells’ algorithm is not satisfied in some regions of the computational 
domain. In most of the above studies, Humlíček’s w4 algorithm is shown to be 
remarkably efficient when the parameter x is a vector and y is a scalar. A brief survey 
and benchmarking tests by Schreier [2011] reported that, for Fortran and Python 
implementations, programming language, compiler choice, and implementation 
details influence computational speed to such a degree that there is no unique ranking 
of algorithms. 

In this paper we present a simple and relatively accurate approximation of the 
Faddeyeva function that overcomes the loss of accuracy problem mentioned above, 
while running in a competitive execution time. The new approximation is particularly 
suitable where the evaluation of the Faddeyeva function may account for a 
significant part of the execution time. In Section 2 we provide details about the 
proposed routine and its accuracy while implementations in Matlab and Fortran 
together with performance results are presented and discussed in Section 3.  
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2. THE ROUTINE AND ITS ACCURACY 
 

The Faddeyeva function can be approximated asymptotically by the Laplace 
continued fractions [Faddeyeva and Terent'ev 1961, Abramowitz and Stegun 1964, 
Gautschi 1970], 
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where the continued fraction needs to be truncated at some convergent for practical 
evaluation. For large values of |z| a few convergents may be used to obtain the 
desired accuracy.  

Using Algorithm 916 as a reference, the regions of applicability vs the number 
of convergents retained (up to four convergents) are specified for an accuracy better 
than 4.010-5. However, as the computational cost (execution time) increases with the 
number of convergents retained to approximate the function, the minimum number 
of convergents necessary to approximate the function to within the specified accuracy 
is chosen wherever these regions overlap. The first four rows in Table 1 summarize the 
proposed regions of applicability and the equivalent rational approximation up to 
four convergents of Laplace continued fractions. As can be seen from the table, these 
convergents can be used to approximate the Faddeyeva function to accuracy better 
than 4.010-5 for |z|230 except for the narrow strip defined by 62.0|z|230.0 & 
y2<10-13. 

For the region|z|2<30.0 and except for the strip given by the intersection of 
30.0>|z|2>2.5 and y2<0.072, tests using a fine grid showed Hui's p6 approximation 
(rational approximation with the degree 6 polynomial in the numerator and degree 7 
polynomial in the denominator) for both V(x,y) and L(x,y), to approximate the 
function to accuracy better than the targeted accuracy (<4.010-5). Finally, the 
approximation proposed by Humlíček [1982] to be used in Region IV in the w4 
algorithm is found to be very accurate for very small values of y and values of x in the 
region|z|2<62.0 [Zaghloul 2015]. The expression was found to give the required 
accuracy for values of y2<0.072. We propose using this expression for the region of 
small y, where the first four convergents of Laplace continued fractions and Hui’s 
approximation cannot secure the targeted accuracy in the region|z|2<62.0.  
 
 Based on the above findings we propose a simple algorithm for the calculation 
of the Faddeyeva function with accuracy <4.010-5. The algorithm employs a 
partitioning of the computational domain with different simple approximate methods 
in different regions as discussed above and explained in Figure 1 and Table 1 below. 
 
 



5 
 

180 200

180

200

I
~

~

0 5 10 15
0

2

4

6

8

10

12

14

16

x

y

II

III

IV

VI V

 

Figure 1: Regions of the partitioning of the x-y plane in the present proposed routine 

 

Table 1: Regions of the proposed partitioning and the corresponding computational 
method used   

Region Borders Method 

I |z|2 3.8104 
1 convergent (continued fractions)  

πziw(z)   

II 3.8104 |z|2 256.0 
2 convergents (continued fractions)* 

0.5)(zizw(z) 2  π  

III 256.0 >|z|2 62.0 
3 convergents (continued fractions) 

1.5)z(z1)i(zw(z) 22  π  

IV 62.0|z|230.0 & y210-13 
4 convergents (continued fractions)**  

)(π 0.753)(zz2.5)iz(zw(z) 222   

V 62.0|z|230.0  & y2<10-13   
30.0>|z|22.5 & y2<0.072 

Rational approximation for region IV in 
Humlíček’s w4 algorithm 

VI Otherwise Hui’s p6 approximation 
*, ** The rational approximations resulting from the second and fourth convergents are identical to 
the approximations for regions I and II in Humlíček’s w4 algorithm, respectively. 
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Figure 2 shows surface plots of the absolute relative error, in the calculation of 

the real, V, and imaginary, L, parts ( refrefV VVVδ /)(   and refrefL LLLδ /)(  ), of 

the Faddeyeva function, resulting from using the present routine with Algorithm 916 
as a reference. For the whole domain of calculation, the maximum relative error for 
both the real and imaginary parts was found to be less than 4.010-5.  

Calculating the partial derivatives of the real and imaginary parts of the 
Faddeyeva function is important for many applications; see [Schreier 1992, Wells 
1999, Letchworth and Benner 2007]. Having computed the Faddeyeva function, the 
partial derivatives may be computed with relative simplicity using the relation 

w(z)z2
2i

(z)w 
π

                                                                                                    (4) 

The partial derivatives of the real part of the function can be calculated and returned 
as optional output with the Faddeyeva function while the derivatives of the 
imaginary part of w may be obtained directly from the derivatives of the real part 
using Cauchy-Riemann relations. 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

 
(a) 
 

 
(b) 
 
Figure 2: Absolute relative error resulting from using the present proposed routine for 
calculating; (a) the real part, and (b) the imaginary part of the Faddeyeva function 
using Algorithm 916 as a reference.  
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Figure 3 shows results from calculating ∂V(x,y)/∂x near the real axis (y=10-20) 
from the present approximation as compared to Algorithm 916 and Humlíček’s w4(z) 
algorithm. It is clear from the figure that the present routine does not suffer from the 
loss of accuracy problem near the real axis shown by Humlíček’s w4(z) algorithm.  
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Figure 3: ∂V(x,y)/∂x as calculated by the present approximation, by Algorithm 916 
and by Humlíček’s w4(z) algorithm, for y=10-20.  
 
 
3. MATLAB AND FORTRAN IMPLEMENTATIONS AND PERFORMANCE RESULTS 
 

The algorithm for our proposed method is described in Figure 1 and Table 1 
and we have implemented this in both Matlab and Fortran. Performance tests and 
efficiency considerations are considered and discussed below.  
 
3.1. Matlab Implementation 
 

The proposed algorithm is implemented as a Matlab function “wz(z)” and has 
been tested for different regions in the computational domain. An efficiency 
comparison was performed between the present Matlab function and Humlíček’s w4 
algorithm using the same coding structure. The two functions were extensively tested 
and run over different regions of the computational domain. In addition to being 
marginally more accurate, and being safe from the loss of accuracy problem detected 
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with Humlíček’s w4 algorithm, the present routine was also found to be faster; see 
Table 2.  
 
Table 2: Speed comparison between Matlab implementations of the present routine 
and Humlíček’s w4 algorithm.  

*Case 1: y=logspace(-5,5,71), x=linspace(-500,500,40001); Case 2: y=logspace(-20,4,71), x=linspace(-
200,200,40001); Case 3: y=logspace(-5,5,71), x=linspace(-10,10,40001); Case 4: y=logspace(-20, 
log10(6),71), x randomly generated with |z|236. In Matlab “logspace(x1, x2, N)” generates a vector of N 

points logarithmically equally spaced between 10x1 and 10x2, while “linspace(x1, x2, N)” generates a 
vector of N points linearly equally spaced between x1 and x2. 

 
3.2. Fortran Implementation 

 
The algorithm was also implemented as a Fortran elemental subroutine 

“wz_rk(z,w)” contained in a Fortran module “wz_mod_rk” that can be run  using single 
or double precision arithmetic depending on the choice of an integer parameter “rk” in 
a subsidiary module “set_rk”. The elemental subroutine operates on a single dummy 
complex argument, z, and returns the corresponding Faddeyeva function value as a 
complex argument, w. In addition, partial derivatives of the real part of the 
Faddeyeva function, “dVdx” and “dVdy”, may be returned as optional outputs. The 
routine may be invoked with arrays as actual arguments where it will be applied 
element-wise, with a conforming array return value. Extra performance gains may be 
obtained by performing some of the computations using real arithmetic.  For example, 
by replacing the term exp(-z2) found in the Humlíček’s expression used herein for 
region V by exp(-x2) for the region 62.0|z|22.5 & y2<10-13 while maintaining the 
claimed accuracy. 

 
 

The execution time of the present Fortran routine is compared with Humlíček’s w4 
algorithm. The comparison has been performed for the same four datasets reported for 
the Matlab performance comparison above. The results of the comparison, using 
double precision (Fortran-d) and single precision (Fortran-s) are given in Table 3. As 
can be seen from the table, the present routine is consistently faster than the w4 
algorithm when run using double precision arithmetic. For single precision 
computations, the present routine is also faster for all four datasets and is more than 
twice as fast for dataset 1.  

 
 

Algorithm 
Average time per evaluation (s) Claimed accuracy and 

comments Case 1* Case 2* Case 3* Case 4*

w4(z) 
Humlíček [1982] 

0.1656 0.1715 0.2176 0.3481 
<9.610-5 (Loss of claimed 
accuracy for y10-6) 

wz(z) 
Present Routine  

0.1290 0.1361 0.1712 0.2664 <4.010-5 
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Table 3: Speed comparison between Fortran implementations of the present routine and 
Humlíček’s w4 algorithm. The values given are for the calculation of the function only (i.e., 
no derivative calculations) and have been generated using Intel Visual Fortran Compiler 
Professional for applications running on IA-32, Version 11.1.038 

Algorithm Average time per evaluation (s) 
Case 1 Case 2 Case 3 Case 4 

w4(z) 
Humlíček [1982] 

Fortran-d 0.0115 0.0128 0.0296 0.0707 
Fortran-s 0.0119 0.0128 0.0255 0.0560 

wz(z) 
Present Routine 

Fortran-d 0.0077 0.0108 0.0270 0.0599 
Fortran-s 0.0056 0.0077 0.0228 0.0509 

 
 
 
4. CONCLUSIONS 
 

A simple, efficient, and relatively accurate (<4.010-5) approximation for the 
computation of the Faddeyeva function is presented. The routine can be easily 
implemented in any computational framework. Matlab and Fortran implementations 
are provided which exhibit improved accuracy and better efficiency when compared 
to Humlíček’s w4 algorithm, which is widely used for massive evaluation of the 
function in the literature. 
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