
The University of Manchester Research

HLS Compilation for CPU Interlays

DOI:
10.1145/3120895.3120922

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Garcia Ordaz, J. R., & Koch, D. (2017). HLS Compilation for CPU Interlays. In International Symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART 2017) https://doi.org/10.1145/3120895.3120922

Published in:
International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART 2017)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1145/3120895.3120922
https://research.manchester.ac.uk/en/publications/f120da72-d2a7-4254-8584-449eddba7240
https://doi.org/10.1145/3120895.3120922

HLS Compilation for CPU Interlays

Jose Raul Garcia Ordaz and Dirk Koch
School of Computer Science, The University of Manchester, United Kingdom{

raul.garcia, dirk.koch
}
@manchester.ac.uk

ABSTRACT
The idea of coupling reconfigurable fabrics with general-
purpose processors has been extensively studied during the
last couple of decades. Custom instructions targeting those
reconfigurable fabrics had to be handcrafted because tools
capable of high level synthesis were not available at the time.
Nowadays, high level synthesis tools have matured to a state
allowing system designers to automatically generate hard-
ware implementations from software applications.

At the end of Moore’s era, it is required to reinvestigate
reconfigurable custom instructions by taking full advantage
of the latest HLS compilers. In this paper we introduce the
concept of CPU interlays which are FPGA-like fabrics that
are integrated directly into the core of a hardened processor.
This enables the customization of an instruction set at run-
time. While CPU interlays will show best performance with
hand-optimized custom instructions, this paper suggests a
semi-automated flow that does not need the expertise of
an FPGA designer. Using automatic profiling together with
HLS tools allows the acceleration of user programs with very
little human interaction during application design.

By replacing the NEON SIMD unit of an ARM Cortex-A9
with an interlay taking the same die area, we could demon-
strate speedups as high as 68× for individual function ker-
nels without touching any RTL code. Furthermore, we show
that while HLS compilers can enhance design productivity,
it is in some cases required to follow a HLS-friendly coding
style for maximizing performance.

1. INTRODUCTION
Many CPU families have gained significant complexity

(and corresponding real estate) throughout their many years
of development. For instance, the ARMv5 ISA provided
less than 40 instructions. Later, the ARMv6 ISA provided
around 100 instructions including SIMD instructions such as
USAD8. More recently, the ARMv7 ISA introduced a media
instruction set extension (ISE) known as NEON. In total,
the ARMv7 ISA including the NEON (ISE) provides around
250 instructions. The most recent ARM ISA (i.e. ARMv8)
boasting almost 300 instructions, introduced a SIMD ISE
for crypto applications [1].

However, instead of adding more and more complexity to
a CPU core, which may have negative impact on energy ef-
ficiency and overall instruction throughput, interlays add
a reconfigurable fabric inside an otherwise hardened CPU
core. Interlays can be seen as customized FPGA fabrics to
add just the reconfigurablility that is needed to gain substan-
tial performance gains through customizing an instruction
set. By configuring an interlay with an interlay bitstream,

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2017)
Bochum, DE, June 7-9, 2017.

a customized instruction set can be adapted and used while
the system is running. This approach follows the ideas first
introduced in seminal work like in [2, 3].

Currently, the trend is to embed a processor SoC into a
relatively large FPGA fabric (e.g., as done for Xilinx Zynq
FPGAs). Instead of this, interlays are rather tiny and they
are embedded inside a hardened CPU core. Furthermore, in-
terlays are very tightly coupled to its CPU (allowing to call
acceleration instructions directly in user mode). With this,
interlays enable a path for building low cost and energy effi-
cient systems in a software centric (and consequently faster)
way while still providing a path for substantial acceleration
through instruction set customization. We believe that in
particular very heterogeneous applications domains (such as
Internet of Things systems) will benefit from this approach.

Typically, hand-optimized interlay instructions will result
in best acceleration, but this design path needs hardware
design expertise and takes substantially longer to design. In
this paper, we investigate a mostly automated compilation
flow that exploits an interlay fabric entirely through a soft-
ware design path using high-level synthesis (HLS).

2. RELATED WORK
In order to meet the design challenges of future SoC ar-

chitectures which incorporate FPGA fabrics, tools for au-
tomatically compiling high level code to FPGAs have been
developed. Some of these tools are based on mapping data
flow graphs (DFG) into hardware. A recent example of de-
sign frameworks using the DFG-based approach is FISH [4],
which can extract compute intensive subgraphs directly from
C/C++ applications. These DFGs are then mapped into
custom instructions. Similar approaches are discussed in [5–
7].

Alternatively to the DFG-based approach, there is the
software-defined design approach. Here, the framework’s de-
sign flow allows an user to profile software applications and
to select time-consuming functions aimed to be mapped to
hardware. A high-level synthesis tool is then used to trans-
form the function’s algorithm described in C/C++ into an
RTL equivalent. Finally, the existing application code is
instrumented with function calls and a customized com-
piler is used to generate the executable. Examples of these
software-defined tools include Legup from the University of
Toronto [8] and Vivado HLS [9] developed by the vendor
Xilinx. In both cases, the accelerators generated by each
framework communicate to a CPU through a bus interface.
In contrast, in this work we propose a design flow aimed to
map custom instructions to a mixed-grained reconfigurable
interlay fabric that directly accesses a register file. Such an
interlay is integrated tighter into the CPU and allows calling
accelerators at much lower latency than what is possible by
a bus-coupled accelerator.

3. HLS-GENERATION OF CIS

3.1 Design Flow
The design flow of the framework proposed in this work is

depicted in Figure 1. The description of the design flow is as
follows: 1) First an application is developed in a high-level
programming language such as C/C++. 2) A conventional
compiler such as GCC is used to generate an executable of
the application which is then executed on the Gem5 simu-
lator. We leverage the built-in ability of Gem5 to generate
program traces and statistics [10]. 3) The program trace
is analysed to detect time-consuming functions (i.e. func-
tions that consume most execution cycles). These kernels
are selected as custom instruction candidates. 4) The Vi-
vado HLS tool from the vendor Xilinx is used to synthesize
the selected kernels into its RTL equivalents. Note that the
use of an HLS tool eliminates the need for complex heuristics
to generate DFGs or the need for an FPGA hardware expert
in order to generate the custom instructions. 5) The area
(FPGA primitives) and latency (execution cycles) reports
produced by the Vivado HLS tool corresponding to each CI
generated are analysed. Since we are aiming to a relatively
small CPU interlay, we only select CIs that are below the
area constrain. The reported CI’s execution cycles are used
to calculate the potential speedups that can be achieved by
replacing the existing software function with the hardware
candidate CI. Note that in general, a hardware implemen-
tation of a kernel consumes less execution cycles than its
software counterpart. However, as the here proposed inter-
lay fabric operates at a much slower clock frequency than the
hardened CPU, this difference must be taken into account
when calculating the execution time of the hardware CI. We
incorporate this also in adapting the simulation model of the
ARM CPU within the Gem5 simulator to precisely simulate
the ARM CPU-interlay hybrid.

6) The generated CIs can be tuned to achieve a desired
performance by modifying a) the structure of the existing
software kernel in order to enable succesful hardware com-
pilation and b) to use options provided by the HLS tool
to perform hardware optimizations such as loop unrolling.
Here it is also possible to limit the amount of DSPs used for
the design which impacts the final distribution of LUTs and
DSPs consumed by the CI.

7) Once the application-specific CIs are tuned as needed,
they are saved into a library which will contain CIs for dif-
ferent applications. 8) The repository stores the interlay
configuration and all metadata that is needed by the run-
time system. 9) The custom instructions can then be called
by the software application by instrumenting the existing
source code with inline function calls. 10) Finally, the in-
strumented code will be compiled. The resulting executable
will be able to then call the CIs configured to the CPU in-
terlay.

3.2 Case Study 1
We will explain our approach with more detail using a

practical example throughout the following paragraphs. We
exemplary selected the ADPCM application benchmark and
the AES application benchmark from the CHStone suite [11].
The CHStone suite is a collection of C-based application
benchmarks specifically developed to be used to perform re-
search in the area of high level synthesis (HLS). These appli-
cations represent signal processing tasks as well as compres-
sion which are quite common for IoT or mobile systems and
that are quite compute heavy.

3.2.1 Interlay Emulation
Normally, an interlay fabric (including its size, primitives

and routing architecture) will be optimized for instruction
set extensions. In this paper we follow the approach de-
scribed in [12] that uses a commercial-off-the-shelf FPGA

Figure 1: Interlay HLS design flow. The hand symbol rep-
resents a manual execution of the corresponding step. The
gear symbol represents a mostly automatic execution of the
corresponding step.

Figure 2: Emulated CPU interlay embedded as a NEON
replacement in an ARM processor. The implemented in-
terlay configuration implements the functions upzero, filtez,
quantl, and uppol1 of the ADPCM example.

instead. This will result in weaker area and performance
numbers that we will report here but allows using industrial
tools and to experiment with real hardware. We chose an
FPGA area providing 2400 6-input LUTs, 6 BRAMs, and
18 DSP blocks as our interlay. This FPGA region corre-
sponds very closely to the die area that the NEON SIMD
unit is occupying within the ARM SoC of a Cortex-A9 that
is implemented on a Zynq SoC. We used 4 BRAMs as the
assumed hardened register file providing two 128-bit vector
operands and one 128-bit vector result (and a few more con-
trol signals). As shown in Figure 2, we used strict resource
and routing bounding boxes to precisely emulate an interlay.

3.2.2 Custom Instruction Selection
We used the Gem5 simulator to obtain profiling and exe-

cution traces of the ADPCM and the AES benchmarks. The
Gem5 simulator was configured to simulate the characteris-
tics of the ARM Cortex-A9 processor (which we have been
using for our experiments) similarly as described in [13]. Fig-
ure 3 shows a segment of the function trace corresponding
to the execution of the ADPCM benchmark. Similarly, Fig-
ure 4 shows a segment of the function trace corresponding
to the execution of the AES benchmark. These figures help
to visualize the amount of execution time of the different

kernel functions.
The ADPCM application uses 15 functions whereof 7 (“en-

code”, “decode”, “upzero”, “filtez”, “uppol2”, “quantl”, “up-
pol1”) contribute to 90% of the total execution of the appli-
cation, as shown in Figure 3. These are suitable candi-
dates to be mapped to the interlay as one set of ADPCM-
specific custom instructions. Please note that one inter-
lay may implement multiple different custom instructions
in one configuration if permitted by the resources. Like-
wise, the AES application uses 11 functions with 5 candi-
date functions (“AddRoundKey InversMixColumn”, “Mix
Column AddRoundKey”, “KeySchedule”, “ByteSub Shift
Row”, and “InversShiftRow ByteSub”) that together repre-
sent 90% of the total AES execution time. In general, we
follow a greedy approach that tries to boost acceleration by
mapping the most compute intense functions first until we
are running out of interlay resources.

If we compare the two traces in Figure 3 and Figure 4
with each other, we see that for the ADPCM application,
we call rapidly a sequence of different functions, while for
the AES application, we have two compute intensive ker-
nels alternating with relatively low periodicity. This means
that for the ADPCM case, run-time reconfiguration is ba-
sically infeasible and we can only map the most benefiting
functions to one interlay configuration. Opposed to this, the
situation is different for the AES case and depending on how
long each of the function bursts lasts, reconfiguration may
be beneficial. For example in Figure 4, we could map the
AES “KeySchedule” function in one interlay configuration
and the “MixColumn AddRoundKey” function into another
interlay configuration. A further observation is that there
are other functions called between these bursts, which can
be used to hide some of the configuration latency (e.g., by
using configuration prefetching [14]).

In general, run-time reconfiguration is beneficial if the ex-
ecution time of the hardware accelerated program plus the
configuration time is less than the original software execu-
tion time (thw + tconfig ≤ tsw). The actual reconfiguration
time depends on the system (e.g., how it can deal with the
extra configuration data burst) and the actual application
(e.g., if configuration prefetching is applicable).

The assumed interlay as shown in Figure 2 equates to a
bitstream that is about 196KB in size. This would take at
least 49K cycles at a 32 bit wide configuration port for re-
configuration. Considering that the configuration port runs
on the Zynq FPGA running on the Zybo board at 6.5 times
slower than the CPU, a full interlay reconfiguration process
will correspond to about 320K CPU cycles. Therefore, a cus-
tom instruction has to save this number of cycles over the
original CPU implementation before a gain can be achieved.
However, the very slow configuration speed and the large
configuration bitstream size will very likely be substantially
smaller when building a real interlay. For example, in [15]
a configuration speed of 2.2GB/sec @550MHz was demon-
strated on a Virtex-5 device. This would correspond to 58K
CPU cycles for one interlay configuration process.

3.2.3 Characteristics of Custom Instructions
We took the candidate software functions previously se-

lected from the ADPCM and AES application benchmark,
and used the Vivado HLS tool to generate RTL functional
units that perform the same tasks as those kernels. We only
consider custom instructions that fit into the number of re-
sources that our assumed interlay fabric provides. Because
we aim to cause minimal architectural disruptions when in-
tegrating the fabric into the considered hardened ARM pro-
cessor, the remaining functional units that we implement as
custom instructions should have the same 2-vector input,
1-vector output interface as the existing ARM instructions.

We define the gain of a custom instruction (i.e. CIgain)
as the overall execution time improvement. With tr being

the relative portion from the overall execution time and s
being the speedup, this is:

CIgain =
1

(1− tr) + tr
s

And if an interlay configuration implements k instructions:

intgain =
1

(1−
∑

k tr,k) +
∑

k

tr,k
s

The gain is, like we know from Amdahl’s law, bound by
how much a custom instruction contributes to the overall
problem. In general, the custom instruction selection pro-
cess has to consider 1) resource constraints, 2) speedups and
gains, and optionally 3) reconfiguration times. The com-
plexity of this optimization problem is more complex as HLS
tools allow generating different resource/speedup trade-offs.
Also when implementing more than one custom instruction
in one interlay configuration, some resources maybe shared.
As a first approach, we have automated the selection process
by implementing a brute force algorithm in Python script
that finds the combination of custom instructions (both opti-
mized for area and optimized for performance) that yield the
maximum accumulated interlay gain and which accumulated
resource utilization is below the interlay resource constrains
(see Algorithm 1).

Algorithm 1 Maximum Interlay Gain

1: procedure max int gain(ci list[0 : n− 1]) . List of custom
instructions

2: combinations list← get combinations(ci list)
3: for each combination in combinations list do
4: acc res← calculate accumulated resources
5: if acc res <= int res then
6: int gain← calculate accumulated gain
7: if int gain > tmp max then
8: tmp max← int gain . Store temporary

maximum
9: tmp comb← combination . Store combination

index
10: end if
11: end if
12: end for
13: max int gain← tmp gain
14: comb← tmp combination
15: return (max int gain, comb) . Return the maximum

interlay gain and its associated CI combination

16: end procedure

The results of our experiments are presented in Table 1
and Table 2 for the ADPCM and the AES function, respec-
tively. The tables show the area (expressed in FPGA primi-
tives) used by the candidate kernel functions. A check sym-
bol is used to mark the candidate CIs that fit into the CPU
interlay as reported by the Vivado HLS tool. Additionally,
we provide potential speedup numbers derived from the ex-
ecution time for each CI as reported by the Vivado HLS tool
and the numbers provided by the Gem5 simulator. Finally,
we present the relative execution contribution to the overall
application execution time corresponding to each candidate
CI.

Table 1: Characteristics of the HLS-Generated ADPCM
custom instructions. Two versions are synthesized: one op-
timized for area (OA), and 2) one optimized for performance
(OP).

CI Primitives Speedup Exec
OA OP OA OP %

LUT DSP Fit LUT DSP Fit
upzero 337 4 X 1087 24 7 1.4 3.3 19.1
filtez 281 8 X 143 24 7 1.1 3.8 10.4
uppol2 217 8 X 300 8 X 2.8 3.1 4.3
quantl 108 2 X 1097 54 7 1.5 14.6 4.2
uppol1 234 4 X 296 4 X 2.2 2.9 3.4

Figure 3: Segment of the ADPCM application function trace. The percentage values state the relative execution time per
function.

Figure 4: Segment of the AES application function trace. The percentage values state the relative execution time per function.

Table 2: Characteristics of the HLS-Generated AES custom
instructions. Two versions are synthesized: one optimized
for area (OA), and 2) one optimized for performance (OP).

CI Primitives Speedup Exec
OA OP OA OP %

LUT DSP Fit LUT DSP Fit
AddRound 2276 4 X 4971 4 7 8.9 18.1 49.2
Key Invers
MixColumn
MixColumn 2156 4 X 2156 4 X 10.3 10.3 18.8
AddRound
Key
KeySchedule 2310 1 X 4284 1 7 3.9 4.6 18.7

ByteSub 1291 0 X 1291 0 X 20.4 20.4 3.1
ShiftRow
Invers 1197 0 X 1197 0 X 20.4 20.4 3.1
ShiftRow
ByteSub

3.2.4 Discussion
The total speedup gains reported in [8] (i.e. the ratio

between the execution time of the software implementation
and the pure hardware Legup implementation) for the AD-
PCM and the AES applications are 3.2× and 4.2×, respec-
tively. While these speedup gains are substantial, they come
at the cost of a relatively large area consumption. The
reported hardware Legup implementation of the ADPCM
application is 22605 LUTs. Similarly, the hardware Legup
implementation of the AES application is 28490 LUTs. Con-
sidering that the softcore used to run the pure software im-
plementation of those applications is 12243 LUTs, imple-
menting these applications with the Legup tool represents
an area overhead of 1.8 and 2.32 for the ADPCM and the
AES applications, respectively. In contrast, with our inter-
lay approach, we obtain more modest total speedup gains
at a much lower area cost. As an example we take the
most time consuming function kernel that fits in the inter-
lay (i.e. “upzero” for the ADPCM application and “Ad-
dRoundKey InversMixColumn” for the AES application).
In this case, we have area ratios (considering the 2400 LUT
contraint) of 0.45 and 0.94, for the “upzero”” and the “Ad-

dRoundKey InversMixColumn” function kernels, respectively.
With this area consumption the ADPCM application can
achieve a CIgain of 1.2×. Note that the “upzero” func-
tion optimized for area consumes only 45% of the interlay
resources. This makes it possible to implement more light-
weight ADPCM-specific CIs in the same CPU interlay con-
figuration to achive even more performance gains and avoid
interlay resource waste. In this case, it would be possible
to feed the list of HLS-generated CIs (and its associated
area and speedup characteristics) to our Python script to
find the combination that achieves the maximum interlay
gain. According to our results, implementing the “upzero”,
“filtez”, “quantl”, and “uppol1” CIs in their versions op-
timized for area would yield a maximum interlay gain of
1.45×. Similarly, the AES application can achieve a CIgain
of 1.7×. Note that the “AddRoundKey InversMixColumn”
consumes 94% of the interlay resources, restricting the op-
tion to implement more CIs in the same interlay configura-
tion. In this case, run-time reconfiguration could be used to
enhance the performance of the CPU interlay.

3.3 Case Study 2
It has been demonstrated that applications that heav-

ily depend on bitwise operations can greatly benefit from
the implementation of advanced bit-manipulation custom
instructions [16]. The reason for this is that in order to
perform some complex bitwise operations, long sequences of
instructions (e.g. load/store, basic boolean, shift instruc-
tions etc.) are required on general purpose CPUs. In some
cases, a relatively straightforward but bitwise-intensive al-
gorithm implemented in C code can easily be translated into
several lines of assembly instructions. In contrast, reconfig-
urable fabrics, such as FPGAs, execute bitwise operations
much more efficiently. This is because on FPGAs, bitwise
operations can be performed in a more direct way as input
operands are treated as bit vectors that can be easily ac-
cessed individually. Additionally, the architecture of FPGAs
allow for a highly parallel execution of bitwise operations.

3.3.1 CRC Algorithm
Consider the CRC algorithm, which is used extensively

by storage and network devices to detect errors in digital
data [17]. As the block diagram in Figure 5 shows, the
CRC algorithm heavily depends on the XOR operation to
generate the CRC value. In this case, long sequences of
load-eor-store instructions are executed by the CPU (other
instructions such as addition and shift are also required).
As the instruction trace presented in Figure 6 shows, the
lack of a CRC-specific custom instruction on general pur-
pose CPUs translates into a sub-optimal computation of
CRC values. This is normally mitigated by using differ-
ent optimizing software techniques to force the compiler to
compute CRC values faster [18]. Alternatively, a CRC cus-
tom instruction could be implemented by the here proposed
CPU interlay. The code for this CI could be developed using
a hardware description language (HDL). This would require
some degree of expertise in HDL code development. Addi-
tionally, manually producing a CRC CI in HDL code would
consume a relatively longer time than developing the same
algorithm in C language. Instead, we propose leveraging
our interlay HLS design flow to generate a high performance
CRC CI without touching any HDL code.

Figure 5: Block diagram corresponding to the CRC-32 al-
gorithm (generator polynomial G=0x04C11DB7).

Figure 6: A segment of the instruction trace corresponding
to the execution of the CRC32 program running on an ARM
Cortex-A9 CPU. Load (ldr), store (str), and exclusive or
(eor) instructions are frequently used (other instructions are
omitted for clarity).

As a first approach, 4 different versions of a CRC-32 ker-
nel were studied. These kernels developed in C language
were derived from the algorithms described in [19]. The Vi-
vado HLS tool was used to translate these 4 CRC-32 kernels
into HDL code. An examination of the generated HDL code
showed that the Vivado HLS compiler translated the exis-
ting C code into several HDL sequential blocks emulating
the C program flow. According to our analysis, the Vivado
HLS compiler was failing to detect that the CRC operation
could be computed more efficiently if it was expressed as
a combinational hardware structure consisting of wires and
XOR gates (see Figure 5). Even for the CRC kernel that
more closely follows the logical circuit, the HLS compiler
was unable to generate an efficient hardware description of
the CRC circuit without an overhead caused by a substantial
usage of sequential blocks. We measured the actual speedup
provided by the HLS-generated CRC-32 CIs by comparing
their execution time to the execution time of their software
counterparts. In our experiment we measured the execu-
tion time of each of the 4 versions of the CRC-32 function
(crc32 v1-crc32 v4). These software kernels were compiled
with optimization level 3 (i.e. O3) and were executed on
Gem5 configured to simulate the architectural characteris-

tics of an ARM Cortex-A9 CPU. The execution time of each
hardware CRC-32 CI was derived from the report provided
by the Vivado HLS tool. For each CRC-32 hardware kernel,
two variants were synthesized: 1) one optimized for area
(OA), and 2) one optimized for performance (OP). The ex-
ecution time for all the software and hardware implementa-
tions, and the speedups achieved by each hardware CRC-32
CI over their software counterparts are presented in Table 3.
Additionally, the same table presents the resource utilization
corresponding to each CRC-32 CI.

Listing 1: HLS-friendly C code to compute CRC values.

#include ” ap c in t . h”
unsigned int c rc ap (int m) {

uint1 d in 0 , d in 1 , d in 2 , d i n 3 ;
u int1 d in 4 , d in 5 , d in 6 , d i n 7 ;
int i 0 = 0 , i 1 = 1 , i 2 = 2 , i 3 = 3 ;
int i 4 = 4 , i 5 = 5 , i 6 = 6 , i 7 = 7 ;

d i n 0 = a p i n t g e t b i t (m, i 0) ;
d i n 1 = a p i n t g e t b i t (m, i 1) ;
d i n 2 = a p i n t g e t b i t (m, i 2) ;
d i n 3 = a p i n t g e t b i t (m, i 3) ;
d i n 4 = a p i n t g e t b i t (m, i 4) ;
d i n 5 = a p i n t g e t b i t (m, i 5) ;
d i n 6 = a p i n t g e t b i t (m, i 6) ;
d i n 7 = a p i n t g e t b i t (m, i 7) ;

u int1 c r c q 0= 1 , c r c q 1= 1 , c r c q 2= 1 , c r c q 3= 1 ;

u int1 c r c c 0 = c r c q 2 ˆ c r c q 3 ˆ d in 0 ˆ
d in 1 ˆ d in 2 ˆ d in 6 ˆ d in 7 ;

u int1 c r c c 1 = c r c q 2 ˆ d in 0 ˆ d in 3 ˆ d in 6 ;
u int1 c r c c 2 = c r c q 0 ˆ c r c q 3 ˆ d in 1 ˆ d in 4 ˆ

d in 7 ;
u int1 c r c c 3 = c r c q 1 ˆ c r c q 2 ˆ c r c q 3 ˆ d in 0 ˆ

d in 1 ˆ d in 5 ˆ d in 6 ˆ d in 7 ;

u int2 c r c1 out = ap int conca tenate (c r c c 1 , l f s r c 0) ;
u int3 c r c2 out = ap int conca tenate (c r c c 2 , c r c1 out) ;
u int4 c r c3 out = ap int conca tenate (c r c c 3 , c r c2 out) ;

return c r c3 out ;
}

Table 3: Comparison of execution time between software
and hardware implementations of 4 versions of the CRC-32
algorithm. For each hardware version, two variants were
synthesised, one optimized for area (OA) and one optimized
for performance (OP). A CRC-32 CI developed with a HLS-
friendly C coding style is also presented. The resource uti-
lization of each CRC-32 CI is shown.

CI Latency Latency Speedup Resources
SW (ns) HW (ns) tsw/thw LUT, DSP, BRAM

O3 OA OP OA OP OA OP
crc32 v1 35189.0 22221.5 4825.6 1.58× 7.29× 238, 0, 1 1018, 0, 1
crc32 v2 22895.2 29141.9 5005.4 0.79× 4.57× 227, 0, 1 770, 0, 1
crc32 v3 17708.5 9594.6 4842.2 1.85× 3.66× 309, 0, 2 828, 0, 2
crc32 v4 22701.1 6369.6 3190.3 3.56× 7.12× 721, 0,1 721, 0, 1
crc32 hf 17708.5 - 260.0 - 68.11× - 318, 0, 0

According to our results, modest speedups of up to 7.29×
were obtained for the HLS-generated CIs. Based on the
previously analysed HDL code, it was possible to observe
that the coding style used to implement the CRC-32 soft-
ware kernels was hampering the synthesis of a more efficient
hardware implementation. The structure of the hardware
synthesized by the Vivado HLS tool can be greatly influ-
enced by the coding style used to develop a software kernel.
We performed an experiment to show how a more “HLS-
friendly” C coding style can positively influence the syn-
thesis of a more efficient CRC-32 custom instruction. This
experiment was performed as follows: First, HDL code to
compute CRC-32 values was generated as a reference. This
code implements a boolean equation to compute each of the
32 1-bit CRC output values. Then C code that makes use

0 20 40 60 80 100

500

1,000

Speedup

A
re

a
(L

U
T

s)
HLS-Generated CRC CI (standard coding style)

HLS-Generated CRC CI (HLS-friendly coding style)

CRC CI generated with HDL

Figure 7: Area vs Speedup values for HLS-Generated Cus-
tom Instructions and a HDL-generated Custom Instruction
targeting the CRC-32 application.

of the “apint get bit()” and the “apint concatenate()” bit-
level manipulating functions, is developed. These functions
are found in the “ap cint.h” library provided by the Vivado
HLS compiler. With this approach, the function input can
be processed as a bit-vector and the result is returned as an
integer value. To illustrate this approach, Listing 1 shows a
snipet of the HLS-friendly C code to compute CRC values
with a small generator polynomial (G = x3 + x + 1) [19].

Finally, the HLS-friendly C code was synthesized with
the Vivado HLS tool. An inspection of the generated HDL
code showed that this time, the resulting hardware struc-
ture consisted mainly of an array of XOR gates performing
the computation of each of the 32 1-bit CRC return val-
ues. The Vivado HLS tool reported a resource utilization
of 318 LUTs, 0 DSPs, and 0 BRAMs for this custom in-
struction. The latency numbers reported for this CI were
used to derive speedups against the fastest software ker-
nel (see Table 3). Figure 7 shows a graphical comparison
between the different HLS-generated CRC-32 CIs, includ-
ing the 4 kernels developed with standard C coding style,
and the CRC-32 kernel developed with HLS-friendly C cod-
ing style. For comparison purposes, the area and speedup
achieved with a handcrafted HDL CRC-32 custom instruc-
tion is also presented. Note that the CRC CI generated with
HLS-friendly C code is about 10× faster than the CIs gener-
ated with conventional C coding style. This in turn results
in an overall HLS-enabled speedup of 68× over the fastest
CRC-32 software implementation.

4. CONCLUSION
In this article we presented a semi-automatic design flow

for CPU interlays. We demonstrated that a software-defined
path to generate custom instructions leveraging HLS tools
is an alternative to complex design flows based on DFG ex-
traction heuristics or RTL handcrafted custom instructions.
The here presented design flow is targeted to a CPU inter-
lay consisting of a FPGA fabric embedded at the core of
an otherwise hardened CPU. Our case study showed that
individual kernels could be accelerated by as much as 68×
on a 2400 LUT interlay and full applications by up to 1.7×
(AES application) without touching any HDL code. Addi-
tionally, we showed how a software kernel developed with an
HDL-friendly C coding style allows the Vivado HLS tool to
synthesize efficient custom instructions that are up to 10×
faster than the custom instructions generated with a con-
ventional C coding style. And 68× over the fastest software
CRC implementation. With this, we demonstrated a fully
software-driven design flow utilizing CPU interlays.

5. ACKNOWLEDGMENT
The first author acknowledges the support from the Mex-

ican National Council for Science and Technology (CONA-
Cyt) through scholarship 381920.

6. REFERENCES
[1] “ARM Infocenter,” www.arm.com.
[2] Z. A. Ye et al., “Chimaera: a high-performance

architecture with a tightly-coupled reconfigurable
functional unit,” in ACM SIGARCH Computer
Architecture News, vol. 28, no. 2. ACM, 2000, pp.
225–235.

[3] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS
processor with a reconfigurable coprocessor,” in IEEE
FCCM 1997. IEEE, pp. 12–21.

[4] Atasu et al., “FISH: Fast instruction synthesis for
custom processors,” IEEE VLSI Systems, vol. 20,
no. 1, pp. 52–65, 2012.

[5] K. Seto and M. Fujita, “Custom instruction
generation with high-level synthesis,” in IEEE ASAP
2008, pp. 14–19.

[6] J. Cong et al., “High-level synthesis for fpgas: From
prototyping to deployment,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, 2011.

[7] K. Atasu et al., “Automatic application-specific
instruction-set extensions under microarchitectural
constraints,” in Proceedings of the 40th annual Design
Automation Conference. ACM, 2003, pp. 256–261.

[8] A. Canis et al., “Legup: high-level synthesis for
fpga-based processor/accelerator systems,” in ACM
FPGA 2011, pp. 33–36.

[9] V. Kathail et al., “SDSoC: A Higher-level
Programming Environment for Zynq SoC and
Ultrascale+ MPSoC,” in ACM FPGA 2016. ACM,
2016, pp. 4–4.

[10] N. Binkert et al., “The gem5 simulator,” ACM
SIGARCH Computer Architecture News, vol. 39,
no. 2, pp. 1–7, 2011.

[11] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and
K. Ishii, “CHStone: A benchmark program suite for
practical C-based high-level synthesis,” in 2008 IEEE
International Symposium on Circuits and Systems, pp.
1192–1195.

[12] “Making a Case for an ARM Cortex-A9 CPU Interlay
Replacing the NEON SIMD Unit,” Blinded,
Submitted to the 2017 FPL Conference.

[13] F. A. Endo, D. Couroussé, and H.-P. Charles,
“Micro-architectural simulation of in-order and
out-of-order arm microprocessors with gem5,” in
IEEE SAMOS 2014, pp. 266–273.

[14] K. Compton and S. Hauck, “Reconfigurable
computing: a survey of systems and software,” ACM
Computing Surveys (csuR), vol. 34, no. 2, pp.
171–210, 2002.

[15] S. G. Hansen, D. Koch, and J. Torresen, “High speed
partial run-time reconfiguration using enhanced ICAP
hard macro,” in 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and
Phd Forum, May 2011, pp. 174–180.

[16] Y. Hilewitz and R. B. Lee, “Performing advanced bit
manipulations efficiently in general-purpose
processors,” in ARITH’07. IEEE, pp. 251–260.

[17] W. W. Peterson and D. T. Brown, “Cyclic codes for
error detection,” Proceedings of the IRE, vol. 49,
no. 1, pp. 228–235, 1961.

[18] S. E. Anderson, “Bit twiddling hacks,” URL:
http://graphics. stanford. edu/˜ seander/bithacks.
html, 2005.

[19] H. S. Warren, Hacker’s delight. Pearson Education,
2013.

www.arm.com

	Introduction
	Related Work
	HLS-Generation of CIs
	Design Flow
	Case Study 1
	Interlay Emulation
	Custom Instruction Selection
	Characteristics of Custom Instructions
	Discussion

	Case Study 2
	CRC Algorithm

	Conclusion
	Acknowledgment
	References

