
Knowledge Questions from Knowledge Graphs

Dominic Seyler‡
‡University of Illinois at

Urbana-Champaign
Urbana, Illinois

dseyler2@illinois.edu

Mohamed Yahya†
†Max Planck Institute for

Informatics
Saarland Informatics Campus
myahya@mpi-inf.mpg.de

Klaus Berberich∗,†
∗htw saar

Saarbrücken, Germany

klaus.berberich@htwsaar.de

ABSTRACT
We address the novel problem of automatically generating
quiz-style knowledge questions from a knowledge graph such
as DBpedia. Questions of this kind have ample applica-
tions, for instance, to educate users about or to evaluate
their knowledge in a specific domain. To solve the prob-
lem, we propose an end-to-end approach. The approach
first selects a named entity from the knowledge graph as an
answer. It then generates a structured triple-pattern query,
which yields the answer as its sole result. If a multiple-
choice question is desired, the approach selects alternative
answer options. Finally, our approach uses a template-based
method to verbalize the structured query and yield a nat-
ural language question. A key challenge is estimating how
difficult the generated question is to human users. To do
this, we make use of historical data from the Jeopardy! quiz
show and a semantically annotated Web-scale document col-
lection, engineer suitable features, and train a logistic re-
gression classifier to predict question difficulty. Experiments
demonstrate the viability of our overall approach.

1. INTRODUCTION
Knowledge graphs (KGs) such as YAGO [42] and DBpe-

dia [4] contain facts about real-world named entities. They
provide taxonomic knowledge, for instance, that Barack-

Obama is a person as well as a formerSenator. They also
contain factual knowledge, for instance, that BarackObama

is married to MichelleObama and was born on August 4,

1961. Textual knowledge captures how named entities and
their relationships are referred to in natural language, for
example, BarackObama as ‘Barack H. Obama’.

Easily extensible data formats such as RDF are commonly
used to store KGs, which makes it easy to complement them
with additional facts without having to worry about a pre-
defined schema. RDF stores facts as (subject, predicate,
object) triples, which can then be queried using SPARQL
as a simple-yet-powerful structured query language.

In this work, we address the problem of generating quiz-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2016 Copyright held by the owner/author(s).

BarackObamaGrammyAward

lawyer president

typetype

personentity

award

isAisAisA
isA

won

type

Honolulu

bornIn

city
typeisA

?x president
type

Honolulu
bornIn

?x president
type

GrammyAward
won

BillClinton

type

Q1

Q2

Illinois
state

TUS Presidents = {BarackObama, RonaldRegan, ...}

BarackObamaGrammyAward

lawyer president

typetype

personentity

award

isAisAisA
isA

won

type

Honolulu

bornIn

city
typeisA

?x president
type

Honolulu
bornIn

?x president
type

GrammyAward
won

BillClinton

type

Q1

Q2

Illinois
state

Illinois

state

“This president from Illinois won a Grammy.”
diff (Q1, BarackObama) = hard

disthardQ1
= RonaldRegan disteasyQ1

= HarryTruman

Figure 1: A fragment of a KG, a topic, and a hard
question generated from it. Two distractors for
turning it into a multiple choice question are shown,
one easy to rule out and one hard (Regan had a Hol-
lywood career before becoming president).

style knowledge questions from KGs. As shown in Figure 1,
starting from a KG and a topic such as US Presidents, we
generate a quiz question whose unique answer is an entity
from that topic. The question starts its life as an automat-
ically generated triple-pattern query, which our system ver-
balizes. Each generated question is adorned with a difficulty
level, providing an estimate for how hard it is to answer, and
optionally a set of distractors, which can be listed alongside
the correct answer to obtain a multiple-choice question. Our
system is able to judge the impact of the distractors on the
difficulty of the resulting multiple-choice question.

Applications of automatically generated knowledge ques-
tions include education and evaluation. One way to educate
users about a specific domain (e.g., Sports or Politics) is
to prompt them with questions, so that they pick up facts
as they try to answer – reminiscent of flash cards used by
pupils. When qualification for a task needs to be ensured,
such as knowledge about a specific domain, automatically
generated knowledge questions can serve as a qualification
test. Crowdsourcing is one concrete use case as outlined
in [39]. Likewise, knowledge questions can serve as a form
of CAPTCHA to exclude likely bots.

Challenges. To discriminate how much people know
about a domain, it is typical to ask progressively more dif-
ficult questions. In our setting, this means that we need to
automatically quantify the difficulty of a question. This is

ar
X

iv
:1

61
0.

09
93

5v
2

 [
cs

.C
L

]
 1

 N
ov

 2
01

6

not a trivial task as it requires to take into consideration
multiple signals and their interaction. One might, for exam-
ple, consider all questions whose answer is BarackObama to
be easy, as he is a prominent entity. However, very few peo-
ple would know that he won a GrammyAward. It is therefore
important to identify signals that predict question difficulty
and to combine them in a meaningful manner.

Answers provided by the user should be easy to verify au-
tomatically. In our setting, we want to ensure that disputes
about the correctness of an answer are minimal, since we
envision a setting with minimal human involvement (on the
asking side). One important way to achieve this is by ensur-
ing that each question has exactly one correct answer. Com-
plementary to having questions with unique correct answers
is dealing with possible variation in user input (e.g., ‘Barack
Obama’ vs ‘Barack H. Obama’). One way of overcoming this
is by turning fill-in-the-blank questions to multiple-choice
questions. Here, one needs to carefully consider the impact
distractors have on question difficulty.

A final challenge is the production of well-formed natural
language questions. We are interested not only in correct
language, but also in generating questions that do not look
artificial. Such questions are desirable not only for their aes-
thetic appeal, but also minimize the chance of humans dis-
covering that such questions were generated automatically.
An important consideration here is how to ensure that co-
herent questions have sufficient variety. For example, while
a KG may classify BarackObama as both an entity and a
formerSenator, we would like to use the latter in asking
about him, as the first is unnatural. Similarly, while the
relation connecting TobeyMaguire to Spider-Man might be
called actedIn, we would like to have some variety in how
this is expressed (e.g., ‘acted in’ or ‘starred in’)

Contributions. We propose an end-to-end approach to
the novel problem of generating quiz-style knowledge ques-
tions from knowledge graphs. Our approach has three ma-
jor components: query generation, difficulty estimation, and
query verbalization to generate a question. In a setting
where multiple-choice questions are desired, a fourth com-
ponent takes care of both generating the distractors and
quantifying their impact on question difficulty. Figure 2
depicts our pipeline for generating questions and multiple
choice questions.

The query generation component generates a structured
query that will serve as the basis of the final question shown
to a human. By starting from a structured query, we are
able to generate questions that are certain to have exactly
one unique, correct answer in our knowledge graph. In query
generation, several challenges need to be addressed so that
the resulting cues are meaningful.

Difficulty estimation is one of the challenges that needs
to be addressed. To estimate the difficulty of a structured
query, we leverage different signals about contained named
entities, which we derive from a Web-scale document collec-
tion annotated with named entities from the KG. To learn
weighting those signals, we make use of more than thirty
years’ worth of data from the Jeopardy! quiz show.

Since our questions start their life as structured queries
over the KG, we also verbalize them by generating a corre-
sponding natural language question. Following earlier work
on query verbalization and natural language generation, we
adopt a template-based approach. However, we extend this
approach with automatically mined paraphrases for rela-

Query
Generation

Difficulty
Estimation

Query
Verbalization

Distractor
Generation

T Q MCQ

Figure 2: Question generation pipeline.

tions and classes in the KG, ensuring diversity in the re-
sulting natural language questions.

Outline. The rest of this paper unfolds as follows. Sec-
tion 2 introduces preliminaries and provides a formal state-
ment of the problem addressed in this work. Following that,
we provide details on each stage shown in Figure 2. Section 3
describes how a SPARQL query can be generated that has
a unique answer in the KG. Our approach for estimating
the difficulty of the generated query is subject to Section 4.
Section 5 describes how the query can be verbalized into
natural language. Extensions for multiple-choice questions
are described in Section 6. Section 7 lays out the setup
and results of our experiments. We put our work in context
with existing prior research in Section 8, before concluding
in Section 9.

2. PRELIMINARIES AND
PROBLEM STATEMENT

We now lay out preliminaries and formally state the prob-
lem addressed in this work.

Knowledge Graphs (KGs) such as as Freebase [10],
Yago [42], and DBpedia [4] describe entities E (e.g., Barack-
Obama) by connecting them to other entities, types T — also
called classes (e.g., president, leader), and literals L (e.g.,
‘1985-02-05’) using predicates P (e.g., bornIn, birthdate,
type). A KG is thus a set of facts (or triples), {f | f ∈
E ∪ T × P × E ∪ T ∪ L}. A triple can also be seen as an
instance of a binary predicate, with the first argument called
the subject and the second called the object, hence the name
subject-predicate-object (SPO). Figure 1 shows a KG frag-
ment.

Pattern-matching is used to query a KG. Given a set of
variables V that are always prefixed with a question mark
(e.g., ?x), a triple-pattern-query is a set of triple patterns
Q = {q | q ∈ V ∪ E ∪ T × V ∪ P × V ∪ E ∪ T ∪ L}. An an-
swer a to a query is a total mapping of variables to items in
the KG such that the application of a to each q results in a
fact in the KG. In our setting, inspired by Jeopardy!, we re-
strict ourselves to queries having a single variable for which a
unique answer exists in the KG. Put differently, there exists
only one binding of the single variable to a named entity, so
that all triple patterns have corresponding facts in the KG.

More specifically, we use Yago2s [43] as our reference knowl-
edge graph in this work. Yago2s is automatically constructed
by combining information extraction over Wikipedia info-
boxes and categories with the lexical database WordNet [15].
In total, Yago2s contains 2.6m entities, 300k types organized
into a type hierarchy, and more than a hundred predicates
which are used to form more than 48m facts. Yago entities
are associated with Wikipedia entries, whereas a Yago type
corresponds to a WordNet synset or Wikipedia category. To
compute signals necessary for estimating question difficulty,
we make use of the ClueWeb09/12 document collections and
the FACC annotations provided by Google [20]. The latter

provide semantic annotations of disambiguated named enti-
ties from Freebase, which we can easily map to Yago2s via
their corresponding Wikipedia article. An annotated sen-
tence in this corpus looks as follows:

“ [Obama|BarackObama] endorsed [Clinton|HillaryClinton]
earlier today.”

Jeopardy! is a popular U.S. TV quiz show that features
comprehensive natural language questions that are referred
to as clues. Clues are usually posed as a statement and the
required answer is in turn posed as a question. For instance,
in Jeopardy! the question: This fictional private investigator
was created by Arthur Conan Doyle. has the answer: Who
is Sherlock Holmes? Clues come with monetary values, cor-
responding to the amount added to a contestant’s balance
when answering correctly. We reckon that monetary values
correlate with human performance and thus question diffi-
culty – a hypothesis which we investigate in Section 4.

Problem Statement. Put formally, our objective in
this work is to automatically generate a question Q whose
unique answer is an entity e ∈ T which can be supported
by facts in the KG. T is a thematic set of entities called
a topic topic, which allows us to control the domain from
which knowledge questions are generated (e.g., American
Politics). Moreover, we assume a predefined set of difficulty
levels D = {d1, ..., dn} with a strict total order < defined
over its elements, and we want to estimate the difficulty of
providing the answer a to Q, denoted diff (Q, a). An exten-
sion of the above problem which we also deal with in this
work is the generation of multiple choice questions (MCQ’s),
where the task is to extend a question Q into a MCQ by
generating a set of incorrect answers, called distractors, and
quantifying their difficulty.

In our concrete instantiation of the above problem, we use
Wikipedia categories as topics and Yago2s as our KG. As a
first attempt to address the above problem, we consider a
setting with two difficulty levels, D = {easy, hard}, where
easy < hard. For our purposes, a question is any natural
language sentence that requires an answer. It can look like
what we think of as a question, or as a declarative sentence
in the same style as Jeopardy! clues.

3. QUERY GENERATION
The first stage in our pipeline is the generation of a query

that has a unique answer in the KG. This query serves as the
basis for generating a question that will be shown to human
contestants. The unique answer will be the one a contestant
needs to provide in order to correctly answer the question.
As is common practice in quiz-games, ensuring that a ques-
tion has a single answer simplifies answer verification.

The input to the query generation step is a topic T. The
unique answer to the generated query will be an entity e ∈ T
randomly drawn from the KG. Query generation is guided by
the following desiderata: i) the query should contain at least
one type triple pattern, which is crucial when verbalizing the
query to generate a question (e.g., “Which president . . . ”),
and ii) entities mentioned in the query should not give any
obvious clues about the answer entity. In what follows we
present the challenges in achieving each of these desiderata,
and our solutions to these challenges.

3.1 Answer Type Selection
Questions asking for entities always require a type that is

either specified implicitly (e.g., ‘who’ for person and ‘where’
for location) or explicitly (e.g., “Which president . . . ”).
Here we address the problem of selecting a type to refer
to the answer entity in the question. KGs tend to contain
a large number of types and typically associate an entity
with multiple types. Some of these types are easy for an
average human to understand and typically appear in text
talking about an entity (e.g., president, lawyer). Other
types, however, are artifacts of attempts to have an ontolog-
ically complete and formally sound type system. Such types
are meaningful only in the context of a type system, but not
on their own (e.g., the type entity or thing).

We use our entity-annotated corpus to capture the salience
of a semantic type t for an entity e, denoted s(t, e). We start
by collecting occurrences of an entity e along with textual
types to which it belongs ttext in our entity-annotated cor-
pus. We use the following patterns to collect (ttext, e) pairs:
Pattern #1:
ENTITY (‘is a’ |‘is an’ |‘, a’ |‘and other’ |‘or other’) TYPE
“BarackObama and other presidents attended the ceremony.”

Pattern #2:
TYPE (‘like’ |‘such as’ |‘including’ |‘especially’ |) ENTITY

“...several attorneys including BarackObama”
These patterns are inspired by Hearst [23].

The next step before computing semantic type salience is
to disambiguate (ttext, e) pairs to (t, e) pairs — note that
entities are already disambiguated in the corpus, so we only
need to disambiguate ttext to a semantic type t in the KG.
Relying on the fact that our semantic types are WordNet
synsets [15], we use the lexicon that comes with WordNet
(e.g., {lawyer, attorney} → lawyer) for generating a set of
semantic type candidates for a given textual type. We then
use a simple yet effective heuristic where a textual type ttext
paired with an entity e is disambiguated to a semantic type
t if i) t is in the set of candidates for ttext and ii) e ∈ t.

We compute salience s(t, e) as the relative frequency with
which the disambiguated (t, e) pair was observed in our cor-
pus. To select a type for the answer entity e, we draw one
of the types to which it belongs randomly based on s(t, e).

3.2 Triple Pattern Generation
We now have an answer entity e and one of its semantic

types t that will be used to refer to e in the question. We now
need to create a query (which includes the type constraint
t) whose unique answer over the KG is e. We focus here
on questions with unknown entities as these are the ones
we can use Jeopardy! data to train our difficulty classifier
on [17]. In principle, we can allow for unknown relations or
types as well if we had the right training data. Creating a
query means selecting facts where e is either the subject or
object and turning these into triple patterns by replacing e
with a variable (?x). Not all facts can be used here, as some
reveal too much about the answer and render the question
too trivial. Other facts will be redundant given the facts
already used.

Elimination of Textual Overlap with the Answer.
The first restriction we impose on a fact is that the surface
forms of entities that appear in it cannot have any textual
overlap with surface forms of the answer entity. The ques-
tion “This president is married to Michelle Obama.” reveals

too much about the answer entity. For overlap, we look at
the set of words in the surface forms, excluding common
stop words. We discuss our approach to collecting surface
forms for entities in Section 5.2 below.

Elimination of Redundant Facts. Given a set of facts
that has been chosen, a new fact does not always add new
information. Keeping this new fact in a query will result in
an awkwardly phrased question that can be clearly identified
by a human as having been automatically generated. In our
example from Figure 1 we decided to use the type president
to ask about BarackObama. Using the fact (BarackObama

type politician) or the fact (BarackObama type person)

to extend the question is clearly redundant and adds no
extra information. To eliminate this issue, we check each
new type fact against all existing ones. If the new type is a
supertype (e.g., person) of an existing one (e.g., president),
we discard it.

4. DIFFICULTY ESTIMATION
We now describe our approach to estimating the difficulty

of answering the knowledge query generated in Section 3.
There are several, seemingly contradictory, signals that af-
fect the difficulty of a question. As discussed earlier, one
might expect any question asking for a popular entity such
as BarackObama to be an easy one. However, if we were to
ask “This president from Illinois won a Grammy Award.”,
few people are likely to think of BarackObama. We use a
classification model trained on a corpus of questions paired
with their difficulties to predict question difficulty.

Note that the difficulty is computed based on the query
and not its verbalization, which we generate in the next sec-
tion. Our goal here is to create questions that measure fac-
tual knowledge rather than linguistic ability. We elaborate
on this point further in Section 5.

Since we rely on supervised training for difficulty estima-
tion, we make the natural assumption that the difficulty
labels in the training and ‘testing’ questions are drawn from
the same underlying distribution for some target audience.
We also assume that for this population, it is possibly to
capture the difficulty of a question. As evidence for this, in
the Jeopardy! dataset [1] we find a positive correlation be-
tween the attempted questions for a certain difficulty-level
and the number of times a question of this difficulty-level
could not be answered. For the five difficulty-levels ($200,
$400, $600, $800, $1000), 4.46%, 8.35%, 12.69%, 17.82% and
25.69% of the questions could not be answered, respectively.

4.1 Data Preparation
We use the Jeopardy! quiz-game show data described in

Section 2 for training and testing our difficulty estimation
classifier. The larger goal is to estimate the difficulty of
answering queries generated from a knowledge graph, so we
restrict ourselves to a subset of the Jeopardy! questions
answerable from Yago [42], which we collected as described
below. However, all methods and tools are general enough
to apply to a setting other than ours of Jeopardy!/Yago.

We say a question is answerable form Yago if i) all entities
mentioned in the question and its answer are in Yago, and ii)
all relations connecting these entities are captured by Yago.
To find these questions, we automatically annotate the ques-
tions with Yago entities using the Stanford CoreNLP named
entity recognizer (NER) [18] in conjunction with the AIDA
tool for named entity disambiguation [25]. We concatenate

the output of the NER system with the answer entity, which
we annotate as an entity mention as well, and pass it to
AIDA for an improved disambiguation context. An exam-
ple of an input to AIDA looks as follows:

[Shah Jahan] built this complex in [Agra, India] to
immortalize [Mumtaz], his favorite wife. [Taj Mahal]

and the corresponding disambiguated output is:

ShahJahan built this complex in Agra to immortalize
MumtazMahal, his favorite wife. TajMahal

We retain an entity-annotated question if i) its answer
can be mapped to a Yago entity, ii) its body has at least one
entity (the one that will be given in the question, not the an-
swer), and iii) considering all entities in the question and the
answer entity, each entity can be paired with another entity
to which it has a direct relation in Yago. The last condition
ensures that we have questions that can be captured by the
relationships in Yago. However, it does not identify this re-
lation, and such a match may be spurious. Since this is hard
to establish automatically, we invoke humans at this point.

We run a crowdsourcing task on the questions that sur-
vive the above automated annotation and filtering proce-
dure. The task is to assign one of two labels to an entity-
annotated question/answer pair. A question/answer pair is
to be labeled Good if i) all entities in the question have been
captured and disambiguated correctly, ii) the question can
be captured by relations in Yago, and iii) the answer is a
unique one. The crowdsourcing task ran until we obtained
a total of 500 questions that we use in our experiments.

4.2 Difficulty Classifier
After obtaining the data needed for training and testing

a difficulty classifier, we turn our attention to building this
classifier and the features used to do so. Formally, our goal
is to learn a function diff (Q, e) ∈ {easy, hard} that learns
the difficulty of providing the answer e to the query Q.

We use logistic regression as our model of choice. We
chose this specific model due to the ease with which it can
be trained and because it allows easy inspection of feature
weights, which proved helpful during development. As we
are dealing with a binary classification case (easy, hard clas-
sification), we train our model to learn the probability of the
question being an easy one, P (diff (Q, e) = easy) , and set
a decision boundary at 0.5. We judge a question to be easy
if P (diff (Q, e) = easy) > 0.5 and hard otherwise.

The model, however, only works if provided with the right
features. Table 1 provides a summary of our features and
a brief description of each. The key ingredients in our fea-
ture repertoire are entity salience, per coarse semantic type
salience, and coherence of entity pairs.

Entity Salience (φ) is a normalized score that is used
as a proxy for an entity’s popularity. As our entities come
from Wikipedia, we use the Wikipedia link structure to com-
pute entity salience as the relative frequency with which the
Wikipedia entry for an entity is linked to from all other
entries. We also consider salience on a per-coarse-semantic-
type basis. The second group of Table 1 defines a set of tem-
plates. We consider the coarse semantic types person, loca-
tion, and organization and define a fourth coarse seman-
tic type other that collects entities not in any of the three
aforementioned coarse types (e.g., movies, inventions). Hav-
ing specialized features for individual coarse-grained types
allows us to take into consideration some particularities of

Feature Description

Entity Salience

φtarget answer entity salience

φmin min. salience of question entities

φmax max. salience of question entities

φΣ sum over salience of entities

φµ mean salience of question and answer entities

φqµ mean salience of entities in question

Per-coarse-semantic-type Salience

φT
min min. salience of entities of type T
φT
max max salience of entities of type T
φT

Σ sum over salience of entities of type T
φT
µ mean salience of entities of type T

Coherence

ϕmin maximum pairwise coherence of all entity pairs

ϕΣ sum over coherence of all entity pairs

ϕµ average coherence of all entity pairs

ϕQTAµ average coherence of entity pairs that involve answer

Answer Type

IT binary indicator: answer entity is of type T

Table 1: Difficulty estimator features and their de-
scription. T is one of person, organization, location,
or other.

these coarse types. For example, locations tend to have dis-
proportionately high salience. By having a feature that ac-
counts for this specific semantic type, we can mitigate this.
Without this feature, having a location in a question would
result in our classifier always labeling the question as easy.

Coherence of entity pairs (ϕ) captures the relative
tendency of two entities to appear in the same context. This
feature essentially informs us about how much the presence
of one entity indicates the presence of the other entity. For
example, we would expect that:

ϕ(BarackObama, WhiteHouse) > ϕ(BarackObama, GrammyAward).

The reason is that the first pair is more likely to co-occur
together than the second one. All else being equal, we would
expect a question asking for BarackObama using the White-

House in the question to be easier than one asking for him
using GrammyAward. Intuitively, coherence counteracts the
effect of salience. Since BarackObama is a salient entity, we
would expect questions asking for him to be relatively easy.
However, asking for him using GrammyAward is likely to make
the question difficult, as people are unlikely to make a con-
nection between the two entities.

We capture coherence using Wikipedia’s link structure.
Given two entities e1 and e2, we define their coherence as
the Jaccard coefficient of the sets of Wikipedia entries that
link to their respective entries in Wikipedia. The intuition
here is that any overlap corresponds to a mention of the
relation between these two entities. For the above measures,
we take their maximum, minimum, average, and sum over
the question as features as detailed in Table 1.

5. QUERY VERBALIZATION
We now turn to the problem of query verbalization, whereby

we transform a query constructed in Section 3 into a natural
language question. A human can digest this question with-
out the technical expertise required to understand a triple
pattern query. Our final goal is to construct well-formed
questions that are easy to understand.

The goal of our questions is to test factual knowledge as
opposed to linguistic ability. The way that a question is
formulated is not a factor in predicting its difficulty. This
guides our approach to query verbalization, which ensures
uniformity in how questions are phrased.

We rely on a hand crafted verbalization template and auto-
matically generated lexicons for transforming a query into a
question. The verbalization template specifies where the dif-
ferent components of the query appear in the question. The
lexicon serves as a bridge between knowledge graph entries
and natural language. We start by describing our template
and then move to our lexicon generation process.

5.1 Verbalization Template
Our approach to verbalizing queries is based on templates.

Such approaches are standard in the natural language gen-
eration literature [26, 34]. We adopt a template inspired by
the Jeopardy! quiz game show given in Figure 3. Most of
the work is done in the function verbalize.

Input: Query, Q = {q1, ..., qn}

Qtype := {qi ∈ Q | has the predicate type} = {qt1 , . . . , qtm}
Qinstance := Q \Qtype = {qi1 , . . . , qil}

This verbalize(qt1), . . . , and verbalize(qtm)
verbalize(qi1), . . . , and verbalize(qil) .

Figure 3: Verbalization Template

The function verbalize takes a triple pattern and pro-
duces its verbalization. How this verbalization is performed
depends on the nature of the triple pattern. More concretely,
there are three distinct patterns possible in our setting (see
Section 3):

• Type: if the predicate is type, then this results in ver-
balizing the object, which is a semantic type.

• PO: where the triple pattern is of the form ?var p o

and p is not type.

• SP: where the triple pattern is of the form s p ?var and
p is not type.

By considering these cases individually we ensure that lin-
guistically well-formed verbalizations are created. Figure 4
shows an example of each of the three cases above. Verbaliz-
ing a triple pattern requires that we are able to verbalize its
constituent semantic items (entities, types, and predicates)
in a manner that is considerate of the specific pattern. We
present our solution to this next.

5.2 Verbalization Lexicons
Semantic items in the knowledge graph are simply identi-

fiers that are not meant for direct human consumption. It
is therefore important that we map each semantic item to

Triple Pattern Pattern Verbalization
?x type movie type ‘film’, ‘movie’
?x actedIn Heat PO ‘acted in the movie Heat’

‘starred in the film Heat’
AlPacino actedIn ?x SP ‘Al Pacino appeared in’

Figure 4: Examples of results of verbalize(q).

phrases that can be used to represent it in a natural language
string such as a question.

Entities. To verbalize entities we follow the approach
of Hoffart et al. [25] and rely on the fact that our entities
come from Wikipedia. We resort to Wikipedia for extracting
surface forms of our entities. For each entity e, we collect
the surface forms of all links to e’s Wikipedia entry. We
consider this text to be a possible verbalization of e.

The above process extracts many spurious verbalizations
of an entity e. To overcome this issue, we associate with each
candidate verbalization the number of times it was used to
link to e’s Wikipedia entry and restrict ourselves to the five
most frequent ones, which we add to the lexicon for the entry
corresponding to e.

Predicates. As Figure 4 shows, predicate verbalization
depends on the the pattern in which it is observed (SP or
PO). We rely on our large entity-annotated corpus described
in Section 2 for mining predicate verbalizations sensitive to
the SP and PO patterns. For each triple (e1 p e2) ∈ KG,
we collect all sentences in our corpus that match the pat-
terns PatSP =“e1 w1...wn e2” (e.g., “BarackObama was born
in Hawaii”) and PatPO =“e2 w1...wn e1” (e.g., “Hawaii is
the birthplace of BarackOmaba”) . Following the distant su-
pervision assumption [31], we hypothesize that ‘w1...wn’ is
expressing p. The above hypothesis does not always hold.
To filter out possible noise we resort to a combination of
heuristic filtering and scoring. We remove from the above
verbalization candidate set any phrases that are longer than
50 characters or contain a third entity e3. We subsequently
score how good of a fit a phrase ‘w1...wn’ is for a predicate
p using normalized pointwise mutual information (npmi).
For each predicate p, we retain the 5 highest scoring ver-
balizations for each of the two patterns, PatSP and PatPO,
which are used for verbalizing SP and PO triple patterns,
respectively.

Types. As explained in Section 2, our types are WordNet
synsets. We therefore rely on the lexicon distributed as part
of WordNet for type paraphrasing.

Each of the three lexicons provides several ways to verbal-
ize a semantic item. When verbalizing a specific semantic
item, we choose a verbalization uniformly at random to en-
sure variety.

6. MULTIPLE-CHOICE QUESTIONS
The final component in our question generation frame-

work turns a question into a multiple-choice question. This
has several advantages: in general, it is easier to administer
a multiple-choice question as the problem of answer verifi-
cation can be completely mechanized. This is particularly
true in cases where questions are not administered though a
computer, where such things as completion suggestion can
ensure canonical answers. In general, where knowledge ques-
tions are involved (as opposed to free response questions that
might involve opinion), the use of multiple-choice questions
is widespread as observed in such tests as the GRE.

Turning a question into multiple-choice requires distrac-
tors: entities that are presented to the user as answer can-
didates, but are in fact incorrect answers. Of course, not all
entities constitute reasonable distractors. A negative exam-
ple would be entities that are completely unrelated to the
question. In addition to being related to the question, dis-
tractors should ideally be related to the correct answer en-
tity. It should generally be possible to confuse a distractor

with the correct answer to make a multiple-choice question
interesting. We call this the confusability of a distractor.
The more confusable a distractor is with the correct answer,
the more likely a test taker is to choose it as an answer,
making the multiple-choice question more challenging.

In what follows we take a look at the problems of gen-
erating distractors in our framework and quantifying the
confusability of these distractors.

6.1 Distractor Generation
Our starting point for generating distractors is the query

Q = {q1, ..., qn} generated in Section 3, which formed the
basis of the question verbalized in Section 5. By starting
with a query, we have a fairly simple but powerful scheme
for generating distractors. By removing one or more triple
patterns from Q we obtain a query Q′ ⊂ Q that has more
than one answer entity. All but one of these entities are an
incorrect answer to Q.

The relaxation scheme described above can generate a
large number of candidate distractors. However, not all re-
laxations stay close to the original query. If a relaxation
deviates too much from Q, the obtained distractors become
meaningless. We address this by imposing two restrictions
on relaxed queries used to generate distractors: (i) a seman-
tic type restriction, and (ii) a relaxation distance restriction.

Semantic type restriction ensures that the answer and dis-
tractor are type-compatible. For example, a multiple-choice
question asking for a location should not have a person as
one of its distractors. The semantic type restriction requires
that a semantic type triple pattern Q is relaxed to the cor-
responding coarse type.

The relaxation distance restriction refers to relaxations
involving instance triple patterns. We define the distance
between a query Q and a query Q′ ⊆ Q as follows:

dist(Q,Q′) = |answers(Q′)| − |answers(Q)|,

where answers(Q′) is the set of answers of Q′ (|answers(Q)|
is always 1). We restrict relaxed queries to have a distance of
no more than α, which we set to 10. By pooling the results
of all relaxed queries, we form a set of candidate distractors.
The choice of distractor is based on how much difficulty
we want the distractors to introduce using our notion of
distractor confusability.

6.2 Distractor Confusability
All things equal, a multiple-choice question can be made

more or less difficult by the choice of distractors. If one
of the distractors is highly confusable with the answer en-
tity, the multiple-choice question is difficult. If none of the
distractors is easy to confuse with the answer entity, the
multiple-choice question is easy.

Based on this observation we regard a distractor as con-
fusable if it is likely to be the answer to the original question
based on our difficulty model. This implies that if an entity
is very likely to be the answer to a question asking about
a different entity, this entity pair must be similar. We can
therefore define confusability between the question’s answer
ea and a distractor entity edist as follows:

conf (Q, ea, edist) =

1− |P (diff (Q, ea) = easy)− P (diff (Q, edist) = easy)|.

Since we can have more than one distractor in a multiple-
choice question, we capture the above intuition regarding

diff(Q, ea) diff(Q, ea)
= easy = hard

conf(Q, ea, Dist) < 0.5 easy hard
conf(Q, ea, Dist) > 0.5 hard hard

Table 2: Combining question difficulty and multiple-
choice question confusability into an overall diffi-
culty in a multipe-choice setting.

how multiple distractors affect the overall difficulty of the
question. We observe that a multiple-choice question is as
confusing as its most confusing distractor and define the
confusability of a distractor set Dist = {edist1, edist2, ...} as:

conf (Q, ea, Dist) = max
edist∈Dist

conf (Q, ea, edist).

Looking at the big picture, we relate the notion of confus-
ability in a multiple-choice question with our earlier notion
of difficulty by combining diff (Q, ea) ∈ {easy, hard} and
conf (Q, ea, Dist) ∈ [0, 1] as shown in Table 2. We see that
an easy question can be turned in two a hard one when a
very confusable distractor is added, since the user has to dis-
tinguish between two very similar entities. However, adding
an easy distractor to a hard question will not change its dif-
ficulty because even when both entities are not similar to
each other, the user still has to know which entitiy is the
correct answer.

7. EXPERIMENTAL EVALUATION
In the following section we evaluate our approach to knowl-

edge question generation from knowledge graphs. We per-
form two user studies which focus on evaluating the difficulty
model and our distractor generation framework.

7.1 Human Assessment of Difficulty
An important motivation for automating difficulty assess-

ment of questions is the fact that it is difficulty to judge
for the average human what constitutes an easy or hard
question. Beinborn et al. [7] has already shown this re-
sult for language proficiency tests, where language teachers
were shown to be bad at predicting the difficulty of ques-
tions when considering the actual performance of students.
We would like to observe if the same applies to our setting.
To create fair and informative tests, it is crucial that we are
able to correctly assess the difficulty of a question.

We start with the assumption that the creators of Jeop-
ardy! are good at automatically assessing question diffi-
culty. Evidence for this was discussed in Section 4, where we
showed that there exists a correlation between the monetary
value of a question and the likelihood of it being incorrectly
answered by Jeopardy! contestants.

In our experiment we want to show how well the average
human can predict the difficulty of a question. To do so,
we randomly sampled 100 easy ($200) and 100 hard ($1000)
questions from the 500 questions generated in Section 4 to
maximize the discrepancy in question difficulty. We then
asked three human evaluators (eval1, eval2, eval3) to an-
notate each of the 200 questions as easy or hard. We then
compared their answers with each other and with the ground
truth according to Jeopardy!.

Table 3 shows the agreement between each pair of human
evaluators and the majority vote difficulty assessment using
Fleiss’ Kappa [19]. When looking at pairwise agreement
between evaluators, it ranges from fair to moderate [28].

eval2 eval3 majority

eval1 0.192 0.325 0.500
eval2 0.443 0.661
eval3 0.810

Table 3: Agreement between human evaluators (all
measurements are Fleiss’ Kappa)

SAL COH TYPE Accuracy

yes yes yes 66.4%
yes no yes 65.8%
yes yes no 62.6%
yes no no 62.2%
no no yes 60.0%
no yes yes 57.8%
no yes no 52.4%
no no no 50.0%

Table 4: Ablation study results for features intro-
duced in Section 4. Accuracy is based on ten-fold
cross-validation of the difficulty classifier’s predic-
tions.

This leads us to conclude that it is hard for non-experts to
properly judge the difficulty of questions.

We also compared the majority vote of the evaluators on
the difficulty of the questions with the ground truth pro-
vided by Jeopardy!. The result was agreement on 62.5% of
questions. This suggests that there is a need to automate
the task.

7.2 Question Difficulty Classification
We start by looking at the quality of our scheme for as-

signing difficulty levels to questions. The scheme is de-
scribed in Section 4, where the possible difficulty levels are
D = {easy, hard}. We train our logistic regression classifier
on 500 Jeopardy! questions annotated as described in Sec-
tion 4. Using ten-fold cross validation, our classifier was able
to correctly identify the difficulty levels of questions with an
accuracy of 66.4%.

To gain insight into how informative our features are, we
performed a feature ablation study where we look at the
results for all combinations of our features. For this part,
we grouped our features into three classes:

• SAL: “Salience” features as in Table 1, with additional
log-transformation of salience values to deal with long-
tail entities.

• COH: “Coherence” features in Table 1.

• TYPE: “Per-coarse-semantic-type Salience” and “An-
swer Type” features in Table 1.

Table 4 shows the results of this experiment. Each row
corresponds to a certain combination of features enabled or
disabled. Rows are shown in descending order of ten-fold
cross validation accuracy. It can be seen that best perfor-
mance is achieved when all of our features are integrated.
From this observation it can be reasoned that all features
are necessary and give complementary signals. The bottom
row corresponds to a random classifier.

7.3 User Study on Difficulty Estimation
In the following we perform an experiment on how well

our classifier agrees with relative difficulty assessments of

humans for questions generated by our system. It is impor-
tant to note that we ask humans for relative difficulty as-
sessments as opposed to absolute difficulties, since we have
shown in Section 7.1 that humans are not very proficient in
judging absolute difficulties.

For the user study we sampled a set of 50 entities with at
least 5 non-type facts in Yago. For each entity, we generated
a set of three questions and presented them with the answer
entity to human annotators. The annotators were asked
order these questions by their relative difficulty and were
allowed to skip a set of questions about an entity if they
were not familiar with the entity.

We then compared the correlation between the ranking
given by each of the human annotators and the output of
our logistic regression classifier. For this we used Kendall’s
τ , which ranges from -1, in the case of perfect disagreement,
to 1, in the case of perfect agreement.

A total of 13 evaluators took part in the study and eval-
uated 92.5 questions on average. Rankings produced by
the difficulty classifier moderately agree with the human
annotators with τ = 0.563. When the τ -values for users
are weighted by study participation, the average rises to
τ = 0.593. Here, each user’s contribution to the final aver-
age depends on how many questions she evaluated to avoid
overly representing users that evaluated only few questions.

7.4 Distractors Confusability
We now turn to the evaluation of distractor generation for

multiple-choice questions. Our goal is to accurately predict
the confusability of a distractor given a question’s correct an-
swer. In Section 6.2 we presented our scheme for quantifying
distractor confusability and how it fits into a multiple-choice
question setting. We evaluate our approach here.

For this experiment we automatically generate 10,000 mul-
tiple-choice questions. Each question has three answer choi-
ces, which are the correct answer and two distractors. We
then restricted ourselves to 400 multiple-choice questions
whose distractor pair has the largest difference in confusabil-
ity. This was done to maximize the probability that study
participants can actually discriminate the more confusable
from the less confusable distractor.

We ran each multiple-choice question through a crowd-
sourcing platform and asked workers to judge which distrac-
tor is more confusing. Each multiple-choice question was
judged by 5 workers so we could take the majority vote in
case the judgments where not unanimous. We then compare
this majority vote with the result of our confusability esti-
mator. Our estimator agreed with the human annotations
on 76% of the 400 multiple-choice questions. This translates
to a Cohen’s κ of 0.521, indicating moderate agreement [12].

8. RELATED WORK
There has been work on knowledge question generation

for testing linguistic knowledge and reading comprehension.
The generation of language proficiency tests has been tack-
led in several works [21, 32, 35]. Here, the focus is on gen-
erating cloze (fill-in-the-blank) tests. Beinborn et al. [7]
presents an approach for predicting the difficulty of answer-
ing such questions with multiple blanks using SVMs trained
on four classes of features that look at individual blanks,
their candidate answers, their dependence on other blanks,
and the overall question difficulty.

Question generation for reading comprehension is aimed

at evaluating knowledge from text corpora. This includes
including general Wikipedia knowledge [8, 24] and special-
ized domain such as medical texts [2, 46]. While the above
works focus on generating a question from a single docu-
ment, Questimator [22] generates multiple choice questions
from the textual Wikipedia corpus by considering multiple
documents related to a single topic to produce a question.
Work in this area has mostly taken the approach of overgen-
eration and ranking [24, 46]. Multiple questions are gener-
ated for a given passage using rules. A learned model ranks
the questions in terms of “acceptability”. In this setting, ac-
ceptable answers should be sensical, grammatical, and their
answers should not be obvious.

Recent work has started to look at the problem of generat-
ing questions, including multiple choice ones, from KGs and
ontologies [3, 38, 41, 37]. Strong motivations for studying
this problem, compared to question generation from text,
are scenarios where structured data is what is available at
hand, and the ability to generate deeper, structurally more
complex questions. Our system is an end-to-end solution for
this problem over a large KG.

In Section 5 we presented a simple approach for query
verbalization that sits our needs. The query verbalization
problem has been tackled by Ngomo et al. for SPARQL
[33, 14], and Koutrika et al. for SQL [27], with a focus on
usability. Similar to our approach, these earlier works take
a template-based approach to verbalization, which are very
widely used on the natural language generation from logical
form such as SPARQL queries [26, 34].

Much recent work has focused on keyword search [9] and
question answering, rather than generation, from knowledge
graphs [6, 13, 30, 40, 44, 47, 50], possibly in combination
with textual data [5, 36, 48]. The value of knowledge graphs
is that they return crisp answers and allow for complex con-
straint to answer structurally complex questions. Of course,
question answering has a long history, with one of the major
highlights being IBM’s Watson [16], which won the Jeop-
ardy! game show combining both structured and unstruc-
tured sources for answering.

One important contribution of our work is an approach to
compute the difficulty of questions generated. This topic has
received attention lately in community question answering
[29, 45], by using a competition-based approach that tries
to capture how much skill a question requires for answering.
There has also been work on estimating query difficulty in
the context of information retrieval [11, 49] to learn an esti-
mator that predicts the expected precision of the query by
analyzing the overlap between the results of the full query
and the results of its sub-queries.

9. CONCLUSION
We proposed an end-to-end approach to the novel problem

of generating quiz-style knowledge questions from knowledge
graphs. Our approach addresses the challenges inherent to
this problem, most importantly estimating the difficulty of
generated questions. To this end, we engineer suitable fea-
tures and train a model of question difficulty on historical
data from the Jeopardy! quiz show, which is shown to out-
perform humans on this difficult task. A working prototype
implementing our approach is accessible at:

https://gate.d5.mpi-inf.mpg.de/q2g

https://gate.d5.mpi-inf.mpg.de/q2g

10. REFERENCES
[1] J! Archive. http://j-archive.com.

[2] M. Agarwal and P. Mannem. Automatic gap-fill
question generation from text books. In BEA, 2011.

[3] T. Alsubait et al. Generating multiple choice questions
from ontologies: Lessons learnt. In OWLED, 2014.

[4] S. Auer et al. DBpedia: A Nucleus for a Web of Open
Data. In ISWC/ASWC, 2007.

[5] H. Bast et al. Semantic Search on Text and Knowledge
Bases. Foundations and Trends in IR, 10(2-3), 2016.

[6] H. Bast and E. Haussmann. More Accurate Question
Answering on Freebase. In CIKM, 2015.

[7] L. Beinborn et al. Predicting the Difficulty of
Language Proficiency Tests. TACL, 2, 2014.

[8] A. S. Bhatia et al. Automatic generation of multiple
choice questions using wikipedia. In PReMI, 2013.

[9] R. Blanco et al. Effective and efficient entity search in
RDF data. In ISWC, 2011.

[10] K. D. Bollacker et al. Freebase: a Collaboratively
Created Graph Database for Structuring Human
Knowledge. In SIGMOD, 2008.

[11] D. Carmel and E. Yom-Tov. Estimating the Query
Difficulty for Information Retrieval. Morgan &
Claypool Publishers, 2010.

[12] J. Cohen. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement,
20(1):37, 1960.

[13] W. Cui et al. KBQA: an Online Template Based
Question Answering System over Freebase. In IJCAI,
2016.

[14] B. Ell et al. Spartiqulation – Verbalizing SPARQL
Queries. In ILD Workshop, ESWC, 2012.

[15] C. Fellbaum, editor. WordNet: an Electronic Lexical
Database. MIT Press, 1998.

[16] D. A. Ferrucci. Introduction to ”this is watson”. IBM
Journal of Research and Development, 2012.

[17] D. A. Ferrucci et al. Building Watson: An Overview of
the DeepQA Project. AI Magazine, 31(3), 2010.

[18] J. R. Finkel et al. Incorporating Non-local Information
into Information Extraction Systems by Gibbs
Sampling. In ACL, 2005.

[19] J. L. Fleiss. Measuring Nominal Scale Agreement
among Many Raters. Psychological Bulletin, 1971.

[20] E. Gabrilovich et al. FACC1: Freebase annotation of
ClueWeb corpora, Version 1, 2013.

[21] D. M. Gates. How to Generate Cloze Questions from
Definitions: A Syntactic Approach. In AAAI, 2011.

[22] Q. Guo et al. Questimator: Generating Knowledge
Assessments for Arbitrary Topics. In IJCAI, 2016.

[23] M. A. Hearst. Automatic Acquisition of Hyponyms
from Large Text Corpora. In COLING, 1992.

[24] M. Heilman and N. A. Smith. Question Generation
via Overgenerating Transformations and Ranking.
Technical report, 2009.

[25] J. Hoffart et al. Robust Disambiguation of Named
Entities in Text. In EMNLP, 2011.

[26] N. Indurkhya and F. J. Damerau, editors. Handbook of
Natural Language Processing. Chapman and
Hall/CRC, 2010.

[27] G. Koutrika et al. Explaining Structured Queries in
Natural Language. In ICDE, 2010.

[28] J. R. Landis and G. G. Koch. The Measurement of
Observer Agreement for Categorical Data. Biometrics,
Vol. 33, 1977.

[29] J. Liu et al. Question difficulty estimation in
community question answering services. In EMNLP,
2013.

[30] V. López et al. Scaling up question-answering to
linked data. In EKAW, 2010.

[31] M. Mintz et al. Distant supervision for relation
extraction without labeled data. In ACL, 2009.

[32] A. Narendra et al. Automatic Cloze-Questions
Generation. In RANLP, 2013.

[33] A.-C. Ngonga Ngomo et al. Sorry, I Don’T Speak
SPARQL: Translating SPARQL Queries into Natural
Language. In WWW, 2013.

[34] E. Reiter and R. Dale. Building Natural Language
Generation Systems. Cambridge University Press,
2000.

[35] K. Sakaguchi et al. Discriminative Approach to
Fill-in-the-Blank Quiz Generation for Language
Learners. In ACL, 2013.

[36] D. Savenkov and E. Agichtein. When a knowledge base
is not enough: Question answering over knowledge
bases with external text data. In SIGIR, 2016.

[37] I. V. Serban et al. Generating factoid questions with
recurrent neural networks: The 30m factoid
question-answer corpus. In ACL, 2016.

[38] D. Seyler et al. Generating quiz questions from
knowledge graphs. In WWW, 2015.

[39] D. Seyler et al. Automated question generation for
quality control in human computation tasks. In
WebSci, 2016.

[40] S. Shekarpour et al. Question answering on interlinked
data. In WWW, 2013.

[41] L. Song and L. Zhao. Domain-specific question
generation from a knowledge base. arXiv, 2016.

[42] F. M. Suchanek et al. Yago: A Core of Semantic
Knowledge. In WWW, 2007.

[43] F. M. Suchanek et al. Yago2s: Modular high-quality
information extraction with an application to flight
planning. In BTW, volume 214, 2013.

[44] C. Unger et al. Template-based question answering
over RDF data. In WWW, 2012.

[45] Q. Wang et al. A regularized competition model for
question difficulty estimation in community question
answering services. In EMNLP, 2014.

[46] W. Wang et al. Automatic question generation for
learning evaluation in medicine. In ICWL, 2007.

[47] K. Xu et al. What Is the Longest River in the USA?
Semantic Parsing for Aggregation Questions. In
AAAI, 2015.

[48] P. Yin et al. Answering Questions with Complex
Semantic Constraints on Open Knowledge Bases. In
CIKM, 2015.

[49] E. Yom-Tov et al. Learning to estimate query
difficulty: including applications to missing content
detection and distributed information retrieval. In
SIGIR, 2005.

[50] L. Zou et al. Natural language question answering over
RDF: a graph data driven approach. In SIGMOD,
2014.

http://j-archive.com

	1 Introduction
	2 Preliminaries and Problem Statement
	3 Query Generation
	3.1 Answer Type Selection
	3.2 Triple Pattern Generation

	4 Difficulty Estimation
	4.1 Data Preparation
	4.2 Difficulty Classifier

	5 Query Verbalization
	5.1 Verbalization Template
	5.2 Verbalization Lexicons

	6 multiple-choice questions
	6.1 Distractor Generation
	6.2 Distractor Confusability

	7 Experimental Evaluation
	7.1 Human Assessment of Difficulty
	7.2 Question Difficulty Classification
	7.3 User Study on Difficulty Estimation
	7.4 Distractors Confusability

	8 Related Work
	9 Conclusion
	10 References

