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ABSTRACT
Providing answers to complex information needs is a challeng-
ing task. �e new TREC Complex Answer Retrieval (TREC CAR)
track introduces a large-scale dataset where paragraphs are to be
retrieved in response to outlines of Wikipedia articles representing
complex information needs. We present early results from a variety
of approaches – from standard information retrieval methods (e.g.,
TF-IDF) to complex systems that adopt query expansion, knowledge
bases and deep neural networks. �e goal is to o�er an overview
of some promising approaches to tackle this problem.

1 INTRODUCTION
Over the last two decades, research in information retrieval (IR)
has developed a variety of approaches for answering queries re-
garding precise facts – such as “Population New York City”, “Who
is Bill de Blasio?” or “Neighborhoods in Manha�an” – via the iden-
ti�cation, extraction, and synthesis of pieces of information from
textual sources. However, for more complex queries, such as “Ben-
e�ts of immigration for NYC culture” current systems still rely on
presenting the traditional ten blue links to the user as an answer.

To solicit works in this direction, and following the output of
the recent SWIRL 2012 workshop on frontiers, challenges, and
opportunities for information retrieval report [2], a new TREC
track on Complex Answer Retrieval1 (TREC CAR) for open-domain
queries has been recently introduced [10].

�e task and related dataset are based on the assumption that
each Wikipedia page represents a complex topic, with further de-
tails under each sections. Accordingly, paragraphs contained in
a section such as “Cultural diversity – Demographic” of the page
“Culture of New York City”, o�er one aspect of the open-domain
query “Culture of New York City”. �e goal of the task is presented
as such: given an outline of a page (in the form of the page title and
hierarchical section headings), retrieve a ranking of passages for
each section. While assessed manually in the future, in this work,
a passage is relevant for a section if and only if it is contained in
the original article in the corresponding section.
1h�p://trec-car.cs.unh.edu/
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Contribution. Many di�erent approaches can be applied to this
problem. �is can address the ways a query can be expanded
(using textual or structural information from knowledge bases), the
way query and passages can be represented as vectors (e.g., word
embedding vectors), and applications of deep neural networks and
learning to rank. Given the recent release of the dataset, with this
work we intend to support the future participants of the TREC
CAR task by studying the performance of a variety of methods—to
highlight which of them may be the most promising directions.

Additionally with the publication of this paper, we make our
code and data available online.2

Outline. We give an overview of related work in Section 2, describe
the data set and our experimentation environment in Section 3
and 4. Section 5 provides details of the approaches. We evaluate
empirically in Section 6 before concluding the paper.

2 RELATEDWORK
A wide variety of approaches are applicable to the TREC CAR
problem. In the following, we cover three central ones, namely
passage retrieval, query expansion using knowledge bases and the
recent advancement in the use of deep neural network models for
information retrieval.
Passage Retrieval. Passage retrieval is o�en cast as a variation on
document retrieval, where the document retrieval model is applied
only to a fragment of the text. �e applications include search snip-
pet detection, which aims to summarize the query-relevant parts
of a document. Scores under the passage model can be combined
with those from the containing document to improve performance
[6] or to include quality indicators [5]. �ese approaches have been
adapted to retrieve answers for questions [1]. Passage retrieval
models can be extended to combine terms and entity-centric knowl-
edge [8, 11]. For certain Wikipedia categories, template of articles
can be extracted and automatically populated [24]. Furthermore,
Banerjee and Mitra [4] found that training a lexical classi�er per
section heading obtains good results for article construction.
Neural-IR. With the comeback of neural networks, the IR com-
munity is exploring pre-trained word-vector approaches as well
as dedicated neural networks for ranking. Pre-trained word- and
entity-embeddings are publicly available in the form of word2vec,3
GloVe,4 DESM,5 NTLM,6 wiki2vec,7 and RDF2Vec8 vectors. Much

2h�ps://federiconanni.com/trec-car-benchmark/
3h�ps://code.google.com/archive/p/word2vec/
4h�p://nlp.stanford.edu/projects/glove/
5h�ps://www.microso�.com/en-us/download/details.aspx?id=52597
6h�p://www.zuccon.net/ntlm.html
7h�ps://github.com/idio/wiki2vec
8h�p://data.dws.informatik.uni-mannheim.de/rdf2vec/
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of the work in this area focuses on the applications of these shal-
low distributional models to IR tasks, although recently deeper
architectures have also been investigated [18, 26].
�ery Expansion with KB. Pseudo relevance feedback [15] is
one of the most popular query expansion methods in which fre-
quent words in top documents of a �rst retrieval run are extracted.
�is idea is generalized to expansion with multiple sources [7]
based on terms and phrases. Recent developments in entity linking
algorithms and object retrieval make it feasible to tap into the rich
information provided by KBs [9, 14, 17], and exploit disambiguation
and con�dences for query and document representation [13, 21].
Further work on entity aspects [22] and e�ective learning-to-rank
approaches for latent entities [25] are a promising avenue.

3 DATA SET
To study complex answer retrieval, the TREC CAR organizers ex-
tract a large and comprehensive benchmark fromWikipedia articles
[10].9 English Wikipedia is processed to separate articles into out-
lines of hierarchical section headings and contained paragraphs
(discarding info boxes, images and wrappers - v1.4). �e hierar-
chical outlines are provided as complex information needs, where
for each heading a ranking of paragraphs is to be retrieved. Auto-
matic relevance data (qrels �les) are provided based on whether a
paragraph was listed in a given section.
Train data. For 50% of all articles, both outlines and articles are
made available as training data for supervised machine learning as
well as a resource for the Rocchio method discussed below.
Test200. As the track focuses on knowledge-centric topics (in con-
trast to biographies), 200 manually selected outlines are provided as
a representative test collection. Together, these 200 outlines include
approximately 2300 headings, each resulting in a query.

4 EXPERIMENTATION ENVIRONMENT
We focus on the task of retrieving and ranking paragraphs for
each heading of the outline. We consider the 2300 sections in
Test200 corpus: First we experiment in a “safe” experimentation
environment before applying approaches to the entire collection of
seven million paragraphs. �e goal is to simulate a noisy candidate
generation method, which is guaranteed to include all relevant
paragraphs for the heading with a set of nearly-relevant negatives.

For each heading, we construct a train set by selecting, for every
true paragraph under the heading, �ve paragraphs from di�erent
sections of the article, and �ve paragraphs from a di�erent article.

Similarly we construct a test set that includes all paragraphs
from the article, as well as the same amount of paragraphs drawn
from other articles. All articles are provided in random order. On
average this process yields a mean of 35 paragraphs per section.

5 EXAMINED APPROACHES
�e setup of TREC CAR is a bit unusual as all headings of an article
are given at once, with the goal of producing a separate ranking
for each heading. In this early work, we are breaking each outline
into several independent queries, one per heading h as follows: We
identify the path from the heading to the root, and concatenate
all all headings together with the page title to obtain the query.

9Dataset available at: h�p://trec-car.cs.unh.edu/datareleases/v1.4-release.html

For example, if h corresponds to heading H2.3.4 the query is the
concatenation of H2.3.4, H2.3, H2 and the page title.

Based on these queries, we experiment with di�erent query ex-
pansion approaches and vector space representations of queries and
paragraphs (TF-IDF, GloVe embeddings and RDF2Vec embeddings).
We examine BM25, cosine similarity, learning to rank [16] and a
state-of-the-art neural network model [19].

5.1 �ery Expansion Techniques
We experiment three di�erent query expansion approaches. We
combine them with other scores, to, for instance, obtain RM3.
Expansion terms (RM1). Feedback terms are derived using pseudo
relevance feedback and the relevance model [15]. Here we use
Galago’s implementation10 which is based on a Dirichlet smoothed
language model for the feedback run. In the experimental se�ing,
we achieve the best performance expanding the queries with top
10 terms extracted from the top 10 feedback paragraphs.
Expansion entities (ent-RM1). Anotherway of expanding queries
is by retrieving relevant entities. As for retrieving supporting terms,
we derive a set of feedback entities by a search of the index using the
heading-query and deriving several entities. In the experimental
se�ing, best performance are achieved using 10 entities.
Paragraph Rocchio. Inspired by the work of Banerjee and Mitra
[4], we retrieve other paragraphs, which have an identical heading
to our heading-query, from folds 1 to 4 of the collection (omit-
ting the fold where test200 originates from). For example, given a
query such as “Demographic”, regarding the entity United States,
we collect supporting paragraphs from the pages of other enti-
ties (e.g., United Kingdom), which have as well a a section titled
“Demographic”. Headings are pre-processedwith tokenisation, stop-
word/digit removal and stemming. �is way, we can retrieve at
least one supporting paragraph for 1/3 of our heading-queries. In
the experimental se�ing, we test expansion using from 1 to 100
supporting passages and we obtain best performance expanding
the query with 5 passages.

5.2 Vector Space Representations
We study three variations for representing the content in the vector
space model.
TF-IDF. Representing each word in the vocabulary as its own di-
mension in the vector space, queries and paragraphs are represented
as their TF-IDF vector. We are using the logarithmic L2-normalised
variant. We perform stemming as a pre-processing step.
Word Embeddings. Using the pre-trained word embedding GloVE
[20] of 300 dimensions, every word w in query or paragraph is
represented as a K-dimensional vector ®w . A vector representation
for the whole paragraph ®d (complete query ®q) is obtained by a
weighted element-wise average of word vectors ®w in the paragraph
(query). To give more a�ention to infrequent word, we use the
TF-IDF of each wordw to weights.

®d = 1
|d |

∑
w ∈d

TF-IDF(w) · ®w

Entity Embeddings. �eries and paragraphs are represented as
their mentioned DBpedia entities, using the entity linker TagMe
10lemurproject.org/galago.php
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[12] (with default parameters). Next, we obtain latent vector repre-
sentations ®e of each linked entity e using pre-computed RDF2Vec
300d entity embeddings [23]. Vector representations of paragraphs
®d (queries ®q) are computed by a weighted element-wise average of
entity vectors ®e . By casting a paragraph as a bag-of-links we adapt
TF-IDF to entity links (link statistics from DBpedia 2015-04 [3]:

®d = 1
| {e ∈ d} |

∑
e ∈d

TF-IDF(e) · ®e

5.3 Ranking Approaches
We include four di�erent ranking approaches.
Okapi BM25. Results are ranked using Okapi BM25 with k1=1.2
and b=0.75, using the implementation of Lucene 6.4.1. Porter stem-
ming and stopword removal was applied to paragraphs and queries.
Cosine Similarity. Paragraphs are ranked by cosine similarity (cs)
between vector representations of the query and the paragraph.
Learning to Rank. We combine the ranking scores of di�erent
baselines with supervised machine learning in a learning-to-rank
se�ing, for producing a �nal ranking of relevant paragraphs. We
use RankLib 11 with 5-fold cross validation using a linear model
optimized for MAP, trained with coordinate ascent.
Deep Neural Network. �e Duet model is a state-of-the-art deep
neural network (DNN) recently proposed by Mitra et al. [19] for
ad-hoc retrieval. �e Duet architecture learns to model query-
paragraph relevance by jointly learning good representations of the
query and the paragraph text for matching, as well as by learning
to identify good pa�erns of exact matches of the query terms in
the paragraph text. We use the Duet implementation available
publicly12 under the MIT license for our experiments. Training on
folds 1 to 4 of the collection, we only consider the �rst ten words for
the query and the �rst 100 words for the passage as inputs. We use
64 hidden units in the di�erent layers of the network, as opposed
to 300 in the original paper, to reduce the total number of learnable
parameters of the model. We trained the model for 32 epochs with
a learning rate of 0.001 which was picked based on a subset of the
training data. Each epoch was trained over 1024 minibatches, and
each minibatch contained 1024 samples. Each training sample was
a triplet consisting of a query, a positive passage, and a negative
passage. �e training time was limited to 60 hours.

6 EVALUATION
We present experiments both on a small set and on the full data set.

6.1 Experimentation Environment
�e experimentation environment (Section 4) provides a “safe envi-
ronment” by simulating a noisy candidate method for each section.
Results are presented in Table 1. �e approach bm25 query only
sets the baseline of our work.

Not all query expansion approaches and vector space represen-
tation methods improve over this baseline. �is is particularly true
for query expansion with terms or entities (through RM3 = query +
RM1) as well as RDF2Vec embeddings. On the contrary, the most
promising results among the methods which employ cosine similar-
ity as a ranking function, are obtained when the query is expanded
11lemurproject.org/ranklib.php
12h�ps://github.com/bmitra-ms�/NDRM/blob/master/notebooks/Duet.ipynb

Table 1: Results on experimentation environment.

MAP R-Prec MRR

BM25
query only 0.304 0.225 0.388

TF-IDF (cs)
query only 0.328 0.212 0.385
query + RM1 0.325 0.206 0.385
query + Rocchio 0.401 0.286 0.467

GloVe (cs)
query only 0.329 0.210 0.387
query + RM1 0.255 0.148 0.305
query + Rocchio 0.350 0.236 0.410

RDF2Vec (cs)
entity-query only 0.313 0.200 0.369
ent-query + ent-RM1 0.322 0.209 0.379
ent-query + ent-Rocchio 0.316 0.205 0.376

Learning to Rank
all (cs) scores 0.412 0.295 0.478

Duet model
query only 0.465 0.359 0.552

Table 2: Results of the initial candidate selection.

MAP R-Prec MRR

BM25
query only 0.140 0.110 0.202

TF-IDF (cs)
query only 0.035 0.025 0.053
query + Rocchio 0.029 0.020 0.041

with Rocchio vectors trained on paragraphs from sections with
the same heading. �is �nding recon�rms the results of previous
work on the automatic generation of Wikipedia articles based its
structural information [4]. �e results show that common traits
between Wikipedia sections with the same heading are be�er cap-
tured using the TF-IDF word vector than through word- and entity-
embedding vectors suggest that a possible improvement over these
baselines could by obtained by training embeddings for this task.

In comparison to these unsupervised retrieval models, both su-
pervised Learning to Rank and the Neural Duet model out-perform
all previously described baselines. In particular, the Duet model
yields a substantial improvement over all presented approaches,
showing the potential of neural-IR for the task. It is important to
remark that neural deep models take days to train even on a GPU.
In addition they are data-hungry, with performances improving
signi�cantly with more training data as shown in Figure 1.

6.2 Experiments on Full TREC collection
Moreover, we conduct experiments on the entire paragraph collec-
tion.
Candidate Selection. Many of the previously presented methods,
such as the Duet model, require a candidate generating method. We
test three candidate methods: BM25, TF-IDF, and TF-IDF with Roc-
chio expansion. For each query, the methods produce a candidate

https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb
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Figure 1: E�ect of training data size on the performance of
the Duet model. Training on four folds, reporting MAP on
holdout fold.

Table 3: Results on the ParagraphCollection a�er candidate
method. H Worse according to paired-t-test with α = 5%.

w/o BM25
MAP R-Prec MRR MAP

BM25 candidate 0.140H 0.110 0.202 -
theoretical upper-bound 0.382 0.382 0.537 0.382

TF-IDF (cs)
BM25 + query + Rocchio 0.143H 0.112 0.206 0.085

GloVe (cs)
BM25 + query + Rocchio 0.150H 0.119 0.217 0.082

Duet model
BM25 + query only 0.160 0.130 0.229 0.094

set of 100 paragraphs. �e results are presented in Table 2. While
this is a challenging task, encouraging performance are obtained
by BM25 query only, which we use in the following. Since not all
relevant paragraphs are contained in the candidate set, the theoreti-
cally achievable performance of following methods is upper-bound
by MRR is 0.537 and MAP/R-Prec is 0.382.

We evaluate the three best systems from Table 1 on the candidate
set, combining candidate method BM25 and other components with
learning to rank (5-fold cross validation) in Table 3. �e combina-
tion of BM25 score and duet model is signi�cantly outperforming
all other methods, demonstrating the strength of neural method
(although the Duet is by far the most expensive method to train).
However, if the combination with the BM25 score is le� out, all
methods are signi�cantly loosing in performance (see last column
in Table 3).

7 CONCLUSIONS
In this paper, we present the performance of a variety of approaches,
from established baselines to more advanced systems, in the context
of the new TREC-CAR track on Complex Answer Retrieval.

Our results show that Neural retrieval methods provides best
results only (!) when combined with the score of the candidate

method. Among fast to train methods, we �nd that BM25 is a
strong baseline, and that a Rocchio classi�er based on headings is
be�er than query expansion with pseudo-relevance feedback (RM3).
We o�er this empirical analysis as a complement to the publicly
available TREC CAR dataset, to support future participants of the
track and the IR community.
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