skip to main content
10.1145/3121138.3121174acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbsConference Proceedingsconference-collections
research-article

A Review: Exome Sequencing in Tumors

Published:22 June 2017Publication History

ABSTRACT

The next-generation sequencing (NGS) is very important for genetics. One of the most popular sequencing approaches is exome sequencing, which is a lower cost and high-throughput sequencing method. Here, this study first reviews the history of next-generation sequencing and exome sequencing. And then, it illustrates four genetic variants in tumor as well as the application of the exome sequencing for cancer research. Finally, it discusses the current analysis methods for exome sequencing and related tools.

References

  1. Watson, J. D. and Crick, F. H. 1953. The structure of DNA. Cold Spring Harb Symp Quant Biol.18:123--31. Google ScholarGoogle ScholarCross RefCross Ref
  2. Goodwin, S., Mcpherson, J. D., and Mccombie, W. R. 2016. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics. 17:333. Google ScholarGoogle ScholarCross RefCross Ref
  3. Lou, D. I., Hussmann, J. A. Mcbee, R. M., et al. 2013. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proceedings of the National Academy of Sciences of the United States of America.110:19872. Google ScholarGoogle ScholarCross RefCross Ref
  4. Pabinger, S., Dander, A., Fischer, M., et al. 2013. A survey of tools for variant analysis of next-generation genome sequencing data. Briefings in Bioinformatics.15:256--78. Google ScholarGoogle ScholarCross RefCross Ref
  5. Wang, Z., Liu, X., Yang, B. Z., and Gelernter, J. 2013. The role and challenges of exome sequencing in studies of human diseases. Frontiers in Genetics. 4:160. Google ScholarGoogle ScholarCross RefCross Ref
  6. Ding, L., Wendl, M. C., Mcmichael, J. F., and Raphael, B. J. 2014. Expanding the computational toolbox for mining cancer genomes. Nature Reviews Genetics. 15:556--70. Google ScholarGoogle ScholarCross RefCross Ref
  7. Xue, Y., Ankala, A., Wilcox, W. R., and Hegde, M. R. 2014. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genetics in Medicine Official Journal of the American College of Medical Genetics. 17:444--51. Google ScholarGoogle ScholarCross RefCross Ref
  8. David, C. S., Han, L., Li, J., et al. 2013. Finding the lost treasures in exome sequencing data. Trends in Genetics. 29:593. Google ScholarGoogle ScholarCross RefCross Ref
  9. Jr CJL, Bohr VA. DNA repair in drug resistance: Studies on the repair process at the level of the gene: Springer US; 1991.Google ScholarGoogle Scholar
  10. Paraf, F., Jothy, S., Meir, E. G. V. 1997. Brain tumor-polyposis syndrome: two genetic diseases? Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology. 15:2744. Google ScholarGoogle ScholarCross RefCross Ref
  11. Giuliana, A., Cécile, G., Sandrine, I., and Jessica Z. R. 2012. Next-generation sequencing identified new oncogenes and tumor suppressor genes in human hepatic tumors. Oncoimmunology. 1:1612--3. Google ScholarGoogle ScholarCross RefCross Ref
  12. Ma, H., Ma, Q., Ma, C., and Ma, L. 2011. Isolation and characterization of gene-derived single nucleotide polymorphism (SNP) markers in Scylla paramamosain. Biochemical Systematics & Ecology. 39:419--24. Google ScholarGoogle ScholarCross RefCross Ref
  13. Goya, R., Sun, M. G. F., Morin, R. D., et al. 2010. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics. 26:730. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Albers, C. A., Lunter, G., Macarthur, D. G., Mcvean, G., Ouwehand, W. H., and Durbin, R. 2011. Dindel: accurate indel calls from short-read data. Genome Research. 21:961. Google ScholarGoogle ScholarCross RefCross Ref
  15. Abyzov, A., Li, S., and Gerstein, M. B. 2015. Understanding genome structural variations. Oncotarget. 7:7370--1. Google ScholarGoogle ScholarCross RefCross Ref
  16. Ionitalaza, I., Rogers, A. J., Lange, C., Raby, B. A., and Lee, C. 2009. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 93:22--6. Google ScholarGoogle ScholarCross RefCross Ref
  17. Zhao, Y., Deng, X., Wang, Z., Wang, Q., and Liu, Y. 2012. Genetic polymorphisms of DNA repair genes XRCC1 and XRCC3 and risk of colorectal cancer in Chinese population. Asian Pacific Journal of Cancer Prevention Apjcp. 13:665--9. Google ScholarGoogle ScholarCross RefCross Ref
  18. Koboldt, D. C., Zhang, Q., Larson, D. E., et al. 2012. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research. 22:568--76. Google ScholarGoogle ScholarCross RefCross Ref
  19. Jiao, Y., Yonescu, R., Offerhaus, G. J. A., et al. 2014. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. Journal of Pathology. 232:428. Google ScholarGoogle ScholarCross RefCross Ref
  20. Liang, H., Cheung, L. W. T., Li, J., et al. 2012. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Research. 22:2120. Google ScholarGoogle ScholarCross RefCross Ref
  21. Adalsteinsson, V. A., Lohr, J. G., Cibulskis, K., et al. 2014. Abstract 993: Whole exome sequencing of CTCs as a window into metastatic cancer. Cancer Research. 74(19). Google ScholarGoogle ScholarCross RefCross Ref
  22. Dietz, S., Schirmer, U., Mercé, C., et al. 2016. Low input whole-exome sequencing to determine the representation of the tumor exome in circulating DNA of non-small cell lung cancer patients. Plos One. 11:e0161012. Google ScholarGoogle ScholarCross RefCross Ref
  23. Li, Y., Peng, Y., Jiang, X., et al. 2016. Whole exome sequencing of thymic neuroendocrine tumor with ectopic ACTH syndrome. European Journal of Endocrinology. 176:EJE-16-0546. Google ScholarGoogle ScholarCross RefCross Ref
  24. Zhang, J., Liu, J., Sun, J., Chen, C., Foltz, G., and Lin, B. 2014. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing. Briefings in Bioinformatics. 15:244. Google ScholarGoogle ScholarCross RefCross Ref
  25. Hadfield, J. and Eldridge, M. D. 2014. Multi-genome alignment for quality control and contamination screening of next-generation sequencing data. Frontiers in Genetics. 5:31. Google ScholarGoogle ScholarCross RefCross Ref
  26. Besnard, G., Bertrand, J. A. M., Delahaie, B., Bourgeois, Y. X. C., Lhuillier, E., and Thébaud, C. 2015. Valuing museum specimens: high‐throughput DNA sequencing on historical collections of New Guinea crowned pigeons (Goura). Biological Journal of the Linnean Society. 117:71--82. Google ScholarGoogle ScholarCross RefCross Ref
  27. Templeton, J. E. L., Brotherton, P. M., Llamas, B., et al. 2013. Adelaide research and scholarship: dna capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. Biomed Central. 2013.Google ScholarGoogle Scholar
  28. Piironen, K. 2013. Establishment of a laboratory workflow for analysis of exonic and intronic regions with next-generation sequencing. Metropolia Ammattikorkeakoulu. 2013.Google ScholarGoogle Scholar
  29. Hiltemann, S., Jenster, G., Trapman, J., Van, S. P., Stubbs, A. 2015. Discriminating somatic and germline mutations in tumor DNA samples without matching normals. Genome Research. 25:1382. Google ScholarGoogle ScholarCross RefCross Ref
  30. Nagle, D. L, Karim, M. A., Woolf, E. A., et al. 1996. Identification and mutation analysis of the complete gene for Chediak|[ndash]|Higashi syndrome. Nature Genetics. 14:307--11. Google ScholarGoogle ScholarCross RefCross Ref
  31. Kotoula, V., Papadopoulou, K., Charalambous, E., et al. 2014. Abstract 3579: Routinely applicable, highly multiplexed triple-negative breast cancer (TNBC) genotyping. Cancer Research. 74(19). Google ScholarGoogle ScholarCross RefCross Ref
  32. Zhou, J. and Hertz, J. M. 1992. Complete amino acid sequence of the human alpha 5 (IV) collagen chain and identification of a single-base mutation in exon 23 converting glycine 521 in the collagenous domain to cysteine in an Alport syndrome patient. Journal of Biological Chemistry. 267:12475--81.Google ScholarGoogle Scholar
  33. Lunter, G. 2007. Probabilistic whole-genome alignments reveal high indel rates in the human and mouse genomes. Bioinformatics. 23:i289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Cartwright, R. A. 2009. Problems and solutions for estimating indel rates and length distributions. Molecular Biology & Evolution. 26:473. Google ScholarGoogle ScholarCross RefCross Ref
  35. Chen, K., Chen, L., Fan, X., Wallis, J., Ding, L., and Weinstock, G. 2014. TIGRA: a targeted iterative graph routing assembler for breakpoint assembly. Genome Research. 24:310--7. Google ScholarGoogle ScholarCross RefCross Ref
  36. Schloss, P. D., Gevers, D., and Westcott, S. L. 2011. Reducing the effects of pcr amplification and sequencing artifacts on 16s rrna-based studies. Plos One. 6:e27310. Google ScholarGoogle ScholarCross RefCross Ref
  37. Brueffer, C.2013. Quality control and analysis of rna-seq data from breast cancer tumor samples. Biology & Life Sciences.Google ScholarGoogle Scholar
  38. Gautam, C. K., Madhav, M., Vaibhav, V., Rajasekaran, R., Ramanathan, K., and Shanthi, V. 2014. Structural and functional impact of genetic variations in FOXC2: a computational study. International Journal of Pharmaceutical Sciences Review & Research. 25.Google ScholarGoogle Scholar
  39. Hilbert, L., Federici, A. B., Baronciani, L., Dallagiovanna, S., and Mazurier, C. 2004. A new candidate mutation, G1629R, in a patient with type 2A von Willebrand's disease: basic mechanisms and clinical implications. Haematologica. 89:1128--33.Google ScholarGoogle Scholar
  40. Mikhailenko, D. S. and Nemtsova, M. V. 2016. Point somatic mutations in bladder cancer: key carcinogenesis events, diagnostic markers and therapeutic targets. Urologiia. 100--5.Google ScholarGoogle Scholar
  41. Wang, K., Li, M., and Hakonarson, H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research. 38:e164. Google ScholarGoogle ScholarCross RefCross Ref
  42. Cingolani, P., Platts, A., Le, L. W., et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 6:80--92. Google ScholarGoogle ScholarCross RefCross Ref
  43. Woolfe, A., Mullikin, J. C., and Elnitski, L. 2010. Genomic features defining exonic variants that modulate splicing. Genome Biology. 11:R20. Google ScholarGoogle ScholarCross RefCross Ref
  44. Khurana, E., Fu, Y., Colonna, V., et al. 2013. Integrative annotation of variants from 1092 humans: application to cancer genomics. Science. 342:84. Google ScholarGoogle ScholarCross RefCross Ref
  45. Chelala, C., Khan, A., and Lemoine, N. R. 2009. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms. Bioinformatics. 25:655--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yandell, M., Huff, C., Hao, H., et al. 2011. A probabilistic disease-gene finder for personal genomes. Genome Research. 21:1529--42. Google ScholarGoogle ScholarCross RefCross Ref
  47. Paila, U., Chapman, B. A., Kirchner, R., and Quinlan, A. R. 2013. GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations. Plos Computational Biology. 9:e1003153. Google ScholarGoogle ScholarCross RefCross Ref
  48. Nakken, S., Alseth, I., and Rognes, T. 2007. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes. 145:1273--9.Google ScholarGoogle Scholar
  49. Ng, P. C. and Henikoff, S. 2003. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research. 31:3812--4. Google ScholarGoogle ScholarCross RefCross Ref
  50. Reva, B., Antipin, Y., and Sander, C. 2011. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Research. 39:e118. Google ScholarGoogle ScholarCross RefCross Ref
  51. Gonzálezpérez, A. and Lópezbigas, N. 2011. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. American Journal of Human Genetics. 88:440--9. Google ScholarGoogle ScholarCross RefCross Ref
  52. Wong, W. C., Kim, D., Carter, H., Diekhans, M., Ryan, M. C., and Karchin, R. 2011. CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer. Bioinformatics. 27:2147--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Gonzalez-Perez, A., Deu-Pons, J., and Lopez-Bigas, N. 2012. Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation. Genome Medicine. 4:89. Google ScholarGoogle ScholarCross RefCross Ref
  54. Gonzalezperez, A. and Lopezbigas, N. 2012. Functional impact bias reveals cancer drivers. Nucleic Acids Research. 40:e169. Google ScholarGoogle ScholarCross RefCross Ref
  55. Reimand, J. and Bader, G. D. 2013. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Molecular Systems Biology. 9:637. Google ScholarGoogle ScholarCross RefCross Ref
  56. Green, E. D. and Guyer, M. S. 2011. Charting a course for genomic medicine from base pairs to bedside. Nature. 470:204--13. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Review: Exome Sequencing in Tumors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBBS '17: Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science
      June 2017
      184 pages
      ISBN:9781450352222
      DOI:10.1145/3121138

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 June 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader