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Abstract 

This paper presents the CF-kernel method to estimate 

density functions from large datasets in a “best-efforts under 
the given resources” manner. By integrating the advantages 

of both the kernel method [WJ95] and the dynamical 

and incremental CF tree structure[ZRL96], the CF-kernel 
method improves time/space efficiency dramatically, while 

keeping the estimation accuracy as close to the kernel 
method as the available memory allows. Our theoretical 

proof shows that the CF-kernel method is equivalent to the 
kernel method under certain assumptions. Our experimental 

results of applying the CF-kernel method to various datasets 
show that it is much more time/space efficient compared 

with the kernel method whereas its estimation accuracy is 

comparable with, and converges super linearly to that of the 
kernel method as the memory increases. 

1 Iptroduction 

For simplicity, through the paper, we will use l- 
dimensional data and equations for illustration, how- 
ever our approach can be easily generalized to any di- 
mensions. For convenience, we define some standard 
notations, except where otherwise stated. We assume 
that we are given a sample of n data points X1, . . . . X, 

whose underlying density function f(t) is to be esti- 
mated. The symbol p(x) is used to denote the estima- 
tion of f(z). Generally s means s-“,, and E(z) means 
the expected value, or mean, of variable x. 

There are two approaches to density estimation: 
parametric and nonparametric. The parametric ap- 
proach assumes that f(z) belongs to some paramet- 
ric family of distributions, such as the gamma fam- 
ily. The main drawback is that estimation accuracy 
depends heavily on the assumption. The nonparametric 
approach does not assume any pre-specified functional 
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forms for f(r), and is generally more useful in reality. 
The kernel method [Si186, Dev87, WJ95] is a widely 
studied nonparametric density estimation method. The 
kernel estimation of f(z) b ased on n data points is de- 
fined as: 

f&x)= ;$Kh(x-Xi). 
a=1 

where 1) the kernel function K(x) is usually a 
unimodal, symmetric and bounded density function, 
such as the standard normal density function; 2) 
Kh(x - Xi) is the notation for a new density function 
transformed from K(x) by moving the mean to Xi, 
and by multipling the standard deviation by h; 3) 
h is a constant called the smoothing parameter. 
Intuitively, a “bump” is placed on each data point, and 
the sum of all “bumps” reflects the overall distribution 
of all data points. The kernel function K(x) determines 
the shape of each bump while the smoothing parameter 
h determines the width, or scope, of each bump. 

Some desirable properties of the kernel method are: 
1) Mathematically, no curse of dimension. 2) No 
need to know the data range in advance. 3) h(x) 
inherits the continuity, differentiability and integrability 
properties from K(z). 4) K(z) and h are the two 
factors determining the accuracy. However it has been 
shown[WJ95] that the choice of K’(z) is not critical, 
and the accuracy is primarily affected by the smoothing 
parameter h. 5) Convergence: It has been proved 
mathematically that with reasonable assumptions, as 
n approaches 00, f;(x) converges to f(x) in terms of 
MISE (Mean Integrated Squared Error[Sil86]). 

However if the kernel method is applied to very large 
datasets, it is very time/space intensive because there 
are n distinct terms, or “bumps”, in f;(z). So it needs 
O(n) space to store f;(x), and then for a specific value 
x, it needs to scan all n terms to compute f;(z). To 
overcome the problem of the kernel method, in our 
approach, we first summarize the dataset into an in- 
memory CF tree[ZRL96]. Then, instead of placing a 
kernel function on each data point, we place a CF- 
kernel function on each subcluster (or leaf entry of 
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the CF tree), and we use the sum of all the CF-kernel 
functions to estimate the overall data distribution. We 
call it the CF-kernel method and demonstrate that 1) it 
scans the dataset once, and afterwards it improves the 
space/time complexity from O(n) to O(m), where m is 
the number of subclusters; 2) The estimation obtained 
from the CF-kernel method approximate that obtained 
from the kernel method, and the approximation can 
be made as accurate as desired by increasing available 
memory. 

The rest of the paper is organized as below: Sec. 
2 gives a review of the CF-tree. Sec. 3 describes 
the details of the CF-kernel method. The performance 
results are presented in Sec. 4, and the final comments 
and conclusions are given in Sec. 5 and Sec. 6. 

2 CF Tree 

The details of CF and CF tree, and relevant insertion 
and rebuilding algorithms were introduced in [ZRL96]. 
Here we provide a brief review. CF is a triplet 
summarizing the information that we maintain about 
a cluster. That is, CF = (N, L>, SS), where N is the 
number of data points in the cluster, LS is the linear 
sum of the N data points, i.e., Cy=,‘??i, and SS is the 

square sum of the N data points, i.e., xi”==, zi2. With 
CF’s of clusters known, we can calculate the mean and 
standard deviation of each cluster, or various distances 
between clusters very easily. 

A CF tree is a height-balanced in-memory tree with 
two parameters: branching factor B and threshold T. 
Each nonleaf node contains at most B, entries of the 
form [CFa, childi], where i = 1,2, . . . . B,, “childi” is a 
pointer to its i-th child node, and CFs is the CF of 
the subcluster represented by this child. So a nonleaf 
node represents a cluster made up of all the subclusters 
represented by its entries. A leaf node contains at most 
Bl entries, each of the form [CFi], where i = 1,2, . . . . Bl. 
In addition, each leaf node has two pointers, “prev” and 
“next”, which are used to chain all leaf nodes together 
for efficient scans. A leaf node also represents a cluster 
made up of all the subclusters represented by its entries. 
But all entries in a leaf node must satisfy a threshold 
requirement with respect to a threshold value T. In this 
paper, we use the threshold restrict that the standard 
deviation of each leaf entry has to be less than 
T. 

A CF tree has been shown to be a compact summary 
of the dataset because each leaf entry is not a single data 
point but a subcluster (which absorbs many data points 
with its standard deviation under a specific threshold 
T). Such a CF tree can be built dynamically as new 
data objects are inserted. That is, a new insertion is 
guided into the correct subcluster in a CF tree leaf 
node for clustering just as a new insertion is guided 
into the correct position in a B+ tree for sorting. When 

available memory is exhausted before data is consumed, 
a more compact tree can be rebuilt from the existing 
tree by increasing the threshold value. Additional data 
can then be inserted into the new tree. 

3 CF-kernel Method 

Our CF-kernel method improves efficiency by (1) 
binning data with an in-memory CF tree; and 2) placing 
a CF-kernel function on each subcluster instead of 
placing a kernel function on each data point. However, 
it differs from any existing binned kernel methods in 
that it does not require data ranges in advance for 
allocating bins; and given the memory, it allocates 
“bins” dynamically and incrementally according to the 
data distribution. Most importantly, our theoretical 
proof and empirical results will demonstrate that its 
accuracy is comparable with, and converges super 
linearly to that of the kernel method as the memory 
increases. 

Let’s say, by building the CF tree from the n data 
points, we partition the n data points into m disjoint 
subclusters (or leaf entries), where each subcluster i 
contains ni data points, and is represented by its CF 
triplet. So CE”=, ni = n. Now the “subcluster-wise” 
CF-kernel estimation will be defined as in equ.(2). That 
is, for each subcluster i, we try to summarize the 
average effect of the kernel functions placed on all its 
member points with a single CF-kernel function C&(z). 

(2) 

What will CK,(x) be like? To answer that, let us 
compare the “point-wise” f;(x) in equ.(l) and the 
“subcluster-wise” fc&(~) in equ.(2), we can see that 
if we define the CKi(x) as shown in equ.(3), then we 
can guarantee E&(z) - f&(2)] = 0. 

C&(x) = E$ &(x - Xj)]. 
ni j=1 

(3) 

Further, if we make the assumption that the ni 
data points in subcluster i are drawn indepen- 
dently from an empirically-known distribution 
whose density function is gi(x), then we can derive 
the CKi(x) as shown in equ.(3) into a even simpler form 
as shown in equ.(4) 

‘=-i(X) = J &(x - t)ga(t)dt 

The function C&(x) shown in equ.(4) is called the CF- 
kernel function for subcluster i. 

CKi(z) represents the “bump” we place on subcluster 
i, which is relevant to the original choices of the 
kernel function K(x) and the smoothing parameter h, 
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as well as the empirically-assumed density function of 
subcluster i, gi(x). Under the distribution assumption 
in subcluster and with the definition of the CF- 
kernel function, the following properties of (X,(x), 
as well the theorem about fin compared with 
f;(x) can be proved easily: 1) If K(z) and gi(z) are 
density functions, then C&(x) is a density function 
too. 2) If K( ) 2 and gi(x) are bounded, then CKi(z) 
is bounded too. 3) If K(z) is symmetric, and 
gi(z) is symmetric, then (Xi(x) is symmetric too. 
Equivalence Theorem: The kernel estimation &(x), 
as shown in equ.(l), and the CF-kernel estimation 
f&(z), as shown in equ.(2), are statistically equivalent. 
That is, E(f;((e) - f&(x)) = 0. 

The following conclusions about memory (i.e., num- 
ber of subclusters) versus accuracy also follow: 
1) If m = n, that is the memory is large enough 
for each subcluster to contain only one data point, 
then the distribution assumption in subcluster is 
not needed at all because no information is lost, and 
the CF-kernel method is exactly the same as the 
kernel method i.e., purely nonparametric method. 
2) If m = 1, that is the memory is so limited 
that we have to collapse all n data points into a 
single subcluster, then the distribution assumption 
in subcluster becomes extremely critical because it 
is exactly the density estimation we are looking for. 
All information except the CF triplet is lost due to 
the limited memory. As a result, the CF-kernel 
method becomes too parametric to be useful. 
3) If m is some reasonable value between 1 and n so 
that the distribution assumption in subcluster be- 
comes more acceptable, the CF-kernel method and the 
kernel method should have almost the same accuracy 
as we will show experimentally. 

3.1 Computing C&(z) 

How to compute CK,(x) efficiently is the key to the 
CF-kernel method. From the definition, it relies on the 
forms of K(x) and gi(t). As shown in [WJ95] that the 
choice of K(z) is not critical to the accuracy, in this 
section, we choose the standard normal density function 

for K(x), i.e., K(x) = &e-G, and hence K,(x-t) = 

1 ,-* 
zz 

. Also as explained earlier that when the 

memory is reasonably large, the choice of gi(t) becomes 
not critical either. So here as an example and as default, 
we assume a normal distribution to approximate gi(t), 

i.e., gi(t) x *e 
_ (f-lJ-,P 

Zd,2 , where the mean m^ui and 

standard deviation &i can be computed from the CF 
of the subcluster, which is maintained in the CF tree. 
However, one can also assume other distributions to 
approximate gi(z), such as uniform distribution. As we 
will show experimentally later that when the memory 

DS n Description and f(x) 

DSl 100000 Normal 
2 

DS2 100000 Gamma(3) 
f2(x) = -2 e i 2 -“fora:> 

DS3 100000 Normal @ Gamma(S) 
fs(X) = 0.5fi(z) + 0.5f2(X - 1) 

DS4 100000 Delta $ Uniform 
j-4(2) = 0.2U(O, 10) + 0.08 c;:, 6(i) 

Table 1: Datasets Used 

size is reasonably large, the gi(t) format is no longer 
important in terms of accuracy. 

Now by replacing Kh(z - t) and gi(t) in CKi(x) 
definition with our choices in this section, we can derive 
the CKi(~) into the form as shown in equ.(5). 

It is interesting to note that C&(z) is a new normal 
density function with the same mean fii, but the 
different standard deviation dv. It is simple and 
can be calculated efficiently as “exp(x)” is supported in 
the math libraries of most programming languages such 
as C and FORTRAN. 

3.2 Generalizing to High Dimensions 

With x and t as vector variables instead of scalar 
variables, we can generalize our CF-kernel method to 
any dimensions under the condition that K(x) and gi(x) 
are chosen of dimension orthogonal density functions. 

4 Performance 

The CF-kernel method still needs a scan of all data 
points (O(n)) to build the CF tree. The scalability 
and stability of inserting data into CF-tree has been 
studied in [ZRL96]. After that, compared with the 
kernel method, it improves the time/space complexity 
of storing and computing f;(x) from n terms to m 
terms. In this section we will concentrate on studying 
the CF-kernel method in terms of its accuracy, as well 
as all the factors affecting its accuracy, such as memory 
size and gi(x) formats. 

Datasets: Table 1 describes the sizes (n) and 
underlying density functions (f(x)) of the four distinct 
datasets we have used for performance studies. Here 
~(0, 10) represents the uniform density function defined 
on the interval x E [0, lo], and 6(i) represents the delta 
density function defined at the point x = i. 

CF Tree Setting: The parameter settings for 
scanning the data points and inserting them into the 
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DS 
Kernel CF-kernel 

Time Mem Time Mem o(f) 

Table 2: f;((z) versus fin 

CF tree is similar to those used in Phase 1 of BIRCH 
[ZRL96] except that the outlier handling option is 
turned off for fair comparisons with the kernel method. 
Among them, the memory size is set to about 5% of the 
dataset size, this size is used as default unless otherwise 
stated in the experiments. 

Metrics: To compare two density estimations on 
the same dataset, say &(x) and f&(x), we 1) take 
1000 breakpoints uniformly from the whole data range; 
2) define the relative density difference D(f) as 

z(frc(l)-fCh.(l)l; 3) over the 1000 breakpoints, compute 
(fK(~)+fCK(z)) 

the average of the absolute values of O(f^)‘s, and denote 
it as Is(p). This average difference is used as a 
simple indicator of overall difference between the two 
estimations. All the times are measured in seconds and 
memory are measured in kbytes. 

Kernel versus CF-kernel: In this section we 
compare the performance of the kernel method and 
the CF-kernel method in terms of their running times, 
memory requirements, and estimation difference o(f). 
From Table 2, we can see that for all four datasets: 
1) the kernel method runs much slower (more than 
150 times) than the CF-kernel method does; 2) the 
kernel method uses much more memory (20 times) than 
the CF-kernel method does. 
difference B(f) b t 

However, the average 
e ween the kernel estimation and the 

CF-kernel estimation is very small and can be almost 
ignored. Fig. 2 plots the density estimation obtained 
with the CF-kernel method on the 1000 breakpoints 
over the data range for all four datasets. Visually, 
they look very similar to those obtained with the kernel 
method shown in fig. 1. So the CF-kernel method 
improves the time/space efficiency dramatically while 
keeping the estimation accuracy comparable with the 
kernel method. 

gi(z) Effects: In th is section, for all four datasets, 
we will compare two CF-kernel estimations with all 
other settings the same except that one assumes gi(z) 
as a normal distribution whereas the other assumes 
gi(z) as a normal distribution. Table 3 shows that: 
1) The average difference fi(f^) between them is very 
close to zero. This confirms that, with respect to 
accuracy, assuming gi(z) as uniform or assuming gi(Z) 

Figure 1: Kernel Estimation &(x) 

Figure 2: CF-kernel Estimation f&(x) 

as normal is not critical if the available memory is 
reasonably large. 2) The one assuming gi(x) as normal 
does run consistently faster than the one assuming gi(z) 
as uniform. This is due to the fact that assuming 
gi(z) as normal results in CX(z) of a simplier form for 
computation. 

Memory Effects: In this section we increase the 
memory size from 2 kbytes to 40 kbytes to study the 
effects of memory sizes in the CF-kernel method. As 
memory increases, the m (number of subclusters or 
leaf entries in the CF tree) increases. Fig. 3 and 
4 shows how the running times scale up, and how 
the o(f) between the CF-kernel estimation and kernel 
estimation drops accordingly for all four datasets. We 
can see that as m increases, the running time increases 
almost linearly, whereas the o(f) drops to zero super 
linearly. So empirically we confirm that the CF-kernel 
method converges to the kernel method super linearly 

1 CF-kernel 1 CF-kernel 1 
(uniform) (normal) 

r(] 

Table 3: Uniform gd(r) versus Normal gi(z) 
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Figure 3: Running Time versus m 
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Figure 4: &f) between &(z) and f&(s) versus m 

as memory increases. 

5 Compared with Histogram 

Another widely-used nonparametric method for den- 
sity estimation is the histogram method[Sil86, Dev87, 
WJ95]. Assume the data range is known, and cut into 
disjoint and contiguous intervals (i.e., bins of equal or 
different widths), the histogram estimation of f(2) is 
defined as: 

1 
f&x) = ; x 

number of Xi in the same bin as x 

width o.f the bin containing x 

(6) 
The main drawbacks of the histogram method are: 
1) curse of dimension[Sil86]; 2) the data range must 
be known in advance in order to allocate the bins 
effectively, so it is not an incremental method; 3) 
The discontinuity of f;(z) makes the derivatives or 
other smoothing metrics unavailable; 4) the estimation 
accuracy depends not only on the bin widths but also 
on the bin locations. 

Kernel method was proposed to try to avoid the 
problems encountered by histogram techniques. As 
mentioned in section 1, it has a lot of advantages 
over histogram techniques. In this paper, our major 

goals are 1) to establish the connection between the 
kernel theory and the CF tree as well as the BIRCH 
clustering algorithm; and 2) to improve the performance 
of the traditional kernel method. Our theoretical proof 
and performance comparisons between the traditional 
kernel method and the proposed CF-kernel method 
are provided. However the performance comparisons 
between the kernel method or the CF-kernel method 
and the histogram techniques are beyond the scope of 
this paper. 

6 Conclusion 

Density estimation for large datasets have become more 
and more interesting in database community, and one 
widely-studied method is the kernel method. How- 
ever the kernel method does not scale up well for 
large datasets. In this paper we present the CF-kernel 
method which improves the time/space efficiency of the 
kernel method dramatically while keeping the estima- 
tion accuracy comparable to the kernel method. Theo- 
retically, we 1) defined the CF-kernel estimation f&(x) 
and the CF-kernel function CXi(x), and 2) proved that 
with the distribution assumption in subcluster, the CF- 
kernel estimation and the kernel estimation are statisti- 
cally equivalent. Empirically, we have shown that 1) the 
distribution in subcluster can be approximated by ei- 
ther uniform distribution or by normal distribution, and 
either way does not make much difference if the mem- 
ory size is reasonably large; 2) the CF-kernel method 
converges to the kernel in a super linear speed as the 
memory size increases; 3) the CF-kernel method runs 
much faster than the kernel method, and uses much 
less memory. 

References 

[Dev87] 

[ST871 

[Si186] 

[WJ95] 

[ZRL96] 

Luc Devroye, A Course in Density Estima- 
tion. Birkhauser Boston, 1987. 

David W. Scott, George R. Terrell, Biased 
and Unbiased Cross- Validation in Density 
Estimation. Journal of the Amer. Stat. ASSO., 
Vol. 82, No. 400, ~1131-1146, Dec., 1987. 

B. W. Silverman, Density Estimation for 
Statistics and Data Analysis. Chapman and 
Hall, 1986. 

M.P. Wand, M.C. Jones, Kernel Smoothing. 
Chapman and Hall, 1995. 

Tian Zhang, Raghu Ramakrishnan, Miron 
Livny, BIRCH: An Eficient Data Clustering 
Method for Very Large Databases. Proc. of 
ACM SIGMOD Int’l Conf. on Management 
of Data, ~103-114, June 1996, Montreal, 
Canada. 

316 


