
Adaptive Query Processing for Time-Series Data

Yun-Wu Huang Philip S. Yu
IBM T.J. Watson Research Center

30 Saw Mill River Road
Hawthorne, NY 10532

ywh @ us.ibm.com

ABSTRACT

IBM T.J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532

psyu @ us.ibm.com

Traditional query process for time-series data transforms data
from the time domain into the frequency domain. It is less
controllable by the end users, therefore isn’t well suited for
queries that find patterns with many dynamically specified user
constraints. For these queries we present a method to search time-
series data which first transforms time sequences into symbol
strings using change ratio between contiguous data points in time
series. Next, a suffix tree is built to index all suffixes of the
symbol strings. The focus of this paper is to demonstrate how this
method can adapt to the processing of the dynamically
constrained time-series queries.

Keywords

Many traditional approaches in time-series query processing are
based on transforming data from the time domain into the
frequency domain to optimize the indexes so that more efficient
search and retrieval can be achieved [l, 3, 7, 15, 161. As a result,
these approaches are well suited for searching patterns, such as
the similarity-based queries (e.g., example query Ql).

Time-series Query Processing, Data Mining, Pattern Matching.

1. INTRODUCTION
Many real-life database applications manage temporal data that
are physically stored in time sequence. The examples of time-
series data include the prices of mutual funds and stocks, the
production outputs, weekly sale totals, and the daily temperatures.

In many of these applications, it is highly desirable to tind
patterns in their respective time-series data set. The result may
help to improve the processes such as analyses, predictions, and
data mining [2]. The followings are examples of time-series
pattern matching queries:

We in this paper explore solutions when no known patterns exist.
For example, the upward trend constraint in Q2 is very general
and includes shapes of various degrees. Therefore, methods for
similarity-based pattern matching [l, 3, 7, 151 which focus on
matching a specific shape may not be suitable for processing Q2.
The example query Q3 is based on weekly totals and pre-built
indexes based on daily totals may not be effective in processing
this query. Other examples include matching based on different
moving average window sizes, matching combinatorial patterns
(e.g., patterns represented by regular expressions), matching
patterns with different degrees of accur+cy specified for different
sub-patterns, etc.

In general, we focus time-series query processing with various
dynamically specified constraints and present a new method
called IMPACTS (the Interactive Matching of Patterns with
Advanced Constraints in Time-Series databases). IMPACTS is
divided into two stages, the off-line preprocess stage and the on-
line query stage (Figure 1).

i The Preprocess Stage

Ql: Find all stocks that behave “similarly” to a certain pattern.

Q2: Find all factories in any n-day time periods in which the
defect rates of their perspective factories show a consecutive
upward trend.

Time Series The Transform Phase

Q3: Find all head-and-shoulder patterns in all regions’ weekly
sale totals based on 3-day moving averages.

The example query Ql is a similarity query for time-series data
[l, 3, 7, 151. It can be used to help the prediction of future stock
or mutual fund performance. The query Q2 can be used as a
warning system to detect a potential production problem. The
query Q3 provides a useful marketing tool in analyzing the sale
patterns among different regions. It is based on the moving
average [6] to generalize trends.

Figure 1. The Different Stages of IMPACTS.

Permission to make digital or hard copies of all or part of this work t’ot
personal or classroom use is granted without fee provided that copies
are not n~ade or distributed li)r profit or commercial advantage and that
copies hear this notice and the full citation on the tirst page. TO copy
othcrwisc, to rcpuhlish, to post on scrvcrs or to redistribute to lists.
requires prior specific permission and/or a fee.
KDD-99 San Diego CA USA

The pre-process stage of IMPACTS has two phases: the transfom?
phase and the index phase (Figure 1). In the transform phase, each
sequence of real numbers in the time-series data is transformed
into a string of symbols. This is achieved by first segmenting the
entire range of change ratios between any two consecutive time
points into a finite number of non-overlapping smaller ranges
(segments). Next, a unique symbol is used to represent each
segment, thereby transforming a time sequence into a symbol
string.

Copyright ACM 1999 I-581 13-143-7/99/08...$5.00

282

http://crossmark.crossref.org/dialog/?doi=10.1145%2F312129.318357&domain=pdf&date_stamp=1999-08-01

In this paper, we present the different stages of IMPACTS as well
as algorithms (based on the suffix tree structure) to compute time-
series pattern matching queries with the abilities to dynamically
process constraints such as the multiple degrees of accuracy,
different moving average window sizes. We also describe how
IMPACTS can be used to resolve advanced constraints such as a
dynamically specified aggregate period and combinatorial
patterns. Lastly, we present a performance evaluation to show that
our method can be much faster than the naive approach.

The rest of this paper is organized as follows: We first discuss
related work in Section 2. Next, we present the pre-process stage
in Section 3 and the query stage in Section 4 respectively. We
present our performance evaluation in Section 5 and conclude the
paper in Section 6.

2. RELATED WORK
We categorize recent work in time-series pattern matching into
two general approaches. The first approach maps time sequences
into frequency domain; the second processes the time sequences
directly in time domain. The frequency domain approach,
pioneered by [l], in general computes a Discrete Fourier
Transform [10, 141 for each sequence and selects the first few
coefficients to index their respective original sequences.
Sequences with matching coefficients are considered similar. The
indexing mechanism is typically through a multi-dimensional
index structure such as R-tree [9] or R*-tree [S].

While in [l], the focus is on whole sequence matching, the work
in [7] generalizes the process to allow subsequence matching. In
[151, moving average, time warping, and reversing are formulated
and the indexing methods are further examined for approximate
subsequence matching.

The recent work in time domain [3, 161 focus on segmenting long
sequences into smaller subsequences for approximation. A multi-
dimensional index structure, such as R-tree [9] or R*-tree [5], is
then used to index the small segments. In [3], an innovated
approach is introduced based on atomic segments, called
windows, which can be normalized with similar windows
respectively stitched to form pairs of large similar subsequences.
In [161, based on the divide-and-conquer approach, subsequences
are identified and approximated by families of real-valued
functions.

The IMPACTS system also operates in time domain. But it differs
from all the above approaches (both frequency and time domains)
[1, 3, 7, 15, 161 in one significant way. The IMPACTS can
preserve, to a very high degree of details, the shapes of the
original sequences in its index structure (the suffix tree). A major
advantage of detail preservation is the flexibility to dynamically
process a diverse class of different time-series matching queries
such as those based on different degrees of accuracy, moving
window sizes, aggregate periods, and vague trends (see Section
4). For example, time-series matching queries with different
moving window sizes, aggregate periods, or vague trends cannot
be processed by the aforementioned approaches [1, 3, 7, 15, 161
without the restructure of their respective index structures.
Therefore, the ability to dynamically process a diverse class of
different matching queries makes IMPACT more suitable as an
interactive time-series pattern matching approach.

In [4], a shape-describing query language called SDL was
proposed for time-series shape matching. An index structure was

proposed but no performance data was given. The SDL model can
be adopted by IMPACTS to formulate some of its query classes.
The focus of this paper however is on the system aspect of
IMPACTS, not on query language. The suffix tree index deployed
by the IMPACTS system is used extensively in the string-
matching problem [ll, 12, 13, 171.

3. THE PRE-PROCESS STAGE
The first stage of IMPACTS is the preprocess stage in which the
transform phase transforms the time-series data into symbol
strings and the index phase build suffix tree indexes based on
these strings.

3.1 The Transform Phase
Transforming a time series into a symbol string can be achieved
with various ways. In this paper, we present one method that is
based on computing the change ratio from one time point to the
next time point and dividing the variances of all change ratios into
discrete segments such that change ratios that fall into one
segment are represented by a unique symbol. We use an example
(Figures 2) to illustrate this process. First, we define three
parameters below:

. The parameter min is the lower bound of all change ratios
between any two consecutive time points among all time
series in the database.

. The parameter max is the upper bound all change ratios
between any two consecutive time points among all time
series in the database.

. The parameter numsegmenf represents the number of
segments selected to divide the range between min and max.
While all segments together till the entire range between the
min and max parameters, no two distinct segments overlap.
In the transformation process, a unique symbol is mapped to
each segment

In Figure 2, min and max are set to -47% and 63% while the
numsegment parameter is set to 11. We equally divide the entire
range between min and max by numseg-ment with each unit
range set to 20%. In this example, II unique symbols are used to
model the segments respectively and any change ratio will fall
into one of the segments, therefore will be represented by one
symbol. The larger numsegment is, the more accurately the
transformation process captures the shape of a time series.
However, a large number of unique symbols may more space to
model each symbol, resulting in a larger and less space-efficient
suffix tree.

max

min -

63%

53%

43%

33%

23%

13%

3%

-7%

.17%

-27%

-31%

.47%

.... :

!

* b : : b E
Figure 2. A Transformation Example.

283

3.2 The Index Phase
A suffix tree [11, 12, 131 is a trie-like data structure that
compactly stores all suffixes of a string such that each suftix is
represented by a path from the root node to a certain node at a
lower level. The compactness is achieved by suffixes having the
same prefix share a node such that the path from the root node to
this node represents the shared prefix. Because all suffixes of a
string are each represented by a unique path in the suffix tree,
finding a pattern in a string corresponds to traversing the suffix
tree downwards along the path that matches the target pattern.
Such a structure insures high efficiency in matching string
patterns, therefore the suffix tree is widely used in the problem of
string matching [11, 12, 131.

ROO b Root Root

/ /"\
a O\

A

babe

ababc ababc babe abc C

Step 1: Insert ababc Step 2: Insert babe Step 3: Insert abc

C

abc abc

Step 4: Insert bc Step 5: insert c

Figure 3: Constructing A SufEx Tree with ababc.

In the index phase, a generalized suffix tree is constructed to
index the suffixes of all the transformed symbol strings for fast
pattern matching. In Figure 3, we show the construction of a
suffix tree based on the string ababc. The live steps in Figure 3
represent the shape of the tree after inserting the suffixes ababc,
babe, abc, bc, and c respectively. Note that node splitting occurs
in steps 3 and 4 because of the sharing of prefixes ab and b
respectively.

Inserting suffixes from multiple strings into a suffix tree creates a
side effect that makes its structure more complex. The string along
the path to a node can represent a suffix of an input string or a
prefix of a suffix of an input string. For example in Figure 4, the
path from root to the node ab in the middle branch represents the
string bab. However, bab is a suffix of String 2 as well as a prefix
of the suffix babe of String 1. To preserve the knowledge that the
middle ab node is an end node of a path representing a suffix of
an input string, we associate this node with a list of string IDS that
have a suffix represented by this node.

! i i ,; I”“““‘:’

; li3i :ab '
i.........:...." i ,!
i lil;

:
f :i i

/ /
:..____.._:; i

i i! ! 3ilij 2;0$
i . . i i i . i . . i/

Figure 4: A Suffix Tree with ababc, chub, cbc. ; 3;oi
i . i i

In our implementation, along with each string ID in the list, we
also maintain the starting position in this string of the
corresponding suffix. For example, the list associated with the
middle ab node has a 2-tuple entry (Figure 4). The attributes 2
and 1 in this entry indicates that the suffix represented by the path
from root to this node (i.e., bnb) starts at position 1 in String
2.The incorporation of the ID list helps to improve the efficiency
in retrieving the matching suffixes.

4. THE QUERY STAGE
IMPACTS exploits the suffix tree structure and provides methods
to process pattern matching queries on time series with dynamic
user constraints such as the degree of accuracy and the average
moving window size. In this section, we first describe how simple
and dynamically constrained pattern matching queries are
computed based on the suffix tree structure. Next, we discuss how
IMPACTS can be used as an interactive pattern-matching tool to
process a diverse class of advanced time-series pattern matching
queries.

4.1 Simple String Matching Queries
To match a time-series pattern, the IMPACTS system first
transforms the target time-series into a symbol string using the
same transformation process discussed in Section 3.1. Note that it
is possible that a change in the target sequence is beyond the min
and max boundaries defined for the data set. In this case, we can
use two additional symbols to respectively represent these two
out-of-bound cases.

Next, IMPACTS traverses, in a downward fashion, the suffix tree
containing all the suffixes of the symbol strings. During the
traversal, with each encountered tree node, the IMPACTS tries to
match the prefix of the target string with the string associated with
this node. If a match is found, the IMPACTS continues to traverse
the children nodes of this node with a new target string created by
removing the matching prefix from the original target string.

If the string associated with the encountered node does not match
any prefix of the target string, this search thread is discarded. A
string that matches the original target is found when a search
thread reaches a node whose associated string matches with the
entire updated target string.

Note that without specifying a dynamic constraint such as the
degree of accuracy or an average moving window size, the pattern
matching of IMPACTS is exactly the same as string matching on
a suffix tree [11, 12, 131. With dynamically specified query
constraints, the search process of IMPACTS becomes more
complex.

4.2 Degree of Accuracy Constraint
In our transformation model, the two pre-set parameters min and
max define the entire range any movement from one number to
the next in the sequence must fall into (see Section 3.1). The
segmentation process divides this range into equal but non-
overlapping segments with each segment represented by a unique
symbol (see Figure 2). The min, max, and numsegment
together determine the lower and upper bounds represented by
each symbol.

In the case of simple string matching, the accuracy of the result is
determined by the range that each symbol models. High accuracy
is achieved by very small segment range with the numsegment
parameter set to a large value. In this model, two symbols are

284

considered a match if and only if they are the same identical
symbol. To process dynamic query constraints with different
degrees of accuracy, IMPACTS relaxes this rule and allows for
fuzzy matching in which a match for a target symbol can be a set
of symbols, including the target symbol itself.

More precisely, let r be the dynamically specified degree of
accuracy, the match of a symbol s are any symbols representing
segments that are within 1 - r from the segment represented by s.
For example, in Figure 2, let the dynamically specified degree of
accuracy be 15%. The match for the symbol a5 are symbols a3, u4,
a,-, a6 and a,. This is because there exists a point in the segment
associated with any of these symbols that is with 25% away from
a point within the segment associated with the target symbol us.

4.3 Average Moving Window Size Constraint
The average moving approach is a popular method in financial
and stock analysis [6] to generalize trends. The result of applying
an average moving window to a time series is a smoother curve
with the smoothness enhanced by a wider moving window

To process a time-series query with a moving average constraint,
IMPACTS first transforms the target pattern into the moving
average representation based on the user specified constraint (e.g.,
the window size). Next, IMPACTS traverses the suffix tree in a
depth-first order. During tree traversal, IMPACTS computes the
moving average for the strings along the search threads on the fly
and then matches the dynamically computed moving average with
the moving average represented by the target sequence.

Initially, each search thread may have traversed strings which
have less symbols than the dynamically specified moving average
window size, say k. At this initial stage, IMPACTS queues up
(queue size = k) these traversed prefixes along all search threads.
When a search thread has traversed a string of k symbols on the
suffix tree, it computes the average of the upper bounds and the
average of the lower bounds associated with these k symbols.
IMPACTS then checks to see if the first number in the moving
average representation of the target sequence is within these upper
and lower bound averages. If it is, IMPACTS declares it a match
and goes on to traverse the next symbol on the tree for this thread.
At this point, IMPACTS drops the first symbol in the queue and
puts the next traversed symbol in the queue. New upper and lower
bound averages are computed and matched with the next number
in the moving average representation of the target sequence, and
so on.

If at any time during the matching process a mismatch happens,
IMPACTS discards this search thread. If during traversal, all
numbers in the moving average representation of the target
sequence falls within the upper and lower bound averages, then
the string of this search path matches the target sequence.

4.4 Aggregation Constraint
A time series can be based on a fine-grained time unit such as day
whereas a pattern-matching query can be specified with a dynamic
constraint that is based on weekly totals. While to our knowledge
no current systems can efficiently processing this kind of queries,
IMPACTS can compute this query class in a dynamic fashion. For
example, to search aggregate pattern based on weekly totals on the
suffix tree with daily totals, IMPACTS traverses downwards each
search threads while at the same time aggregates the lower and
upper bounds respectively of the traversed symbols. When it
encounters a symbols representing the proper ending time point

(e.g., the last day of the week), 1MPACTS matches the aggregated
upper bounds and lower bounds with the corresponding symbol in
the target string. If a match is found, IMPACTS traverses the
children nodes of the encountered node and starts aggregating
again, and so on.

4.5 Biased Similarity Constraint
Finding similar pattern based on biased criteria can be a very
useful function. For example, a query finding a group of stocks or
mutual funds that behave similarly to a certain pattern, but are in
general more skewed upwards (or downwards) is one such query.
IMPACTS can process this type of queries by setting up biased
matching criteria. FOT example, when IMPACTS determines a
match for a target symbol, it can allow for a wider degree of
accuracy for symbols representing movements that are more
upward skewed than the ones representing movements that are
less upward skewed. In other words, IMPACTS uses two degrees
of accuracy, one for upward symbols and one for downward ones.

4.6 Vague Trend Constraint
Searching a vague pattern such as the example query Q2 in
Section 1 may generate results of many different shapes. The
state-of-the-art similarity-based time-series matching approaches
[1, 3, 7, 1.51 typically focus on matching more precise shapes,
therefore are less suited than IMPACTS for processing this class
of queries. For example, to search a continuous downward trend,
the IMPACTS traverses the suffix tree and only follows the
symbols representing downward movements.

4.7 Mismatch Toleraiice Constraint
IMPACTS can incorporate a.‘constraint that allows for a certain
number of mismatches. For example, a pattern matching query
can be constrained to find all similar patterns allowing at most k
mismatches. To process this kind of queries, IMPACTS searches
the suffix tree and keeps a mismatch counter for each search
thread. When a mismatch counter increases beyond the allowable
value, its corresponding search thread is discarded.

4.8 Inconsistent Accuracy Constraints
This class of queries means that different sections along the target
string have a different accuracy constraint. While no current
systems can efficiently process queries of this class, IMPACTS
can dynamically process them in the same way as it computes the
queries with consistent accuracy constraints, with only a minor
extension. The extension is that during tree traversal, IMPACTS
keeps track of what section of the target string that it is currently
matching and uses the corresponding degree of accuracy for
matching as specified by the query constraints.

4.9 Combinatorial Constraint
IMPACTS can be adapted to search a combinatorial pattern
similar to one modeled by a regular expression. FOT example, the
query manager, in matching a combinatorial pattern, can starts a
multi-thread search over the suffix tree while keeping track of the
current state for each search thread (much like the state of the
finite state machine represented by an regular expression). A
search is discard if, at any node, it violates the pattern specified by
the target or when it reaches the bottom of the tree without having
completely traversed the target pattern.

285

-IMPACTS ------SCAN h

A+@ & &P ,cP &
Number of Sequences

Figure 4. Search Time vs. Number of Sequences.

5. PERFORMANCE EVALUATION
We compare pattern-matching efficiency between IMPACTS and
the sequential scanning method based on synthetic sequence data.
Because of space limitation, we only show a small set of our
results. We first randomly generated sequences with a length of
500 and varied the number of sequences from 100 to 1000. For
the second set of experiments, we limited the number of
sequences to 500 and varied the sequence length from 100 to
1000. For both sets of experiments, we set the moving average
window size to 5 and the allowable error ration to 0.3%. Next, we
process pattern matching with randomly selected target sequences
and collected the averaged results. Both sets of results show that
pattern matching by IMPACTS is much more efficient than by the
sequential scanning method.

-IMPACTS ------SCAN

Sequence Length

Figure 5. Search Time vs. Sequence Length.

6. CONCLUSIONS
We consider the problem of query processing for time-series data
with various dynamically specified constraints. We present the
IMPACTS system that maps atomic movements in a time series
into a finite set of symbols to transform time series into symbol
strings. Next, IMPACTS uses a suftix tree to index prefixes of
these symbol strings. In this paper, we show that IMPACTS can
be used to process queries with dynamically specified constraints
such as moving average window sizes, aggregate time units, vague
trends, and combinatorial patterns. We also present a portion of

our performance studies which shows that IMPACTS can be
much more efficient in processing queries with dynamic
constraints than the sequential scanning method.

7.
[II

PI

[31

r41

El

[71

VI

r91

REFERENCES
Agrawal, R., Faloutsos, C., and Swami, A. Efficient
similarity search in sequence databases. In Proc. of 4th Intl.
Conf. On Foundation of Data Organization and Algorithms,
1993.

Agrawal, R. and Imielinski, T. Data mining: a performance
perspective. IEEE Trans. On Knowledge and Data
Engineering, (6):914-925, 1993.

Agrawal, R., Lin, K.I., Sawhney, H.S., and Shim, K. Fast
similarity search in the presence of noise, scaling, and
translation in time-series databases. In Proc. of 21st VLDB,
490-501, 1995.

Agrawal, R., Psaila, G., Wimmers, E.L., and Zait, M.
Querying shapes of histories. In Proc. Of 21st VLDB, 502-
514,1995.

Bechmann, N., Kriegel, H., Schneider, R., and Seeger, B.
The R*-tree: an efficient and robust access method for points
and rectangles. In Proc. ACM SIGMOD, 322-332, 1990.

Edwards, R.D. and Magee, J. Technical Analysis of Stock
Trends. John Magee, 1969.

Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. Fast
subsequence matching in time-series databases. In Proc.
ACM SIGMOD, 419-429, 1994.

The Green Line Mutual Funds. htto://www.tdbank.ca, 1998.

Guttman, A. R-tree: a dynamic index structure for spatial
searching. In Proc. ACM SIGMOD, 45-57, 1984.

[lo] Hamming, R.W. Digital Filters. Prentice-Hall, 1977.

[l l] Hui, L.C.K. Color set size problem with applications to
string matching. In Combinatorial Pattern Matching,
Lectures Notes in Computer Science, 230-243, Springer-
Verlag, 1992.

[12] Landau, G.M. and Vishkin, U. Fast parallel and serial
approximate string matching. Journal of Algorithms, (2): 157-
169,1989.

[131 McCreight, E.M. A space-economical suffix tree
construction algorithm. JACM, 262-272, 1976.

[14] Oppenheim, A.V. and Schafer, R.W. Digital Signal
Processing. Prentice-Hall, 1975.

[15] Ratiei, D. and Mendelson, A. Similarity-based queries for
time series data. In Proc. ACM SIGMOD, 13-23, 1997.

[16] Shatkay, H. and Zdonik, S.B. Approximate queries and
reprresentations for large data sequences. In Proc. 12’h Intl.
Conf. On Data Engineering, 536-545, 1996.

[17] Wang, J.T.L., Chim, G.W., Marr, T.G., and Shapiro, B.
Combinatorial pattern discovery for scientific data: some
preliminary results. In Proc. ACM SJGMOD, 115-125, 1994.

286

