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Traditional query process for time-series data transforms data 
from the time domain into the frequency domain. It is less 
controllable by the end users, therefore isn’t well suited for 
queries that find patterns with many dynamically specified user 
constraints. For these queries we present a method to search time- 
series data which first transforms time sequences into symbol 
strings using change ratio between contiguous data points in time 
series. Next, a suffix tree is built to index all suffixes of the 
symbol strings. The focus of this paper is to demonstrate how this 
method can adapt to the processing of the dynamically 
constrained time-series queries. 
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Many traditional approaches in time-series query processing are 
based on transforming data from the time domain into the 
frequency domain to optimize the indexes so that more efficient 
search and retrieval can be achieved [l, 3, 7, 15, 161. As a result, 
these approaches are well suited for searching patterns, such as 
the similarity-based queries (e.g., example query Ql). 

Time-series Query Processing, Data Mining, Pattern Matching. 

1. INTRODUCTION 
Many real-life database applications manage temporal data that 
are physically stored in time sequence. The examples of time- 
series data include the prices of mutual funds and stocks, the 
production outputs, weekly sale totals, and the daily temperatures. 

In many of these applications, it is highly desirable to tind 
patterns in their respective time-series data set. The result may 
help to improve the processes such as analyses, predictions, and 
data mining [2]. The followings are examples of time-series 
pattern matching queries: 

We in this paper explore solutions when no known patterns exist. 
For example, the upward trend constraint in Q2 is very general 
and includes shapes of various degrees. Therefore, methods for 
similarity-based pattern matching [l, 3, 7, 151 which focus on 
matching a specific shape may not be suitable for processing Q2. 
The example query Q3 is based on weekly totals and pre-built 
indexes based on daily totals may not be effective in processing 
this query. Other examples include matching based on different 
moving average window sizes, matching combinatorial patterns 
(e.g., patterns represented by regular expressions), matching 
patterns with different degrees of accur+cy specified for different 
sub-patterns, etc. 

In general, we focus time-series query processing with various 
dynamically specified constraints and present a new method 
called IMPACTS (the Interactive Matching of Patterns with 
Advanced Constraints in Time-Series databases). IMPACTS is 
divided into two stages, the off-line preprocess stage and the on- 
line query stage (Figure 1). 

i The Preprocess Stage 

Ql: Find all stocks that behave “similarly” to a certain pattern. 

Q2: Find all factories in any n-day time periods in which the 
defect rates of their perspective factories show a consecutive 
upward trend. 

Time Series The Transform Phase 

Q3: Find all head-and-shoulder patterns in all regions’ weekly 
sale totals based on 3-day moving averages. 

The example query Ql is a similarity query for time-series data 
[l, 3, 7, 151. It can be used to help the prediction of future stock 
or mutual fund performance. The query Q2 can be used as a 
warning system to detect a potential production problem. The 
query Q3 provides a useful marketing tool in analyzing the sale 
patterns among different regions. It is based on the moving 
average [6] to generalize trends. 

Figure 1. The Different Stages of IMPACTS. 

Permission to make digital or hard copies of all or part of this work t’ot 
personal or classroom use is granted without fee provided that copies 
are not n~ade or distributed li)r profit or commercial advantage and that 
copies hear this notice and the full citation on the tirst page. TO copy 
othcrwisc, to rcpuhlish, to post on scrvcrs or to redistribute to lists. 
requires prior specific permission and/or a fee. 
KDD-99 San Diego CA USA 

The pre-process stage of IMPACTS has two phases: the transfom? 
phase and the index phase (Figure 1). In the transform phase, each 
sequence of real numbers in the time-series data is transformed 
into a string of symbols. This is achieved by first segmenting the 
entire range of change ratios between any two consecutive time 
points into a finite number of non-overlapping smaller ranges 
(segments). Next, a unique symbol is used to represent each 
segment, thereby transforming a time sequence into a symbol 
string. 
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In this paper, we present the different stages of IMPACTS as well 
as algorithms (based on the suffix tree structure) to compute time- 
series pattern matching queries with the abilities to dynamically 
process constraints such as the multiple degrees of accuracy, 
different moving average window sizes. We also describe how 
IMPACTS can be used to resolve advanced constraints such as a 
dynamically specified aggregate period and combinatorial 
patterns. Lastly, we present a performance evaluation to show that 
our method can be much faster than the naive approach. 

The rest of this paper is organized as follows: We first discuss 
related work in Section 2. Next, we present the pre-process stage 
in Section 3 and the query stage in Section 4 respectively. We 
present our performance evaluation in Section 5 and conclude the 
paper in Section 6. 

2. RELATED WORK 
We categorize recent work in time-series pattern matching into 
two general approaches. The first approach maps time sequences 
into frequency domain; the second processes the time sequences 
directly in time domain. The frequency domain approach, 
pioneered by [l], in general computes a Discrete Fourier 
Transform [ 10, 141 for each sequence and selects the first few 
coefficients to index their respective original sequences. 
Sequences with matching coefficients are considered similar. The 
indexing mechanism is typically through a multi-dimensional 
index structure such as R-tree [9] or R*-tree [S]. 

While in [l], the focus is on whole sequence matching, the work 
in [7] generalizes the process to allow subsequence matching. In 
[ 151, moving average, time warping, and reversing are formulated 
and the indexing methods are further examined for approximate 
subsequence matching. 

The recent work in time domain [3, 161 focus on segmenting long 
sequences into smaller subsequences for approximation. A multi- 
dimensional index structure, such as R-tree [9] or R*-tree [5], is 
then used to index the small segments. In [3], an innovated 
approach is introduced based on atomic segments, called 
windows, which can be normalized with similar windows 
respectively stitched to form pairs of large similar subsequences. 
In [ 161, based on the divide-and-conquer approach, subsequences 
are identified and approximated by families of real-valued 
functions. 

The IMPACTS system also operates in time domain. But it differs 
from all the above approaches (both frequency and time domains) 
[ 1, 3, 7, 15, 161 in one significant way. The IMPACTS can 
preserve, to a very high degree of details, the shapes of the 
original sequences in its index structure (the suffix tree). A major 
advantage of detail preservation is the flexibility to dynamically 
process a diverse class of different time-series matching queries 
such as those based on different degrees of accuracy, moving 
window sizes, aggregate periods, and vague trends (see Section 
4). For example, time-series matching queries with different 
moving window sizes, aggregate periods, or vague trends cannot 
be processed by the aforementioned approaches [ 1, 3, 7, 15, 161 
without the restructure of their respective index structures. 
Therefore, the ability to dynamically process a diverse class of 
different matching queries makes IMPACT more suitable as an 
interactive time-series pattern matching approach. 

In [4], a shape-describing query language called SDL was 
proposed for time-series shape matching. An index structure was 

proposed but no performance data was given. The SDL model can 
be adopted by IMPACTS to formulate some of its query classes. 
The focus of this paper however is on the system aspect of 
IMPACTS, not on query language. The suffix tree index deployed 
by the IMPACTS system is used extensively in the string- 
matching problem [ll, 12, 13, 171. 

3. THE PRE-PROCESS STAGE 
The first stage of IMPACTS is the preprocess stage in which the 
transform phase transforms the time-series data into symbol 
strings and the index phase build suffix tree indexes based on 
these strings. 

3.1 The Transform Phase 
Transforming a time series into a symbol string can be achieved 
with various ways. In this paper, we present one method that is 
based on computing the change ratio from one time point to the 
next time point and dividing the variances of all change ratios into 
discrete segments such that change ratios that fall into one 
segment are represented by a unique symbol. We use an example 
(Figures 2) to illustrate this process. First, we define three 
parameters below: 

. The parameter min is the lower bound of all change ratios 
between any two consecutive time points among all time 
series in the database. 

. The parameter max is the upper bound all change ratios 
between any two consecutive time points among all time 
series in the database. 

. The parameter numsegmenf represents the number of 
segments selected to divide the range between min and max. 
While all segments together till the entire range between the 
min and max parameters, no two distinct segments overlap. 
In the transformation process, a unique symbol is mapped to 
each segment 

In Figure 2, min and max are set to -47% and 63% while the 
numsegment parameter is set to 11. We equally divide the entire 
range between min and max by numseg-ment with each unit 
range set to 20%. In this example, II unique symbols are used to 
model the segments respectively and any change ratio will fall 
into one of the segments, therefore will be represented by one 
symbol. The larger numsegment is, the more accurately the 
transformation process captures the shape of a time series. 
However, a large number of unique symbols may more space to 
model each symbol, resulting in a larger and less space-efficient 
suffix tree. 

max 

min - 
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Figure 2. A Transformation Example. 
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3.2 The Index Phase 
A suffix tree [ 11, 12, 131 is a trie-like data structure that 
compactly stores all suffixes of a string such that each suftix is 
represented by a path from the root node to a certain node at a 
lower level. The compactness is achieved by suffixes having the 
same prefix share a node such that the path from the root node to 
this node represents the shared prefix. Because all suffixes of a 
string are each represented by a unique path in the suffix tree, 
finding a pattern in a string corresponds to traversing the suffix 
tree downwards along the path that matches the target pattern. 
Such a structure insures high efficiency in matching string 
patterns, therefore the suffix tree is widely used in the problem of 
string matching [ 11, 12, 131. 

ROO b Root Root 

/ /"\ 
a O\ 

A 

babe 

ababc ababc babe abc C 

Step 1: Insert ababc Step 2: Insert babe Step 3: Insert abc 

C 

abc abc 

Step 4: Insert bc Step 5: insert c 

Figure 3: Constructing A SufEx Tree with ababc. 

In the index phase, a generalized suffix tree is constructed to 
index the suffixes of all the transformed symbol strings for fast 
pattern matching. In Figure 3, we show the construction of a 
suffix tree based on the string ababc. The live steps in Figure 3 
represent the shape of the tree after inserting the suffixes ababc, 
babe, abc, bc, and c respectively. Note that node splitting occurs 
in steps 3 and 4 because of the sharing of prefixes ab and b 
respectively. 

Inserting suffixes from multiple strings into a suffix tree creates a 
side effect that makes its structure more complex. The string along 
the path to a node can represent a suffix of an input string or a 
prefix of a suffix of an input string. For example in Figure 4, the 
path from root to the node ab in the middle branch represents the 
string bab. However, bab is a suffix of String 2 as well as a prefix 
of the suffix babe of String 1. To preserve the knowledge that the 
middle ab node is an end node of a path representing a suffix of 
an input string, we associate this node with a list of string IDS that 
have a suffix represented by this node. 
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Figure 4: A Suffix Tree with ababc, chub, cbc. ; 3;oi 
i . i . . . . . . . . . i 

In our implementation, along with each string ID in the list, we 
also maintain the starting position in this string of the 
corresponding suffix. For example, the list associated with the 
middle ab node has a 2-tuple entry (Figure 4). The attributes 2 
and 1 in this entry indicates that the suffix represented by the path 
from root to this node (i.e., bnb) starts at position 1 in String 
2.The incorporation of the ID list helps to improve the efficiency 
in retrieving the matching suffixes. 

4. THE QUERY STAGE 
IMPACTS exploits the suffix tree structure and provides methods 
to process pattern matching queries on time series with dynamic 
user constraints such as the degree of accuracy and the average 
moving window size. In this section, we first describe how simple 
and dynamically constrained pattern matching queries are 
computed based on the suffix tree structure. Next, we discuss how 
IMPACTS can be used as an interactive pattern-matching tool to 
process a diverse class of advanced time-series pattern matching 
queries. 

4.1 Simple String Matching Queries 
To match a time-series pattern, the IMPACTS system first 
transforms the target time-series into a symbol string using the 
same transformation process discussed in Section 3.1. Note that it 
is possible that a change in the target sequence is beyond the min 
and max boundaries defined for the data set. In this case, we can 
use two additional symbols to respectively represent these two 
out-of-bound cases. 

Next, IMPACTS traverses, in a downward fashion, the suffix tree 
containing all the suffixes of the symbol strings. During the 
traversal, with each encountered tree node, the IMPACTS tries to 
match the prefix of the target string with the string associated with 
this node. If a match is found, the IMPACTS continues to traverse 
the children nodes of this node with a new target string created by 
removing the matching prefix from the original target string. 

If the string associated with the encountered node does not match 
any prefix of the target string, this search thread is discarded. A 
string that matches the original target is found when a search 
thread reaches a node whose associated string matches with the 
entire updated target string. 

Note that without specifying a dynamic constraint such as the 
degree of accuracy or an average moving window size, the pattern 
matching of IMPACTS is exactly the same as string matching on 
a suffix tree [ 11, 12, 131. With dynamically specified query 
constraints, the search process of IMPACTS becomes more 
complex. 

4.2 Degree of Accuracy Constraint 
In our transformation model, the two pre-set parameters min and 
max define the entire range any movement from one number to 
the next in the sequence must fall into (see Section 3.1). The 
segmentation process divides this range into equal but non- 
overlapping segments with each segment represented by a unique 
symbol (see Figure 2). The min, max, and numsegment 
together determine the lower and upper bounds represented by 
each symbol. 

In the case of simple string matching, the accuracy of the result is 
determined by the range that each symbol models. High accuracy 
is achieved by very small segment range with the numsegment 
parameter set to a large value. In this model, two symbols are 
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considered a match if and only if they are the same identical 
symbol. To process dynamic query constraints with different 
degrees of accuracy, IMPACTS relaxes this rule and allows for 
fuzzy matching in which a match for a target symbol can be a set 
of symbols, including the target symbol itself. 

More precisely, let r be the dynamically specified degree of 
accuracy, the match of a symbol s are any symbols representing 
segments that are within 1 - r from the segment represented by s. 
For example, in Figure 2, let the dynamically specified degree of 
accuracy be 15%. The match for the symbol a5 are symbols a3, u4, 
a,-, a6 and a,. This is because there exists a point in the segment 
associated with any of these symbols that is with 25% away from 
a point within the segment associated with the target symbol us. 

4.3 Average Moving Window Size Constraint 
The average moving approach is a popular method in financial 
and stock analysis [6] to generalize trends. The result of applying 
an average moving window to a time series is a smoother curve 
with the smoothness enhanced by a wider moving window 

To process a time-series query with a moving average constraint, 
IMPACTS first transforms the target pattern into the moving 
average representation based on the user specified constraint (e.g., 
the window size). Next, IMPACTS traverses the suffix tree in a 
depth-first order. During tree traversal, IMPACTS computes the 
moving average for the strings along the search threads on the fly 
and then matches the dynamically computed moving average with 
the moving average represented by the target sequence. 

Initially, each search thread may have traversed strings which 
have less symbols than the dynamically specified moving average 
window size, say k. At this initial stage, IMPACTS queues up 
(queue size = k) these traversed prefixes along all search threads. 
When a search thread has traversed a string of k symbols on the 
suffix tree, it computes the average of the upper bounds and the 
average of the lower bounds associated with these k symbols. 
IMPACTS then checks to see if the first number in the moving 
average representation of the target sequence is within these upper 
and lower bound averages. If it is, IMPACTS declares it a match 
and goes on to traverse the next symbol on the tree for this thread. 
At this point, IMPACTS drops the first symbol in the queue and 
puts the next traversed symbol in the queue. New upper and lower 
bound averages are computed and matched with the next number 
in the moving average representation of the target sequence, and 
so on. 

If at any time during the matching process a mismatch happens, 
IMPACTS discards this search thread. If during traversal, all 
numbers in the moving average representation of the target 
sequence falls within the upper and lower bound averages, then 
the string of this search path matches the target sequence. 

4.4 Aggregation Constraint 
A time series can be based on a fine-grained time unit such as day 
whereas a pattern-matching query can be specified with a dynamic 
constraint that is based on weekly totals. While to our knowledge 
no current systems can efficiently processing this kind of queries, 
IMPACTS can compute this query class in a dynamic fashion. For 
example, to search aggregate pattern based on weekly totals on the 
suffix tree with daily totals, IMPACTS traverses downwards each 
search threads while at the same time aggregates the lower and 
upper bounds respectively of the traversed symbols. When it 
encounters a symbols representing the proper ending time point 

(e.g., the last day of the week), 1MPACTS matches the aggregated 
upper bounds and lower bounds with the corresponding symbol in 
the target string. If a match is found, IMPACTS traverses the 
children nodes of the encountered node and starts aggregating 
again, and so on. 

4.5 Biased Similarity Constraint 
Finding similar pattern based on biased criteria can be a very 
useful function. For example, a query finding a group of stocks or 
mutual funds that behave similarly to a certain pattern, but are in 
general more skewed upwards (or downwards) is one such query. 
IMPACTS can process this type of queries by setting up biased 
matching criteria. FOT example, when IMPACTS determines a 
match for a target symbol, it can allow for a wider degree of 
accuracy for symbols representing movements that are more 
upward skewed than the ones representing movements that are 
less upward skewed. In other words, IMPACTS uses two degrees 
of accuracy, one for upward symbols and one for downward ones. 

4.6 Vague Trend Constraint 
Searching a vague pattern such as the example query Q2 in 
Section 1 may generate results of many different shapes. The 
state-of-the-art similarity-based time-series matching approaches 
[1, 3, 7, 1.51 typically focus on matching more precise shapes, 
therefore are less suited than IMPACTS for processing this class 
of queries. For example, to search a continuous downward trend, 
the IMPACTS traverses the suffix tree and only follows the 
symbols representing downward movements. 

4.7 Mismatch Toleraiice Constraint 
IMPACTS can incorporate a.‘constraint that allows for a certain 
number of mismatches. For example, a pattern matching query 
can be constrained to find all similar patterns allowing at most k 
mismatches. To process this kind of queries, IMPACTS searches 
the suffix tree and keeps a mismatch counter for each search 
thread. When a mismatch counter increases beyond the allowable 
value, its corresponding search thread is discarded. 

4.8 Inconsistent Accuracy Constraints 
This class of queries means that different sections along the target 
string have a different accuracy constraint. While no current 
systems can efficiently process queries of this class, IMPACTS 
can dynamically process them in the same way as it computes the 
queries with consistent accuracy constraints, with only a minor 
extension. The extension is that during tree traversal, IMPACTS 
keeps track of what section of the target string that it is currently 
matching and uses the corresponding degree of accuracy for 
matching as specified by the query constraints. 

4.9 Combinatorial Constraint 
IMPACTS can be adapted to search a combinatorial pattern 
similar to one modeled by a regular expression. FOT example, the 
query manager, in matching a combinatorial pattern, can starts a 
multi-thread search over the suffix tree while keeping track of the 
current state for each search thread (much like the state of the 
finite state machine represented by an regular expression). A 
search is discard if, at any node, it violates the pattern specified by 
the target or when it reaches the bottom of the tree without having 
completely traversed the target pattern. 
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Figure 4. Search Time vs. Number of Sequences. 

5. PERFORMANCE EVALUATION 
We compare pattern-matching efficiency between IMPACTS and 
the sequential scanning method based on synthetic sequence data. 
Because of space limitation, we only show a small set of our 
results. We first randomly generated sequences with a length of 
500 and varied the number of sequences from 100 to 1000. For 
the second set of experiments, we limited the number of 
sequences to 500 and varied the sequence length from 100 to 
1000. For both sets of experiments, we set the moving average 
window size to 5 and the allowable error ration to 0.3%. Next, we 
process pattern matching with randomly selected target sequences 
and collected the averaged results. Both sets of results show that 
pattern matching by IMPACTS is much more efficient than by the 
sequential scanning method. 

-IMPACTS ------SCAN 

Sequence Length 

Figure 5. Search Time vs. Sequence Length. 

6. CONCLUSIONS 
We consider the problem of query processing for time-series data 
with various dynamically specified constraints. We present the 
IMPACTS system that maps atomic movements in a time series 
into a finite set of symbols to transform time series into symbol 
strings. Next, IMPACTS uses a suftix tree to index prefixes of 
these symbol strings. In this paper, we show that IMPACTS can 
be used to process queries with dynamically specified constraints 
such as moving average window sizes, aggregate time units, vague 
trends, and combinatorial patterns. We also present a portion of 

our performance studies which shows that IMPACTS can be 
much more efficient in processing queries with dynamic 
constraints than the sequential scanning method. 
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