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Automotive functionalities typically consist of a large set of periodic/cyclic tasks scheduled under a real-
time operating system (OS). Many of the tasks are feedback control applications with stringent performance
requirements. OSEK/VDX is a common class of automotive OS that offers preemptive periodic schedules
supporting a pre-configured set of periods. The feedback controllers implemented onto such OSEK/VDX-
compliant systems need to use one of the pre-configured (sampling) periods. A shorter period is often de-
sired for a higher control performance, and this implies a higher processor load. For a given performance
requirement, the longest sampling period that meets this requirement is the optimal one. Given a limited set
of pre-configured periods, such optimal sampling periods are often not available, and the practice is to choose
a shorter available period—leading to a higher processor load. To address this, we propose a controller that
cyclically switches among the available periods, thereby leading to an average sampling period closer to the
optimal one. This way, we reduce the processor load and are able to pack more control applications on the
same processor. Themain challenge in this article is the design of such controllers that takes into account such
cyclic switching of sampling periods (i.e., use non-uniform sampling). The controller needs to meet specified
performance requirements (settling time) and system constraints (e.g., input saturation). Such a non-convex
constrained controller optimization problem as raised in the OS-aware automotive systems design has not
been addressed in the traditional optimal control literature. A novel approach based on adaptively parame-
terized particle swarm optimization (PSO) is proposed to solve it. Using the OS-aware controller design with
non-uniform sampling, we show that a higher number of applications can be packed on a processor, which
is of particular interest in the cost-sensitive automotive industry.
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1 INTRODUCTION

In the past decade, the complexity of automotive software and the number of applications and
software tasks have considerably increased. For instance, in engine management, the main drivers
are complex exhaust gas treatment systems like NOx storage catalyst converter (NSC) and selec-
tive catalytic reduction (SCR) and fuel efficiency measures like staged injection and variable cam
timing (Jeong et al. 2011; Popovic et al. 2003). As a consequence, standard engine management
software nowadays contains dozens of tasks with around 1,500 runnables (Kramer et al. 2015). At
the same time, automotive systems are highly cost sensitive, and there is an increasing effort to in-
tegrate multiple tasks onto a single electronic control unit (ECU). In line with such developments,
in this article we study a commonly occurring setup—where multiple feedback control applica-
tions are to be implemented on a single ECU. The goal is to pack as many applications as possible
in an effort to reduce costs.
Tasks in automotive software systems are typically scheduled with preemptive policies and

cyclically repeated with a fixed period on OSEK/VDX-compliant operating systems (OS)1 (Feiler
2003; Consortium 2005; Apuzzo et al. 2016). For control applications, runnables containing the
functional code are assigned to tasks according to the continuous dynamics of the physical process
being controlled. For example, injection control in engine management has faster dynamics than
exhaust gas control and thus requires a shorter period.
A feedback control loop consists of three operations:

—Measure: Sensors measure the states of the physical plants. This is also called sampling.
—Compute: Taking the data from sensors, control programs are executed and compute the
control input.

—Actuate: The control input is sent to actuators, aiming to achieve certain desired behavior
of the plants.

In this work, we assume that themeasure and the actuate operations take negligible time compared
to the compute operation, and they are performed in a separate sensing/actuating unit under a
strict time-triggered policy. As shown in Figure 1, the time duration between two consecutive
measurements (or samplings) of the plant states is defined as the sampling period h. The time
duration between the measurement and the actuation of one feedback control loop is defined as
the sensor-to-actuator delay τ sa . The actual execution time of the control program is denoted as
E and the worst-case execution time (WCET) is Ewc . The actuate operation is performed exactly
after Ewc time from the measure operation while the compute operation is performed in between.
This setting leads to a constant sensor-to-actuator delay, i.e., τ sa = Ewc .

Generally, a shorter sampling period allows the controller to respond to its plantmore frequently
and is thus potentially able to achieve a better control performance with an appropriately designed
controller. The obvious downside is a higher processor load, since the control program is executed
more frequently. This prevents more functions and applications from being integrated onto the
ECU. Therefore, the controller should be designed to use the largest possible sampling period (to
reduce ECU load) that is able to fulfill the control performance requirement and satisfy the system
constraints. This is the optimal sampling period that should be ideally used.

1Open Systems and Their Corresponding Interfaces for Automotive Electronics (OSEK) is a joint project in the Ger-
man automotive industry founded in 1993 with initial partners of BMW, Bosch, DaimlerChrysler, Opel, Siemens, and
Volkswagen. It was later joined by the French car manufacturers PSA and Renault introducing their Vehicle Distributed
Executive (VDX) approach. The goal is to define an industry standard for an open-ended architecture for distributed control
units in vehicles.
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Fig. 1. The general timing model of a control loop.

Fig. 2. Allowed switching instants among multiple sampling periods.

Fig. 3. Packing of control applications onto the ECU.

However, an OSEK/VDX OS is usually pre-configured to support a small set of predefined sam-
pling periods.2 Hence, often the optimal sampling period is not directly realizable on the ECU. The
conventional way to handle it is to use the largest sampling period from the pre-configured set of
sampling periods available in the OSEK/VDX OS that is shorter than the optimal one. It is clearly
a waste of scarce computation resources on board.

Main idea: In this work, we design controllers that switch between the available pre-configured
sampling periods offered by the OSEK/VDX OS, following a predefined static schedule. A typical
example with sampling periods of 2, 5, and 10ms on OSEK/VDX OS is illustrated in Figure 2. For
one application, switching between two sampling periods can only occur at the commonmultiplier
of them. For instance, switching between 2 and 5ms is possible at the time instant of 10ms, 20ms,
and so on. Therefore, possible sequences of sampling periods are {2ms, 2ms, 2ms, 2ms, 2ms, 5ms,
5ms, repeat}, {5ms, 5ms, 10ms, repeat}, and so on.

Illustrative example: We now explain a simple case that multiple identical control applications
C need to be implemented on ECUs. Assuming that the control performance requirement of C
can be satisfied with a sampling period of 5ms, yet not with 10ms. If the WCET of C is 3ms, then
only one application can be implemented on the ECU as shown in Figure 3, since the sampling

2Theoretically, more periods can be created. However, due to the large number of software runnables from many different
suppliers, this will create much overhead and is thus practically infeasible.
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period 5ms is not long enough to execute two applications, which require 6ms. If 10ms is used
as the sampling period, then three applications can be integrated into the ECU. However, this is
not feasible due to the violation of the control performance requirement. A non-uniform sampling
schedule {5ms, 5ms, 10ms, repeat} achieves an average sampling period of 6.67ms, which reduces
the processor load compared to the schedule with a constant sampling period of 5ms and enables
two applications to be packed onto the ECU. Detailed scheduling will be explained later in this
article. The question is how to design the controller for such a non-uniform sampling schedule to
satisfy the control performance requirement.

Contributions: Themain technical challenge we address is designing a controller that uses a non-
uniform scheme, striving for optimizing control performance and respecting system constraints
simultaneously to packmore control applications on one processor. Given a non-uniform sampling
schedule, which could come up by checking the performance of uniform sampling schedules, our
proposed controller design approach optimizes the settling time—a common control performance
metric that is especially important for real-time applications and harder to analyze than quadratic
cost and explicitly respects the hard physical constraint on the input saturation. Such a constrained
non-convex optimization problem with significant non-linearity has not been addressed in the
control theory literature and does not lend itself to an analytical closed-form solution. Therefore,
one has to resort to heuristic optimization techniques. In this article, we address this problem
using an approach based on particle swarm optimization (PSO) with adaptive parameterization
for controller pole-placement. The proposed idea is evaluated on a real-life electro-mechanical
braking (EMB) system. The number of applications implemented on an ECU can be higher, which
makes the presented approach attractive for the cost-sensitive automotive domain.
Although the OS-related constraints are a major problem faced in the industry when designing

embedded control systems, currently there are no systematic solutions. This is the first article
that provides a solution to handle OS-related characteristics directly in the control strategy. While
there have been works taking network characteristics or communication resources into account
when designing controllers (Hong et al. 2010, 2015; Chen et al. 2014), in many embedded systems,
computation resources are often also scarce (due to the use of simple microcontrollers and cost
pressures). Our work goes in this direction and the techniques we provide result in computation-
resource-efficient controllers.

Organization: The rest of the article is organized as follows. Section 2 discusses the related work
on resource-aware embedded control systems design, optimal control and non-uniform sampling.
Section 3 describes the automotive system architecture under consideration, including feedback
control applications and the OSEK/VDX OS. The OS-aware controller design is presented in Sec-
tion 4. A novel PSO technique with adaptive parameterization is proposed in Section 5 to solve the
pole-placement problem. Section 6 introduces an alternative controller design with better scala-
bility. Experimental results on the EMB system are reported in Section 7, and Section 8 makes the
concluding remarks.

2 RELATEDWORK

There have been a number of works on resource-aware embedded control systems design, most of
which consider the communication among networked systems (Anta and Tabuada 2009; Yue et al.
2013; Roy et al. 2016). The conventional paradigm in networked embedded control systems regards
the messages as periodic, which facilitates the analysis and implementation yet leads to conser-
vative usage of the communication bandwidth. An aperiodic strategy for dynamic allocation of
bandwidth according to the current state of the plants and available resources is proposed in Anta
and Tabuada (2009). Control loops closed over Controller Area Network (CAN) are discussed and

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 4, Article 26. Publication date: July 2018.
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illustrated on a train car. In Yue et al. (2013), a delay system model is constructed by investigating
the effect of the network transmission delay. A novel event-trigger controller that co-designs the
feedback gain and the trigger parameters is proposed and shown to have superior performance
with simulation results. A co-optimization approach, which synthesizes both the controllers and
communication schedules for FlexRay-based distributed control systems, is reported in Roy et al.
(2016). The scalability issue is addressed and the tradeoff between control performance and bus
utilization offers flexibility to designers.
Computation resources have been taken into account in only a few works (Castane et al. 2006;

Greco et al. 2011; Cervin et al. 2002). A resource management strategy adjusting the task periods
at runtime considering the response over a finite time horizon of the plants is proposed in Castane
et al. (2006) to maximize the control performance. In Greco et al. (2011), a novel controller design
technique based on a hierarchy of controllers is proposed, so that when the allocated execution
time is short, a low-level computationally light controller is activated to achieve basic control per-
formance and when the execution time is long, a high-level computationally intensive controller
is used aiming for better control performance. In Cervin et al. (2002), a scheduling architecture
for real-time control tasks is proposed. The scheduler uses feedback from execution time mea-
surements and feedforward from workload changes to adjust the sampling periods of the control
tasks so that the combined performance (a linear or quadratic cost function) of the controllers is
optimized. None of the efforts above address the restriction from the OS.
Works in control theory literature with non-uniform sampling and switched systems focus on

guaranteeing stability (Lin and Antsaklis 2009; Lemmon and Hu 2011). Generally, theoretical tools
such as common quadratic Lyapunov functions (CQLF) and switched Lyapunov functions (SLF)
tackle arbitrary switching between sampling periods to assure stability of the overall closed-loop
system. In our work, as opposed to arbitrary switching, the sequence of sampling periods is cyclic
and decided in the design phase. We aim for further performance optimality by exploiting this
additional knowledge about the switching behavior. In the field of optimal control, techniques
such as linear quadratic regulator (LQR) and its variants (e.g., periodic LQR) (Lavretsky and Wise
2013) are well developed. However, they do not explicitly consider the hard constraint on the
control input, which exists in most real-life control applications such as automobiles.
The combination of performance optimization and input constraint satisfaction is addressed by

model predictive control (MPC) techniques (Rawlings and Mayne 2009)—another well-developed
area. MPC performs online optimization in every sampling period, making it computationally
heavy and unsuitable for being implemented on the resource-constrained embedded platform,
which is what we are studying in this work. Explicit MPC pre-optimizes the controller for all pos-
sible system states and searches for the optimal control input from a look-up table online. These
existing optimal control methods cannot be directly applied in our work, since their optimization
objective is quadratic cost. Considering both settling time and input saturation simultaneously,
which are non-convex on the controller poles is particularly challenging and will be addressed in
this work.
Some recent and notable efforts in the research of optimal control and non-uniform sampling

include (Bini and Buttazzo 2014) and Cervin et al. (2011). The optimal sampling problem is tack-
led in Bini and Buttazzo (2014), where the sampling instants and control inputs are selected to
minimize a given function of the system state and control input. In particular, a necessary condi-
tion for the optimality of a set of sampling instants is derived and a quantization-based sampling
strategy is proposed to be computationally tractable. However, the sampling periods in Bini and
Buttazzo (2014) can be arbitrarily chosen and no constraints (e.g., from the OS as we are study-
ing) are taken into account. In addition, the proposed method is only applied in the LQR problem,
which is relatively simple to analyze due to its quadratic cost function.
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Online optimal sampling period assignment is investigated in Cervin et al. (2011) to maximize
the control performance. A feedback scheduler is developed to periodically assign new sampling
periods based on the current plant states. It is shown that most computation can be done offline and
stored in a look-up table. Again, only the quadratic cost function is considered and the selection of
sampling periods is not restricted. Besides, since the switching is not fixed, yet occurs depending
on the plant states in real time, stability cannot be guaranteed. Building on these previous works,
our method formulates an optimal pole-placement problem for a non-uniform schedule known in
the design phase, where the input saturation is explicitly respected, the settling time is minimized,
and the stability is ensured.

3 SYSTEM ARCHITECTURE

We consider a typical automotive setup that multiple feedback control applications share an ECU
with other applications. The ECU runs OSEK/VDX OS. The two main elements of such a system
architecture—feedback control applications and the OSEK/VDX OS—are described in this section.

3.1 Feedback Control Applications

Plant dynamics: A control application is responsible for controlling a plant or a dynamic system.
In particular, we consider linear single-input-single-output (SISO) control applications where the
dynamic behavior is modeled by a set of differential equations,

ẋ(t ) = Ax(t ) + Bu (t ),

y (t ) = Cx(t ),
(1)

where x(t ) ∈ Rn is the system state, ẋ(t ) is the derivative of x(t ) with respect to time, y (t ) is the
system output, and u (t ) is the control input applied to the system. The number of system states is
n. The system matrix (or state matrix) is A, the input matrix is B, and the output matrix is C. These
matrices A, B, and C capture physical properties of the plant. System poles are eigenvalues of A.

Discretized dynamics: In most applications, the controller is implemented in a digital fashion on
a computer. This implies that the system states must be sampled when measured by the sensors,
as has been shown in Figure 1. Assuming the sampling period to be h, the sampled system state is
denoted as

x[k] = x(tk ), tk = kh, k = 0, 1, 2, 3, . . . . (2)

Similarly, the sampled system output is

y[k] = y (tk ). (3)

The control input taking discrete values is denoted as u[k], which is passed through a zero-order
hold (ZOH)3 and applied to the plant. The output of the ZOH is given by

u (t ) = u[k], tk ≤ t < tk+1. (4)

The discretized dynamics can then be derived by solving Equation (1) (Åström andMurray 2009),

x[k + 1] = Adx[k] + Bdu[k],

y[k] = Cx[k],
(5)

where

Ad = eAh , Bd =

∫ h

0
(eAτ

′

dτ ′)B. (6)

Clearly, Ad and Bd depend on the sampling period h.

3ZOH converts a discrete-time signal to a continuous signal by holding each sample value for the entire sampling period.
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System controllability: Controllability of a discrete system is defined as the ability to transfer
the system from any initial state x[0] = x0 to any desired final state x[kf ] = xf in a finite time.
The square controllability matrix is

CO =
[
Bd AdBd · · · A

n−1
d Bd

]
. (7)

If CO is non-singular, then there is a unique sequence of control input that transfers the initial
system state x0 to the desired system state xf in kf steps. In this work, we require the system to
be controllable.

Control performance: Settling time is a widely used metric to quantify the control performance,
especially for real-time control applications. In general, settling time in control systems is the time
required for a response to become steady. In this work, it is defined as the time for the system out-
put y[k] to reach and stay in a closed region around the reference value r (e.g., 0.98r to 1.02r ) and
denoted as ts . Shorter settling time implies better control performance. For safety-critical applica-
tions, there is often a requirement that the settling time must be within a certain period t0s .

Input saturation: In almost every real-world system, due to the physical constraint of the actu-
ator, there is a maximum available control input (e.g., the maximum voltage or current that can
be supplied by a battery) and the controller needs to be designed such that the maximum value
of |u[k]| does not exceed this limit Umax , i.e., |u[k]| ≤ Umax . This is the constraint of the input
saturation.

State-feedback control: The general structure of a linear state-feedback controller is as follows:

u[k] = Kx[k] + Fr , (8)

whereK is the feedback gain and F is the feedforward gain. Then, the closed-loop system dynamics
becomes

x[k + 1] = (Ad + BdK)x[k] + BdFr , (9)

Pole-placement: Different locations of closed-loop system poles, i.e., eigenvalues of (Ad + BdK),
result in different system behaviors. In pole-placement, poles are placed in desired locations (eigen-
values are set) often to fulfill various high-level goals, such as control performance maximization
and system constraints satisfaction. The desired poles p can be decided with empirical or optimiza-
tion techniques. This method is feasible, since there is the freedom to choose the feedback gain K.
All eigenvalues of (Ad + BdK) must have absolute values of less than unity to ensure system sta-
bility (Åström and Murray 2009). In this work, we formulate the pole-placement as a constrained
optimization problem, with the poles as decision variables, the control performance as the opti-
mization objective, and system requirements (input saturation and system stability) as constraints.
The maximum control performance (i.e., the minimum settling time) is then checked against its
requirement. The number of poles (i.e., the number of decision variables) is equal to the number
of system states n. A novel PSO-based technique is proposed to solve this challenging non-convex
optimization problem.

Feedback and feedforward gain: Once the pole locations are decided, the following character-
istics equation of z can be constructed with these poles as roots:

zn + γ1z
n−1
+ γ2z

n−2
+ · · · + γn = 0. (10)

Substituting the n roots into (10) results in n simultaneous equations that can be solved to obtain
γ1,γ2, . . . ,γn . Then we define

γc (Ad ) = A
n
d + γ1A

n−1
d + γ2A

n−2
d + · · · + γnI, (11)
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Table 1. An Example OSEK/VDX OS Time Table of Applications Release

Time instant Release
0ms Applications with periods of 2ms, 5ms, and 10ms
2ms Applications with the period of 2ms
4ms Applications with the period of 2ms
5ms Applications with the period of 5ms
6ms Applications with the period of 2ms
8ms Applications with the period of 2ms
10ms Repeat actions at 0ms

where I is an identity matrix. According to Ackermann’s formula (Ackermann and Utkin 1998),
the feedback gain used to stabilize the closed-loop system (i.e., to continuously make x[k + 1]
approach x[k]) is calculated as

K = [0 · · · 0 1]CO−1 γc (Ad ). (12)

Note that a stable systemwill have x[k + 1] = x[k] andy[k] = Cx[k] in the steady-state. The static
feedforward gain F is used to make the system output y[k] track the reference r . We let x[k + 1] =
x[k] and y[k] = Cx[k] = r . Rearranging Equation (9), leads to

F =
1

Cd (I − Ad − BdK)−1Bd
. (13)

3.2 Operating System

As a class of real-time OS widely used in the automotive industry, OSEK/VDX OS supports pre-
emptive fixed-priority scheduling. That is, priorities are assigned to applications and at any point
in time, the task with the highest priority among all active ones is executed.
On OSEK/VDX OS, tasks can be triggered by events (e.g., interrupts) or by time (alarm peri-

ods for task activation). The latter scheme is considered in this work, where each application gets
released and is allowed to access the processor periodically. There are various periods of release
times and each application is assigned one. Different applications may have different periods. Ev-
ery time an application is released, its program gets the chance to be executed, depending on its
priority.
A time table containing all the periodic release times within the alleged hyperperiod (i.e.,

the minimum common multiple of all periods) needs to be configured. An example with a
set of three periods 2ms, 5ms, and 10ms is illustrated in Table 1. The hyperperiod is equal to
10ms and the time table repeats itself every 10ms by reseting the timer. The assigned priority
will determine the execution order of applications. A higher priority is typically assigned to
the application released with a shorter period (i.e., the rate monotonic scheduling), since this
generally results in a more efficient use of the processor. To be computationally efficient in
practice, the priority is often not fixed and given to the task with the earliest deadline, which is
the dynamic earliest deadline first (EDF) scheduling (Buttazzo and Gai 2006). It is to be noted that
the approach proposed in this work is orthogonal to the scheduling policy.
An example with two applicationsC1 andC2 sharing one ECU is illustrated in Figure 4.C1 has a

period of 2ms andC2 has a period of 5ms. The execution time ofC1 is assumed to be 0.7ms and the
execution time ofC2 is assumed to be 2ms.C1 has a higher priority thanC2. Within a hyperperiod
of 10ms,C1 is released at 0ms, 2ms, 4ms, 6ms, 8ms, and 10ms.C2 is released at 0ms, 5ms, and 10ms.
It can be seen that C2 is executed only when C1 does not require to access the ECU. For instance,
at 0ms, both C1 and C2 are released and require access to the ECU. C1 is permitted to be executed

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 4, Article 26. Publication date: July 2018.
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Fig. 4. Release and execution time of two applications sharing one ECU. C1 with a sampling period of 2ms

has a higher priority than C2 with a sampling period of 5ms. Execution times of C1 and C2 are 0.7ms and

2ms, respectively.

Fig. 5. Illustration of the controller design with an example schedule S0 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms,
5ms}. The actuation occurs at the end of a sampling period. The figure is not drawn to scale.

while C2 has to wait. At 0.7ms, C1 completes its execution and C2 gets the access to the ECU. At
2ms, C1 starts its execution. Although C2 has not completed its execution, it is preempted and
suspended.

Feedback control under OSEK/VDXOS:As can be seen from the above example, in the preemp-
tive scheduling of OSEK/VDX OS, the execution completion time of the control program varies
in different sampling periods. Therefore, we postpone the actuation to the end of a sampling pe-
riod, i.e., the sensor-to-actuator delay is equal to one sampling period, to avoid varying sensor-
to-actuator delays. Referring to Equation (8) and as illustrated in Figure 5, the control input u[k]
computed based on the system state x[k] sampled at the time instant tk , is applied to the plant at
the time instant tk+1. x[k + 1] is then dependent on its previous state x[k] and the control input
u[k − 1], which is computed based on x[k − 1] and applied at tk . It is noted that in this work, the
control inputu[k] is also dependent on the previous control inputu[k − 1], whichwill be explained
later in Section 4. The system dynamics in Equation (5) becomes

x[k + 1] = Adx[k] + Bdu[k − 1]. (14)

Processor Load: We assume that the set of available periods restricted by the OSEK/VDX OS
is ϕ. As briefly discussed in Section 1, control applications have to be sampled with one period
or a combination of multiple periods from ϕ. In the latter case, switching between two sampling
periods can only occur at the commonmultiplier of them, as has been illustrated in Figure 2. Often,
the optimal sampling period for a control application does not belong to the set ϕ. The simple and
straightforward method used in practice is to select the largest sampling period in ϕ that is smaller
than the optimal one. Taking the example in Table 1, assuming that the optimal sampling period
is 7.5ms, then 5ms is chosen as the sampling period to be used. This results in a higher processor
load, which is an important design aspect.
Denoting ei to be the WCET of a control applicationCi , if the uniform sampling period is h, the

processor load for Ci is

Li =
ei

h
. (15)

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 4, Article 26. Publication date: July 2018.



26:10 W. Chang et al.

The upper bound on the load of any processor is denoted asU . Considering a single processor p,
∑

{i |Ci runs onp }

Li ≤ U . (16)

Under the EDF scheduling, the upper boundU is equal to 1. Under the rate monotonic scheduling,
U is equal tom(21/m − 1), wherem is the number of applications running on p (Liu and Layland
1973). A variety of tools, such as Inchron (2017), Timing Architects (2017), and Symtavision (2017),
are used in the industry for more general scheduling analysis. Clearly, increasing the sampling
period of a control application decreases its processor load and thus potentially enables more
applications to be integrated on the ECU.

4 CONTROLLER WITH NON-UNIFORM SAMPLING

The design problem for a control application Ci in this work is to reduce the processor load Li ,
while satisfying the settling time requirement t0s,i , the system stability and the input saturation
constraint Umax,i . Towards this, we propose a controller with non-uniform sampling switching
among multiple sampling periods in ϕ.
The cyclic sequence of sampling periods for a control application defines a schedule S ,

S = {T1,T2,T3, . . . ,TN }, (17)

where ∀j ∈ {1, 2, . . . ,N }, Tj ∈ ϕ. It implies the sequence of sampling periods as

T1 → T2 → · · · → TN → T1 → T2 → · · · → TN → repeat

Following the assumption in Equation (15) that the WCET of Ci is ei , the processor load for Ci

over S is

Li =
Nei
∑N

j=1Tj
. (18)

Dictated by the schedule S ,N systems switch cyclically in a deterministic fashion. The dynamics
of N systems within one cycle of S is (referring to Equation (14))

x[k + 1] = Ad (T1)x[k] + Bd (T1)u[k − 1],

x[k + 2] = Ad (T2)x[k + 1] + Bd (T2)u[k],

...

x[k + N ] = Ad (TN )x[k + N − 1] + Bd (TN )u[k + N − 2].

(19)

The schedule S0 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms} with seven systems is used as an example
for the illustration purpose and shown in Figure 5. As discussed in Section 3.2, the actuation occurs
at the end of a sampling period and the sensor-to-actuator delay is equal to one sampling period.
For example, the control input u[k] is computed based on the system state x[k] at tk and actuated
at tk+1.

We introduce a new augmented state z[k] = [x[k] u[k − 1] ]
T
. Then,

∀j ∈ {1, 2, . . . ,N },

z[k + j] =

[
Ad (Tj ) Bd (Tj )

0 0

]
z[k + j − 1] +

[
0

1

]
u[k + j − 1], (20)

where 0 is a zero vector. Aauд and Bauд are the system matrix and input matrix for the new aug-
mented state, and denoted as

Aauд (Tj ) =

[
Ad (Tj ) Bd (Tj )

0 0

]
, Bauд (Tj ) =

[
0

1

]
. (21)
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The system output is

y[k + j − 1] = Cauдz[k + j − 1], (22)

where

Cauд = [C 0 ]. (23)

The control input is designed as

u[k + j − 1] = Kjz[k + j − 1] + Fjr . (24)

As shown in Figure 5, for example,u[k] is computed from x[k],u[k − 1], andK1. Combining Equa-
tions (20), (21), and (24), the closed-loop dynamics is

z[k + j] = Aauд (Tj )z[k + j − 1] + Bauд (Tj )u[k + j − 1]

= (Aauд (Tj ) + Bauд (Tj )Kj )z[k + j − 1] + Bauд (Tj )Fjr .
(25)

We denote the closed-loop system matrix as

Acl, j = Aauд (Tj ) + Bauд (Tj )Kj . (26)

It is noted that Equations (22), (24), (21), (25), and (26) are applied for every j in {1, 2, . . . ,N }. In
the following of this section, we continue not to repeat the condition.
According to Equation (25), the overall dynamics within a cycle of the example S0 is

z[k + 7] =Acl,7z[k + 6] + Bauд (T7 = 5ms)F7r

=Acl,7 (Acl,6z[k + 5] + Bauд (T6 = 5ms)F6r ) + Bauд (T7 = 5ms)F7r

=Acl,7Acl,6z[k + 5] + Acl,7Bauд (T6 = 5ms)F6r + Bauд (T7 = 5ms)F7r

=Acl,7Acl,6 (Acl,5z[k + 4] + Bauд (T5 = 2ms)F5r )

+ Acl,7Bauд (T6 = 5ms)F6r + Bauд (T7 = 5ms)F7r

=Acl,7Acl,6Acl,5z[k + 4] + Acl,7Acl,6Bauд (T5 = 2ms)F5r

+ Acl,7Bauд (T6 = 5ms)F6r + Bauд (T7 = 5ms)F7r

...

=

7
∏

j=1

Acl, jz[k] +
7
∏

j=2

Acl, jBauд (2ms)F1r +
7
∏

j=3

Acl, jBauд (2ms)F2r

+

7
∏

j=4

Acl, jBauд (2ms)F3r +
7
∏

j=5

Acl, jBauд (2ms)F4r

+

7
∏

j=6

Acl, jBauд (2ms)F5r + Acl,7Bauд (5ms)F6r + Bauд (5ms)F7r .

(27)

If the pair (Aauд (Tj ),Bauд (Tj )) is controllable, then the feedback gain Kj can be designed by pole-
placement and computed as per Equation (12),

Kj = [0 · · · 0 1]CO−1j γc (Aauд (Tj )), (28)

where

CO j = [Bauд (Tj ) Aauд (Tj )Bauд (Tj ) · · · Aauд (Tj )
n−1

Bauд (Tj )]. (29)

Poles to place are eigenvalues of Acl, j . The number of poles is (n + 1)N . To ensure stability, eigen-
values of the overall closed-loop system matrix

∏7
j=1 Acl, j must have absolute values of less than

unity. The technique for pole-placement is introduced in the next section. The feedforward gain
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Fj is computed in a similar way to Equation (13). In Equation (25), we let z[k + j] = z[k + j − 1]
and y[k + j − 1] = Cauдz[k + j − 1] = r . Then we have

z[k + j − 1] = (Aauд (Tj ) + Bauд (Tj )Kj )z[k + j − 1] + Bauд (Tj )FjCauдz[k + j − 1]. (30)

This equation is valid, no matter what value z[k + j − 1] takes. Therefore,

I = Aauд (Tj ) + Bauд (Tj )Kj + Bauд (Tj )FjCauд . (31)

Then,

Fj =
1

Cauд (I − Aauд (Tj ) − Bauд (Tj )Kj )−1Bauд (Tj )
. (32)

5 PSO-BASED POLE-PLACEMENT

We now formulate an optimization problem for the pole-placement as

min
D

ts

subject to

|u[k]| ≤ Umax , ts ≤ t0s ,

(33)

where poles are decision variables. The settling time ts , which can be evaluated with simulation de-
pending on the decision variables, is to be minimized as the objective. There are three constraints.
First, the input saturation has to be respected. Second, the settling time requirement has to be sat-
isfied. Third,D is a domain of poles ensuring the stability of the overall system. We try to optimize
the settling time beyond the requirement, so that the control performance can be maximized while
nothing else (e.g., the processor load) needs to be compromised.
It is challenging to solve such a constrained non-convex optimization problem with significant

non-linearity. We use the efficient PSO technique (Sedighizadeh and Masehian 2009). A group of
particles are randomly initialized in the decision space with positions and velocities. The particles
represent decision variables (i.e., controller poles). They search for the optimum by iteratively
updating their positions. The search is led by two points. The first is the local best point that has
been reached by a particle. Every particle has its own local best point. The second is the global
best point that has been reached considering all particles. We let feasibility dominate performance
when comparing two points:

• A point respecting all constraints is better than a point violating one or more constraints.
That is, the objective value has no influence.

• If both points respect all constraints, then the point with a shorter settling time (i.e., the
optimization objective) is considered better.

• If neither of the points respects all constraints (i.e., both of them violate at least one con-
straint), then still the point with a shorter settling time is considered better.

The velocity of a particle is determined by the following equation:

Vnew = α0Vcurrent + α1rand(0, 1) (Plbest − Pcurrent) + α2rand(0, 1) (Pgbest − Pcurrent), (34)

where Vnew is the new velocity, Vcurrent is the current velocity, Pcurrent is the current position, Plbest
is the local best point of this particle and Pgbest is the best point of all particles. rand(0, 1) is a
random number with uniform distribution from the open interval (0, 1). α0 is the weight inertia.
α1 and α2 are cognitive and social scaling parameters. Widely used values for these parameters are

α0 = 0.4, α1 = α2 = 2, (35)
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which have been shown to have good performance in many optimization scenarios. The new
position of this particle is

Pnew = Pcurrent + Vnew. (36)

The algorithm is terminated once all particles have converged or the maximum number of itera-
tions has been reached. The timing complexity of PSO is clearly polynomial.

ALGORITHM 1: Pole-placement with PSO

Input: PoleNum, ParticleNum, IterationNum
Output: Pgbest

1 for i ← 1 to ParticleNum do

2 for j ← 1 to PoleNum do

3 Randomly initialize P ij in [0, 1]

4 V i
j = 0

5 end

6 P
i
lbest
= P

i
= {P i1, P

i
2, . . . , P

i
PoleNum

}

7 end

8 Record Pgbest

9 k = 0

10 while k < IterationNum and not all particles have converged do

11 Update V i
j and P ij with (34) and (36)

12 for i ← 1 to ParticleNum do

13 Update Pi
lbest

14 end

15 Update Pgbest
16 k = k + 1

17 end

The pseudocode is shown in Algorithm 1 to illustrate the pole-placement with PSO. Every pole
of every particle is randomly initialized in [0, 1] (Line 3). This gives the initilized particles a good
chance of being feasible (i.e., satisfying all the constraints). The velocity is initialized to be 0
(Line 4). The local best point of every particle (Line 6) and the global best point of all particles
(Line 8) are recorded. Afterwards, we iteratively update the position and velocity of every particle
(Line 11). At every iteration, we record the local best point of each particle (Line 13) and the global
best point of all particles (Line 15). Once the algorithm is terminated, the global best point is re-
turned. It is noted that we do not impose hard feasibility requirement in this algorithm. The rules
that prioritize feasibility over performance when comparing two points drive the search towards
the feasible region. The final solution has the best performance among all the visited feasible points
during the search.
One major issue with PSO is its tendency for fast and premature convergence before the global

optimum has been found, since its search is highly directional (Sedighizadeh and Masehian 2009).
This problem gets more severe as the number of dimensions in the decision space grows larger.
The cognitive and social scaling parameters α1 and α2 have a significant impact on the search
behavior and convergence of PSO. If α1 is larger than α2, then the PSO tends to have better local
searches, yet converges more slowly. If α2 is larger than α1, then the PSO often converges fast
before thoroughly searching the local area around each visited point, thereby possibly missing the
global optimum. This is a tradeoff between optimality and efficiency. It is challenging to achieve
both simultaneously.
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There have been a number of works extensively investigating the parameterization of
PSO (Jordehi and Jasni 2013; Pedersen 2010; Nickabadi et al. 2011). Various existing strategies
for PSO parameters setting are summarized in Jordehi and Jasni (2013), which discusses some fu-
ture research directions. A list of good parameter choices for several benchmarks is reported in
Pedersen (2010). An adaptive inertia weight is proposed in Nickabadi et al. (2011) and uses the suc-
cess rate of the swarm as its feedback parameter to ascertain the particles’ situation in the search
space. In this work, we propose an adaptive parameterization approach for the cognitive and social
scaling parameters with a constant sum. As the iteration number increases, α1 is decreased and
α2 increases. The basic idea is that at the beginning of the optimization when particles are more
disperse, local areas are better searched aiming to explore a larger space. When the optimization
approaches to the end, particles are close to one another, and the focus is placed on convergence.
The goal is to achieve optimality and efficiency at the same time.
Assuming that the iteration number is q (0 < q ≤ qmax , where qmax is the maximum number

of iterations), the cognitive and social scaling parameters can be computed as

α2 = f

(

q

qmax

)

, α1 = 4 − α2, (37)

where the constant sum of α1 and α2 is taken as 4. f is a function that can be customarily decided.
In this work, we use an exponential function as

f (x ) = 0.5e2x + 0.1. (38)

A numerical example is used to show the advantage of the proposed adaptively parameterized
PSO technique. The formulation is as follows:

max
D

φ = e−
1
3 β1

3
+ β1 − β2

2

subject to

D = {(β1, β2) | − 1.8 ≤ β1 ≤ 2, −2 ≤ β2 ≤ 2},

(39)

where β1 and β2 are two continuous decision variables, constrained in the decision space D. The
objective to maximize is φ. The conventional PSO method is illustrated in Figure 6. Five parti-
cles are randomly initialized at p1, p2, p3, p4, and p5, as shown in Table 2. Among them, p1 has
the best objective value. After 13 iterations, all five particles converge to points around the local
optimum pl (β1 = −1.7997, β2 = 8.3188 × 10−3,φ = 1.1540). The path showing how the global best
point evolves iteratively is drawn, with certain points that are too close to others omitted for better
illustration. It can be seen that the search is highly directed towards the global best point in each
iteration. The global optimum is not found and particles quickly converge to the local optimum
before exploring the decision space sufficiently.
The proposed novel PSO method with adaptive parameterization is illustrated in Figure 7. The

same initial points are used as in Figure 6 and Table 2. After 13 iterations, all five particles converge
to points around the global optimumpд (β1 = 9.8765 × 10−1, β2 = −3.9853 × 10−3,φ = 1.9474). The
path showing how the global best point evolves iteratively is drawn, with certain points too close
to others omitted. It can be seen that the decision space is better explored and the global optimum
is found. This numerical example shows the advantage of the novel PSO method over the conven-
tional one. Despite the good performance, we remark that our proposed optimization technique is
a heuristic and does not guarantee global optimality.
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Fig. 6. With the conventional particle swarm optimization method, five particles are randomly initilized and

converge to the local optimum pl .

Table 2. Randomly Initialized Particles in the Numerical

Example of PSO

Particle p1 p2 p3 p4 p5
β1 −1.7 −0.8 −1.4 0.5 1.9
β2 −1 1.5 −1.8 1.8 1.6
φ 0.3456 0.0562 0.0241 0.0619 0.0525

Fig. 7. With the proposed novel particle swarm optimization method with adaptive parameterization, five

particles are randomly initialized and converge to the global optimum pд .
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Fig. 8. Illustration of the alternative more scalable controller design with an example schedule S0. Gains are

the same for systems with the same sampling period. The figure is not drawn to scale.

6 ALTERNATIVE CONTROLLER DESIGN FOR SCALABILITY

As discussed before, the number of dimensions in the decision space using the controller design
presented in Section 4 is (n + 1)N . When the number of sampling periods N in a schedule is very
large, solving the pole-placement optimization problem could be computationally too heavy, even
for an offline task. The PSO-based technique naturally offers a solution—decreasing the number
of particles and iterations. However, this renders the result stochastic with a large variation and
considerably dependent on the choices during initialization, which is often undesirable. In this
section, we provide an alternative controller design aiming for better scalability on the number of
sampling periods.
The complexity of the proposed controller in Section 4 comes from that the closed-loop dy-

namics of all the sampling periods are considered and optimized. A simpler design technique is
to assume identical closed-loop dynamics for the systems with the same sampling period (the
same open-loop dynamics as well). That is, if Tj = Tj′ , the poles and feedback/feedforward gains
of these two systems are the same. Taking S0 as an example, as shown in Figure 8, for the five
systems with the sampling period of 2ms, poles are assumed to be the same. Therefore, the
feedback gains are all K1 and the feedforward gains are all F1. The closed-loop system matrix
Aauд (2ms) + Bauд (2ms)K1 is considered in the pole-placement. Similarly, for the two systemswith
the sampling period of 5ms, feedback gains are K2 and feedforward gains are F2. The closed-loop
system matrix Aauд (5ms) + Bauд (5ms)K2 is considered in the pole-placement. Everything else re-
mains unchanged with respect to the design described in Section 4 and Section 5.

Clearly, the solution is suboptimal, since the assumption that poles are identical for systems
with the same sampling period does not necessarily hold. The advantage is a smaller decision
space. The number of decision variables (i.e., poles to place) becomes (n + 1)N ′—the number of
states of the plant multiplied by the number of distinctive sampling periods in the schedule. For
the example schedule S0, N ′ is 2 and thus the number of dimensions in the decision space is 2

7
of the one in Section 4. Therefore, when the number of sampling periods N in the schedule S is
very large and the number of distinctive sampling periods N ′ is relatively small, this alternative
controller has better scalability on the number of sampling periods.

7 EXPERIMENTAL RESULTS

System description: The proposed OS-aware controller design technique is evaluated on an ex-
perimental EMB system from Bosch used in automobiles with simulation. The simplified model
is shown in Figure 9. When the EMB is active, the braking caliper should reach a reference posi-
tion r , which is at the braking disc, within the desired settling time t0s . This is the position mode.
The requirement on the settling time ensures the reactiveness of the system. After that, a certain
force is applied in the force mode. The electric motor mobilizing the braking caliper is powered
by the onboard battery, which has a voltage of 12V. In this work, we consider the position mode
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Fig. 9. A simplified model of the electro-mechanical braking system.

Table 3. EMB System Requirements

Settling time requirement Input saturation Reference position WCET
150ms 12V 2mm 0.7ms

Table 4. Settling Time and Processor Load of Three Schedules

Schedule Settling time Requirement satisfaction Processor load
S1 = {5ms} 256.40ms Violated 14%
S2 = {2ms} 113.27ms Satisfied 35%
S0 (novel PSO) 132.14ms Satisfied 24.5%
S0 (conventional PSO) 154.05ms Violated 24.5%

of the EMB system, which is of interest in several scenarios: braking, disk wiping, and pre-crash
preparations. The system dynamics can be modeled as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−520 −220 0 0 0
220 −500 −999994 0 2 × 108

0 1 0 0 0
0 0 66667 −0.1667 −1.3333 × 107

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1000
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =
[
0 0 0 0 1

]
.

(40)

There are five system states—motor current, motor angular velocity, motor angular position,
caliper velocity, and caliper position. The control input is the applied voltage on the motor. The re-
quirements are summarized in Table 3. The set of available sampling periods offered by OSEK/VDX
OS is

ϕ = {1ms, 2ms, 5ms, 10ms, 20ms, 50ms, 100ms, 200ms, 500ms, 1s}. (41)

In the experiments of this work, we consider the EDF scheduling under the OSEK/VDX OS. When
the deadlines are the same, the application with a smaller index has a higher priority.

PSO-based controller designwith non-uniform sampling:As shown in Table 4 and Figure 10,
the schedule S1 = {5ms} cannot meet the settling time requirement. The largest sampling period
smaller than 5ms in ϕ is 2ms. The schedule S2 = {2ms} is able to fulfill all the requirements. Ac-
cording to Equation (15), using the WCET requirement in Table 3, the processor load of S2 is 35%.
As discussed before, this number can be unnecessarily large and prevents more applications from
sharing the ECU.
Then we evaluate the schedule S0 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms} switching between

2ms and 5ms. This sequence of sampling periods satisfies the OSEK/VDX OS requirement as
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Fig. 10. System output of three different schedules. The proposed PSO technique is used for S0.

Fig. 11. System output of the PSO-based controller and its scalable variant.

Table 5. Comparison of the PSO-based Controller Design with Its Scalable Variant

Controller Settling time Requirement satisfaction Particle Iteration Time
PSO-based 132.14ms Satisfied 50 16 1448s
Scalable 147.07ms Satisfied 15 6 28s

discussed in Section 3.2. The controller with non-uniform sampling is designed as proposed in Sec-
tion 4 and the novel PSOwith adaptive parameterization as in Section 5 is used for pole-placement.
50 particles are deployed and converge after 16 iterations. Increasing the number of particles be-
yond 50 does not further improve the control performance. There are 42 poles from the seven
closed-loop system matrices. S0 has a slightly longer settling time than S2, yet still fulfills the
requirement. According to Equation (18), the processor load is 24.5%, achieving a 30% reduction
compared to S2. We also evaluate the settling time of S0 using the conventional PSO technique.
Fifty particles are used, and the convergence also takes 16 iterations. As reported in Table 4, the
solution does not satisfy the requirement.

Scalable design: Comparison of the PSO-based controller presented in Section 4 and its scalable
variant in Section 6 is shown in Figure 11 and Table 5. We zoom to the region around the settling
of the system output, where the two plots are very close to each other. The settling time generated
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Fig. 12. Invocation timing of four control applications under the schedule S0. The schedule for C1 and C2 is

{2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms}, and the schedule for C3 and C4 is {5ms, 5ms, 2ms, 2ms, 2ms, 2ms, 2ms}.
Numbers 1, 2, 3, and 4 represent the applications C1, C2, C3, and C4, respectively. Preemption is allowed in

OSEK/VDX OS.

Table 6. Exact Invocation Starting Times of Four Control Applications Under

the Non-uniform Sampling Schedule S0

Invocation number C1 C2 C3 C4

1 0 0.7 1.4(0.6)/3.4(0.1) 3.5
2 2 2.7 5.6(0.4)/7.4(0.3) 7.7(0.3)/9.4(0.4)
3 4.2 4.9 10 10.7
4 6 6.7 12 12.7
5 8 8.7 14.2 14.9
6 11.4(0.6)/13.4(0.1) 13.5 16 16.7
7 15.6(0.4)/17.4(0.3) 17.7 18.4 19.1

When one invocation is preempted, two starting times are separated by a forward slash, and the number
in the bracket indicates the duration. The timing unit is ms.

by the scalable controller is longer, yet still satisfies the requirement. It takes 15 particles that con-
verge after 6 iterations. Increasing the number of particles beyond 15 does not further improve the
control performance. The total computation time on a computer with an Intel i5 processor oper-
ating at 2.6GHz with 4GB RAM is 28s, compared to 1448s for the controller aiming for optimality.
Although 1448s sounds acceptable for an offline task, when a schedule has more sampling periods
than S0, the computation could take hours or even days due to the increase of the decision space
dimensions. In such a case, if the number of distinctive sampling periods is small, the scalable
controller design is preferred.

Packing of more applications: Now we consider a case that multiple applications are to be im-
plemented on ECUs. For the convenience of illustration, all applications are assumed to be identi-
cal to the EMB system discussed before with the WCET of 0.7ms. As reported above, the schedule
S2 = {2ms} is able to satisfy the control performance requirement and system constraints. Under
S2, an ECU is able to accommodate two applications according to Equation (16). Under the non-
uniform sampling schedule S0, four applications can share one ECU, where detailed invocation
timing is presented in Figure 12 and Table 6. Numbers 1, 2, 3, and 4 represent the applicationsC1,C2,
C3, and C4, respectively. While the schedule for C1 and C2 is {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms},
the schedule for C3 and C4 is {5ms, 5ms, 2ms, 2ms, 2ms, 2ms, 2ms}. The switching of sampling pe-
riods occurs every 10ms for both schedules. When an application is in the shorter sampling period
(2ms in this case), it occupies the ECU more often. Therefore, these two variants of S0 are essen-
tially opposite to each other, so that when some applications require more frequent access to the

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 4, Article 26. Publication date: July 2018.



26:20 W. Chang et al.

Fig. 13. Invocation timing of C5 and C6 under the non-uniform sampling schedules. The schedule for C5 is

{10ms, 10ms, 5ms, 5ms, 5ms, 5ms}, and the schedule forC6 is {10ms, 10ms, 20ms}. Numbers 5 and 6 represent

the applications C5 and C6, respectively.

Table 7. Exact Invocation Starting Times of C5 and C6 under the Non-uniform

Sampling Schedules

Invocation number 1 2 3 4 5 6
C5 0 10 20 25 30 35
C6 3.5 13.5 23.5(1.5)/28.5(1.5)/33.5(0.5) N.A. N.A. N.A.

When one invocation is preempted, two starting times are separated by a forward slash and the number
in the bracket indicates the duration. The timing unit is ms.

ECU, others are in the longer sampling period (5ms in this case), requesting the execution less
often. In this way, the number of applications packed onto the ECU can be maximized.
It is noted that preemption is supported in OSEK/VDX OS. In this case, we consider the EDF

scheduling. For instance, at 1.4ms when both C1 and C2 finish their first invocations, C3 is started
and allowed to access the processor for 0.6ms. After that, C3 is suspended, waiting for the second
invocations of C1 and C2, which have higher priorities. Then, C3 resumes and completes its first
invocation.
It can be seen that the number of applications that are accommodated by an ECU is doubled with

the proposedOS-aware non-uniform sampling controller design, which is significant improvement
for the cost-sensitive automotive domain.
To further validate the advantages brought by the proposed approach, we consider another

case consisting of applications with different non-uniform sampling schedules. We assume that
the schedule with the uniform sampling period 5ms is able to satisfy the performance require-
ment of the application C5. We also assume that the non-uniform sampling schedule with two
sampling periods 5ms and 10ms satisfies the performance requirement ofC5. However, the sched-
ule with the uniform sampling period 10ms does not satisfy the performance requirement of C5.
The performance requirement of the applicationC6 can be satisfied with the schedule {10ms} and
{10ms, 10ms, 20ms}, yet not {20ms}. The WCETs of both C5 C6 are 3.5ms. If only uniform sam-
pling schedules are considered, then C5 and C6 cannot be implemented on one processor, since
the total processor load is 3.5/5 + 3.5/10 = 1.05, which exceeds the upper bound 1 as discussed in
Equation (16). If non-uniform sampling schedules are deployed, then bothC5 andC6 can be imple-
mented on one processor. Detailed invocation timing is presented in Figure 13 and Table 7. It can
be seen that the processor can run another strictly periodic application. If the period is 5ms, then
the longest allowed WCET is 0.625ms. It is noted that the third invocation of C6 will be evenly
distributed into the third to the sixth invocation of C5.
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8 CONCLUDING REMARKS

To deal with the restriction imposed by the OS on sampling periods for control applications, we
present a novel performance-oriented controller design with a non-uniform sampling schedule,
in which an adaptively parameterized PSO is used for pole-placement. It reduces the processor
load, while satisfying the control performance requirement and system constraints. This saves
computation resources and enables integration of more functions and applications into an ECU,
thereby saving costs, which is critical in the automotive domain. Experimental results show that
the number of control applications sharing an ECU can be higher with the proposed OS-aware
controller design with non-uniform sampling.
The focus of this article is to show that more applications can be packed using a non-uniform

sampling schedule and the proposed controller design method. A relevant question for the future
works is the design of the optimal sampling schedule. Given that the controller design has to be
redone for every possible schedule, the optimal schedule design is a non-trivial problem, especially
when the number of applications sharing one processor is large. However, by checking the per-
formance of uniform sampling schedules (e.g., the period of 2ms is able to satisfy the performance
requirement and the period of 5ms is not), it is possible to intuitively come up with a few non-
uniform sampling schedules as candidates of design interest (e.g., schedules switching between
2ms and 5ms, 1ms, and 10ms, etc.) to be evaluated with the approach proposed in this article.
While in this article the focus was on single-core ECUs, we intend to extend our approach to

multi-core architectures. There are mainly two challenges to address. First, due to load balancing
requirements, it might be necessary to distribute different parts of complex control applications
to different cores. This introduces additional delays for sensor-to-actuator cause-effect chains that
need to be taken into account during controller design to ensure stability. Second, memory par-
titioning and code placement need to be considered, since they have a major influence on the
execution times of control programs.
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