
Tutorial 5. Combining Estimators to Improve Perfor- 
mance . 

Abstract. 

Despite the diverse pedigrees of Data Mining methods, the underlying algorithms fall 
into a handful of families, whose properties suggest their likely performance on a given 
dataset. One typically selects an algorithm by matching its strengths to the properties 
of one’s data. Yet, performance surprises, where competing models rank differently than 
expected, are common; model inference, even when semi-automated, seems to yet be as 
much art as science. 

Recently however, researchers in several fields have discovered that a simple technique 
- combining competing models - almost always improves classification accuracy. (Such 
“bundling” is a natural outgrowth of Data Mining, since much of the model search process 
is automated, and candidate models abound.) 

This tutorial will describe an interdisciplinary collection of powerful model combination 
methods - including bundling, bagging, boosting, and Bayesian model averaging - and 
briefly demonstrate their positive effects on scientific, medical, and marketing case studies. 
The instructors will show why this simple, new idea will often improve a model’s accuracy 
and stability (robustness). 

About the Tutor. 

John Elder is chief scientist of a data mining consulting firm in Charlottesville, Vir- 
ginia (http:// www.datamininglab.com). For fifteen years he has developed and applied 
adaptive, data-driven techniques to practical problems - at an engineering consulting 
firm, for an investment management company, at Rice University, and the University of 
Virginia. Dr. Elder has written and spoken widely on pattern discovery topics, is active 
on statistical and engineering journals and boards, and has authored some influential data 
mining tools. His practical experience with commercial applications - including credit 
scoring, direct marketing, sales forecasting, market timing, and fraud detection - helps 
illustrate the tutorial concepts. 

Greg Ridgeway (http:// www.stat.washington.edu/greg) is a statistician finishing his 
Ph.D. studies at the University of Washington. His research has focused on boosting 
algorithms, Monte Carlo methods, and Bayesian inference in massive datasets. His work 
on boosting has produced new models for survival analysis, interpretable classifiers, and 
systems for medical diagnosis. 
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Combining Estimators 
to Improve Performance 
A survey of “model bundling” techniques -- 

from boosting and bagging, to Bayesian model averaging 
-- creating a breakthrough in the practice of Data Mining. 

John F. Elder IV, Ph.D. 
Elder Research, Charlottesville, Virginia 

www.datamininglab.com 

Greg Ridgeway 
University of Washington, Dept. of Statistics 

www.stat.washington.edu/greg 
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Outline 
l Why combine? A motivating example 
l Hidden dangers of model selection 
l Reducing modeling uncertainty through 

Bayesian Model Averaging 

l Stabilizing predictors through bagging 

l Improving performance through boosting 

l Emerging theory illuminates empirical success 
l Bundling, in general 
l Latest algorithms 
l Closing Examples & Summary 
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Reasons to combine estimators 

l Decreases variability in the predictions. 
l Accounts for uncertainty in the model class. 
TLC> Improved accuracy on new data. 
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A Motivating Example: 
Classifying a bat’s species from its chirp 

l Goal: Use time-frequency features of echolocation signals 
to classify bats by species in the field (avoiding capture 
and physical inspection). 

l U. Illinois biologists gathered data: 98 signals from 19 
bats representing 6 species: Southeastern, Grey, Little 
Brown, Indiana, Pipistrelle, Big-Eared. 

l -35 data features (dimensions) calculated from signals, 
such as low frequency at the 3db level, time position of the 
signal peak, and amplitude ratio of 1st and 2nd harmonics. 

l Turned out to have a nice level of difficulty for comparing 
I methods: overlap in classes, but some separability. 
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Sample Projection 
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What is model uncertainty? 

l Suppose we wish to predict y from 
predictors x. 

l Given a dataset of observations, D, for a 
new observation with predictors x* we want 
to derive the predictive distribution of y* 
given x* and D. 

P(y* I x*,D) 
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In practice.. . 

l Although we want to use all the information 
in D to make the best estimate of y* for an 
individual with covariates x*. . . 

P(y* 1x*$) 
l In practice, however, we always use 

P(y* I x*,M) 
where M is a model constructed from D. 
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Selecting A4 
l The process of selecting a model usually 

involves 
- Model class selection 

l Linear regression, tree regression, neural network 

- Variable selection 
l variable exclusion, transformation, smoothing 

- Parameter estimation 

l We tend to choose the one model that fits 
the data or performs best as the model. 
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What’s wrong with that? 

l Two models may equally fit a dataset (with 
repect to some loss) but have different 
predictions. 

l Competing interpretable models with 
equivalent performance offer ambiguious 
conclusions. 

l Model search dilutes the evidence. “Part of 
the evidence is spent to specify the model.” 
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Bayesian Model Averaging 

Goal: Account for model uncertainty 

Method: Use Bayes’ Theorem and average the 
models by their posterior probabilities 

Properties: 

l Improves predictive performance 

l Theoretically elegant 

l Computationally costly 
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Averaging the models 

Consider a set containing the K candidate 
models -Ml,..., MK. 

With a few probability manipulations we can 
make predictions using all of them. 

P(y* Ix*,D)=ckP(y* Ix*,M,)P(M, ID) 
The probability mass for a particular prediction value of y is a weighted average of the 

probability mass that each model places on that value of y. The weight is based on the 
posterior probability of that model given the data. 
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l Mk - model 
l D - data 
l P(DIM,) - integrated likelihood of Mk 

l P(M,) - prior model probability 
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I 

Challenges 
l The size of the model set may cause 

exhaustive summation to be impossible. 
l The integrated likelihood of each model is 

usually complex. 
l Specifying a prior distribution (even a non- 

informative one) across the space of models 
is non-trivial. 

l Proposed solutions to these challenges often involve MCMC, BIC 
approximation, MLE approximation, Occam’s window, Occam’s razor. 
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Performance 

l Survival model: Primary biliary cirrhosis 
- BMA vs. Stepwise regression - 2% improvement 

- BMA vs. expert selected model - 10% improvement 

l Linear regression: Body fat prediction 
- BMA provides best 90% predictive coverage. 

l Graphical models 
- BMA yields an improvement 
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BMA References 

l Chris Volinsky’s BMA homepage 
www.research.att.com/-volinsky’bma.html 

l J. Hoeting, D. Madigan, A. Raftery, C. Volinsky 
(1999). “Bayesian Model Averaging: A Practical 
Tutorial” (to appear in Statistical Science), 
www.stat.colostate.edu/-jaWdocuments/bna2.ps 
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Unstable predictors 
We can always assume 

y = f(x) + E, where E(E Ix)=0 
Assume that_we have a way of constructing a 

predictor&(x), from a dataset D. 

We want to choose the estimator offthat 
minimizes J, squared loss for example. 

J(.b) =E-y,,(Y -.f&))” 
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Bias-variance decomposition 
If we could average over all possible datasets, 

let the average prediction be - 
f 0) = E, fLl(x> 

The average prediction error over all datasets 
that we might see is decomposable 

E,.J(~W=EE~ +E,(fW-f(4)2 +E,,Jf&)-fW)2 
= noise + bias + variance 
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Bias-variance decomposition (cont.) 

E,J(~,D)=EE~+E~(~(x)-~(x))~+E~,~(~&)-~(x))~ 

= noise + bias + variance 

l The noise cannot be reduced. 

l The squared-bias term might be reducible 

l The variance term is 0 if we use 

But this requires having an infinite number of datasets 
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Bagging (Bootstrap Aggregating) 

Goal: Variance reduction f 

Method: Create bootstrap replicates of the 
dataset and fit a model to each. Average the 
predictions of each model. 

Properties: 

l Stabilizes “unstable” methods 

l Easy to implement, parallelizable 

l Theory is not fully explained 
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Bagging algorithm 

1. Create K bootstrap replicates of the dataset. 

2. Fit a model to each of the replicates. 

3. Average (or vote) the predictions of the K 
models. 

Bootstrapping simulates the stream of infinite 
datasets in the bias-variance decomposition. 
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Regression results 
Squared error loss 

Boston Housing 
CART Bagging % Reduction 

1.1 11.7 39% 
Ozone 23.1 18.0 22% 
Friedman #l 11.4 6.2 46% 
Friedman #2 +3 31.8 21.7 30% 
Friedman #3 -3 40.3 24.9 38% 
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Classification results 
Misclassification rates 

Diabetes 
Breast 
Ionosphere 
Heart 
Soybean 
Glass 
Waveform 

CART Bagging % Reduction 
23.4 18.8 20% 

6.0 4.2 30% 
11.2 8.6 23% 
10.0 5.3 47% 
14.5 10.6 27% 
32.0 24.9 22% 
29.0 19.4 33% 
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Bagging References 

l Leo Breiman’s homepage 
www.stat. berkeley.edu/users/breiman/ 

l Breiman, L. (1996) “Bagging Predictors,” 
Machine Learning, 2612, 123440. 

0 1999 Elder BtRidgeway KDD99 T5-24 

1249



Boosting 

Goal: Improve misclassification rates 
Method: Sequentially fit models, each more 

heavily weighting those observations 
poorly predicted by the previous model 

Properties: 
l Bias and variance reduction 
l Easy to implement 
l Theory is not fully (but almost) explained 
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Origin of Boosting 
Classification problems 

{IC, Y}i , i = I,..., n 

YE P, 11 

The task - construct a function, 

Mzl :X-+ w, 11 

so that h rninimizes misclassification error. 
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Generic boosting algorithm 

Equally weight the observations (x,Y)i 

For tin l,...,T 
Using the weights, fit a classifier h,(X’J + Y 
Upweight the poorly predicted observations 
Downweight the well-predicted observations 

Merge h,,..., h, to form the boosted classifier 
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AdaBoost algorithm 
Freund & Schapire 1996 

(X,Joi where Yie { 0,l }, IV:” = + 

l With weights, fit the mvdel H&Q) : X+[O,l]. 
l Compute the error E, = CWi(t$+ -H,(xij 
l Reweight 

i=l 

&+I) = w,“‘P, l-/y, -H, (xi )I 
I 

Lastly, predict 

H(x)= I 1 

1 + fi p~I(X)-l 

I=1 

~(log# 
,=l 
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AdaBoost’s Performance 
Freund & Schapire [ 19961 

l Leo Breiman - AdaBoost with trees is the “best 
off-the-shelf classifier in the world.” 

l Performs well with many base classifiers and in a 
variety of problem domains. 

l AdaBoost is generally slow to overfit. 
l Boosted ndive Bayes tied for first place in the 

1997 KDD Cup. (Elkan [1997]) 
l Boosted nai’ve Bayes is a scalable, interpretable 

classifier (Ridgeway, et al [ 19981). 
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Boosting as optimization 

l Friedman, Hastie, Tibshirani [1998] - 
AdaBoost is an optimization method for 
finding a classifier. 

l Let yE { -1,1 }, F(x)E (-=,=) 

I J(F)=E(e-yF'"' Ix) 
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l The minimizer of E(e-)‘F(x)) coincides with 
the maximizer of the expected Bernoulli 
likelihood. 

E(l(p(x), y)) = -E log(l+ esZyFcx)) 

Criterion 

l E(e-~F(x)) b ounds the misclassification rate. 

Z(yF(x) < 0) c evyFcx) 
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Optimization step 

J(F+f 1 ( 
= E e-Ym+fw) 1 x 

l Selectfto minimize J.. . 

F(‘+‘) + I;(t) + +log E,V(Y = 1) 1 xl 
l-E,[Z(y=l)Ix] 
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LogitBoost 
Friedman, Hastie, Tibshirani [ 19981 

l Logistic regression 

1 with probability p(x) 
Y = 0 with probability 1 - p(x) 

P(X) = 
1 

l+e-F’~’ 

l Expected log-likelihood of a regressor, F(x) 

E 6(F) = E(yF(x) - log(l+ eFtx)) I X) 
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Newton steps 

J(F + f) = E(y(F(x) + f(x)) -log(l+ eF(x)+f(x)) I x) 

l Iterate to optimize expected log-likelihood. 

P+*) (x) f- P) (x) - 
+ Wf’ + f)J,=, 

$J(F”’ + f) 
f=O 
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LogitBoost, continued 

l Newton steps for Bernoulli likelihood 

F(x) t F(x) + E 

l In practice the EJ4x) can be any regressor - 
trees, smoothers, etc. 

l Trees are adaptive and work well for high 
dimensional data. 
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Classification results 
Friedman, Hastie, Tibshirani [ 19981 

Breast 
Ion 
Glass 
Sonar 
Waveform 

CART 
4.5% 
7.6% 

40.0% 
59.6% 
36.4% 

AdaB oost LogitBoost 
4.0% 2.9% 
6.8% 7.1% 

25.7% 26.6% 
20.2% 20.2% 
19.5% 20.6% 
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Boosting References 

l Rob Schapire’s homepage 
www.research.att.com/-schapire 

l Freund, Y. and R. Schapire (1996). “Experiments with a new boosting 
algorithm,” Machine Learning: Proceedings of the 13” International 
Conference, 148-156. 

l Jerry Friedman’s homepage 
www.stat. Stanford. edu/-jhf 

l Friedman, J., T. Hastie, R. Tibshirani (1998). “Additive Logistic 
Regression: a statistical view of boosting,” Technical report, Statistics 
Department, Stanford University. 
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In general, combining (“bundling”) 
estimators consists of two steps: 

1) Constructing varied models, and 
2) Combining their estimates 

Generate component models by varying: 
l Case Weights 
l Data Values 
l Guiding Parameters 
l Variable Subsets 

Combine estimates using: 
l Estimator Weights 
l Voting 
l Advisor Perceptrons 
l Partitions of Design Space, X 

0 1999 Elder &Ridgeway KDD99 T5-38 

1256



Other Bundling Techniques 
We’ve Examined: 
l Bayesian Model Averaging: sum estimates of possible models, weighted by 

posterior evidence 
l Bagging (Breiman 96) (bootstrap aggregating) -- bootstrap data (to build 

trees mostly); take majority vote or average 
l Boosting (Freund 8z Shapire 96) -- weight error cases by pz = (I-e(t))/e(t), 

iteratively re-model; average, weighing model t by In(@) 
Additional Example Techniques: 
l GMDH (Ivakhenko 68) -- multiple layers of quadratic polynomials, using 

two inputs each, fit by Linear Regression 
l Stacking (Wolpert 92) -- train a 2nd-level (LR) model using leave- l-out 

estimates of 1st~level (neural net) models 
l ARCing (Breiman 96) (Adaptive Resampling and Combining) -- Bagging 

with reweighting of error cases; similar to boosting 
l Bumping (Tibshirani 97) -- bootstrap, select single best 
l Crumpling (Anderson & Elder 98) -- average cross-validations 
l Born-Again (Breiman 98) -- invent new X data... 
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When does Bundling work? 

Hypotheses: 

l Breiman (1996): when the prediction method is unstable 
(significantly different models are constructed) 

l Ali & Pazzani (1996): when there is low noise, lots of 
irrelevant variables, and good individual predictors which 
make different errors 

l when models are slightly overfit 

l when models are from different families 
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Advanced techniques 

l Stochastic gradient boosting 
l Adaptive bagging 
l Example regression and classification results 
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Stochastic Gradient Boosting 
Goal: Non-parametric function estimation 
Method: Cast the problem as optimization and 

use gradient ascent to obtain predictor 

Properties: 
l Bias and variance reduction 
l Widely applicable 
l Can make use of existing algorithms 
l Many tuning parameters 
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Improving boosting 

l Boosting usually has the form 

F(f+l)(x) t F”‘(x)+mw(z(y,x,lx) 

Improve by.. . 

l Sub-sampling a fraction of the data at each 
step when computing the expectation. 

l “Robustifying” the expectation. 

l Trimming observations with small weights. 
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Stochastic gradient boosting offers.. . 

l Application to likelihood based models 
(GLM, Cox models) 

l Bias reduction - non-linear fitting 

l Massive datasets - bagging, trimming 

l Variance reduction - bagging 

l Interpretability - additive models 

l High-dimensional regression - trees 

l Robust regression 
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SGB References 

l Friedman, J. (1999). “Greedy function approximation: a 
gradient boosting machine,” Technical report, Dept. of 
Statistics, Stanford University. 

l Friedman, J. (1999). “Stochastic gradient boosting,” 
Technical report, Dept. of Statistics, Stanford University. 
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Adaptive Bagging 
Goal: Bias and variance reduction 

Method: Sequentially fit bagged models, 
where each fits the current residuals 

Properties: 

l Bias and variance reduction 

l No tuning parameters 
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Adaptive bagging algorithm 
1. Fit a bagged regressor to the dataset D. 
2. Predict “out-of-bag” observations. 
3. Fit a new bagged regressor to the bias 

(error) and repeat. 
For a new observation, sum the predictions 

from each stage. 
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Regression results 
Squared eiror loss 

Bagging Debias % Reduction 
Boston Housing 12.7 10.8 14% 
Ozone 17.8 17.8 0% 
Servo -2 24.5 25.1 -3% 
Abalone 4.9 4.9 0% 
Robot arm -2 4.7 2.8 41% 
Peak20 12.8 3.7 71% 
Friedman #l 6.3 4.1 35% 
Friedman #2 +3 21.5 21.5 0% 
Friedman #3 -3 24.8 24.8 0% 
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Classification results 
Misclassification rates 

Debias AdaBoost 
Diabetes 23.4 26.6 
Breast 3.9 3.2 
Ionosphere 6.6 6.4 
Sonar 14.1 15.6 
Heart 15.6 20.7 
German credit - 23.6 23.5 
Votes 3.7 5.4 
Liver 25.9 28.7 
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Relative Performance Examples: 5 Algorithms on 6 Datasets 

1.0-3 
(John Elder, ER & Stephen Lee, U. Idaho, 1997) 

--c Neural Network I ? ! 

.__ . 
DiabekS Gaussian 
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I Essentially every Bundling method improves performance 

“.. ~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::l 
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Application Ex. : Direct Marketing 
(Elder Research 19?6-) 

l Model respondants to direct marketing as binary variable: 
0 (no response), 1 (response). 

l Create models using several (here, 5) different algorithms, 
all employing the same candidate model inputs. 

l Rank-order model responses: 

- Give highest-probability response value a rank of 1, 
second highest value 2, etc. 

- For bundling, combine model ranks (not estimates) into 
a new consensus estimate (which is again ranked). 

l Report number of response cases missed (in top portion). 
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Marketing Application Performance 
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5 

Median (and Mean) Error Reduced with 
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. ..and in a multitude of counselors there is safety. 
Proverbs 24:6b 

Why Bundling works 

l (semi-) Independent Estimators 
l Bayes Rule - weighing evidence 
l Shrinking (ex.: stepwise LR) 
l Smoothing (ex.: decision trees) 
l Additive modeling and maximum likelihood 

(Friedman, Hastie, & Tibshirani 8/20/98) 

. . . Open research area. 
Meanwhile, we recommend bundling competing candidate 
models both within, and between, model families. 
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