

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-793551

Johannes Luong, Dirk Habich, Wolfgang Lehner

AL: Unified Analytics in Domain Specific Terms

Erstveröffentlichung in / First published in:

DBPL 2017: The 16th International Symposium on Database Programming Languages,
München 01.09.2017. ACM Digital Library, Art. Nr. 7.

DOI: https://doi.org/10.1145/3122831.3122835

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-793551
https://doi.org/10.1145/3122831.3122835

AL: Unified Analytics in Domain Specific Terms

Johannes Luong, Dirk Habich, and Wolfgang Lehner
Technische Universität Dresden

Dresden, Germany

firstname.lastname@tu-dresden.de

ABSTRACT

Data driven organizations gather information on various aspects

of their endeavours and analyze that information to gain valuable

insights or to increase automatization. Today, these organizations

can choose from a wealth of specialized analytical libraries and plat-

forms to meet their functional and non-functional requirements.

Indeed, many common application scenarios involve the combina-

tion of multiple such libraries and platforms in order to provide a

holistic perspective. Due to the scattered landscape of specialized

analytical tools, this integration can result in complex and hard to

evolve applications. In addition, the necessary movement of data

between tools and formats can introduce a serious performance

penalty. In this article we present a unified programming environ-

ment for analytical applications. The environment includes AL, a

programming language that combines concepts of various common

analytical domains. Further, the environment also includes a flexible

compilation system that uses a language-, domain-, and platform

independent program intermediate representation to separate high

level application logic and physical organisation. We provide a

detailed introduction of AL, establish our program intermediate

representation as a generally useful abstraction, and give a detailed

explanation of the translation of AL programs into workloads for

our experimental shared-memory processing engine.

CCS CONCEPTS

• Information systems→Query languages for non-relational

engines;Data analytics;Database query processing;Main memory

engines; Online analytical processing engines; Computing platforms;

ACM Reference format:

Johannes Luong, Dirk Habich, and Wolfgang Lehner. 2017. AL: Unified
Analytics in Domain Specific Terms. In Proceedings of DBPL 2017, Munich,

Germany, September 1, 2017, 9 pages.
https://doi.org/10.1145/3122831.3122835

1 INTRODUCTION

The potential for useful insights, predictions, and increased au-
tomatization, have motivated organizations to collect big data on
all aspects of their respective endeavours. Due to a large variety
of data sources and analytical goals, big data applications often

©2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in DBPL 2017,
September 1, 2017, Munich, Germany

DOI: https://doi.org/10.1145/3122831.3122835

Figure 1: AL programming environment

deal with a variety of data types and processing algorithms. Just as

Stonebreaker and Cetintemel have predicted [12], these applications

depend on specialized engines and libraries to deal with particular

aspects of data processing, such as relational data management,

scientific computing, or graph analyses.

Unfortunately, the ad-hoc integration of a variety of tools and

systems comes with its own set of problems. Several authors criti-

cize the introduction of tool specific programming models [4, 6, 7].

The combination of multiple such models leads to an explosion

of complexity and each specialized programming model creates

a lock-in effect that hinders adoption of future technology. Fur-

ther, Alexandrov et al. [5] show that some of these models do not

permit an application oriented programming style and require a

quite detailed understanding of system internals in order to achieve

good performance. This is in contrast to traditional data oriented

languages such as SQL that isolate users from low-level details

and facilitate automatic program optimization. The performance of

using multiple tools and systems has been criticized as well. Palkar

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

DBPL 2017, September 1, 2017, Munich, Germany Johannes Luong, Dirk Habich, and Wolfgang Lehner

et al. [11] show that bulk data movements between independent

tools and libraries can degrade performance considerably.

In this paper, we introduce our unified data oriented program-

ming model and show how this model deals with the aforemen-

tioned problems by introducing a novel layer of abstraction between

high level programming languages and physical implementations.

The discussion will revolve around three primary subjects: (1) the

AL data processing language that integrates domain specific con-

cepts of multiple application domains, (2) the domain-, language-,

and platform independent program intermediate representation

COMP-IR, and (3) an extensible translation system that maps AL

programs to their COMP-IR representation and subsequently to an

executable program of a physical execution engine.

Figure 1 provides a coarse overview of these components and

their interactions. In the upper part, AL is shown as a container

language that integrates several domain specific sublanguages such

as a SQL dialect, a query language for graphs, and possibly oth-

ers in future work. These languages function as the domain- and

application oriented user interface of the programming environ-

ment. The intermediate program representation COMP-IR, in the

center of the figure, provides a common compilation target for all

domain specific sublanguages of AL. COMP-IR is a small, general

language that is well suited to be translated into efficient programs

for parallel processing engines. At the bottom of Figure 1, multiple

processing engines are available to execute COMP-IR programs.

These engines have to be extended with an adequate COMP-IR run-

time, which translates the intermediate representation into physical

instructions.

AL is a special purpose programming language for the definition

of complex data processing programs. It integrates elements of

various domain specific languages into a coherent multi-domain

programming language. In this article, we discuss relational process-

ing with a SQL derivate and graph processing with a sublanguage

that resembles Cypher [1]. However, AL is not limited to these

domains and we plan to add a linear algebra sublanguage in future

work. Where possible, AL’s syntax resembles that of its ancestors,

but in general, it has been chosen to be general and easily exten-

sible. In particular, AL uses function and method calling syntax

and it offers variable bindings to enable flexible composition of

statements.

The COMP-IR intermediate representation is the central abstrac-

tion of the programming model. It provides a language, domain-

and platform independent program representation that can ex-

press a large set of typical data processing applications. At its core,

COMP-IR is an encoding of certain types of monad comprehen-

sions [13], an elegant notation of programs that iterate over data

collections to compute some result. Monad comprehensions have

long been established as an adequate representation for certain

query languages [8, 10]. But, due to their flexible data model and

their general notion of computation, we find monad comprehen-

sions to be especially useful as a unifying common basis for a multi

domain data processing system.

To make practical use of AL and COMP-IR, we need a translator

that can transform these representations into an executable pro-

gram. As it is common in many compilers, we split the translation

into two strictly separate phases. First, the AL frontend transforms

an input program into an equivalent COMP-IR representation. Sec-

ond, a runtime specific backend translates the COMP-IR represen-

tation into an executable program. The two compilation phases are

implemented in separate applications that communicate exclusively

via a JSON serialization of the COMP-IR program.

The main contributions of this paper are the following

(1) We introduce the programming language AL that currently

supports relational- and graph pattern queries.

(2) We present the COMP-IR program intermediate representa-

tion and give a detailed explanation of the COMP-IR transla-

tor frontend for AL.

(3) We discuss an COMP-IR backend that generates executable

programs for our experimental shared-memory data process-

ing engine Erison.

The remainder of the article is structured as follows: in Section 2

we provide an in depth introduction of the AL programming lan-

guage. In Section 3 we discuss the COMP-IR program intermediate

representation and the AL translator frontend that compiles AL

into COMP-IR. In Section 4 we take a look at COMP-IR runtimes

and especially discuss the experimental Erison runtime for low la-

tency, shared-memory processing. In Section 5 we take a look at

related work, and in the final section we summarize our findings

and consider directions for future work.

2 THE AL PROGRAMMING LANGUAGE

The primary goal of AL is to provide a unified query language

for a variety of data processing domains. In contrast to typical

query languages, AL uses function- and method calling syntax and

enables query composition using variable bindings. Listing 1 shows

an AL program that combines relational- and graph processing.

The first part of the query consists of a simple relational query that

computes the sum of all purchases of the current month for the

active user. In the second part of the program, a graph query finds

related products that could be advertised to the active user.

AL’s sublanguage for relational queries closely resembles tradi-

tional SQL. The FROM clause designates purchases_month as source

table of the query, theWHERE clause filters purchases_month based

on its user_id column, and the SELECT clause creates a sum ag-

gregation on the price column. The query computes a scalar of

type double which is bound to the currentBill variable. currentBill

is later used in the filter expression of the WHERE clause in the

graph query. The use of the bound value is serves as example for

the composition of queries in AL.

The graph query language resembles Cypher [1], which uses

patterns to extract subgraphs of an overall graph. Patterns are speci-

fied as graphs themselves, using a textual representation of vertices

and edges. In a nutshell, a pattern simply defines the shape of the

subgraph that should be extracted by the query. Besides shape, the

pattern can also specify predicates on vertex attributes or edge la-

bels, to further constrain the set of matching subgraphs. The graph

query in Listing 1 combines three patterns to find products that

have been bought by users who also bought a product that the

current user has previously looked at. The first pattern establishes

the connection between the current user’s vertex u and a product

p that u has looked at. The second pattern adds the constraint that

there has to exist an additional user u2 who has bought p at some

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

AL: Unified Analytics in Domain Specific Terms DBPL 2017, September 1, 2017, Munich, Germany

def recommendetProducts(uid: Long): ALPromise =
AL"""

currentBill =
SELECT(

sum(price)

).FROM(

purchases_month

). WHERE(

purchases_month.user_id == $uid

)

relatedProducts =
MATCH(

u[User](id == $uid) -visited -> p[Product],

u2[User] -bought -> p,

u2 -bought -> p2[Product]

). WHERE(

ABS(u.avg_m_bill - u2.avg_m_bill) < 100.0,

p2.price < u.avg_monthly_bill - currentBill

). RETURN(

p2.id AS product_id ,

p2.url AS product_url

)

return relatedProducts

"""

Listing 1: Graph and relational query

point. Finally, the last pattern adds the requirement that there also

has to be another product p2 that has been bought by u2. Following

the path patterns, theWHERE clause further constrains the set of

matching subgraphs. In particular, the difference between the aver-

age monthly bills of u and u2 can not exceed 100.0 and the price

of p2 hast to be lower than the difference of the average monthly

bill and the current bill. The graph query is bound to the name

relatedProducts which is eventually returned as the result of the AL

program.

AL uses function- and method calling syntax as well as types to

emulate the clauses of query languages. The SELECT function, for

example, returns an object of type SelectExp that defines a FROM

method. FROM, on the other hand, returns an object of type BagExp

with methods such as WHERE, GROUP_BY and so on. Every AL

program has to return a single result object and only the queries

that are necessary to compute that object will be executed by the

engine. However, this rule does not reduce the expressiveness of

the language as AL functions are side effect free. In addition, AL

programs can only return objects of certain types. Types such as

SelectExp or MatchExp are considered to be internal because their

objects do not represent a complete query. The set of types that can

be returned by programs make up the data model of AL. Currently,

the following types are supported:

Scalar IntExp, DoubleExp, StringExp

Structured RecordExp

Composite BagExp

Many query languages involve the use of symbols, whose mean-

ing is defined by an implicit context. In Listing 1, the meaning of

sum(price) depends on a definition of price , which is provided by
the subsequent FROM clause.AL treats any expression that contains

implicit names as a lambda expression that abstracts over these

names. Therefore, sum(price) is equivalent to λprice . sum(price).
This rule enables name binding of all elements of typical query lan-

guages and clearly defines the semantics of composing expressions

with implicit names.

The first line of the listing is not part of the AL program, but

belongs to a larger Scala1 application that embeds the AL program

as part of its logic. AL is implemented as a Scala library and AL

programs can easily be embedded into Scala programs using the

AL"..." string interpolator. The interpolator’s primary use is the

import of Scala values into AL programs. This can be seen in the

relational query where $uid is used to access the uid parameter of

the surrounding recommendetProducts Scala function. Internally,

the interpolator simply concatenates AL code and Scala values into

a single program string and forwards that string to a compiler

function. That function translates the program into COMP-IR form,

sends it to a COMP-IR runtime, and returns a result handle to the

Scala application. As an alternative to the interpolator, the compiler

function can also be used directly, which makes it easy to create

standalone or web based AL clients.

3 COMP-IR AND THE AL TRANSLATOR

AL integrates a diverse set of query languages into a common frame-

work. As can be seen in Figure 1, COMP-IR is the central element

of the programming environment that enables this integration.

COMP-IR accomplishes this by providing a common language that

is both general enough to represent important query languages,

but also specific enough so that important optimizations for data

intensive applications can be expressed in it. The AL translator is

an extensible compilation framework that transforms AL program

strings into COMP-IR documents. The compilation process involves

a sequence of program representations and transformation passes

which we will discuss in detail in Section 3.1. We plan to extend

AL with additional domain specific languages in future work and

therefore put an emphasis on making the translator extensible. In

Section 3.2, we show how the translator framework uses inheri-

tance to add new language elements and transformation passes in

a completely composable manner.

3.1 Representations of an AL program

The translation process involves four different program representa-

tions, as is depicted in Figure 2. Except the AL program itself, each

representation is derived from the previous one and can be subject

to a sequence of transformation passes. At first, the translator uses

Scala library functions to parse the AL program string into a Scala

abstract syntax tree (AST). The AST is a detailed, tree shaped, struc-

tural representation of the AL program. For our purposes, the AST

has several drawbacks. On the one hand, it is designed for the fea-

ture rich general purpose programming language Scala. Therefore,

simple domain specific concepts are spread over extensive AST

subtrees and even simple domain specific transformations have to

define complex tree matching and construction logic. On the other

hand, the AST is a difficult target for control and data flow analyses,

primarily because of the complex representation of jump target-

and name binding positions in a graph.

1http://scala-lang.org/

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

DBPL 2017, September 1, 2017, Munich, Germany Johannes Luong, Dirk Habich, and Wolfgang Lehner

val currentBill =
SELECT(

sum(price)
).FROM(

lineitem_month
).WHERE(

lineitem_month.customer == customer.id
)

val relatedProducts =
MATCH(

u[Customer](id == $userId) –visited-> p[Product],
u2[Customer] -bought-> p,
u2 –bought-> p2[Product]

x1 = Identifier(„price“)
x2 = SqlSum(x1)
x3 = SqlSelect(x2)
x4 = Identifier(“lineitem_month“)
x6 = SqlFrom(x3, x4)
x7 = Identifier(„lineitem_month“, „customer“)
x8 = Literal(23)
x9 = Equals(x7, x8)
x11 = Identifier(„customer“, „id“)
x12 = Equals(x7, x8)
x13 = SqlWhere(x6, x9)
x14 = Identifier(„id“)
x15 = Literal(23)
x16 = Equals(x14, x15)
x17 = ...

x47 = Comp<Bag>(
b0.price |

b0 <- lineitem_month,
b0.customer == 23

)

x48 = CompSum(x47)

x49 = Comp<Bag>(
Row(„p_id“ -> b9.id, „p_url“ -> b9.url) |
b0 <- _vertices,
b0.type == User, b0.id == 23,
b1 <- _vertices,
 b1.type == Product,
b2 <- b0.edges,
b2.target == b1, b2.label == visited,
b3 <- b1.edges
b3.label == bought

val currentBill =
SELECT(

sum(price)
).FROM(

lineitem_month
).WHERE(

linelinelinelineitemitemitemitem monmonmon_mon_ th cth cth.cth.custoustoustoustomermermermer ====== custcustcustcustomeromeromeromer idid.id.id
)))))

llvalvalval llrelarelarelat dPt dPtedPtedPtedP ddrodurodurodu ttctsctscts =
MATCMATCMATCMATCMATCH(H(H(H(H(

uuuu[C[C[Cus[Cus[Cus[Custttometometometome](](r](r](r](r](idididididid $$== $== $== $ $$useruseruseruserIdIdIdIdIdId)))))) –– i ii ivisivisivisivisit dt dtedtedtedted-- [[> p[> p[> p[> p[p P dP dProdProdProdProd ttuctuctuctuct]]]],],],,
2[Cu2[Cu2[Cu2[Cu2[Cu2[Custoustoustoustousto]mer]mer]mer]mer]mer] --bbougbougbougbougboughhththththt--> p> p> p,> p,> p,

u2u2u2u2u2 –bbougbougbougbougbougghhththththt-> p2> p2> p2> p2 p2p [[[[[[- dProdProdProdProdProductuctuctuctuct]]]]]]

x1 = Identifier(„price“)
x2 = SqlSum(x1)
x3 = SqlSelect(x2)
x4 = Identifier(“lineitem_month“)
x6 = SqlFrom(x3, x4)
x7 = Identifier(„lineitem_month“, „customer“)
x8x8x8x8 == LiteLiteLiteLiteralralralral(23)(23)(23)(23)()
x9x9x9 == EquaEquaEquaquaq llslsls((x7(x7,(x7,(x7,(, x8x8x88))))))
x11x11x11x11 Id= Id= Id= Id Id tientientientientififierfierfierfier((((„(„(„custcustcustcustomeromeromeromer“““, „, „, „ididididid“)“)“))))
1212x12x12x12x12 = EEEquaEquaEquaEquaq lllslslsls(7(7(x7,(x7,(x7,(x7,(, 8)8)x8)x8)x8)x8))
13x13x13x13x13 == S lWSqlWSqlWSqlWSqlWq hherehereherehere(6(x6(x6(x6,(x6, 9x9x9x9x9)))))
14x14x14x14x14 IdId= Id= Id= Id Id titientientientientifififierfierfierfier(((((„(„(„ididididid“)“)“))))

x151x15x15x15x15 ==== LiteLitLiteLiteLiteLite lralralralralral(23(23(23(23(23(23))))))
16x16x16x16x16 == EEquaEquaEquaEquaq llslslsls((14(x14(x14(x14(x14 1x1, x1, x1, x1,)5)5)5)5)5))
17x17x17x17x17 === ...

x47 = Comp<Bag>(
b0.price |

b0 <- lineitem_month,
b0.customer == 23

)

x48 = CompSum(x47)

x49 = Comp<Bag>(
Row(„p_id“ -> b9.id, „p_url“ -> b9.url) |
b0b0b0b0b0b0 <<<-- _vertertvertvertvertiicesicesicesicesices,,
b0 tb0 tb0 tb0.tb0.typeypeypeypeype ======== UserUserUserUserserUser b0b0b0, b0, b0 ididid.idd.id 2== 2== 2== 2== 2 23333,33,
b1b1 <b1 <b1 <- __ tvertvertvertve iicesicesices,,
b1 tb1 tb1.tb1.typeypeypeype ======== ProdProdProdProductuctuctuct,
b2b2 <b2 <b2 <b2 <b2 <- b0b0 eb0 eb0 eb0.eb0.eddgesdgesdgesdgessdges,,,
b2b2 tb2 tb2.tb2.targeargeargeg ttt ==t == b1b1b1b1,b1,, b2b2b2b2.b2.l blabelabelabelabellll ==l == i iisivisivisivisi dtedtedtedted,,
b3b3b3 <b3 <b3 <- bb1b1 eb1.eb1.edddgesdgesdges
b3 lb3 lb3 lb3.lb3.l b lb labelabelabel ====== bbbougbougbouggghhthththt

Figure 2: Representations of an AL program

Due to these limitations, the translator transforms the AST into

the more convenient ASSIGN-IR representation. Conceptually, an

ASSIGN-IR program is a directed graph of blocks and each block

is a sequence of variable assignments. A variable is assigned to

exactly once and each value is the result of a combinator expression

over primitive values and previously assigned variables. The com-

binators represent the semantic vocabulary of AL and its domain

specific languages. Some of the combinators are of general use, such

as Identifier, Literal, or Equals. Others, such as SqlSelect or SqlFrom,

represent domain specific concepts. The vocabulary of ASSIGN-IR

can be easily extended by adding additional domain specific com-

binators. We use ASSIGN-IR as a generic code representation that

can easily express more specialized concepts via well known combi-

nator names. This is especially useful in combination with Scala’s

pattern matching abilities, which allow to identify combinators by

name and parameters. In summary, ASSIGN-IR is a generic, easily

extensible, and easy to deal with code representation, that explicitly

represents control- and data flow.

COMP-IR is an ASSIGN-IR extension that adds combinators for

monad comprehensions and a small set of comprehension specific

functions. Monad comprehensions provide an elegant and domain

independent language for the selection, composition and filtering

of collections of data. Monad comprehensions can express the re-

lational algebra but are not limited to relational processing. For

example, they can also be applied to ordered sequential data struc-

tures such as arrays. ASSIGN-IR is transformed into COMP-IR by

mapping domain specific combinators such as SqlSelect(...) onto

comprehension combinators such as Comp<Bag>(...). The COMP-IR

transformation is finished, when all domain specific combinators

have been replaced with comprehensions combinators and the pro-

gram is in pure comprehension form. In the next sections we are

going to discuss monad comprehensions in more detail and define

abstract translation rules for several AL language elements.

Monad comprehensions. Monad comprehensions are closely

related to the set builder notation of mathematics and list compre-

hensions of programming languages such as Haskell or Python. For

example, the Haskell list comprehension

[i | i <- [1..10] , i `mod ` 2 == 0]

creates the list of all even numbers between 1 and 10 and

[(i, j) | i <- [e | e <- [1..4] , e `mod ` 2 == 0],

j <- [u | u <- [1..4] , u `mod ` 2 == 1]]

builds the list of all combinations of even and uneven numbers

between 1 and 4. The general list comprehensions syntax looks as

follows: [h | q1, . . . ,qn]. The qi are the qualifiers of the com-
prehension and each qualifier can either be a binding or a filter. A

binding has the form b ← l and it introduces the identifier b that
is bound to an element of the list l . An identifier that is bound in
qualifier qi is available in all subsequent qualifiers qj , j > i and
also in h, the head of the comprehension. l can reference some

previously defined list or be specified as a nested list comprehen-

sion. Nested comprehension can reference identifiers of the outer

comprehension to create correlated nested comprehensions. A com-

prehensions can be thought of as a loop nest where each binding

creates an additional nesting level and inner loops are in the scope

of outer loops.

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

AL: Unified Analytics in Domain Specific Terms DBPL 2017, September 1, 2017, Munich, Germany

-- Haskell

let l = [(i, j) | i <- [0..10] ,

j <- [i..10] ,

i `mod ` j == 0]

// C++

vector <tuple <int , int >> l;

for (int i = 0; i < 10; ++i) {

for (int j = i; j < 10; ++j) {

if (i % j != 0) continue;

l.push_back(make_tuple(i, j));

}

}

Listing 2: Comprehension as a loop nest

Filters are of the form p(bx , . . . , bz). A filter applies a predicate

function p to a subset of the available bindings. If the filter evaluates
to false the current set of bindings is discarded and the comprehen-

sion evaluates the next set of bindings. In terms of a loop nest, a

filter is a guard in the outer most level of the nest that contains

all bindings of the filter. If the guard evaluates to false it continues

to the next iteration of its loop. The head of a comprehension is

an arbitrary function h(bx , . . . , bz) over the comprehension’s
bindings. In a nutshell, a comprehension evaluates a head function

for every set of bindings that passes all filters and inserts the func-

tions’s return value into the result of the comprehension. Listing

2 shows a comprehension that pairs all integers between 1 and

10 with their factors. Below the comprehension an analogous C++

code computes the same result using a loop nest.

Wadler [13] discovered that list comprehensions can be general-

ized to comprehensions over monads with zero. Based on Wadler’s

definition, we consider a monad with zero to be an abstract data

type with four operations that satisfy a small set of algebraic laws.

The operations are declared as follows:

– unit :: a -> Monad a

– zero :: Monad a

– map :: (a -> b) -> (Monad a -> Monad b)

– join :: Monad (Monad a) -> Monad a

unit inserts a value into a new Monad a instance, and zero creates

an empty Monad a, the second-order map takes a function from a

to b and turns it into a function fromMonad a toMonad b, and join

unnests aMonad (Monad a) into aMonad a. For a discussion of the

algebraic monad laws we refer to [13].

Monads provide a generic interface for a variety data structures

such as lists, sets, and bags [9]. Wadler introduces four equations

that define the semantics of comprehensions in terms of a monad

type t.

[h |]t ≡ unit t h, (1)

[h | b ← lt]t ≡ mapt (λb .h) l , (2)

[h | q1,q2]
t ≡ joint ([[t | q1]

t | q2]
t), (3)

[h | b ∈ Bool]t ≡ if b then [h]t else []t (4)

The equations show that monad comprehensions can operate on

many data types that are commonly used in data intensive applica-

tions. Monad comprehensions are also naturally composable and

nested comprehensions can be correlated to outer comprehensions

to express complex data dependencies. We will show in the follow-

ing sections that monad comprehensions can express the semantics

of most of AL’s language elements and that they can be automati-

cally translated into efficient execution programs. We are therefore

confident that monad comprehensions provide an excellent means

to specify the selection, filtering and combination of data for many

common query languages.

Mapping al to monad comprehensions. Many elements of AL’s

query languages can be expressed in terms of monad comprehen-

sions. In this section we are going to introduce semantic translation

rules that map AL expressions such as relational queries or path

patterns onto equivalent monad comprehensions. Details on the

implementation of these rules in the COMP-IR transformation pass

will be discussed in the next section.

We define translation rules as mappings of an abstract translator

function Tr. Basic relational queries can be translated into a single

flat comprehension over bags:

Tr
��
�
SELECT(s1 as n1, . . . , si as ni)
.FROM(r1 as b1, . . . , r j as bj)
.WHERE(p1, . . . ,pk)

��
�

≡

[Record(n1 : Tr(s1), . . . ,ni : Tr(si)) |

b1 ← Tr(r1), . . . , bn ← Tr(rn),Tr(p1), . . . , Tr(pk)]
Baд

Group by queries are mapped to nested comprehensions:

Tr(SELECT(s as n).FROM(r as b).WHERE(p).GROUP_BY(b .k))

≡[
[Record(n : Tr(s)) | b2 ← Tr(r), b2.k = b1.k]Baд |

b1 ← Tr(r)
]Baд

Some relational concepts such as aggregations or the order by clause

can not be easily expressed with monad comprehensions. To sup-

port these elements COMP-IR provides a set of built-in functions

such as sum, avg, or sort. Graph queries are mapped to monad

comprehensions using the following rules:

Tr
��
�
MATCH(t1, . . . , ti)
.WHERE(p1, . . . ,pj)
.RETURN(s1 as n1, . . . , sk as nk)

��
�

≡

[Record(n1 : Tr(s1), . . . ,nk : Tr(sk)) |

Tr(t1), . . . , Tr(ti), Tr(p1), . . . , Tr(pj)]
Baд

Tr(b1[T1](p1) − [l] → b2[T2](p2))

≡

b1 ← _vertices, b1.type = T1,
b2 ← _vertices, b2.type = T2,

bE ← b1.edдes, bE .label = l , bE .tarдet = b2

for path expressions t ≡ b1[T1](p1) − [l] → b2[T2](p2). The graph
translation rules assume the existence of a single unnamed graph

whose physical representation supports vertex centric traversals.

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

DBPL 2017, September 1, 2017, Munich, Germany Johannes Luong, Dirk Habich, and Wolfgang Lehner

Figure 3: AL translator framework

3.2 Translator extensions and Traversals

Extensibility is the guiding design goal for the implementation of

the translator framework. AL currently supports simple relational

and graph pattern matching queries but we plan to extend the

language with additional core features and domain expressions

in future work. For example, we would like add support for do-

main specific optimization rules, catamorphism based custom func-

tions [9], or linear algebra expression. Figure 3 shows a conceptual

overview of the translator framework. The framework comprises a

translation core and several domain specific extensions. Both core

and extensions contain transformation components for the two

intermediate program representations ASSIGN-IR and COMP-IR.

The extension’s components inherit from the core’s components

so as to enable the composition of transformations using multiple

inheritance. The core components transform domain independent

language elements such as variable bindings, primitive literals, im-

plicit names, or arithmetic expressions. The translation of domain

specific elements is forwarded to available extensions. If all exten-

sions fail to translate an element, compilation is aborted with an

error message.

All translator components are implemented as Scala traits2. A

trait defines a type and can implement methods but it can not define

any state. Due to the lack of state, traits can be involved in multiple

inheritance without causing anomalies when the inheritance hier-

archy contains multiple copies of the same type. Listing 3 shows

excerpts of the traits that define the core ASSIGN-IR transformation.

The listing contains the three traits AssignBase, LiteralsToAssign,

and BoolExpToAssign, and the singleton object AstToAssign. Both

LiteralsToAssign and BoolExpToAssign inherit from AssignBase and

AstToAssign inherits from all three traits. At the end of the list-

ing, object AstToAssign is used to transform an AST object into

ASSIGN-IR form.

Trait AssignBase defines the method toAssign which translates

a Scala AST object into ASSIGN-IR form. In AssignBase, toAssign

simply throws an exception to abort the translation. This represents

the base case where the AST did not match any translation rules.

Traits LiteralsToAssign and BoolExpToAssign override toAssign and

use pattern matching to find semantic elements that can be mapped

to ASSIGN-IR nodes. If a rule matches successfully, it returns an

2http://docs.scala-lang.org/tutorials/tour/traits.html

trait AssignBase extends Transformation {

var bindings = Map.empty[Tree , Binding]

override def transform(t: Tree): Binding =
findBinding(t) match {

case Some(b) => b

case None => createBinding(t, toAssign(t))

}

def createBinding(t: Tree , n: AssignNode) = {

bindings += t -> Binding.fresh(n)

bindings(t)

}

def toAssign(t: Tree): AssignNode

throw Exception("Could not transform: " + t)

}

trait LiteralsToAssign extends AssignBase {

override def toAssign(t: Tree): AssignNode =
t match {

case Literal(Constant(i: Int)) =>
IntLiteral(i)

// ...

case _ =>
super.transform(t) // delegate to super

}

}

trait BoolExpToAssign extends AssignBase {

override def toAssign(t: Tree): AssignNode =
t match {

case q"$lhs && $rhs" =>
And(transform(lhs), transform(rhs))

// ...

case _ =>
super.transform(t) // delegate to super

}

// create an ast to ASSIGN -IR transformer

object AstToAssign extends AssignBase

with LiteralsToAssign

with BoolToAssign

// transform some t: Tree into ASSIGN -IR

val assignForm = AstToAssign.transform(t)

Listing 3: ASSIGN-IR transformation

object that represents one of the ASSIGN-IR functions such as And

or IntLiteral.AssignBase further defines themethod transformwhich

essentially calls toAssign and stores the result in a new variable

binding. Translation rules, such as the one for boolean conjunction,

recursively call transform on AST subtrees and thereby transform

the whole AST.

Both LiteralsToAssign and BoolExpToAssign define a default rule

that delegates translation to super. This is the key technique that

enables composition in the AL translator. The technique relies on

Scala’s type linearization rules which define how delegation to super

is handled with regard to multiple inheritance. Consider a type D

that extends the types A, B, and C, in that order. If a method in D

delegates to super, method resolution first searches type C, than

B, and finally A for a definition of the function. That is, method

resolution traverses the list of extended types from right to left

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

AL: Unified Analytics in Domain Specific Terms DBPL 2017, September 1, 2017, Munich, Germany

Figure 4: Erison COMP-IR architecture

to find a definition3. With regard to AstToAssign, this means that

the definitions of toAssign of all three traits are composed into

a sequence of pattern matching rules that is sequentially evalu-

ated until a match is found. The sequence starts with the rules

of BoolToAssign, continues with the rules of LiteralsToAssign, and

ends with the exception throwing implementation of AssignBase.

Extending AL is therefore simply a matter of defining additional

traits and adding them to the inheritance chains of the ASSIGN-IR

and COMP-IR transformations.

The COMP-IR transformation component also uses multi trait

inheritance as a means for extensibility and pattern matching to

identify program elements. However, the transformation algorithm

itself is quite different compared to the ASSIGN-IR approach. For a

start, the entrance point of the transformation is the last variable

binding that has been generated by the ASSIGN-IR transforma-

tion, which is the return value of the AL program. In other words,

the COMP-IR transformation starts at the final statement of the

ASSIGN-IR program and recursively works its way backwards. It

immediately follows that the transformation will only consider

statements that are reachable from the return value of the program.

As we have discussed in Section 2, AL programs have to return

values of a certain set of types. The COMP-IR transformation asserts

this property bymatching the programs return value against a set of

so called trigger combinators. This includes combinators such as Sql-

Where or GraphReturn. If the transformation finds a trigger, it saves

it in an internal buffer, and switches into a domain specific mode. If,

for example, the trigger is a SqlWhere, the transformation switches

into SQL mode, and if it is a GraphReturn, it switches into Graph-

Mode. The combination of a combinator buffer and a transformation

mode is called a translation context. Once the transformation has

switched into domain mode, it recurses over the arguments of the

buffered trigger combinator and uses mode specific matching rules

to identify further ASSIGN-IR combinators that belong to the same

query. Every combinator that is found in this way is also inserted

into the buffer. Eventually, a complete query has been matched

and at that point the transformation simply uses a translation rule

similar to the ones we have discussed in Section 3.1 to translate

the buffered combinators into a comprehension. Ultimately, that

comprehension is returned as the result of the transformation. If at

any point the transformation encounters an ASSIGN-IR combinator

3Scala’s actual linearization rules are somewhat more involved as they also have to
consider super types in the extension list. However, four our purposes the simplified
rules are sufficient.

that can not be matched in the current mode, the transformation

pushes a nested translation context that starts in trigger detection

mode and it tries to build a nested comprehension. Not surprisingly,

additional triggers and modes can be introduced by inheriting from

additional traits.

4 COMP-IR RUNTIMES

To be of any practical use, COMP-IR programs have to be translated

into executable programs at some point. COMP-IR is an abstract

representation that supports different approaches to accomplish

that translation. In [5], Alexandrov et al. demonstrate how compre-

hensions can be mapped onto the processing operators of the big

data processing framework Apache Flink4. Similarly, we were able

to create an early prototype of a COMP-IR Flink runtime that can

execute COMP-IR programs. Essentially, a COMP-IR Flink runtime

consists of a catalog that maps logical names to physical data ob-

jects and an algorithm that translates comprehensions onto Flink

operators.

In this paper however, we want to explore the translation of

COMP-IR into efficient programs for shared memory multi proces-

sor systems. For this purpose, we created the Erison data processing

engine and a corresponding COMP-IR runtime. Erison is written

entirely in C++ and uses standard data structures for data storage.

Data is stored in tables in a column oriented format. The engine

uses the Intel© TBB task scheduler [3] for parallelized processing.

The scheduler assigns user provided processing tasks to a set of

worker threads and relies on a work stealing mechanism for load

balancing.

Figure 4 shows the system architecture of the Scala host ap-

plication and the Erison execution engine. A complete roundtrip

through the system involves five steps. (1) the Scala host applica-

tion submits an AL string to one of the translator’s compilation

methods, (2) the translator transforms the program into COMP-IR

4https://flink.apache.org/

Figure 5: Hash join program

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

DBPL 2017, September 1, 2017, Munich, Germany Johannes Luong, Dirk Habich, and Wolfgang Lehner

Figure 6: Parallelized program

representation and sends the resulting JSON object to the Erison

COMP-IR runtime, (3) the runtime uses program interpretation and

runtime code generation to create tasks for the scheduler, (4) the

runtime stores the result of the COMP-IR program in a permanent

data object and sends an object handle to the AL translator, (5) the

translator returns the handle to the host application which can use

it to retrieve program results.

The Erison COMP-IR runtime translates a COMP-IR program into

a sequence of possibly nested loops. Each loop traverses over a range

of a table, applies filters, and eventually executes a core statement

which can be either another (nested) loop or a materialization

operation. Figure 5 shows the loop sequence for a hash join on orders

and lineitem. The first loop traverses the orders table and filters all

rows whose totalprice column has a value below 5000. Its core is a

HashTableInsert statement which materializes the orderkey column

in a hashtable. The second loop traverses the lineitem table and

filters rows whose tax value is greater than 0.01. Its core statement

is a nested HashLoop that queries the orders hash table with key

lineitem[orderkey][row]. The HashLoop does not apply filters and

its core is an EmitRecord statement which materializes join results.

The fixed loop structure with a single materialization operation

guarantees a minimal number of materialized intermediate results.

The individual loop nests are dynamically generated and com-

piled using LLVM. This ensures maximum performance in the

critical sections of the program. Each loop nest is further embedded

in a ParallelFor structure as depicted in figure 6. ParallelFor is a

task scheduler function that partitions a numeric range and calls

a user defined function on each range partition in parallel. The

ParallelFor structure builds a nest that mirrors the nesting of the

generated loop nest. That is, a generated loop nest over tables A

and B is embedded in a ParallelFor nest over A and B.

COMP-IR programs are translated into loop sequences using a

simple algorithm. First, a comprehension creates a single nested

loop with one nesting level for each binding of the comprehension.

Second, the comprehension’s filter expressions are added to the

loop nest and depending on the type of the filter, the loop nest is

split into two consequent nests that are executed sequentially. This

is true, for example, for an equality filter on integer fields of two

bindings which can be implemented as hash join. Finally, the the

comprehensions head expressions is inserted into the last nest of

the sequence.

5 RELATEDWORK

The primary goal of AL is to provide a programming language that

integrates several domain specific query- and data processing con-

cepts into a single coherent programming model. The primary goal

of COMP-IR is to define a domain independent program interme-

diate representation that can be translated into efficient programs

for modern hardware and system architectures. In combination,

AL and COMP-IR create a programing environment that is both

flexible in the applications that it supports and in the execution

environments that it can target.

Others have recognized the need for such a system as well. To

that end, Duggan et al. propose the BigDAWG polystore system [6].

BigDAWG is a multi-domain data processing system that delegates

workloads to a set of specialized database engines. For example, it

can connect to multiple RDMS that each offer different non func-

tional properties and delegate each query to the engine that is

best equiped to process it. BigDAWG’s programming language

allows the composition of SQL and array database queries in a

single program. During execution the system splits up the program

and forwards the individual queries to an engine that can handle

them. This approach eliminates the need for a dedicated query

compilation and allows to make the best use of the connected en-

gines. Unfortunately, the limited abstraction from specific query

languages also voids any approach to extend BigDAWG’s language

with additional features or domain concepts. In addition, the lack of

a domain independent intermediate representation makes it hard

to add support for general purpose processing engines, such as

Appache Spark [2], without having to implement a complete set of

query compilers.

Musketeer [7] is a system that can translate different existing

query languages into workflows for a set of dataflow engines. The

compilation relies on a graph based, turing complete intermediate

representation which provides a common ground for query lan-

guages and execution engines. Musketeer supports input languages

such as Hive, Giraph, or SparkSQL and can generate programs for

Spark, Hadoop, and similar engines. However, Musketeer does not

offer a language that integrates multiple application domains, such

as AL.

Weld [11] uses a flexible program intermediate representation

and a central data processing engine to avoid costly copying of

datasets between various libraries. The program intermediate rep-

resentation is based on nested loops and closely resembles monad

comprehensions. The authors argue that a loop oriented represen-

tation is superior to combinator based representations because it

facilitates important optimization such as loop fusion and vector-

ization. Weld underlines the performance penalty that is implied

by using multiple data processing systems as compared to using a

single one. In addition, Weld provides another example for a data

oriented program intermediate representation that can capture a

large variety of applications.

6 CONCLUSIONS AND FUTUREWORK

In this article we present our approach to a data oriented program-

ming environment for multiple application domains. Our program-

ming language AL supports relational queries, graph pattern match-

ing queries, and also the composition of these queries. We have

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

AL: Unified Analytics in Domain Specific Terms DBPL 2017, September 1, 2017, Munich, Germany

presented an extensible translation framework that can transform

AL programs into the domain and platform independent COMP-IR

program intermediate representation and we have shown how

COMP-IR programs can be compiled into workloads for our experi-

mental data processing engine Erison.

AL and COMP-IR are still in early development and a lot of in-

teresting questions remain. An important open area are program

optimizations and especially optimizations that cross the bound-

aries between different query models. Related to that, we plan to

explore which optimizations can be done during the transforma-

tion into COMP-IR form and which ones have to be delegated to

the COMP-IR runtime. Besides these issues, we are also interested

in extending AL itself. On the one hand, we want to add a linear

algebra sublanguage. This will allow us to explore the interactions

between different data types, namely bags of records and fixed sized

matrices. On the other hand, we are interested in adding support

for the definition of custom functions in AL.

REFERENCES
[1] [n. d.]. http://neo4j.com/docs/developer-manual/current/cypher/. ([n. d.]).
[2] [n. d.]. http://spark.apache.org/. ([n. d.]).
[3] [n. d.]. https://www.threadingbuildingblocks.org/. ([n. d.]).
[4] Divy Agrawal, Sanjay Chawla, Ahmed K Elmagarmid, Zoi Kaoudi, Mourad Ouz-

zani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Mohammed J
Zaki. 2016. Road to Freedom in Big Data Analytics.. In EDBT. 479–484.

[5] Alexander Alexandrov, Andreas Kunft, Asterios Katsifodimos, Felix Schüler,
Lauritz Thamsen, Odej Kao, Tobias Herb, and Volker Markl. 2015. Implicit
parallelism through deep language embedding. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 47–61.

[6] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan Zdonik.
2015. The bigdawg polystore system. ACM Sigmod Record 44, 2 (2015), 11–16.

[7] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P Grosvenor, Allen
Clement, and Steven Hand. 2015. Musketeer: all for one, one for all in data
processing systems. In Proceedings of the Tenth European Conference on Computer
Systems. ACM, 2.

[8] Torsten Grust. 2000. Comprehending queries. In Ausgezeichnete Informatikdis-
sertationen 1999. Springer, 74–83.

[9] Torsten Grust. 2004. Monad comprehensions: a versatile representation for
queries. In The Functional Approach to Data Management. Springer, 288–311.

[10] Torsten Grust and Marc H Scholl. 1999. How to comprehend queries functionally.
Journal of Intelligent Information Systems 12, 2-3 (1999), 191–218.

[11] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford
InfoLab. 2017. Weld: A common runtime for high performance data analytics. In
Conference on Innovative Data Systems Research (CIDR).

[12] Michael Stonebraker and Ugur Cetintemel. 2005. "One size fits all": an idea whose
time has come and gone. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on. IEEE, 2–11.

[13] Philip Wadler. 1990. Comprehending monads. In Proceedings of the 1990 ACM
conference on LISP and functional programming. ACM, 61–78.

Final edited form was published in "DBPL 2017: The 16th International Symposium on Database Programming Languages. München 2017",
Art. Nr. 7 , ISBN 978-1-4503-5354-0

https://doi.org/10.1145/3122831.3122835

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

