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Abstract
Animal behaviour is a commonly-used and sensitive indi-
cator of animal welfare. Moreover, the behaviour of animals
can provide rich information about their environment. For
online activity recognition on collar tags of animals, funda-
mental challenges include: limited energy resources, limited
CPU and memory availability, and heterogeneity of animals.
In this paper, we propose to tackle these challenges with
a framework that employs Multitask Learning for embed-
ded platforms. We train the classifiers with shared training
data and a shared feature-representation. We show that
Multitask Learning has a significant positive effect on the
performance of the classifiers. Furthermore, we compare
7 types of classifiers in terms of resource usage and activ-
ity recognition performance on real-world movement data
from goats and sheep. A Deep Neural Network could obtain
an accuracy of 94% when tested with the data from both
species. Our results show that a Deep Neural Network per-
forms the best among the compared classifiers in terms of
complexity versus performance. This work supports the de-
velopment of a robust generic classifier that can run on a
small embedded system with good performance, as well as
sustain the lifetime of online activity recognition systems.
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Introduction
Animal behavior is a strong indicator of welfare and can
provide information about social interaction between an-
imals and herds. Additionally, through monitoring animal
behaviour, it is possible to detect environmental events
such as forest fires [22], poaching activities [19], and en-
vironmental problems [18]. Moreover, activity recognition
has been implemented to aid the conservation and protec-
tion of animals such as rhinoceroses [19, 17]. For many
years, collaring technology with Inertial Measurement Units
(IMUs) and Global Positioning System (GPS) has been
widely used to study animal behavior. Most existing works
on animal behaviour recognition are offline and centralized
approaches in which sensor data is stored on the tag and
retrieved later or is transmitted wirelessly [7]. However, for
livestock and wildlife in widespread and remote areas, activ-
ity recognition needs to be executed online (while activities
are being performed) and locally (on the collar tag). On one
hand, collar tags have limited energy supply, memory, pro-
cessing power, and transmission bandwidth. Local activity
recognition will significantly prolong the battery life since it
consumes less power for data transmission, which typically
consumes more energy than data processing. On the other
hand, online activity recognition enables the monitoring
system to efficiently adapt its resource usage to a situation
(e.g., the device can sleep when the animal is sleeping). In
addition, it is dangerous, expensive, stressful for the ani-
mal, and sometimes impossible to re-capture the animals
for data retrieval and battery replacement.

In this paper, we propose a framework that employs Mul-
titask Learning (MTL) [3] for embedded platforms. We ad-
dress online activity recognition with collar-based platforms

for large heterogeneous groups of animals in real-world en-
vironments. Collected behavioural data from a fraction of
animals are used for offline training at a central server using
MTL, which performs classification tasks across individual
animals to learn the significant commonalities. The learned
models can then be implemented on the collars for online
activity recognition of other animals. Consequently, we can
significantly reduce the costs of acquiring labeled animal
activity data for numerous heterogeneous wild animals as
well as power consumption. Summary results of activity
recognition are then sent to a sink node, using a low-cost
and long range communication link such as a Low Power
Wide Area Network (LPWAN).

In order to further reduce resource consumption while
maintaining a high classification performance, we aim at
minimizing the complexity of the classification. We extract
the most informative features from raw accelerometer data
of the collar tags. Since the collars are likely to shift and ro-
tate throughout the day, we also select features that are in-
sensitive to sensor orientation in order to reduce the effects
of orientation on classification accuracy. The extracted fea-
tures are used locally to classify the animal activities using
a classification technique that possesses a lightweight infer-
ence. As a result, the proposed approach can be employed
for various (sub)families of species. Our approach allows
for the development of an application in which collars can
be placed on a group of animals without the necessity of
training the classifier and fine-tuning parameters for every
individual. Collars can then be readily deployed on animals
with a lower risk of system failure due to mislabelling and
configuration.

The main contributions of this paper are:

• This work extends research on human activity recog-
nition and provides a robust technological basis for
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online animal activity recognition
• We show that Multitask Learning significantly im-

proves the performance of a generic classifier
• We verify the classification performance of our ap-

proach among 7 types of classifiers
• We make our dataset publicly available at [9] for the

community

Related Work

Table 1: Observed activities during
the day

Activity Description

Stationary The animal is lying on
the ground or standing
still, occasionally mov-
ing its head or stepping
very slowly.

Foraging The animal is eating
fresh grass, hay from
a pile or twigs on the
ground.

Walking The animal is walking.
The pace of walking
varies from very slowly
to nearly trotting.

Trotting This is the phase be-
tween walking and
running. The animal
is not galloping rapidly
but walking very quickly
and is therefore in a trot
state.

Running The animal gallops.

In recent years, there has been a considerable rise in inter-
est in activity monitoring of livestock and wildlife using sen-
sors and embedded devices. Recent studies acknowledge
the potential of collaring applications and have evaluated of-
fline activity recognition of cows [7, 5] , sheep [13], and vul-
tures [16]. Existing approaches that identify animal behavior
rely on data-loggers, the subsequent collection of data, and
centralized processing [7, 16]. In real-world applications,
these approaches require transferring data to a central lo-
cation. However, the transmission demands high bandwidth
which dramatically reduces the precious battery life of a col-
lar tag due to the high energy consumption of radios. To
the best of our knowledge, few studies currently focus on
online animal activity recognition on collar tags. Moreover,
to the best of our knowledge, there is currently no research
on generic online activity classifiers for animals. In fact, the
only online classifier for animals, to the author’s knowledge,
was implemented by Petrus in 2016 [19], who therein states
that ’the live transmission of on-animal classified behaviour
has not been done before’, and distinguishes five activities
in sheep. Online activity recognition systems with wear-
ables have been widely studied in humans, which has an
overlap with animal activity recognition [24].

Multitask Learning (MTL) is an approach to inductive trans-
fer in which multiple learning tasks are solved at the same
time [3] and exploits the deep, subtle connections among

tasks [4]. To overcome the challenge of heterogeneity in
animals we envision a one-fits-all generic classifier; sim-
ilar challenges have been found in many other research
areas such as human activity recognition [8] and computer
vision [23].

In this paper, we investigate the applicability of MTL for
generic animal activity recognition. Moreover, we do this
with a focus on embedded, real-time classification that is
robust against heterogeneity in animals. We primarily in-
vestigate the impact of sharing a feature-representation and
instances between animals on the performance of 7 types
of classifiers, ranging from Decision Trees to Deep Neural
Networks.

Data Acquisition and Pre-processing
In this section, we first present our data acquisition sys-
tem, which comprises collar tags containing motion and
orientation sensors. We then describe how the sensor data
are pre-processed. All experiments involving the animals
complied with Dutch ethics law concerning working with
animals; thus, an ethics approval was not required.

Data collection
We collected a dataset that comprises multiple sensor
data from 4 goats and 2 sheep. The animals differ in size,
weight, and age but belong to the same subfamily Capri-
nae. We randomly attached the sensors in various orienta-
tions on each individual animal. The various positions of the
collars on three animals are indicated in Figures 1 and 2,
respectively. The collars were prone to rotation around the
animals’ necks during the day. We intensively collected data
for the duration of 1 day. The tags were synchronized with a
precision of <100 ns. We used ProMove-mini [27] tags from
Inertia Technology that contain 3D accelerometer and 3D
gyroscope sensors. All sensors were sampled at 200Hz.
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The animals were videotaped from various angles through-
out the day. The activities that were observed during the
day are listed in Table 1.

Figure 1: Sensor placement on a
sheep, the red arrows indicate the
location of the sensors

Figure 2: Sensor placement on
two goats, the red arrows indicate
the location of the sensors

Figure 3: Screenshot of the
labelling application

Data labeling
We used a labeling application based on a Matlab GUI [14]
to annotate our data (see Figure 3). The clock timestamps
from the tags were used to obtain a coarse synchronization.
The offset between the videos and the sensor data was
adjusted in the application to improve the synchronization.
The l2-norm of the accelerometer’s 3 axes, expressed in
Equation (1), is displayed in the application to visualize the
sensor data. A single annotator labeled the data by clicking
at the point representing a change in behavior on the graph.
The high synchronization achieved with the video and the
visualization of the sensor data allowed the annotator to ac-
curately label the activity associated with the sensor data.
The stop marker for one activity was also the start marker
for the following activity if that activity was of any other type
than unknown. Transitions between activities were not ex-
cluded from the data, thus some labeled data include a
transition phase to another activity. All data of all animals
was annotated according to the behaviors listed in Table 1.
All efforts were put in to ensure high quality of the labeling
process. The size of the dataset is shown in Table 2.

Multitask Learned Online Activity Recognition
Multitask Learning (MTL) is an approach to inductive trans-
fer in which multiple learning tasks are solved simultane-
ously [3] and exploits the deep, subtle connections among
tasks [4]. In the context of activity recognition, MTL can
be used to train one generalized classifier to predict the
behaviour of multiple individuals [26]. We tuned a single
classifier with Multitask Learning (MTL). Pan et. al [20]
provided the following definitions for domain and task: A
domain D is a 2-tuple (χ, P (X)), where χ is the feature

space of D, and P (X) is the marginal distribution where
X = x1, . . . , xn ∈ χ. A task T is a 2-tuple (Y, f()) for a
given domain D, where Y is the label space of D and f()
is an objective predictive function for D. f() is not given,
but can be learned from the training data [20]. In this case,
each species is a domain D and each behavioral activity is
a task T . We examined three scenarios, for each of which
the set of source domains SD = Ds1, . . . , Dsn and target
domains TD = Dt1, . . . , Dtn comprise either individ-
ual animal data, data from one species, or data from both
species. In doing so, we investigate the effect of sharing
knowledge across species on the generic performance of a
generic classifier.

Figure 4 shows a graphical representation of our approach.
Each colored box denotes an inner loop in the process.
First, we calculated only 3D-vector features from the ac-
celerometer data since they are theoretically robust against
sensor orientation [25, 21]. Firstly, we used the Relief algo-
rithm [10] to select the 3 most relevant 3D-vector features
for all data (in both Source Domain (SD) and Target Do-
main (TD)) so that a shared feature-representation was
established. Secondly, for each combination k of multiple
animals, we mixed the instances into 3 data sets: training,
cross-validation, and test data respectively. The training set
Tk was always used to train the classifier for combination
k. The cross-validation set Ck was used to optimize the pa-
rameters of the classifier. Thirdly, all data was standardized
by means of a Z-transformation, obtaining a standard score
of each feature value. Fourthly, parameter optimization was
applied to make a comparison between various classifiers
fairer. Finally, the optimally-tuned classifier was used to
assess the performance of each combination k of animal
data with the test set Vk. Each of the steps is described in
more detail in the following subsections. These steps were
repeated for each type of classifier.
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Figure 4: Training and testing with mixed data. Each colored box denotes an inner loop

Table 2: Number of instances per
individual for each activity

Stationary Grazing Walking Running Trotting

Sheep 1 3071 6039 974 432 409

Sheep 2 6376 5196 1714 386 478

Goat 1 4466 2552 1956 214 252

Goat 2 7346 2044 1850 224 66

Goat 3 7468 3998 1842 30 120

Goat 4 10418 1386 1398 6 69

Table 3: Features that were
calculated for each window of data
from all sensors and all their axes

Feature Description

Maximum Maximum value

Minimum Minimum value

Mean Average value

Standard devi-
ation

Measure of dispersion

Median Median value

25th percentile The value below which
25% of the observations
are found

75th percentile The value below which
75% of the observations
are found

Mean low pass
filtered signal

Mean value of DC compo-
nents

Mean recti-
fied high pass
filtered signal

Mean value of rectified AC
components

Skewness of
the signal

The degree of asymmetry
of the signal distribution

Kurtosis The degree of ’peaked-
ness’ of the signal distribu-
tion

Zero crossing
rate

Number of zero crossings
per second

Principal fre-
quency

Frequency component that
has the greatest magnitude

Spectral en-
ergy

The sum of the squared
discrete FFT component
magnitudes

Frequency
entropy

Measure of the distribution
of frequency components

Frequency
magnitudes

Magnitude of first six com-
ponents of FFT analysis

Feature Calculation and Selection
For each window of data we calculated features that are
typically used for activity recognition [1, 13, 24], see Ta-
ble 3. To acquire orientation independent features, we cal-
culated a 3D vector (the l2-norm) from the sensors’ indi-
vidual axes. The orientation-independent magnitude of the
3D-vector is defined as:

M(t) =
√
sx(t)2 + sy(t)2 + sz(t)2 , (1)

where sx, sy, and sz are the three respective axes of the
sensor. M(t) was calculated from the accelerometer data.

We calculated the relevance of each feature with the Re-
lief algorithm [10]. The Relief algorithm evaluates instances
and compares the value of the current feature with both
the closest instances of the same class and of the near-
est different classes. Each feature was scored according to
its variation and the separation between its own class and
nearest class. The weights were normalized so that the top
contributing features could be extracted. The min, standard
deviation, and 25th percentile features were the most rel-
evant and used to characterize the movement data of all
animals.
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Sharing Instances Among Species
We examined 3 scenarios, for each of which the set of
source domains SD = Ds1, . . . , Dsn and target domains
TD = Dt1, . . . , Dtn comprise either individual animal
data, data from one species, or data from both species.
When only the individual data was used, it was split into
60% training, 20% cross-validation and 20% training. In
the second scenario, we shared data among individuals of
the same species. Table 4 shows the combinations of ani-
mals’ data. For each combination k, two animals from one
species were divided into 60% training and 40% cross-
validation, while 2 animals’ data of the other species were
used for testing. In the third scenario we mixed the data
among both species. Table 5 shows the combinations of
animals’ data. For each combination k, 4 animals’ data
were divided into 60% training and 40% cross-validation,
while 2 animals’ data of both species were used for testing.

Table 4: Non-mixed training and
testing combinations. Gi and Si

denote a goat and sheep,
respectively.

Animals in
60% training
and 40% CV

Animals in 100%
testing

G1 G2 S2 S1

G1 G3 S2 S1

G1 G4 S2 S1

G2 G3 S2 S1

G2 G4 S2 S1

G3 G4 S2 S1

S1 S2 G1 G2 G3 G4

Table 5: Mixed training and testing
combinations. Gi and Si denote a
goat and sheep, respectively.

Animals in 60%
training and 40%
CV

Animals
in 100%
testing

G1 G2 G3 S2 G4 S1

G1 G2 G4 S2 G3 S1

G1 G3 G4 S2 G2 S1

G2 G3 G4 S2 G1 S1

G1 G2 G3 S1 G4 S2

G1 G2 G4 S1 G3 S2

G1 G3 G4 S1 G2 S2

G2 G3 G4 S1 G1 S2

Parameter Optimization
In order to make a fair comparison between different clas-
sifiers, we performed parameter optimization prior to the
performance assessment. Parameter optimization finds the
optimal values for a set of parameters. We used an evolu-
tionary approach that iteratively adjusted the various pa-
rameters of the classifiers until an optimal configuration was
found. The optimal configuration of each classifier was then
used to assess the performance.

Evaluation
In this section we first describe the classifiers that were im-
plemented together with their most important parameter
settings. Then, we discuss the resource usage measure-
ments of the various classifiers. Finally, we evaluate the
effect of multitask learning with our real-world dataset.

Classifier Implementations
All classifiers were implemented in RapidMiner [15]. We
used the following 7 classifiers in the experiments:

Decision Tree (DT) A decision tree consists of branches
and leaves which are navigated depending on fea-
ture values [11]. Throughout, the information gain
ratio of features was used as the splitting criterion.
The maximal depth of the decision tree was varied
between 1 and 100. Pruning was enabled, with a con-
fidence level varying between 1 × 10−7 and 0.5.
Pre-pruning was enabled throughout with varying pa-
rameters. Firstly, the threshold feature gain value for
splitting was varied between 1 and 100. Secondly, the
minimum number of examples at a node in order for
the node to be split was varied between 1 and 100.
Lastly, the minimum number of examples at a leaf
node was varied between 1 and 100.

Neural Network (NN) The neural network used here is a
multilayer perceptron (MLP), which is a type of feed-
forward neural network which maps input data to out-
put classes using a number of hidden layers which
contain neurons [11]. In this case, the activation func-
tion used was sigmoidal. The number of hidden lay-
ers necessary depends on the size of the data set.
Since we are dealing with a relatively small data set,
only one hidden layer was used. The number of neu-
rons in each hidden layer was defined by:

ψ =
γ + ρ

2
+ 1 , (2)

where ψ is the amount of neurons in a layer, γ the
number of features, and ρ the number of classes.
The learning rate was varied between 4.9 × 10−324
and 1, while the momentum was varied between 0
and 1. The error epsilon was set to 1 × 10−5, and a
maximum of cycles used for training was 500.
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Support Vector Machine (SVM) The support vector ma-
chine is a training algorithm that aims to maximize the
margin between data points and the decision bound-
ary. A LibSVM C-SVC [11] model was used with lin-
ear kernel throughout. The epsilon value was fixed at
0.001 while the cost function was varied between 0
and 100.

Naive Bayes (NB) Naive Bayes uses Bayes theorem in
order to build a model which determines probabilities
of each outcome [11]. The traditional naive Bayes
algorithm does not use adjustable parameters.

Linear Discriminant Analysis (LDA) LDA [11] aims to
discover the combination of features which best dis-
tinguish classes. LDA typically has no adjustable pa-
rameters.

k-Nearest Neighbors (k-NN) k-Nearest Neighbors (k-NN)
determines the class of a feature vector based on the
majority vote of the values of the k -nearest neighbors
in the example set. The measure of distance was Eu-
clidean space, and the value of k was varied between
1 and 100.

Deep Neural Network (DNN) The Deep Neural Network
(DNN) used is an implementation of the H2O 3.8.2.6
algorithm [2]. The DNN was used with 10 hidden
layers which each contained 50 neurons. The start,
ramp, and stable momentum values, as well as the
number of epochs, were varied between 0 and 100.
The annealing and decay learning rates, as well as
L1 and L2 parameters, were varied between 0 and
1. The value of epsilon was set at 1.0 × 10−8, and
the value of rho at 0.99. A multinominal distribution
function and a cross entropy loss function were used
throughout.

Resource Usage
While most machine learning studies focus on the perfor-
mance of a technique, many other criteria should be con-
sidered when selecting a classifier type [11], especially
when selecting a classifier to be used on an embedded
platform. The criteria include, but are not limited to: i. ac-
curacy; ii. CPU and memory complexity; iii. sensitivity to
irrelevant features; iv. sensitivity to continuous versus dis-
crete features; v. sensitivity to noise; vi. bias and variance
of classifiers; vii. storage space required during training and
classification stages; viii. possibilities for use as an incre-
mental learner (online ML); ix. ease of use, related to the
number of model or run-time parameters to be tuned by the
user; and x. the comprehensibility of the classifier.

Here, we focus mainly on the CPU and memory complex-
ity because these components consume the most energy.
In order to be able to discuss the trade-off between accu-
racy and complexity, we measured the CPU run-time and
memory usage for all 7 classifiers. Memory and CPU mea-
surements were taken using a PC with an Intel core i7-2600
with 4GB of RAM and a clock speed of 3.40GHz running
Windows 7 64-bit. Memory consumption was measured
using JProfiler v10.0 [6], and CPU execution times were
measured using the log operator in RapidMiner Studio v7.4.
The memory consumption was measured by running the
same task (training or inferring a model) 5 times, while forc-
ing the garbage collection operation before and after the
performed task in order to measure the amount of heap
memory consumed by the algorithm. The average of these
5 measurements was taken in order to account for anoma-
lous fluctuations. The training and inference CPU execu-
tion times were measured and averaged across 20 runs
for each of the algorithms. Using only 3 features made the
inference phase too fast on a PC to be able to take high-
resolution measurements. In an embedded system there
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will be a lower CPU speed and less memory than in a PC.
To scale the comparison to an embedded system we de-
cided to use higher-dimensional data during the compar-
ison of the classifiers. We used the principal components
that account for the top 99% of the variability in the data,
resulting in 109 components.
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Figures 5 and 6 show the memory usage and CPU exe-
cution time, respectively. The most important comparison
should be made in the inference phase because this is the
phase that takes place on the embedded system. It can be
seen that the Decision Tree (DT), Naive Bayes (NB), Neu-
ral Network (NN), and DNN classifiers consumed an equal
amount of memory in the inference phase. The NB classi-
fier was the best performing in terms of CPU usage, closely
followed by the NN and DNN classifiers. Therefore, the NB
classifier is the cheapest to use in terms of resource usage.

Effect of Multitask Learning
Figures 7 and 8 show the accuracy values and F1 scores of
each classifier for the three scenarios described in the pre-
vious section. The F1 score is also referred to as F-score or
F-measure and can be interpreted as a weighted average
of the precision and recall. An F1 score of 1 is optimal and
0 is worst. The figures show the average performances of
all individuals or the combinations of mixed and unmixed
species, denoted in Tables 4 and 5, respectively.

When the classifier was trained with data from the same
individual, this data was within the same domain, thus
SD = TD. As expected, each classifier performed the
best in this scenario. Because there were too few instances
for some animals in some classes (see Table 2) the per-
formance of this scenario can be improved by collecting
more data for each individual. When the species’ data
were unmixed, there were data of one species in the train-
ing set, and data of the other species in the test set, thus

SD 6= TD. Figures 7 and 8 both show that all classifiers
performed significantly worse in this scenario because the
difference between the two species is too large to use only
a shared feature representation. When mixing the data from
both species in both the training and testing sets, we see
a significant improvement in the performance of the clas-
sifiers. The performance approaches that of the individual
scenario, with the exception of the k-NN classifier’s F-score.
The big gap in performance between the unmixed and
mixed instance scenarios shows that the two species share
sufficient characteristics so that a generic classifier can be
trained. Our results show that, when taking into account the
complexity versus performance trade-off, the DNN classifier
is the best among the compared classifiers.

Conclusions and Future Work
We have discussed our novel approach towards a generic
animal activity recognition classifier that has a high perfor-
mance across different species. We analyzed the complex-
ity in terms of memory and CPU usage between 7 classifier
types. When taking into account the complexity versus per-
formance trade-off, the DNN classifier is the most promising
for our approach. We have shown a significant increase in
performance when instances of two species are shared to
train a classifier. Our results support the development of a
generic classifier that can run on a small embedded system
with good performance, as well as sustain the lifetime of
online activity recognition systems.

In future work, we intend to extend our dataset with move-
ment data from quadruped animals such as horses, cows,
dogs, and cats. Thereby, we want to investigate the range
of species in which generic activity recognition is possible
and optimize the approach. We are planning to improve the
performance of the generic classifier by means of incre-
mental learning and online change detection [12].
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