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Abstract
The probabilistic nature of the inferences in a context-aware
intelligent environment (CAIE) renders them vulnerable to
erroneous decisions resulting in wrong services. Learn-
ing to recognize a user’s negative reactions to such wrong
services will enable a CAIE to anticipate a service’s appro-
priateness. We propose a framework for continuous mea-
surement of physiology to infer a user’s negative-emotions
arising from receiving wrong services, thereby implement-
ing an implicit-feedback loop in the CAIE system. To induce
such negative-emotions, in this paper, we present a virtual-
reality (VR) based experimental platform while collecting
real-time physiological data from ambulatory wearable sen-
sors. Results from the electrodermal activity (EDA) data
analysis reveal patterns that correlate with known features
of negative-emotions, indicating the possibility to infer ser-
vice appropriateness from user’s reactions to a service,
thereby closing an implicit-feedback loop for the CAIE.

Author Keywords
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ACM Classification Keywords
I.5.4 [Pattern Recognition]: Applications; H.5.1 [Multimedia
Information Systems]: Virtual Reality

Introduction
The widespread adoption of portable networked comput-
ing devices has pushed these systems away from the lim-
ited desktop scenario into the wild, ever closer to the ac-
tivities of our daily lives. Mark Weiser’s vision of “invisible,
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everywhere computing”—technology that disappears from
our cognitive fronts and lives in the woodwork everywhere
[20]—is closer to fruition than ever before. In such a per-
vasive computing scenario, where a user often interacts
with a context-aware computing infrastructure consisting of
a dynamic set of devices with distributed focus of interac-
tion [17], seamless delivery of a context-aware service is a
challenge mainly due to the lack of a pervasive interface to
ascertain a user’s preferences. It would defeat the purpose
of having an inference-based context-aware system to stop
after providing an intelligent service and explicitly query the
user about its appropriateness, in addition to introducing a
cognitive load on the user. If, on the other hand, the per-
vasive computational system could implicitly infer a user’s
(dis)approval about the service’s (in)appropriateness from
their behavioral or physical cues, the need for stopping and
asking the user could be completely eliminated. Implicitly
learning a user’s disapproval of an intelligent service in a
multi-turn interaction, has been widely used in information-
retrieval domain to model search relevance [21].

Affect-aware CAIE
A new branch of computing
has emerged called Affec-
tive Computing (AC) that
“relates to, arises from and
deliberately influences hu-
man emotions” (Rosalind
Picard, MIT Media Lab).
AC techniques enable us
to infer a user’s emotional
valence (surrogates for likes
or dislikes) from a variety
of modalities such as phys-
iological variables (more
prominently electrodermal
activity, heart-rate variability,
respiration-rate and skin-
temperature) along with facial
expressions, voice prosody,
gesture and actions.

Affective interfaces and
agents have been success-
fully shown to improve overall
usability, quality of interaction
of a system and sometimes
even helping reduce user’s
experienced stress even
when performing frustrating
tasks, making the system
more human-centric [18].
Human affect forms the
implicit channel of commu-
nication and augments the
meaning conveyed explicitly
by language and actions [4].

A CAIE may be limited by sensory data to infer a user’s
context, thus producing services that are not properly aligned
with a user’s current needs (sometimes even hindering their
progress towards their goals), initiating a phenomenon
called technostress in the user. Affective Computing (see
sidebar) techniques provide feasible methods to infer such
technostressed states from physiological signals establish-
ing an implicit channel of communication between the inter-
acting agents (the CAIE and the user), which improves the
quality of interaction by attaining convergence in communi-
cation [4]. In a recent work [16], the authors have explored
the idea of a physiology based implicit affective-feedback
loop in a CAIE to recognize these technostressed states
induced by the inappropriate services from the CAIE, by
mocking up a warehouse scenario in their laboratory.
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Figure 1: Interaction-process Model of Service Delivery and Affect
Generation in an Intelligent Environment with an Affective Feedback.

In order to test our hypothesis of implementing an implicit-
feedback loop based on validated physiological signal pat-
terns, we present our experimental setup of a VR based
supermarket with navigation-assist, wherein a user nav-
igates the virtual supermarket in a fully position tracked
space, while wearing an Empatica E4 wristband continu-
ously acquiring real-time physiological data [8]. With the
current setup, we intend to improve upon prior work such as
[16] where the authors mocked-up a warehouse scenario in
their lab having limited immersive experience for the partici-
pants. This current platform enables us to immerse a partic-
ipant in a realistic CAIE, while taking a flexible, repeatable
and systematic approach in evaluating in the interaction
model shown in Figure 1 and Figure 2.

Background
A CAIE is a space where a pervasive intelligent system
senses a user’s current activities and goals, while consis-
tently maintaining a coherent interaction across multiple
devices [17]. Unlike a typical computing user interface (UI)
(with traditional input-output devices), UI design for CAIE of-
ten poses a challenging problem for the designer due to the
pervasiveness of the computing infrastructure and the lack
of a single continuous medium of interaction, motivating the
need to rethink the interface design [17].
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Figure 2: Schematic of an Affective Feedback in an CAIE with a
Physiological Response Learning Framework (Modified from [16])

Shafer et al. note that a self-learning adaptive interface is
well suited for a pervasive CAIE system, however, it should
provide an immediate undo mechanism as a remedy for
inappropriate services [17]. We argue, AC techniques to
recognize user’s reactions (such as, technostress – see
sidebar) to inapproriate services can be used to provision
for this undo mechanism, as explored in [16].

Technostress in CAIE
Technostress is the percep-
tion of hassles due to system
response delay during inter-
action with technology [14],
which produces elevated
levels of stress hormones
(e.g., cortisol and adrenaline)
and heightened activity of
the sympathetic division of
the autonomic nervous sys-
tem (ANS), which regulates
heart-rate variability (HRV),
electrodermal activity (EDA),
skin temperature (ST) and
blood pressure (BP) [14].
Technostress has a phys-
iological signature similar
to that produced during a
psycho-social stress [9, 14],
which is a well studied field
under AC [12, 22]. In her
seminal work, Kreibig points
out that ANS responses ap-
pear more pronounced in
negative emotions (such as
technostress, anger) com-
pared to positive emotions
(such as happy, excited) [9].

A leading cause of tech-
nostress is “achievement
stress” which is heightened
in system failures during
time-pressured tasks, i.e.,
tasks having hard-deadlines
associated with them.

AC systems that map visual, auditory, behavioral or physio-
logical cues to affective states based on patterns of change
as seen in a ground truth datasets are termed as Affective
feedback (AF) loops [11]. AF loops have been effectively
implemented in reorienting smart-home behavior by infer-
ring user (dis)approval using vision based facial feature un-
derstanding [2]. However, we argue that a vision based fa-
cial expression recognition system limits the usability of the
system due to sensing limitations. We posit that on-body
wearable sensing of physiological signals alleviates the
need for a centralized focal point of interaction, compared
to a vision or audio based interfaces. In addition, physiolog-
ical signals are potent signal streams for effectively sensing
changes in ANS activity in response to technostressors [9].

Thus, continuous measurement of physiological signals
to infer technostress for designing an implicit AF loop, as
also explored in [16], is well suited for designing such AF
loops in a CAIE and provides a novel opportunity to create
Shafer’s undo mechanism as previously alluded to.

Interaction Model
A direct outcome of our discussion so far is the schematic
of a CAIE which periodically cycles between (a) provid-
ing intelligent services by recognizing user’s context and
(b) building and refining individualized behavioral model of
a user’s affective profile (using, say, physiological response
patterns). This schematic is shown in Figure 2 which op-
erates by a CAIE collecting sensory data to detect various
aspects of user’s context such as environmental (e.g., user
identity, time, and location), physical (e.g., current activ-
ity and goals set by the user) and social (e.g., other users
nearby, their relation with current user). Based on its in-
ference regarding a user’s context, the CAIE presents a
service to assist them in their current goals. The appropri-
ateness of this service vis-a-vis their goals is appraised
by the user and a physiological response is generated
through ANS activation (i.e. technostress or lack thereof).
From the CAIE perspective, detecting technostress in a
certain window following a service, using the physiologi-
cal signals would imply user’s (dis)approval of the service,
thus prompting it to modify the service in the next iterations.
This iterative nature of interaction is shown in the interaction
model in Figure 1, which also opens up the possibility of
an adaptive-window based multi-turn interaction where on
identifying the buildup of technostress, the CAIE may ask
clarifying questions, as shown in a recent work [10].

Need for Affective Profile Learning Framework
Collecting ground truth data for physiological signals from
natural settings is difficult. In addition, they have some
inherent challenges such as between-person variations
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arising from personality differences [6] and biological pre-
dispositions [7]. Plarre et al. [12] argue that physiological
response data from users while they are experiencing vali-
dated stressors such as mental arithmetic, public speaking
etc. can be used as a practical method to collect annotated
ground truth data. The Paced Stroop Test (see sidebar) is
a validated laboratory stressor that has been widely used
to annotate stress data [16, 22]. In [15], the authors have
proposed to use physiological responses to music to learn
an individual affective profile. Periodic presentation of such
validated stimuli, collection of physiological data and refine-
ment of userwise behavioral model from this data consti-
tutes the physiological profile learning loop (see Figure 2).

Paced Stroop Test (PST)
The Stroop color-word inter-
ference test demands that
the user chooses the font
color of a word which is de-
picting the name of either the
same color as the font’s color
or a different color. In the
congruent (C-PST) version
of the test, the font color of
the word and the name of the
color depicted by the word
match, whereas in the incon-
gruent (IC-PST) version, they
do not.

A modified version of
this test is called Paced
Stroop (code - https:
//github.com/debapratimsaha/
PacedStroopTest), where each
iteration of the Stroop test is
programmed to be active for
a stipulated time, say 3 sec-
onds [22]. This task-pacing
during the Stroop test has
been shown to enhance the
stress-inducing capability
of Stroop test as compared
to self-paced Stroop test,
due to the need to expend
increased amount of men-
tal/cognitive effort in produc-
ing the correct response [13].

Experiment Design and Setup
Supermarkets are potentially a good candidate to model as
a CAIE, wherein Wahlster et al. [19] envision various intel-
ligent interactions such as RFID tagged objects and ubiqui-
tous web-connected shopping lists. One such novel service
may be a simple navigation-assist inside the supermarket
which finds the shortest direct path to cover the items on
a dynamically changing shopping list (say, being updated
in real-time by a partner). There has been recent commer-
cial interest such as an in-store navigation-assist system
introduced by Lowe’s Supermarkets, and a smart shopping
experience requiring no checkout designed by Amazon Inc.

Intelligent Supermarket in VR Experiment
In our prototype system, the navigation-assist will always
try to find the shortest direct path from current location to
the destination obtained from a grocery list. However, due
to the dynamic nature of the list, as well as real-life issues
such as latency in updating the list due to poor connectivity,
the system may not always come up with an optimum path.
Since the navigation-assist service is intended to help the
customer achieve their goals faster, the wrong services (i.e.
winding path) may cause achievement stress which is a
potent cause of technostress. To design the instrumented
supermarket as a CAIE, we have modeled an immersive
VR based grocery store in a fully position tracked space at
The Cube, Virginia Tech.

In our model, items are placed on shelves marked with se-
rial numbers. Participants were informed that their shopping
list was pre-populated with 10 items, and item numbers
corresponding to the next item will be shown as an over-
lay on the supermarket scene in their VR-glasses (shown
in Figure 3d). This unseen item-list gives a perception of
a dynamically changing shopping list. Participants were
informed that the system will highlight a direct path from
current position to destination using horizontal green path-
arrows, while a vertical red-arrow will indicate the final des-
tination visible from their current location (shown in Fig-

(a) PST Setup (b) Direct Path Top View (c) Winding Path Top View (d) Snapshot of a Virtual-Reality View

Figure 3: Our Experimental Setup: “Smart Supermarket with Navigation-Assist Service”
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ure 3d). This red-arrow is essential for the user to create a
mental model of the smart-service (i.e. a direct path), vio-
lating which may impart technostress. In reality, the exper-
iment was conducted in a Wizard-of-Oz fashion, where-in
the experimenter would listen to the participant speaking
the next item number on their VR screen and activate the
next path arrow by pressing a hotkey in the experimenter’s
view (see sidebar for the hardware setup). Some of the
paths were an obvious direct path (see the top-view in Fig-
ure 3b) while some paths were deliberately made winding
(see the top-view in Figure 3c) to create an impression of
a system failure thus imparting technostress. Participants
were asked to always follow the path indicated by green ar-
rows, even if it is not a direct path. Out of the 10 items on
the list, we provided correct service (CS: direct path) and
wrong service (WS: winding path) for 5 items each.

Hardware Setup
Our setup consists of a Qual-
isys Motion Capture system
with 24 Oqus5+ cameras for
tracking reflective marker
based rigid-bodies and an
Oculus Rift DK2 as our VR
glass. The Oculus Rift DK2
is connected to a laptop
(say, Oculus Computer (OC))
which is running the super-
market model in Unity, and
is being carried by the par-
ticipant in a backpack. For
performing the experiment
in Wizard-of-Oz fashion, the
experimenter has a mirrored
view of the participant’s VR
view (running on OC), onto
a local computer, say Ex-
perimenter Computer (EC)
communicating over the local
wireless network. Physi-
ological data is collected
using Empatica E4 wristband
which streams time-stamped
biosignal datastreams
over Bluetooth to OC. The
hotkey presses (VR event
onsets) are time-stamped
with the OC machine-time
along with Empatica E4
data packets using cus-
tom code (available at https:
//github.com/debapratimsaha/
EmpaticaUnityBLEClient).

Paced Stroop Test (PST) Experiment
For our experimental setup, we have used task pacing
time of 3 seconds between each Stroop figure (shown in
Figure 3a), running for a total of 180 seconds, where one
block of 60 seconds (i.e., 20 pairs) of C-PST is preceded
and succeeded by 60 seconds each of IC-PST (i.e., 2 x 20
pairs). Physiological data was collected for the duration of
180 seconds. Although out of scope of this paper, analysis
of this PST dataset may enable us to learn a user-specific
response profile (discussed in Interaction Model section).

Methods and Analysis
Electrodermal Activity (EDA) Analysis
EDA is a reliable indicator of activation of the sympathetic
division of ANS (SNS), which shows heightened activity
during the experience of stress [7, 9]. It is arguably the only
physiological system that is activated solely by SNS, uncon-
taminated by the parasympathetic division (PSNS), mak-
ing it a well established marker for SNS activity [16]. EDA

signal is composed of a slow varying tonic and a rapidly
changing phasic components. For EDA decomposition, we
have used a deconvolution based method (see Ledalab
[1]), wherein the measured EDA is deconvolved with an
impulse response function (IRF) waveform to obtain the un-
derlying compact sudomotor nerve-activity (SMNA) pulses.
The IRF is modeled as a biexponential Bateman function

f(t) = exp
−t
τ1 − exp

−t
τ2 that explains the physiological pro-

cesses of EDA generation [1], refer to Figure 4 for details.

Integrated Phasic Response (IPR) Analysis
Ledalab 1 can decompose superposed EDA peaks into in-
dependent SMNA pulses, thus enabling the separation of
phasic peaks. An advantage of Ledalab is the resulting
phasic EDA has a zero baseline, enabling us to compute
the time-integral of phasic EDA over a response window,
which is a measure of sympathetic activation from the stim-
ulus [1]. After decomposition, we slice individual SMNA
peaks and reconvolve them with the IRF to obtain individ-
ual non-overlapping zero-baseline phasic EDA peaks. We
take time-integral of these peaks, to obtain an EDA scoring
measure defined as integrated phasic response (IPR) [1].

EDA Analysis Results
Our goal for this experiment was to identify instances of
technostress due to wrong-services from a CAIE based on
validated physiological indicators. We conducted a user
study and have collected data from 7 participants (6 males,
1 female) under a research protocol approved by Virginia
Tech (IRB-15-1193). Participants represented a wide range
of nationality and ethnicity. The results from our batch anal-
ysis of EDA features, accumulated per event type show
heightened sympathetic activation during WS events when
compared to CS events based on validated physiological
indicators. The results of this analysis will enable the CAIE

1Code available: https://github.com/brennon/Pypsy
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to decide, when to ask clarifying questions in an adaptive-
window based multi-turn interaction as discussed in Interac-
tion Model section.

User CS WS

A 523.15 555.43
B 235.7 363.21
C 80.6 151.85
D 51.41 78.87
E 7.77 52.7
F 14.54 88.33
G 67.65 86.29

(a) Userwise IPR in Service Groups

User CS WS

A 66 63
B 21 36
C 10 30
D 14 21
E 17 33
F 16 37
G 22 41

(b) Userwise Number of Phasic peaks

User CS WS

A 39.16 44.3
B 55.91 50.06
C 23.88 25.52
D 16.38 20.24
E 1.69 8.8
F 3.34 11.688
G 15.32 11.39

(c) IPR per Peak in Service Group

Table 1: Userwise integrated phasic
response (IPR) (in µSs units) and Peak
Count Analysis. Higher scores
indicating stronger sympathetic
activation, in each Correct Service
(CS)/Wrong Service (WS) pair for each
user are bold-faced.

The number of significant phasic peaks and time-integral
of phasic peaks are widely used EDA features, wherein a
higher number represents stronger sympathetic activation
[5]. To perform the IPR analysis, the individual phasic peaks
are thresholded to above 5% of the userwise maximum
peak-amplitude to mark the significant peaks. Time-integral
of these individual phasic peaks, where time is measured
in seconds and phasic EDA in µS, are computed and ac-
cumulated for each type of services i.e. correct (CS) and
wrong (WS) within their respective windows to obtain the
IPR values (in µSs units). The results are compiled in Ta-
ble 1 where the bold-faced numbers are higher among the
CS/WS pairs for each user. We can see that for all users,
IPR during the WS events is higher than that during the CS
events. In addition, IPR per Peak is computed by dividing
the total IPR by the number of peaks following a service,
then accumulating for each service type. We see that for
five users, the IPR per Peak is higher during the WS events.
The number of significant phasic EDA peaks is also com-
piled, and barring User A, we obtain higher number of sig-
nificant phasic peaks during WS compared to CS events.
Time-spans for each events depend on the length of the
paths, however, WS events induce higher number of phasic
peaks each with greater IPR (as seen in Table 1b-1c) indi-
cating stronger SNS activation. It must be noted, that with a
more liberal thresholding (say, 15%) for peak significance,
the results for User A in Table 1b and for User B and G in
Table 1c are consistent with the overall results.

Although, there are some users (esp. B and G) for whom
the physiological indicators did not reflect these patterns,
we have learned that such differences may arise from fac-
tors such as personality [6]. We do not have personality re-
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Figure 4: EDA Decomposition using Ledalab. Observe the tonic EDA
follows the measured EDA signal, while sliced individual SMNA peaks are
convolved with IRF to obtain zero-baselined phasic EDA (see inset).
Notice the overlapped phasic peaks are separated as individual peaks.

lated data in our current dataset, however, we intend to add
such qualitative data collection methods for our forthcoming
phases of the experiment.

Discussion
With this current work, we sought to identify user-independent
physiological indicators of stress experienced by users in
CAIE, when they receive an inappropriate service. Table 1
shows that the number of phasic EDA peaks and average
IPR in these peaks is higher during WS events, i.e. more
numbers of larger phasic EDA peaks are produced during
WS events. From this, we can infer that users show higher
sympathetic activation during the WS events compared to
the CS events. Thus, from our experimental dataset in a VR
environment, we observed patterns in EDA signal across
users during such WS (i.e. inappropriate or wrong ser-
vices), that have been shown to be correlated with negative
emotional states [9] such as frustration. The hypothesis be-
hind our interaction framework as discussed in Interaction
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Model section, rests on the successful identification of such
affective states from physiological data. Our results from
the batch analysis show greater number of phasic EDA
peaks each having higher average IPR, both of which are
independent evidences of stronger sympathetic activation in
users while experiencing technostress in a CAIE. Although
individual eventwise analysis is not conclusively consis-
tent across all users, however, with further analysis of more
EDA features and HRV signals, we hope to improve upon
the granularity of these discriminatory inferences to, possi-
bly, a single window following each service. Nevertheless,
the patterns from this group analysis will enable a CAIE to
improve a multi-turn interaction (see Interaction Model sec-
tion) using features of technostress.

Conclusion
In this paper, we have pro-
posed a novel system archi-
tecture to employ affective
computing techniques to
identify a user’s technos-
tressed states arising from
wrong services received from
an intelligent environment.
Successful identification of
technostressed states follow-
ing a service, which would
imply it’s inappropriateness,
can be used as a feedback
signal in order to refine the
services in subsequent turns.
To evaluate this hypothe-
sis, we have designed a
controlled experimental plat-
form in a VR setup providing
intelligent services, and oc-
casionally providing wrong
services, while collecting
real-time physiological data.
The results from EDA signal
analysis from our study con-
ducted in the experimental
platform show heightened
sympathetic activation during
wrong services, indicating
onset of negative-emotional
states such as technostress.
These results are encourag-
ing as we continue to refine
our setup and analysis.

In addition to continued analysis of the physiological sig-
nals, we are also refining our experimental protocol, in or-
der to gain more insights into known influencers of human
affective responses such as their personality [6], thereby
helping us improve our inferences. For instance, a recent
work has demonstrated that the daily usage pattern of a
mobile phone is predictive of a person’s personality types
[3]. While collecting such mobile usage data is out of the
scope of our work, we intend to add qualitative data collec-
tion methods such as personality questionnaire.
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