skip to main content
10.1145/3123266.3123289acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article
Public Access

Weighted Sparse Representation Regularized Graph Learning for RGB-T Object Tracking

Published:23 October 2017Publication History

ABSTRACT

In this paper, we propose a novel graph model, called weighted sparse representation regularized graph, to learn a robust object representation using multispectral (RGB and thermal) data for visual tracking. In particular, the tracked object is represented with a graph with image patches as nodes. This graph is dynamically learned from two aspects. First, the graph affinity (i.e., graph structure and edge weights) that indicates the appearance compatibility of two neighboring nodes is optimized based on the weighted sparse representation, in which the modality weight is introduced to leverage RGB and thermal information adaptively. Second, each node weight that indicates how likely it belongs to the foreground is propagated from others along with graph affinity. The optimized patch weights are then imposed on the extracted RGB and thermal features, and the target object is finally located by adopting the structured SVM algorithm. Moreover, we also contribute a comprehensive dataset for RGB-T tracking purpose. Comparing with existing ones, the new dataset has the following advantages: 1) Its size is sufficiently large for large-scale performance evaluation (total frame number: 210K, maximum frames per video pair: 8K). 2) The alignment between RGB-T video pairs is highly accurate, which does not need pre- and post-processing. 3) The occlusion levels are annotated for analyzing the occlusion-sensitive performance of different methods. Extensive experiments on both public and newly created datasets demonstrate the effectiveness of the proposed tracker against several state-of-the-art tracking methods.

References

  1. G.-A. Bilodeau, A. Torabi, and P.-L. St-Charles et al.. 2014. Thermal-visible registration of human silhouettes: A similarity measure performance evaluation. Infrared Physics & Technology Vol. 64 (2014), 79--86.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning Vol. 3, 1 (2011), 1--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Bunyak, K. Palaniappan, S. K. Nath, and G. Seetharaman. 2007. Geodesic active contour based fusion of visible and infrared video for persistent object tracking Proceedings of IEEE Workshop on Applications of Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Comaniciu, V. Ramesh, and P. Meer. 2003. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. O. Conaire, N. Connor, and A. Smeaton. 2007. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers. Machine Vision and Applications Vol. 7 (2007), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. O Conaire, N. E. Connor, E. Cooke, and A. F. Smeaton. 2006. Comparison of fusion methods for thermo-visual surveillance tracking Proceedings of International Conference on Information Fusion.Google ScholarGoogle Scholar
  7. N. Cvejic, S. G. Nikolov, H. D. Knowles, A. Loza, A. Achim, D. R. Bull, and C. N. Canagarajah. 2007. The effect of pixel-level fusion on object tracking in multi-sensor surveillance video Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  8. M. Danelljan, G. Hager, F. Khan, and M. Felsberg. 2014. Accurate Scale Estimation for Robust Visual Tracking Proceedings of British Machine Vision Conference.Google ScholarGoogle Scholar
  9. J. W. Davis and M. A. Keck. 2005. A Two-Stage Template Approach to Person Detection in Thermal Imagery Application of Computer Vision, 2005. WACV/MOTIONS '05 Volume 1. Seventh IEEE Workshops on. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. W. Davis and V. Sharma. 2007. Background-subtraction using contour-based fusion of thermal and visible imagery. Computer Vision and Image Understanding Vol. 106, 2 (2007), 162--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. L. Donoho. 2006. Compressed sensing. IEEE Transactions on Information Theory Vol. 52, 4 (2006), 1289--1306 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Duffner and C. Garcia. 2013. Pixeltrack: A fast adaptive algorithm for tracking non-rigid objects Proceedings of IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Elhamifar and R. Vidal. 2009. Sparse subspace clustering. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  14. M. Felsberg, A. Berg, and G. et al. Hager. 2015. The Thermal Infrared Visual Object Tracking VOT-TIR2015 Challenge Results Proceedings of IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Gade and T. B. Moeslund. 2014. Thermal cameras and applications: a survey. Machine Vision and Applications Vol. 25 (2014), 245--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Guo. 2015. Robust Subspace Segmentation by Simultaneously Learning Data Representations and Their Affinity Matrix. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Hare, A. Saffari, and P. H. S. Torr. 2011. Struck: Structured output tracking with kernels. Proceedings of IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. He, Q. Yang, R. Lau, J. Wang, and M.-H. Yang. 2013. Visual tracking via locality sensitive histograms. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Joao F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. 2015. High-Speed Tracking with Kernelized Correlation Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Hwang, J. Park, and N. et al. Kim. 2015. Multispectral Pedestrian Detection: Benchmark Dataset and Baseline Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  21. H.-U. Kim, D.-Y. Lee, J.-Y. Sim, and C.-S. Kim. 2015. SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking Proceedings of IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Kristan, J. Matas, A. Leonardis, and M. Felsberg et al.. 2015. The Visual Object Tracking VOT2015 challenge results Proceedings of IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, and L. Cehovin et al.. 2014. The Visual Object Tracking VOT2014 challenge results Proceedings of European Conference on Computer Vision.Google ScholarGoogle Scholar
  24. S. J. Krotosky and M. M. Trivedi. 2007. On Color-, Infrared-, and Multimodal-Stereo Approaches to Pedestrian Detection. IEEE Trans. Intelligent Transportation Systems, Vol. 8, 4 (2007), 619--629. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. X. Lan, A. J. Ma, and P. C. Yuen. 2014. Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Leykin and R. Hammoud. 2010. Pedestrian tracking by fusion of thermal-visible surveillance videos. Machine Vision and Applications Vol. 21, 4 (2010), 587--595. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A Li, M Lin, Y Wu, MH Yang, and S Yan. 2016 b. NUS-PRO: A New Visual Tracking Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, 2 (2016), 335--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Li, H. Cheng, S. Hu, X. Liu, J. Tang, and L. Lin. 2016 a. Learning Collaborative Sparse Representation for Grayscale-thermal Tracking. IEEE Transactions on Image Processing Vol. 25, 12 (2016), 5743--5756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Li, L. Lin, W. Zuo, and J. Tang. 2017 a. Learning Patch-Based Dynamic Graph for Visual Tracking Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4--9, 2017, San Francisco, California, USA. 4126--4132.Google ScholarGoogle ScholarCross RefCross Ref
  30. C. Li, X. Sun, X. Wang, L. Zhang, and J. Tang. 2017 b. Grayscale-thermal Object Tracking via Multi-task Laplacian Sparse Representation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 47, 4 (2017), 673--681.Google ScholarGoogle ScholarCross RefCross Ref
  31. C. Li, X. Wang, L. Zhang, J. Tang, H. Wu, and L. Lin. 2016 c. WELD: Weighted Low-rank Decomposition for Robust Grayscale-Thermal Foreground Detection. IEEE Transactions on Circuits and Systems for Video Technology (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. P. Liang, E. Blasch, and H. Ling. 2015. Encoding color information for visual tracking: Algorithms and benchmark. IEEE Transactions on Image Processing Vol. 24, 12 (2015), 5630--5644.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. 2013. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, 1 (2013), 171--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. H. Liu and F. Sun. 2012. Fusion tracking in color and infrared images using joint sparse representation. Information Sciences, Vol. 55, 3 (2012), 590--599.Google ScholarGoogle Scholar
  35. C. Ma, X. Yang, C. Zhang, and M.-H. Yang. 2015. Long-term Correlation Tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  36. I. A. Matthews, T. Ishikawa, and S. Baker. 2004. The Template Update Problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, 6 (2004), 810--815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral Clustering: Analysis and an algorithm. Proceedings of Neural Information Processing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Portmann, S. Lynen, M. Chli, and R. Siegwart. 2014. People detection and tracking from aerial thermal views Proceedings of IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  39. K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR Vol. abs/1409.1556 (2014).Google ScholarGoogle Scholar
  40. A. Torabi, G. Masse, and G.-A. Bilodeau. 2012. An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications. Computer Vision and Image Understanding Vol. 116, 2 (2012), 210--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. 2005. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research Vol. 6 (2005), 1453--1484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Y. Wu, E. Blasch, G. Chen, L. Bai, and H. Ling. 2011. Multiple source data fusion via sparse representation for robust visual tracking Proceedings of International Conference on Information Fusion.Google ScholarGoogle Scholar
  43. Y. Wu, J. Lim, and M.-H. Yang. 2013. Online object tracking: A benchmark. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Y. Wu, J. Lim, and M.-H. Yang. 2015. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Z. Wu, N. Fuller, D. Theriault, and M. Betke. 2014. A Thermal Infrared Video Benchmark for Visual Analysis Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Xu and W. Yin. 2013. A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion. SIAM Journal on Imaging Sciences Vol. 6, 3 (2013), 1758--1789.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Yan and H. Wang. 2009. Semi-supervised Learning by Sparse Representation. Proceedings of the SIAM International Conference on Data Mining.Google ScholarGoogle Scholar
  48. F. Yang, H. Lu, and M.-H. Yang. 2014. Robust Superpixel Tracking. IEEE Transactions on Image Processing Vol. 23, 4 (2014), 1639--1651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. J. Zhang, S. Ma, and S. Sclaroff. 2014. MEEM: robust tracking via multiple experts using entropy minimization Proceedings of European Conference on Computer Vision.Google ScholarGoogle Scholar
  50. D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Scholkopf. 2004. Ranking on data manifolds. In Proceedings of Neural Information Processing Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. Weighted Sparse Representation Regularized Graph Learning for RGB-T Object Tracking

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MM '17: Proceedings of the 25th ACM international conference on Multimedia
      October 2017
      2028 pages
      ISBN:9781450349062
      DOI:10.1145/3123266

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 October 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MM '17 Paper Acceptance Rate189of684submissions,28%Overall Acceptance Rate995of4,171submissions,24%

      Upcoming Conference

      MM '24
      MM '24: The 32nd ACM International Conference on Multimedia
      October 28 - November 1, 2024
      Melbourne , VIC , Australia

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader