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ABSTRACT

Data clustering is a fundamental operation in data analysis. For
handling large-scale data, the standard k-means clustering method
is not only slow, but also memory-ineicient. We propose an ef-
icient clustering method for billion-scale feature vectors, called
PQk-means. By irst compressing input vectors into short product-
quantized (PQ) codes, PQk-means achieves fast andmemory-eicient
clustering, even for high-dimensional vectors. Similar to k-means,
PQk-means repeats the assignment and update steps, both of which
can be performed in the PQ-code domain. Experimental results
show that even short-length (32 bit) PQ-codes can produce com-
petitive results compared with k-means. This result is of practical
importance for clustering in memory-restricted environments. Us-
ing the proposed PQk-means scheme, the clustering of one billion
128D SIFT features with K = 105 is achieved within 14 hours, using
just 32 GB of memory consumption on a single computer.

CCS CONCEPTS

· Information systems → Clustering; Nearest-neighbor search; ·
Theory of computation→ Unsupervised learning and clustering;
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1 INTRODUCTION

Many recent advances in computer vision are attributed to su-
pervised learning with several annotated data sources. However,
manual annotation is a time-consuming and laborious task. Clus-
tering (unsupervised learning) is a promising method for taking
better advantage of unlabeled data [41]. Speciically, we focus on
million- or billion-scale clustering for data with hundreds or thou-
sands of dimensions, e.g., clustering on 100 million images with
4096D AlexNet features (YFCC100M [36]).
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(a) k-means (b) PQk-means

Figure 1: A 2D example using both k-means and PQk-means,

with K = 30. (a) K-means applied to 500 2D vectors (black

dots), and the resulting 30 centers denoted as red circles. (b)

The same 500 vectors encoded as 500 PQ codes (black dots),

and the resulting 30 centers using PQk-means. Because both

dimensions (x and y) are quantized independently, the PQ

codes are placed on nonuniformly quantized lattices.

The problems of large-scale clustering include large memory con-
sumption and prohibitive runtime costs. Owing to these two issues,
the standard k-means clustering method [22] can barely handle
large-scale data. Distributed batch clustering [26, 34] is a possible
solution for achieving large-scale clustering within a reasonable
timescale. However, this requires vast computational resources.
For example, clustering 100 million features within several hours
requires 300 machines [2] in a Spark framework1.

In this paper, we propose PQk-means, which is a billion-scale
clustering method, and can be performed on a single computer

with only a reasonable memory consumption (less than 32 GB
of RAM) within a single day. The key idea is to irst compress
input vectors into memory-eicient short codes by product quan-
tization [18], and to then cluster the resultant product-quantized
(PQ) codes (rather than the original vectors) in the compressed
domain. As with k-means, PQk-means also repeats the following
two steps until convergence is achieved: (1) Find the nearest center
from each code, and (2) update each center using a proposed sparse

voting scheme.

1http://spark.apache.org/
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Fig. 1 illustrates a 2D example, comparing k-means with PQk-
means. The result of the PQk-means procedure is similar to that of
k-means, although PQk-means is 5.3 times more memory eicient2.

The technical challenge lies in the direct computation of the
center of a new cluster. Because PQ codes consist exclusively of
sets of identiiers (integers), averaging operations on such codes
cannot be explicitly deined. A naïve brute-force updating method
is slow, because all possible candidates must be evaluated. To solve
this problem, we develop an alternative fast method, called sparse

voting. We consider a frequency histogram of the assigned PQ codes
in each cluster. Owing to the nature of clustering, this histogram
is usually sparse. By focusing only on non-zero elements in the
histogram, we can omit most calculations. Sparse voting is a simple
procedure. However, it signiicantly accelerates the computation,
and achieves exactly the same results as the naïve method.

We analyzed the runtime and memory consumption of PQk-
means. Moreover, we intensively compared PQk-means with exist-
ing methods, such as k-means [22], Bk-means [14], Ak-means [31],
and IQ-means [2], using the SIFT1M and ILSVRC_1000C datasets.
Billion-scale evaluation was also investigated, using the YFCC100M,
SIFT1B, and Deep1B datasets.

The contributions of this paper are as follows:

• We develop PQk-means, a billion-scale memory-eicient clus-
tering algorithm. The clustering of one billion 128D SIFT
vectors with K = 105 was achieved in 14 hours, using just 32
GB of RAM. Note that standard k-means clustering requires
512 GB of RAM just to represent the data.
• PQk-means is conceptually simple, and straightforward to
implement.
• Unlike existing large-scale clustering methods such as Bk-
means [14] or IQ-means [2], the original vectors can be ap-
proximately reconstructed following the clustering. This is
a useful property if the original vectors are required after
clustering.
• Experimental results show that clustering with short-length
PQ codes (e.g., 32 bit) is still efective (see Fig. 5 for visual
examples). This is a practically important result for memory-
eicient clustering.

2 RELATEDWORK

Data clustering is a fundamental operation in data analysis [15, 17].
Since the original k-means clustering method was proposed [22],
several theoretical improvements have been presented. In partic-
ular, the provision of good seeds [1, 6, 7] and bounding-based ac-
celeration [11, 25] are still being intensively studied. Because these
algorithms are based on k-means, they always produce the same
inal clustering result with the same initial seed [25].

Considering real-world applications, faster algorithms are in
high demand, even though the result of clustering in such cases
is only an approximation of that of k-means. Such approximated
k-means methods include approximated search [31], hierarchical
search [27], approximated bounds [38], and batch-based meth-
ods [26, 34]. If the size of the input data is large, subset-based
methods [2, 8] can achieve the fastest performance. These methods
only treat a subset of the input vectors (i.e., vectors close to each

2For representing each dimension, a 32 bit float is used in k-means, and a 6 bit integer

is used in PQk-means (26 = 64 codewords are used).

center), making the computation eicient. The current state-of-the-
art for subset-based methods is IQ-means [2]. While subset-based
methods are fast, their accuracy is not always competitive compared
with other methods, because only subsets of vectors are used.

For handling large-scale data (e.g., 108 4096D AlexNet features,
which require 1.6 TB in total using float), memory consumption
also constitute an important issue. Binary k-means (Bk-means) [14]
converts input vectors into binary codes [9, 13], so that all of the
binary codes can be stored in memory. The Hamming distance
between two binary codes approximates the Euclidean distance
between their original vectors. Because the Hamming distance can
be computed eiciently by either a linear scan or hash table [29, 30],
Bk-means achieves fast clustering with eicient memory utilization.
The drawbacks of Bk-means are two-fold. First, binary conversion
is less accurate than quantization-based compression [3, 4, 10, 12,
28, 39, 42, 43], as has been discussed in the nearest neighbor search
community [40]. Second, we cannot reconstruct the original vectors
from the resultant binary codes. Our PQk-means method addresses
these two concerns. Experimental results show that PQk-means
always achieves a better accuracy than Bk-means with the same
code length. A comparison of standard k-means, Bk-means, and
PQk-means is summarized in Table 1.

3 BACKGROUND

In this section, we briely review k-means [22] for clustering, and
product quantization [18] for encoding.

3.1 K-means clustering

The k-means algorithm inds K cluster centers such that the sum
of the distances between each vector and its closest center is min-
imized. Speciically, given N D-dimensional vectors X = {xn ∈

R
D }N

n=1, one must ind K centers {µk ∈ R
D }K

k=1
that minimize the

following cost function [22, 26]:

E
(

µ1, . . . , µK
)

=

1

N

N
∑

n=1

d
(

xn , µa(n)

)

, (1)

where d(x ,y) = ∥x −y∥2. Note that a(n) is an assignment function,
deined by a(n) = argmink ∈{1, ...,K } d(xn , µk )

2.

The cost function converges to a local minimum by repeating
the following two steps. In the assignment step, each vector is as-
signed to the nearest center. This is achieved by computing a(n) for
each n ∈ {1, . . . ,N }. In the update step, each center is updated by

averaging over the assigned vectors, µk ←
1
|Xk |

∑

x ∈Xk x , where

Xk = {xn ∈ X|a(n) = k}.

3.2 Product quantization for encoding

The product-quantization algorithm encodes input vectors into

short codes [18]. A D-dimensional input vector x ∈ RD is split into
M disjointed subvectors. For each D/M-dimensional subvector, the
closest codeword from the pre-trained L codewords is determined,
and its index (an integer in {1, 2, . . . ,L}) is recorded. Finally, x is
encoded as x̄ , which is a tuple ofM integers deined as follows:

x 7→ x̄ = [x̄1, . . . , x̄M ]⊤ ∈ {1, . . . ,L}M , (2)

where themth subvector in x is quantized into x̄m . We refer to x̄
as a PQ code for x . Note that x̄ is represented byM log2 L bits. We
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Table 1: Comparison of k-means, Bk-means, and the proposed PQk-means clustering methods. In k-means clustering, the vec-

tor is a D-dimensional real-valued vector. In Bk-means clustering, the vector is a B-bit binary string. In PQk-means clustering,

the vector is a tuple consisting ofM indices, whose range is from 1 to L.

Method Representation Step1: Assignment Step2: Updating

k-means [22] x ∈ RD Nearest neighbor search Averaging

Bk-means [14] x 7→ xb ∈ {0, 1}
B Hash table for binary codes [29] Bit operation [14]

PQk-means (proposed) x 7→ x̄ ∈ {1, . . . ,L}M Hash table for PQ codes [23] (Sec. 4.1) Sparse voting (Sec. 4.2)

set L to 256, in order to represent each code usingM bytes. This is
a typical setting in many studies.

Note that for each subspace, L codewords are trained beforehand.
Therefore, we can compute a distance matrix among codewords for

each subspace, Am ∈ RL×L for eachm ∈ {1, . . . ,M}, where Ami, j
denotes the squared distance between the ith and jth codewords
for themth subspace.

Suppose we have two vectors, x1 and x2, and that their PQ
codes are x̄1 and x̄2, respectively. Then, the Euclidean distance
between x1 and x2 is eiciently approximated with the two codes
x̄1 and x̄2;d(x1,x2) ∼ dSD (x̄1, x̄2). This is known as the symmetric
distance (SD) [18]:

dSD (x̄1, x̄2)
2
=

M
∑

m=1

dmSD (x̄
m
1 , x̄

m
2 )

2
=

M
∑

m=1

Am
x̄m1 , x̄m2

. (3)

The SD approximates the distance between the original vectors
by the distance between codewords, denoted by PQ codes. Here,
dm
SD
(i, j) computes the distance between the ith and jth codewords

in themth space, and can be computed simply by looking up Ami, j .

Therefore, the squared SD can be eiciently computed using look-up
tables with a summation of the results. This computation requires
a cost of O(M).

A useful property of product quantization is its reconstructability.

Given a PQ code x̄ , an original vector x ∈ RD can be approximately

reconstructed by fetching the codewords x̄ 7→ x̂ ∈ RD , where x̂ is
an approximation of x .

4 PQK-MEANS CLUSTERING

In this section, we present our proposed PQk-means clustering

method.We assume thatD-dimensional input vectorsX = {xn }
N
n=1

are encoded beforehand using product quantization, as X̄ = {x̄n }
N
n=1.

Our objective is to determine K cluster centers that minimize the
cost function:

E(µ̄1, . . . , µ̄K ) =
1

N

N
∑

n=1

dSD

(

x̄n , µ̄a(n)

)

, (4)

where x̄n = [x̄
1
n , . . . , x̄

M
n ]
⊤ ∈ {1, . . . ,L}M . Note that each cluster

center µ̄k = [µ̄
1
k
, . . . , µ̄M

k
]⊤ ∈ {1, . . . ,L}M is also a PQ code. Here,

Eq. (4) difers from Eq. (1) in two aspects. First, both input vectors
and centers are PQ codes. Second, the symmetric distance dSD is
used to measure the distance between two PQ codes.

Similar to the standard k-means clustering method, PQk-means
repeats the assignment and update steps until convergence is achieved.

4.1 Assignment step

In the assignment step, the nearest center in terms of the SD is
determined for each x̄n :

a(n) = argmin
k ∈{1, ...,K }

dSD (x̄n , µ̄k )
2
. (5)

There are twomethods to compute Eq. (5): the PQ linear scan [18]
or PQTable [23]. For each x̄n , the PQ linear scan simply retrieves

the closest of the K centers {µ̄k }
K
k=1

linearly using Eq. (3). This

computation requires a cost of O(KM) for each x̄n . This is sui-
ciently fast for a small K value, but is not eicient if K is large. The
PQTable is a hash-table-based acceleration data structure, which is
tailored for the eicient computation of dSD . When the number of
items (K ) is small, the computational cost of managing and hashing
the PQTable is larger than for the PQ linear scan. However, for
large K values, the PQTable is between 102 and 105 times faster
than the PQ linear scan [23].

Given the input PQ codes X̄, it is not easy to decidewhichmethod
to use, because the computational cost depends on K ,M , and the
distribution of vectors of the target dataset. We adopt a simple
but efective approach. Given the PQ codes, we irst evaluate both
methods several times, and then select the faster of the two. We
found that this simple selection method is also useful for Bk-means,
and therefore we incorporated this technique into the Bk-means
method for the evaluation.

4.2 Update step

Once each input PQ code is assigned to its nearest cluster center,
we update each cluster center such that the sum of the errors within
the cluster is minimized. For typical real-valued vectors, this can be
achieved by computing the mean vector among all of the vectors in
each cluster. However, no method is known for computing a łmean
PQ codež from a set of PQ codes. Here, we deine the mean PQ
code as that which minimizes the sum of the symmetric distances
to each PQ code within a cluster.

We can propose a naïve straightforward method. The naïve
method is a brute-force approach, which is therefore slow. The
experimental results show that this naïve method is sometimes
even slower than the assignment step, as we will discuss in Sec. 5.2.
Consequently, we develop an alternative method, called sparse vot-

ing. By reorganizing the items in the cluster, sparse voting achieves
the same result as the naïve method, but more eiciently. This sim-
ple modiication accelerates the computation signiicantly (10× to
50×).

Naïve method: Let us focus on the kth cluster. For simplic-

ity, we refer to the PQ codes assigned to the cluster as {x̄n }
Nk

n=1,
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where Nk ∼ N /K . The purpose here is to compute a new cen-

ter µ̄k = [µ̄
1
k
, . . . , µ̄M

k
]⊤ ∈ {1, . . . ,L}M . Because each subspace is

independent, we consider themth subspace. Therefore, the prob-

lem is deined as follows: Given Nk integers {x̄mn }
Nk

n=1, where each
x̄mn ∈ {1, . . . ,L}, we calculate the łmeanž code µ̄m

k
∈ {1, . . . ,L}.

The straightforward brute-force approach tests all possible can-
didates. Subsequently, the best candidate that minimizes the sum
of the errors within the cluster is determined as follows:

µ̄m
k
← argmin

l ∈{1, ...,L }

Nk
∑

n=1

dmSD (x̄
m
n , l)

2
. (6)

Using Eq. (3), we ind that dm
SD
(x̄mn , l)

2
= Am

x̄mn ,l
. Therefore, this can

be computed by simply looking up the table. This naïve computation
requires a cost of O(LNk ).

Sparse voting: Next, we develop a fast alternative method,
called sparse voting. By creating a histogram, we can eiciently

compute Eq. (6). Given {x̄mn }
Nk

n=1, we scan these, and create an L-
dimensional histogram of frequency:

h = [h1, . . . ,hL]
⊤ ∈ NL , (7)

where hl denotes the frequency with which an integer l appears in

{x̄mn }
Nk

n=1. This scanning process requires a cost of O(Nk ).

Using h, Eq. (6) can be rewritten as

µ̄m
k
← argmin

l ∈{1, ...,L }

vl , where [v1, . . . ,vL]
⊤
= Amh. (8)

It is easy to show that the right-hand side of Eq. (6) is equivalent to
that of Eq. (8) once they are expanded. The computational cost of
Eq. (8) is O(L2).

Furthermore, if h is sparse, then the cost becomes O(L∥h∥0),
where ∥h∥0 ∈ {0, . . . ,L} denotes the number of nonzero elements
in h. Thus, the entire cost of sparse voting is O(Nk + L∥h∥0). Al-
though sparse voting is a simple trick, it accelerates the computation
signiicantly.

Analysis: With both the naïve method and the sparse voting

method, the inal center µ̄k = [µ̄
1
k
, . . . , µ̄M

k
]⊤ is created by comput-

ing µ̄m
k

for allm. Therefore, for each cluster, the computational costs

of the naïve method and the sparse-voting method are O(LMNk )

andO(M(Nk+L∥h∥0)), respectively. Finally, by summingK clusters,
we ind that the total costs are O(LMN ) and O(M(N + KL∥h∥0)),
respectively.

If the constant factor is the same, then sparse voting is faster

when N /K > L
L−1 ∥h∥0 ∼ ∥h∥0. Because the PQ codes in the same

cluster tend to be similar (owing to the nature of clustering), the
histogram h tends to be sparse, and this condition is satisied in
many cases, as we discuss in Sec. 5.2.

4.3 Pseudocode

Algorithm 1 presents the pseudocode for PQk-means. The pipeline
is extremely simple. The Init() function initializes the centers, by
simply randomly picking up K codes from the input codes. The
Check() function decides the manner in which the nearest neigh-
bors are found, whether by a PQ linear scan or with a PQTable.
This can be achieved by simply running both methods 10 times
with randomly sampled vectors. BuildTable() creates a PQTable.
FindNN() and UpdateCenter() are explained in Sec. 4.1 and Sec. 4.2,

Algorithm 1: PQk-means clustering

Input: X̄ = {x̄n }
N
n=1, // PQ codes

A = {Am }Mm=1, // Distance matrices

K . // The number of clusters

Output: M̄ = {µ̄k }
K
k=1

. // PQ codes

1 M̄ ← Init(X̄)

2 f laд← Check(X̄,A)

3 repeat

4 a ← ∅ // Array

5 if f laд then

6 table ← BuildTable(M̄,A) // PQTable

7 for n ← 1 to N do

8 if f laд then

9 // Sec. 4.1 (PQTable)

10 a[n] ← FindNN(x̄n , table)

11 else

12 // Sec. 4.1 (PQ linear scan)

13 a[n] ← FindNN(x̄n , M̄,A)

14 for k ← 1 to K do

15 µ̄k ←UpdateCenter(X̄,a,A) // Sec. 4.2

16 until stop condition;

respectively. The results of the assignment function a(n) are stored
in an array. Any condition can be adopted as a stop condition.

5 EXPERIMENTAL RESULTS

We evaluated PQk-means using various datasets. All experiments
were performed on a server with 3.0 GHz Intel Xeon CPUs (4 cores,
8 threads) and 128 GB of RAM 3. For a fair comparison with ex-
isting methods, we employed a single-thread implementation for
clustering (Sec. 5.2, 5.3, 5.4, and 5.5). For large-scale clustering
(Sec. 5.6), we used a multithread implementation, in order to high-
light the best performance. All source codes are publicly available
on https://github.com/DwangoMediaVillage/pqkmeans.

5.1 Setup

Compared methods: For comparison, we implemented standard
k-means clustering [22], Bk-means [14] with iterative quantization
(ITQ) [13], and Ak-means [31] using FLANN [24]. Ak-means is
an accelerated version of k-means, where the assignment step is
accelerated using a KD tree. In addition, we compared our method
with IQ-means [2], which is the latest subset-based method. Note
that k-means, Ak-means, and IQ-means are not memory eicient
for high-dimensional vectors.

Datasets and features: We used four datasets: ILSVRC2012,
BIGANN, YFCC, and Deep1B. The details of each dataset are sum-
marized in Table 2, where #test denotes the number of input vectors
on which the clustering algorithms were applied. Likewise, #train
denotes the number of vectors used for training the codewords for
product quantization and the rotation matrices for ITQ.

3We veriied that the largest experiment (Sec. 5.6) was also run on a computer with
only 32 GB of RAM.
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Table 2: Dataset statistics.

Dataset D #train #test

ILSVRC_100C 4,096 100K 129,395
ILSVRC_1000C 4,096 100K 1,281,167
SIFT1M 128 100K 1,000,000
SIFT1B 128 1M 1,000,000,000
YFCC100M 4,096 2M 96,419,740
Deep1B 96 1M 1,000,000,000

The ILSVRC2012 dataset is a subset of ImageNet [33]. This
dataset consists of 1000 object categories, each of which contains
around 1000 images. According to Gong et al. [14], the full dataset
was named ILSVRC_1000C, and a small subset named ILSVRC_100C
which was constructed by randomly picking 100 classes. For each
image, we extracted a 4096D AlexNet feature [21], which was acti-
vated from the last hidden layer, using the chainer framework [37]
with a pretrained model. We used 100K test images for training4.

FromBIGANN [19], we used the two datasets SIFT1M and SIFT1B.
For the training of SIFT1B, we used the top one million vectors
from the whole training set.

Yahoo’s Flickr Creative Commons 100M (YFCC100M) dataset
[36] contains around 100M images. An AlexNet feature vector was
extracted from each image, as with ILSVRC. Two million randomly
chosen features were used for training.

The Deep1B dataset [5] contains one billion test and 350M train-
ing features. Each feature was extracted from the last fully con-
nected layer of GoogLeNet [35] for one billion images. The features
were compressed to 96 dimensions using PCA, and l2 normalized.
For training, we used the top 1M vectors from the training set.

We used ILSVRC_100C, ILSVRC_1000C, and SIFT1M to com-
pare the methods. Note that each dataset has a distinct nature.
The AlexNet features have a larger dimension and a sparse nature,
whereas the SIFT features are dense and structured. The datasets
YFCC100M, SIFT1B, and Deep1B were used for the large-scale eval-
uation. Because the YFCC100M dataset includes the original images,
the results of image clustering are evaluated visually (this will be
illustrated later in Fig. 5).

Encoding: For feature encoding, we employed PQ [18] for PQk-
means, and ITQ [13] for Bk-means [14]. The PQ codewords and
ITQ rotation matrices were trained beforehand, using the training
datasets. Subsequently, all of the features were converted to B-bit
PQ codes for PQ, and B-bit binary strings for ITQ, where B = 32, 64,
and 128. Note that B = M log2 L = 8M for the PQ codes. Hereafter,
we employ abbreviations to denote encodings with various bit
lengths, e.g., łpqkmeans32ž refers to 32-bit PQ encoding. Note that
the bit length is a parameter speciied by the user. Larger bit lengths
improve the accuracy, but require more memory.

For each vector, the encoding of ITQ requires a cost ofO(D2), and
that of PQ requiresO(DL). The actual runtime of the encoding using
ILSVRC_1000C was 522 s for ITQ, and 109 s for PQ. As discussed
in Sec. 1, our assumption is that users only store encoded codes.

4Because ILSVRC2012 is used for image-recognition competitions, it contains more
training images than test images. However, as our objective is clustering, we reversed
the two groups, using the training images as test images and vice versa.

Therefore, encoding is the preprocessing step used in this study.
Note that IQ-means also requires a similar encoding process.

Seed: For the initial seeds of the clustering, we randomly sam-
pledK vectors from the input dataset.We ixed seeds for all methods
using the same conditions (dataset, B, and K ), to ensure a fair com-
parison. Note that in our preliminary study, we observed that the
selection of seeds did not signiicantly afect the results 5.

5.2 Runtime analysis

We evaluated the runtime of the proposed PQk-means clustering
method. Table 3 presents a runtime comparison for each step in
the assignment, the update using the naïve method, and the update
using the proposed sparse-voting scheme. The results conirm the
following points. First, the proposed sparse voting method is

always faster than the naïve updating method, with a large

margin (e.g., 54× faster in ILSVRC_1000C with K = 103). Sec-
ond, the naïve updating method is sometimes even slower

than the assignment step (for ILSVRC_100C with K = 102,
ILSVRC_1000C with K = 103, and SIFT1M with K = 102).

These results indicate that the proposed sparse-voting scheme is
highly eicient, even though it achieves the same accuracy as the
naïve method. Consequently, we employed sparse voting during
the subsequent evaluations in this study.

Theoretically, the runtime of PQk-means is

min(O(KMN ),O(NTtable )) +O(M(N + KL∥h∥0)). (9)

The irst term corresponds to the assignment step, whether using
a PQ linear scan (O(KMN )) or a PQTable (O(NTtable )). Note that
Ttable denotes the cost of a search for nearest neighbors using the
PQTable, which is heavily dependent on the data distribution. The
second term corresponds to the updating step using the sparse-
voting scheme. Because of the eiciency of updating cluster centers
using the sparse voting scheme, as shown in Table 3, the dominant
step is the assignment.

Note that the runtime of PQk-means does not depend on the
dimension D of the original vectors, meaning that our PQk-means
method performs eiciently for high-dimensional vectors.

5.3 Memory consumption

For B-bit codes, PQk-means requires B
8 (N + K) bytes for codes

and centers, and 4L2M bytes for distance matrices. In addition,
PQk-means requires an array of lists to specify an assignment (a in
Algorithm 1), which requires 4N bytes in total. If the PQTable is

used, this requires 4K · 2Q (log2(B/log2 K )) bytes [23], where Q() is a
rounding operation. The sum mentioned above constitutes the the-
oretical runtime memory consumption. Usually, N is signiicantly
larger thanK . Therefore, the main contributors to thememory

are the input codes and an assignment array, (B/8 + 4)N .
Compared to the standard k-means and the Ak-means methods,

both of which require at least 4D(N +K) bytes for codes and centers,
the proposed PQk-means requires signiicantly less memory. Be-
cause the memory consumption of the PQk-means does not depend
on the dimension D of the original vectors, PQk-means is particu-
larly memory eicient whenD is large, such as for AlexNet features
(D = 4096). For example, input vectors from ILSVRC_1000C require

5For example, ten trials showed that the mean error is 242 and the standard deviation

is 0.12 for SIFT1M with K = 103 using 32-bit codes.
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Figure 2: Comparison of PQk-means with Bk-means in terms of errors and runtime. Errors are plotted for each iteration. All

lines are plotted for 20 iterations. A relatively longer line indicates that more time was required.

Table 3: Runtime comparison for each step using 32-bit

codes for various conditions. For each condition, we run

PQk-means twice (w/ Naïve or w/ sparse voting), and re-

port the runtimes. For each condition, the most/least time-

consuming step is highlighted using a bold/underlined font.

We also report a macro average value of ∥h∥0. All values con-

stitute averages over 20 iterations.

Update [ms]

Dataset K ∥h∥0 Assignment [ms] Naïve Sparse

ILSVRC_100C
102 64.0 91.1 301 5.05

103 18.7 795 183 10.1

ILSVRC_1000C

102 133 1.09 × 103 4.72 × 103 124

103 52.7 8.51 × 103 5.29 × 103 98.2

104 14.0 3.86 × 104 2.03 × 103 218

SIFT1M
102 145 811 4.26 × 103 105

103 77.1 6.21 × 103 2.43 × 103 103

1, 281, 167 × 4096 × 4 = 21 GB. By contrast, PQ codes with 32 bits
require only 1, 281, 167 × 32/8 = 5.12 MB. This conirms the advan-
tages of using short-code encoding schemes. As shown in Sec. 5.4,
even when features are encoded as very short codes, the clustering
performance declines slightly, with a substantial speed-up. Notably,
Bk-means ofers a comparable advantage in terms of memory.

5.4 Detailed comparison with Bk-means

We compared the proposed PQk-means method with Bk-means,
which is the closest comparable method (see Table 1). We examined
the behavior of both methods at each iteration, especially for rela-
tively small K values. Because K is small, the linear scan was used
in the assignment step for both methods. The results highlighted
the general tendencies that PQk-means is more accurate, whereas
Bk-means is faster.

Clustering errors were computed as follows. Let us assume that
either PQk-means or Bk-means is applied to the short codes to
create K clusters. Following clustering, the corresponding origi-

nal vectors {xn }
N
n=1 are collected. Subsequently, the error E for

the original vectors is computed using Eq. (1). As E measures the
average errors in the original vectors (rather than codes), we can
compare the results of PQk-means using those of Bk-means.

Figure. 2 presents the runtimes and errors during each iteration.
We obtained some interesting results.

PQk-means vs. Bk-means: In the comparison of PQk-means
with Bk-means for the same code length, the former always achieved
smaller errors. This is because the employed product quantization is
more accurate than ITQ, as reported in [16]. In terms of the runtime,
Bk-means was always faster than PQk-means for the same code
length. This is because comparing bit strings is faster than compar-
ing two PQ codes, which also constitutes expected behavior [16].

Code length: When considering diferent code lengths, there
were smaller errors for longer bit lengths, as expected. Interestingly,
the results for pqkmeans32 were more accurate than those

of bkmeans64 in Fig. 2a and Fig. 2b. This could be explained by
the higher expressiveness of PQ compared with that of ITQ.

Convergence behavior: As can be observed, 20 iterations were
suicient to achieve convergence in all cases. Note that if we stop
the iteration when the error does not change from the previous
iteration, PQk-means can achieve similar computational cost as
Bk-means for these datasets.

5.5 Comparison with existing methods under
several conditions

We compared the proposed PQk-means with Bk-means, k-means,
and Ak-means under several conditions. Our indings are summa-
rized as follows:

• k-meanswas between 10× and 1,000× slower than PQk-means.
• Ak-means was accurate. However, it was slow for large D

and/or relatively small K values.
• k-means and Ak-means required between 100× and 4,000×
more memory than PQk-means.
• Short codes, such as 32-bit PQ codes, were efective in terms
of the balance of accuracy, memory cost, and runtime.

SIFT1M: Figure. 3 illustrates the relationship between the run-
time, errors, and memory consumption according to N or K using
SIFT1M. As expected, k-means clustering resulted in the fewest er-
rors in all cases (Fig. 3c). However, it wasmore than ten times slower
in all cases compared with PQk-means and Bk-means (Fig. 3a).

Figure. 3c shows that Ak-means achieved low errors (almost
the same as k-means). However, owing to the overhead of the
approximated search, Ak-means was slow for relatively small K
(Fig. 3a), with Ak-means being slowest method for K = 50 (Fig. 3b).

Figure. 3d shows that Ak-means and k-means were not mem-
ory eicient, even though these methods achieved lower errors.
Ak-means and k-means consumed 512 MB memory space for the
vectors, whereas PQk-means and Ak-means required only B/8 MB.
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Figure 3: Relation between the errors, runtime, and memory consumption of the input vectors, according to N or K , for the

SIFT1M dataset after 20 iterations. The gray dots in (a) indicate that hash tables ([29] for Bk-means and [23] for PQk-means)

were used in the assignment step.

Fig. 3d also shows that the error of PQk-means for 32-bit codes was
lower than that of Bk-means for 64-bit codes.

ILSVRC_1000C: A comparison using ILSVRC_1000C with 32-
bit codes is summarized in Table 4. To compare the results more
intuitively, we introduce an additional evaluation criterion, the
Rand index [32]. Given a pair of clustering results, the Rand index
computes the similarity between them. We compared the result of
k-means against each method, where a higher Rand index indicates
a higher similarity.

PQk-means was superior to Bk-means in terms the Rand index
with the same code length. For example, the Rand index of PQk-
means (0.142) was higher than that of Bk-means (0.046) for K = 103.

The errors of Ak-means were close to those of k-means. This
was also conirmed by the high Rand index (e.g., 0.465 for K = 102).
However, Ak-means required a huge amount of memory (21.0 GB,
whereas 5.12MBwas required for PQk-means and Bk-means). More-
over, because the runtime of Ak-means depends on the dimension
of the vectors, Ak-means was slower for high-dimensional features,
such as AlexNet. Table 4 shows that Ak-means was between 5×
and 164× slower than PQk-means for all K .

Interestingly, although the PQk-means with 32-bit codes was 20
times faster and required 4,000 times less memory than Ak-means,
the Rand index of PQk-means (0.142) is slightly lower than that of
Ak-means (0.2) for K = 103. This implies that for the purpose of
clustering, the short-length code (e.g., 32-bit) can provide a strong
balance between the accuracy, memory consumption, and runtime.
We believe that this is a practically important result for clustering
in memory-restricted environments.

5.6 Large-scale clustering evaluation

In this section, we present the results of a large-scale evaluation
using three billion-scale datasets, namely the YFCC100M, SIFT1B,
and Deep1B datasets. For the three datasets, we ran PQk-means
with 32-bit codes and various values of K using a parallel imple-
mentation on a single machine. In addition, we ran Bk-means with
a parallel implementation for YFCC100M. To highlight the best
performance, we stopped the iteration when the error converged.
The number of iterations required for convergence was ive for all
datasets. Because these datasets are extremely large (1.58 TB, 512
GB, and 384 GB, for YFCC100M, SIFT1B, and Deep1B, respectively),

Table 4: Comparison of methods using the ILSVRC_1000C

dataset with 32-bit codes after 20 iterations.

Method K Error Rand index Time [s] Memory

PQk-means
102 65.09 0.230 18.2

5.12 MB103 60.92 0.142 1.51 × 102

104 59.03 - 7.22 × 102

Bk-means
102 66.35 0.111 12.3

5.12 MB103 63.19 0.046 1.00 × 102

104 60.70 - 1.15 × 102

k-means
102 64.25 1.0 9.12 × 103

21.0 GB
103 58.95 1.0 1.06 × 105

Ak-means
102 64.29 0.465 3.00 × 103

21.0 GB103 59.76 0.200 2.96 × 103

104 56.78 - 3.65 × 103
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Figure 4: Large-scale clustering evaluation for the

YFCC100M dataset with ive iterations.

an ordinary computer cannot store all of the original data in its
memory simultaneously.

YFCC100M: Fig. 4 presents a comparison between PQk-means
and Bk-means. As discussed in Sec. 5.4 and Sec. 5.5, PQk-means al-
ways achieved more accurate clustering and Bk-means was always
faster for the same K .

The resulting images for the clustering with PQk-means with
B = 32 and K = 105 are presents in Fig. 5. These results show
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Cluster id: 5703 (a sports game on ice)

Cluster id: 95307 (a European-style church)

Cluster id: 17713 (some texts)

Cluster id: 9566 (a palm tree)

Cluster id: 76803 (a creature of the sea)

Figure 5: Example images from image clustering using PQk-

means with B = 32 and K = 105 for the YFCC100M dataset.

Each row shows images belonging to the same cluster.

that PQk-means successfully clustered the images. The images in
each cluster show a consistent scenario, as follows: cluster ID 5703
shows a sports game on ice, cluster ID 95307 a European-style
church, cluster ID 17713 some texts, cluster ID 9566 a palm tree,
and cluster ID 76803 a sea creature. From these results, we conclude
that clustering using only 32-bit codes can provide useful results.

SIFT1B and Deep1B: Table 5 presents the runtime evaluation
for SIFT1B and Deep1B. Remarkably, the runtime results for SIFT1B
and Deep1B exhibit similar behavior, even though the data distri-
bution of SIFT features and GoogLeNet features would be diferent.
These results indicate that we can predict the runtime performance
of PQk-means. This is important, because estimating the runtime
of large-scale clustering is usually diicult.

Although the required memory was less than 32 GB, PQk-means
can handle 109 vectors with K = 105 in around just half a day (14
hours for SIFT1B and 12 hours for Deep1B). This implies that PQk-
means allows practical large-scale clustering on a single machine.

5.7 Discussions

ComparisonwithBk-means:The comparative studies illustrated
that both PQk-means and Bk-means are less accurate than the orig-
inal k-means method. However, they are both considerably faster,
and use signiicantly less memory.

PQk-means was more accurate than Bk-means in all settings.
Remarkably, PQk-means with 32-bit codes sometimes achieved a
better accuracy than Bk-means with 64-bit codes (Figs. 2a, 2b, and
3d). In terms of the computational cost, Bk-means was faster than

Table 5: Large-scale clustering evaluation of PQk-means for

the SIFT1B and Deep1B datasets with ive iterations (B = 32).

Dataset N K Error Time [s] w/ table

SIFT1B 109

102 303.4 1.88 × 103 (31 m)

103 277.4 3.95 × 103 (66 m)

104 256.0 3.68 × 104 (10 h)

105 235.1 5.14 × 104 (14 h) ✓

Deep1B 109

102 0.800 1.98 × 103 (33 m)

103 0.741 4.04 × 103 (67 m)

104 0.697 3.68 × 104 (10 h)

105 0.655 4.47 × 104 (12 h) ✓

PQk-means, especially for large K . This diference stems from the
fast search using hash tables [29], which was faster than using the
PQTable [23] for PQ codes. The next step should be to improve this
assignment step using an even more eicient data structure.

An important advantage of PQ codes is that the original vectors
can be approximately reconstructed from the PQ codes.

Comparison with Ak-means: Compared with PQk-means for
the same value of K , Ak-means achieved lower errors. However,
it was slower, especially for relatively small values of K (Fig. 3a,
Fig. 3b) or large values of D (Table 4). Because Ak-means stores
the original D-dimensional vectors, it requires signiicantly more
memory space than PQk-means. The advantage of Ak-means is that
it does not require an encoding step. Ak-means would be useful for
relatively small-scale problems, where all of the original vectors
can be stored in the memory.

Comparison with IQ-means: IQ-means is an accelerated ver-
sion of ranked-retrieval [8] that skips distance computations when
vectors are placed far away from centers. IQ-means can be the
fastest clustering method for large-scale data. However, IQ-means
seems not memory-eicient, and its accuracy was much lower than
PQk-means for the YFCC100M dataset. Please refer to our supple-
mentary material for the discussion on IQ-means.

6 CONCLUSIONS

In this paper, we introduced the PQk-means clustering method,
which is a billion-scale clustering algorithm for PQ codes. The
proposed method consists of two steps: an assignment step us-
ing a PQTable and an update step with a sparse-voting scheme.
PQk-means can cluster even high-dimensional vectors eiciently,
because the runtime and memory cost do not depend on the dimen-
sions of the original vectors. For the same code length, the accuracy
of PQk-means was shown to be consistently superior to that of
Bk-means, with additional an computational cost. Experimental
results demonstrated that the PQk-means achieved billion-scale
clustering within around half a day.

The next step will be to boost PQk-means by using GPUs. Among
the widespread applications of GPU, GPU-based acceleration is be-
coming a promising method for large-scale clustering [20]. Because
PQk-means is simple and easy to parallelize, its performance can
be boosted using GPUs.
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