
A

On Ordering Multi-Robot Task Executions within a Cyber Physical
System

TUSHAR SEMWAL, Indian Institute of Technology Guwahati
SHASHI SHEKHAR JHA, Indian Institute of Technology Guwahati
SHIVASHANKAR B. NAIR, Indian Institute of Technology Guwahati

With robots entering the world of Cyber Physical Systems (CPS), ordering the execution of allocated tasks
during run-time becomes crucial. This is so because, in a real world, there can be several physical tasks
that use shared resources that need to be executed concurrently. In this paper, we propose a mechanism
to solve this issue of ordering task executions within a CPS which inherently handles mutual exclusion.
The mechanism caters to a decentralized and distributed CPS comprising nodes such as computers, robots
and sensor nodes, and uses mobile software agents that knit through them to aid the execution of the
various tasks while also ensuring mutual exclusion of shared resources. The computations, communications
and control, are achieved through these mobile agents. Physical execution of the tasks is performed by the
robots in an asynchronous and pipelined manner without the use of a clock. The mechanism also features
addition and deletion of tasks and insertion and removal of robots facilitating On-The-Fly Programming. As
an application, a Warehouse Management System as a CPS has been implemented. The paper concludes
with the results and discussions on using the mechanism in both emulated and real world environments.

CCS Concepts: •Computing methodologies → Intelligent agents; Multi-agent systems; Mobile agents;
Cooperation and coordination; Distributed algorithms; •Computer systems organization → Embedded
and cyber-physical systems; Robotics;

Additional Key Words and Phrases: Mutual Exclusion, Distributed Systems, Multi-Robot Systems (MRS).

1. INTRODUCTION
While robotic applications are fast making inroads into a plethora of automated sys-
tems, the tight coupling between the application and the robotic hardware seem to
deter both their scalability and flexibility. The need of the day is to transform such au-
tomated systems into ones that are malleable and accessible over a network. Through
this transformation, a fair amount of generic nature can be embedded within such sys-
tems, thereby allowing for changes to be made in the patterns or nature of executions
of the tasks performed. This flexibility can be realized only if we facilitate network-
ing among all the entities within these systems. Networking can allow the entities
to communicate with one another and resolve several issues that crop up during run
time. If the entities are mobile, the network becomes dynamic and makes one-to-one
communication, a much disorganized task. A centralized approach for controlling the
entities may perform well but makes the system rigid, expensive and hardly scalable.
On the contrary, a decentralized and distributed control mechanism coupled with a
mobile computing environment can empower these systems with autonomy, flexibility
and scalability. Such automated scenarios can be viewed to be made up of two ba-
sic components – a cyber component that caters to both computing and networking of

Primary Author’s address: Tushar Semwal (t.semwal@iitg.ernet.in), Department of Computer Science and
Engineering, Indian Institute of Technology Guwahati; (Current address) Department of Computer Science
and Engineering, Guwahati, Assam 781039.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1556-4665/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

ar
X

iv
:1

80
3.

04
78

1v
1

 [
cs

.D
C

]
 8

 F
eb

 2
01

8

Accepted in ACM TAAS Pre-print copy

the entities and a set of physical processes which are executed in the real world by
a set of robots using percepts received from either on-board sensors or sensor nodes.
Considering the fact that the physical processes are initiated, linked and to some ex-
tent controlled by the cyber component, this type of a system can be categorized as a
Cyber-Physical System (CPS) [Baheti and Gill 2011]. Hence, a networked Multi-Robot
System (MRS) coupled with a mobile computing environment can provide a fitting
framework for a CPS.

Research in MRS has mostly been focused broadly on two main areas viz. task
allocation and task partitioning. In the former [Gerkey and Mataric 2001], tasks are
assigned to the appropriate participating entities (robots) in such a way that a desired
performance level can be achieved with complete utilization of available resources. The
latter, on the other hand, is the process by which a task is divided into a set of subtasks
so as to reduce the complexity of its execution [Ratnieks and Anderson 1999]. Apart
from these, there is also a third objective crucial to an MRS based CPS viz. that of task
execution which is grossly ignored in MRS specifications. Task execution is an inherent
objective (usually defined by the user) that always commences after task allocation or
partitioning. While the allocation and partitioning are merely planning models, task
execution adheres to the actual implementation which validates the assignments of
the tasks. Hence, both task allocation and task partitioning are dependent on task
execution without which a task cannot be said completed. Early work on Multi-Robot
Task Allocation (MRTA) by Parker [1998] describes an architecture where fault toler-
ance was incorporated in a heterogeneous set of robots for carrying out different tasks.
They demonstrated dynamic task allocation (a subclass of task allocation) within an
MRS. A formal analysis of the problems faced in MRTA has been presented in [Gerkey
and Mataric 2003]. Botelho and Alami [1999] describe a technique for allocation and
reallocation of tasks. In their work, each robot is provided with details of its own plan.
A robot is allowed to make changes in its plan depending upon its capabilities as also
those of the other robots. The use of auctioning techniques based on dynamics of a mar-
ket has been proposed by Dias and Stentz [2000], where the robots are assigned tasks
through negotiations with their peers in a distributed manner. Khaluf and Rammig
[2013] narrow down the scope of task allocation to time-constrained tasks. However,
they have ignored the complexities of real-world task execution and provided only the
simulation results.

The approaches discussed so far do not address the complexities involved in ordering
of actual task executions in the real world. Ordering such executions requires a careful
understanding of the available resources needed to complete a task within a CPS of
robots. These resources may be either exclusively available to every robot or they may
need to be shared. If the resources are to be shared by the robots within a CPS for the
completion of their assigned tasks, then a mechanism for mutual exclusion of shared
resources becomes mandatory in order to avoid contentions and deadlocks. Tasks in-
volving shared resources are common in the real-world. For instance, a ticket counter
where people wait in a queue, is a typical example of a shared resource. In the realm
of MRS, a sole battery-charging terminal where at an instant only one robot can plug-
in and charge itself, forms an example where mutual exclusion needs to be exercised.
The mutual exclusion problem in an MRS can be solved using centralized control. The
central controller can monitor and communicate with all the robots regarding their
turns to gain access to all the shared resources. Though simple and straightforward,
this solution could drastically load the central controller with heavy computational
and communication overheads. Further, any change in the CPS would mean bringing
down the central server.

In the domain of distributed computing, the Mutual Exclusion of shared Re-
sources (MER) is referred as a classical benchmark problem to resolve resource con-

2

Accepted in ACM TAAS Pre-print copy

tentions [Raynal 1986]. MER is required when different nodes need to access a shared
resource at the same time, lest a race condition [Raynal 1986] occur. A CPS consti-
tuting mobile networked robots could be looked upon as a Mobile Ad-hoc Network
(MANET). The problem of MER becomes more complicated in the context of MANETs
[Basagni et al. 2004] wherein mobile nodes move in a disorganized manner leading to
dynamism in the communication topology. In addition, MANETs are constrained with
limited bandwidth, low power usage, low computations capabilities, dynamic topology,
etc. [Fife and Gruenwald 2003] that increases the complexity of the MER problem as
compared to their static counterparts. Solutions to the MER problem in distributed and
dynamic networks can be broadly divided into two categories [Anchal et al. 2014] —
token based and permission based. In the token based approach, a node with a unique
token can access the shared resources while others have to wait for the arrival of the
token. On the other hand, in the permission based approach, a node can get access
to a shared resource if it can get permissions from all other nodes in the network by
exchanging messages. Since, in this approach, a node sends a request for getting ac-
cess through messages to all the connected nodes, it consumes bandwidth and thereby
introduces network latency. Although many variants of the MER problem have been
proposed [Chandy and Misra 1984; Hadzilacos 2001; Bulgannawar and Vaidya 1995;
Attiya et al. 2010], an adaptive and scalable solution in context of a CPS, wherein the
entities performing tasks need to share physical resources in the real world, has still
not been proposed. Wu et al. [2015], have modeled the problem of mutual exclusion of
traffic intersections as a variant of the classical mutex problem. Vehicles compete to get
access to the traffic intersection by exchanging messages. A vehicle passes through the
intersection when it receives permissions from other vehicles involved in the compe-
tition. Their approach however, uses multiple messages which lead to communication
overheads and network latency. Minimizing such overheads while ensuring MER is
crucial for the performance of a CPS.

Depending upon their nature, tasks can be divided into two types - (i) Independent
and (ii) Sequential. Independent tasks can be executed in isolation and thus do not in
any way rely on other tasks. By sequential, we mean that these tasks follow a topolog-
ical order such that a task say, Ti+1 is executed only if the execution of the preceding
task Ti is completed. In a typical computing environment, when a program includes
both parallel and sequentially executable instructions or methods, the associated com-
piler separates the independent ones from the sequential ones. Based on the program,
it assigns the independent ones to individual cores within a multi-core processor to
maximize parallelism. The number of such cores which could be looked upon as in-
dependent processing units, naturally do not change. On the contrary in a real world
multi-mobile-robot scenario where robots are synonymous to such computing cores,
this may not be the case. The number of robots available to perform a set of tasks may
vary over time. Such variation could be due to the fact that some robots may need to be
charged while others could have malfunctioned for some reason. Their number could
also increase, if more robots are deployed into the scenario. A precompiling procedure
to initially allocate sequential and independent tasks to a set of robots, as in a typical
multi-core computing environment could be disastrous.

Further, in the physical world, tasks could be interdependent by virtue of the fact
that they require both robots and resources to get executed. For instance, consider the
case where robot R1 is to execute a task T1 using a resource ψ1 while robot R2 is to
execute task T2 using the same resource ψ1. In this scenario, assuming T1 and T2 to be
independent tasks, it can be observed that though both robots R1 and R2 are free to
execute the two tasks, the non-availability of ψ1 concurrently to both R1 and R2 creates
a bottleneck. One of them has to wait for the other to free the resource ψ1 forcing T1
and T2 to be executed sequentially executed. It may be noted here that, independent

3

Accepted in ACM TAAS Pre-print copy

tasks may also suffer from similar bottlenecks when they require the same resource.
Under such conditions, this resource dependency forces these independent tasks to be
executed sequentially. One can thus conclude that a technique that can handle the
ordering of all types of tasks on-the-fly while also catering and effectively utilizing the
varying number of mobile processing units, forms a sine qua non for CPSs comprising
mobile robots.

In this paper, we formulate the problem of ordering the execution of sequential,
independent and interdependent tasks to be executed by multiple mobile robots within
a CPS and propose a mechanism to solve the same. An agent based approach has
been formulated to ensure MER among multiple robots connected to form a dynamic
network. A sequence of topologically ordered and interdependent tasks that involves
shared resources, forces their execution in the form of a pipeline. Since the number of
mobile robots available to execute a set of tasks could vary, we have tried to portray
these robots as a pipeline wherein the number of processing units could vary during
run-time. A conventional pipelined computing architecture requires a clock in order to
synchronize and allocate proper time slots for the execution of processes. The execution
times for the various tasks performed by a set of robots however, vary over time due to
several real-world problems. If a pipeline needs to cater to such varying times required
for the executions, it should possess an inherently adaptive clocking mechanism so as
to compensate for such variations.

The algorithm proposed in this paper is novel in the sense that: 1) In this work,
we have used intelligent messages in the form of mobile agents to solve the problem
of mutual exclusion while executing tasks in a multi-robot distributed environment.
Conventional distributed scenarios as in Wu et al. [2015], use message broadcasts to
share information and ensure mutual exclusion of shared resources. Message broad-
casting drastically increases the communication cost [Wu et al. 2015] and can clutter
a network. In the proposed mechanism, we have used a conscientious agent migration
strategy [Minar et al. 1999] which has least inter-node communication cost [Godfrey
et al. 2013] as compared to other agent based approaches such as CLInG [Sempe and
Drogoul 2003], EVAP [Chu et al. 2007] and Random-walk with cloning [Gaber and
Bakhouya 2008]. 2) Synchronization in distributed settings is a major challenge and is
traditionally achieved by using a single node (or a subset of nodes) which provide for
clocking. This poses issues of reliability when such nodes fail. In the domain of robotics,
the problem of synchronization deteriorates since the time required to execute a given
task by a robot can vary due to several environmental factors. In the mechanism pro-
posed herein, the agents ensure an inherent adaptive clocking mechanism to achieve
synchronization across the network of robots. In addition, features such as concurrent
execution of tasks, on-the-fly addition and deletion of tasks and inclusion and removal
of robots, emphasize the flexibility and versatility of the proposed mechanism. Finally,
a Warehouse Management System (WMS) as an application has been implemented to
demonstrate the feasibility of our approach.

In brief, our major contributions towards the Task Execution Ordering Problem
(TEOP) are -

(1) A mobile agent based distributed mechanism for ordering multi-robot task execu-
tions.

(2) A solution for the MER problem among multiple robots within a CPS.
(3) Validation of the proposed mechanism through emulation.
(4) Real world implementation of the proposed mechanism with WMS as an applica-

tion.

The remaining part of paper is organized as follows: Section 2 discusses agent based
systems and their applications. Section 3 describes the constituents and system spec-

4

Accepted in ACM TAAS Pre-print copy

ifications of the proposed CPS. The Task Execution Ordering Problem (TEOP) among
multiple robots and the inherent objectives for realizing the CPS are discussed in Sec-
tion 4 while the proposed mechanism is described in Section 5. Section 6 describes a
real-world implementation of the proposed mechanism while Section 7 presents the
results obtained in both the emulated and real-world scenarios. Finally, Section 8 con-
cludes the paper and provides directions for future work.

2. AGENT BASED SYSTEMS
An agent is as an intelligent software code that has a certain degree of autonomy
[Franklin and Graesser 1997]. Agents are smart beings that reside in the cyber world
and carry out tasks or computations on behalf of the users. As human beings in the
real-world, agents form their counterpart in the cyber world. They are autonomous,
decisive, flexible, adaptive, reactive, pro-active, social, have locality of reference and
many other features [Schumacher 2001]. Agents can be broadly divided into two types
— static agents and mobile agents. Usually agents are stationary entities which oc-
cupy a fixed location within a networked environment. Mobile agents on the contrary
are distinguished by their mobility which allow them to move freely within a network
of nodes. Since, mobile agents form an important component of the proposed mecha-
nism for executing and ordering of a sequence of interdependent tasks within a CPS of
multiple robots, the succeeding section presents a brief background on the use of these
agents.

2.1. Mobile Agents
As mentioned, a mobile agent is a program that can migrate from one node to another
within a network and can perform autonomous computations. Along with mobility,
these agents also possess other abilities such as cloning, autonomy, payload carry-
ing capability, on-node execution, local decision making, adaptability, etc. [Outtagarts
2009]. Mobile agents have been used in a myriad of applications ranging from wire-
less sensor networks [Chen et al. 2007], e-commerce [Maes et al. 1999], robot control
[Kambayashi et al. 2005; Godfrey and Nair 2008], security [Boukerche et al. 2007]
and e-learning [Zaiane 2002]. Posadas et al. [2008] highlight the advantages of using
mobile agents for controlling mobile robots using two approaches of executing tasks.
In the first approach, all the mobile robots communicate with a central server to get
the necessary actions which aid in the completion of a set of tasks. In the second, the
mobile agents are released into the network of mobile robots. These are then made to
execute programs locally on each mobile robot based on their local decision making
capabilities. The authors report that the latter approach is more effective in terms of
time required to execute an action by a mobile robot when compared to the former
centralized method. This is so because considerable time is wasted in communication
with the central server.

Godfrey and Nair [2012] describe how mobile agents can be used to provide services
in an MRS. They also compare the performance of mobile agent migration strategies.
Some of the important reasons for the use of mobile agents for the realization of dis-
tributed systems are [Cruz-Cunha 2011] —

(1) Network traffic and latency reduction: Mobile agents perform computations and
interactions locally at a node. This results in faster response and avoids excessive
message passing.

(2) Adaptation and customization: In traditional distributed systems, as the protocols
evolve for transmitting and interpreting the outgoing and incoming data respec-
tively, it becomes cumbersome to update the servers and creates a legacy problem

5

Accepted in ACM TAAS Pre-print copy

[Lange 1998]. In such scenarios, mobile agents provide for flexibility as clients can
dispatch them to the server for establishing the amendments to the protocols.

(3) Robustness and fault tolerance: In dynamic and distributed networks, it is imprac-
tical to continuously maintain static communication links among the nodes. In
such cases, the tasks required to be executed can be embedded within the mobile
agents. These agents can then be dispatched into such dynamic networks. After
being dispatched, these agents become independent and operate autonomously by
carrying out executions at the designated nodes in the network. The results can be
accumulated later by reconnecting with these agents.

Mobile agents thus can serve as an effective tool for realizing distributed mecha-
nisms over a network of nodes.

2.2. Mobile Agent Framework
A mobile agent framework is an execution environment or a platform which provides
support for agent development, programming and deployment within a network. It
provides tools for the users to create and manage agents and their behaviours. The
agents (static and mobile) are managed by the framework in order to ensure their suc-
cessful execution and operation. There are various mobile agent frameworks available
in a variety of programming languages such as Java, C/C++ or Prolog. JADE [Bellifem-
ine et al. 2001], a Java based agent framework, is known for its simple development
process along with FIPA 2000 compliance. Mobile-C [Mostinckx et al. 2009] is a purely
C/C++ based agent framework which, due to its small code size, readily supports em-
bedded devices. JINNI [Tarau 1999], Typhon [Matani and Nair 2011] and Tartarus
[Semwal et al. 2015; Semwal et al. 2016], being Prolog based frameworks, facilitate
rapid prototype development. The work reported herein uses Tartarus, a mobile agent
framework for the development and management of static and mobile agents. We have
chosen Tartarus as it supports rapid prototyping, multi-threaded execution and faster
mobility. In addition, it comes with a pre-installed plug-in channel which allows for
the control and interaction with other embedded devices and sensors.

3. PRELIMINARIES
This section presents the entities and characteristics that make up the CPS used
herein followed by a formal description of the problem at hand. Further, we discuss
the mechanisms to ensure MER when the tasks within a CPS need to be executed in a
sequential manner. The manner in which the tasks can be altered, added or removed
on-the-fly in/from the sequence is also be illustrated.

3.1. Constituents of the proposed CPS
A CPS is an amalgam of both the cyber and the physical worlds where the term cyber
comprises computations, communications and control while the term physical com-
prises interactions with the real world [Shi et al. 2011]. Our proposed CPS is com-
posed of heterogeneous entities such as a Multi-Robot System (MRS), mobile agents,
sensors and computer nodes. Mobile agents form the cyber entities which carry out
computations, manages all the communications and control the dynamics of the MRS.
The interaction of robots with the external surroundings where robots execute the se-
quential tasks forms the physical component. Following are the basic constituents of
the proposed CPS under consideration:

(1) Nodes: A node refers to any device that is capable of computations and communi-
cations and hosts an agent framework. It can be an embedded system, a personal
computer, a robot or even a sensor node. Nodes are connected to each other to form
a network W.

6

Accepted in ACM TAAS Pre-print copy

(2) Network: A network W is a dynamic wireless Mobile Ad-hoc Network (MANET)
wherein a node can connect or disconnect to another node at any point of time. The
connections are inherently managed by the nodes within the network using any of
the available mechanisms [Dhenakaran and Parvathavarthini 2013].

(3) Robots: A set of networked robots R ={R1, R2, R3, . . . , Rk|k ≥ 1} all of which hosts
an agent platform within and can connect to the network W in an ad-hoc man-
ner. These are essentially a subset of nodes responsible for the execution of tasks.
Robots are mobile and are equipped with sensors and actuators that enable them
to sense their environment and act upon them, respectively.

(4) Tasks: A set of finite tasks T = {T1, T2, T3, . . . , Tn|n ≥ 1}, capable of being executed
by the set of robots R.

(5) Resources: Utilities and nodes other than robots, such as a path, parking/charging
bays, a rack containing items which can act as a node, sensor nodes, etc., in the
MRS environment required by a robot to accomplish a task, constitute a set of
resources ψ = {ψ1, ψ2, ψ3,. . . ,ψr|r ≥ 1}. Resources need to be shared amongst
robots in the set R while a robot executes the tasks in T. Once a robot takes over
a resource(s), it becomes non-shareable before it is freed by the robot. For clarity,
two forms of conventions have been followed in this paper viz. ψi and ψi, where for
the task Ti, ψi is a particular resource from the set ψ while ψi ⊆ ψ.

(6) States: States pertain to robots. STj

i indicates that a robot is in state Si and requires
to execute the task Tj . All free robots remain in the state designated as S∗1 .

(7) Agents: A set of mobile agents µ= {µ1, µ2, µ2,. . . ,µm|m ≥ 1}, such that each mobile
agent µi ∈ µ, carries the programs of its associated tasks as its payload. It may
be noted that each agent carries the programs for a set of task(s) assigned to it
along with the information of the required set of associated resources. An agent
also carries with it the State Information (SI) in the form of STj

i of the robots which
it can serve, and the next state to which the robots transit after execution of Tj .

(8) Job: A Job Ji is a collection of tasks in T along with the associated set of resources
in ψ, which are required to be executed by the robots in R and constitute the basic
inputs to the system. Here, Ji ⊆ {(T i

1,ψ1),(T i
2,ψ2),..,(T i

n,ψn)}, T i
n is the nth task of job

Ji and ψn ⊆ ψ. The intersection of subsets of the type ψn need not be a null set
indicating that a particular set of resources could be required by more than one
task. These jobs are processed and packed into mobile agents by a Job Distributor
JDist. New jobs received by the JDist could commence their execution even when
their predecessors are being executed.

Here k, n, r and m ∈ I where I is a set of positive integers.

3.2. System Specifications
For a better insight into the complexity of the proposed CPS, the specifications and
behavior of the system need to be defined precisely. Listed below are some pertinent
points about the system —

(1) The number of nodes in the network W is finite.
(2) Any node can connect or disconnect from the network W at any instant of time.
(3) The system is completely oblivious of the total number of robots R present in the

network W at any point of time.
(4) The number of mobile agents µ inhabiting the network W varies dynamically with

the change in the sequence of tasks.
(5) The sequence in which the tasks in the set T need to be executed may be changed

as per the requirements.

7

Accepted in ACM TAAS Pre-print copy

Fig. 1: Graph depicting the inherent sequential and interdependent nature of execu-
tion of tasks

(6) Each of the robots and the agents are autonomous entities capable of carrying out
independent executions.

(7) There is no direct robot-to-robot or agent-to-agent communication.

4. THE TASK EXECUTION ORDERING PROBLEM (TEOP)
Consider a CPS with a finite number of homogeneous robots. Each robot is required
to carry out the execution of a finite number of tasks that are interdependent. Since
all the robots are required to execute such tasks, a robot may need a set of resources
which are shared among its peers. This invokes the necessity for the mutual exclusion
of these resources while executing the tasks. As discussed earlier, in the real world
the number of robots available for task execution may vary with time. In addition, one
may need to alter, add or delete tasks on-the-fly. Under such circumstances, ordering
the task executions on-the-fly, becomes a challenging problem. We have modeled this
problem as a Task Execution Ordering Problem (TEOP) and proposed a solution to the
same using a set of mobile agents.

For simplicity, consider a straightforward scenario where each task Ti requires a
single resource ψi. The scenario can be easily extended to more complex ones where
instead of a single resource, a task may require a set of resource ψi which may be
common with those of other tasks. Figure 1 represents the problem in the form of a
directed acyclic graph. Each node of the graph represents a robot Ri performing a task
Ti using the resources in ψi with the help of a mobile agent µi. Additionally, there are
some nodes which represent the operator - AND (.). This operator makes sure that a
certain robot can perform a task Ti if and only if the previous dependent task Ti−1
is completed (the sequential execution constraint). Since mobile agents carry the pro-

8

Accepted in ACM TAAS Pre-print copy

grams of the corresponding tasks, this translates the actual dependency of execution
onto these agents. Hence, if a robot Rj is vying for resources to execute a task Ti, the
mobile agent µi carrying the program for the task Ti must be free and available in the
network. By free, we mean that the mobile agent should not be resident within a robot
nor aiding the execution of the associated task.

The graph shown in the Figure 1 depicts the manner in which the robots execute the
tasks while also ensuring mutual exclusion. It may be noted that all the nodes having
the same colour correspond to the same robot. Thus only one of these same-coloured
nodes can be active at any moment of time. For instance, the red coloured nodes stand
for the robot R2. The tasks T1, T2 and T3 thus cannot be executed concurrently since
they all need to be executed by the same robot viz. R2.

As an explanatory example, consider the node (R2, µ2(T2, ψ2)) denoting execution of
task T2 by robot R2 using resource ψ2 and mobile agent µ2. In order to traverse to this
node, both inputs to the AND node viz. (R1, µ2(T2, ψ2)) and (R2, µ1(T1, ψ1)) need to be
TRUE i.e. R1 should have executed task T2 using µ2 and ψ2 and R2 should have exe-
cuted T1 using µ1 and ψ1. This indicates the sequential nature of execution of tasks by
R2 viz. (R2, µ1(T1, ψ1)) → (R2, µ2(T2, ψ2)). Additionally, the interdependency between
(R2, µ2(T2, ψ2)) and its predecessor nodes (R1, µ2(T2, ψ2)) and (R2, µ1(T1, ψ1)) can also
be observed. This means that T2 (carried only by agent µ2), which requires resource ψ2

for execution, cannot be executed by multiple robots at the same time thereby ensuring
mutual exclusion.

4.1. The Inherent Objectives
With several robots and shared resources, ordering the executions of sequential, inde-
pendent and interdependent tasks, becomes a complex task especially when the num-
ber of executing robots and tasks vary at run-time. This section discusses this problem
of ordering in terms of its segregated objectives.

Objective 1. The main objective of the work presented in this paper is to honour
the mutual exclusion of the use of resources ψ by the robots in R while executing all
the tasks in the set T. Let Rj,t

i be a binary function that returns 1 during the time slot
when the robot Ri has acquired resource ψj . Hence the objective is

∀Ri ∈ R, execute(Ri,T)

subject to

∀ψj ∈ ψ,
n∑

i=1

Rj,t
i ≤ 1 (1)

Rj,t
i ∈ {0, 1},∀i, j

at any time instant t.
Here, execute(Ri, T) denotes that the robot Ri ∈ R executes the tasks in the set T. As
can be observed from Equation 1, the constraint of the objective function essentially
denotes the MER amongst the robots such that no more than one robot can acquire the
same resource at any given time.

The Objective 1 essentially makes the robots in R to align their executions in the
form of a pipeline. Pipelining [Null and Lobur 2014] is extensively used by the com-
puter processors in order to increase throughput. It facilitates the execution of the
several of instructions in a single unit of time. For instance, the three main subtasks
performed by processors to complete the execution of an instruction are – Fetch, Decode
and Execute [Null and Lobur 2014]. In the absence of a pipeline, the processor has to
finish the first instruction which it received from the memory and then move towards

9

Accepted in ACM TAAS Pre-print copy

Fig. 2: Pipelined execution of a set of sequential and interdependent tasks having
shared resources in the proposed CPS where different colours indicates different robots

the next instruction sequentially. This makes the other functional units of the proces-
sor such as the ALU to idle while the Fetch instruction is being performed. However,
in a pipelined architecture, when the processor is busy executing an instruction, other
units within, can perform other subtasks concurrently. However, these subtasks need
to be synchronized by a common clock. Any increase or decrease (addition/deletion) in
the number of subtasks can cause asynchronism. This gives rise to our second objec-
tive.
Objective 2. The second objective is concerned with maintaining the time period of
each stage in the asynchronous robotic pipeline. A pipeline in the context of processors
comprises a set of cascaded tightly coupled processing elements. The output of one is
given as input to the next. These elements are driven synchronously by a clock whose
time period is set to a value greater than the maximum delay incurred between the
elements in the pipeline. Finding this maximum time delay and setting the clock ac-
cordingly is possible in the domain of a computing system as the execution and delay
times once fixed, never change. However, in real world robotic scenarios, these timings
depend on the task at hand and the conditions and position or location of the robot. In
other words, the time to execute a task could vary temporally. This adds another di-
mension of complexity since the asynchronously executed tasks whose execution times
vary, could cause problems when the robot(s) try to access a shared resource. Under
such conditions the use of a synchronous lock whose time period is set to a constant
value a priori could prove to be disastrous. It may be noted that when n robots are
executing n tasks, each with distinct resources concurrently, the robotic pipeline is full
and operating at its maximum, thus satisfying the following optimality criteria –

∀ψj ∈ ψ,
r∑

j=1

k∑
i=1

Rj,t
i = r (2)

at any time instant t.

Objective 3. The final objective of our work is to facilitate the concept of on-the-fly
ordering. In our proposed CPS scenario, one may require to modify, add (insert) or
delete tasks in/from the set T on-the-fly while the robots are executing tasks in the
current set T. Further, it may happen that the robots themselves, which are analogous

10

Accepted in ACM TAAS Pre-print copy

to the processing elements in a pipeline, need to be inserted or removed due to failures,
low batteries etc. Hence, providing such flexibilities to the end users of such a system
is of vital importance.

Taking all these challenges into consideration, we have converted the graph in
Figure 1 into a pipeline model as depicted in Figure 2. The vertical axis in herein
represents the robots in action while the horizontal one represents the time slots
when the robot Rn uses the resource ψn in order to accomplish task Tn. In addition,
P1, P2, P3, .., Pn denotes pipelines formed at time slots 1, 2, 3,...,n respectively. As dis-
cussed earlier, it can be seen that in time slot 2, the program carried by µ2 facilitates
R1 to execute T2 using the resource ψ2. Concurrently, R2 executes T1 using the program
in µ1 and the associated resource ψ1. Both µ1 and µ2 remain resident on the respective
robots R2 and R1 until the tasks are accomplished and thus are not available to any
other robot during slot 2, thus ensuring mutual exclusion among the robots. It may
also be noted that R1 executes T3 whose program is carried by µ3 using ψ3 in time slot
3 only after R1 and R2 both have executed T2 and T1 respectively as shown in Fig-
ure 1. It can be seen that in the nth time slot, the pipeline becomes full with all robots
R1, R2,. . . , Rn in states Sn, Sn−1, Sn−2,. . . , S?

1 executing the allocated tasks Tn, Tn−1,
Tn−2,. . . , T1 using the associated resources ψn, ψn−1, ψn−2,. . . , ψ1 respectively without
any contention. It may be noted that these associated resources could be subsets of ψ,
namely ψn, ψn−1, ψn−2,. . . , ψ1.

In the next section, we present the mechanism to achieve the objectives listed above.

5. THE PROPOSED MECHANISM
In the CPS scenario used herein, the robots initially reside at a bay or docking station
and their states are initialized to S?

1 . This signifies that all the robots in R are currently
vying to execute the associated task viz. T1. As mentioned earlier, every robot hosts an
agent framework that allows these agents to knit through them.

In addition, all the mobile agents in µ are also released into the network W by
the Job Distributor JDist. Task ordering among the jobs is highly dependent on how
the JDist assigns tasks and their associated resources to the agents. Thus, a separate
section is provided for its discussion along with an underlying algorithm.

5.1. Job Distributor
The Job Distributor JDist assigns the various subsets ({Ti, ψi}) within a job to
corresponding agents along with the information on the associated set of resources
required to execute the tasks. It also embeds the State Information (SI) of the
robots it can serve together with next state to which the robots need to transit.
Further, the JDist also maintains a list of already assigned resources so that the
same resource is not assigned to other agents. An agent returns to the JDist when
the assigned task(s) has been executed thereby relinquishing the associated re-
sources. In the example graph shown in Figure 1, a simple scenario was chosen
where a task requires only a single resource. But in a real world, it is natural to
have tasks that require multiple resources which may need to be shared with other
tasks. Further, the tasks within a job could be sequential or independent. The task
assignment strategies followed by the JDist for different scenarios are described below:

A. Only sequential tasks – Consider a warehouse scenario wherein an item has
to be first fetched from a rack, carried to a packing station and finally packed and
shipped to its desired destination. This job comprises a total of 3 sequential tasks -
Fetching (T1), Carrying (T2) and Packing (T3), all of which are sequential in nature. For
cases when these tasks use different resources, the JDist assigns a distinct agent for
each task together with the associated set of resources. Thus T1 and ψi, are embedded

11

Accepted in ACM TAAS Pre-print copy

ALGORITHM 1: Sequence of steps followed by the Job Distributor JDist

1: Input: A Job Ji in the form of a set of tasks and associated resources {Jobs can arrive at
the Job Distributer asynchronously}

2: Output: A set of mobile agents with each agent containing a task(s) and its associated
resource(s)

3: repeat
4: if All tasks in Ji are Sequential then
5: if Resources required are available then
6: if Multiple tasks require same set of resources then
7: Follow steps as described in Section 5.1.C;
8: else
9: Follow steps as described in Section 5.1.A;
10: end if
11: else
12: Wait for the mobile agents to return and relinquish the resources back to the JDist;
13: end if
14: else if Tasks in Ji are a mix of Sequential and Independent then
15: if Resources required are available then
16: if Multiple tasks require same set of resources then
17: Follow steps as described in Section 5.1.C;
18: else
19: Follow steps as described in Section 5.1.B;
20: end if
21: else
22: Wait for the mobile agents to return and relinquish the resources back to the JDist;
23: end if
24: end if
25: until Job is present

in µ1. Likewise, T2 and ψj and T3 and ψk are embedded within µ2 and µ3. The SI and
next SI written onto each of these agents µ1, µ2 and µ3 are – S?

1 → ST2
2 , ST2

2 → ST3
3 and

ST3
3 → S?

1 respectively. Since T3 is the last task of the job, the next SI is stored as S?
1

thereby freeing the robot executing this job. These 3 mobile agents are then released
into the network.

B. A mix of sequential and independent tasks – Imagine a job that involves a re-
quest for exchange of an item. The set of tasks comprising this job could be - first
Fetch (T1) the new item, then Carry (T2) it to the packing station and then Pack (T3)
the same. While these tasks are being executed by one robot in a sequential manner,
another robot could concurrently Stamp (T4) the item as defective (or some such) and
Place (T5) it back to the concerned rack. Since the two sequences (T1 → T2 → T3 and
T4 → T5) are independent of each other they do not share any resources. For such
kind of jobs, the JDist sets the SI of the assigned agents µ1, µ2 and µ3 to S?

1 , ST2
2 and

ST3
3 and that of µ4 and µ5 to S?

1 and ST5
2 , respectively. This parallel execution of the

two sequences (T1 → T2 → T3 and T4 → T5) within a job improves both time and robot
utilization.

C. Multiple tasks using the same resource(s) – In the above two cases, we assumed
that the tasks that were sequential did not use a common resource i.e. (ψi∩ψj∩ψl = ∅).
It may happen that a job comprises two or more tasks which require the same set of
resources. Under such conditions, the task assignment is done purely on the basis of

12

Accepted in ACM TAAS Pre-print copy

the shared resource needed. For example, if ψi is required to execute tasks T1 and
T2 while ψj requires T3. Thus, T1 and T2 are interdependent while T3 is independent
(assuming ψi∩ψj = ∅). Under such scenarios, the JDist assigns both the interdependent
tasks T1 and T2 to a single agent µi while T3 is assigned to another agent µ2. The State
Information (SI) embedded within µ1 and µ2 are given below:
µ1: S?

1 → ST2
2 → S?

1
µ2: S?

1 → S?
1

It can be seen from the above SI that µ1 will find a free robot and make it execute
T1 and T2 consecutively before freeing it. µ2 will find a separate free robot and make
it execute T3 concurrently. Since T1 and T2 are now within the same agent, mutual
exclusion of the resources shared by these tasks are ensured by the agent itself. It may
also happen that ψi ∩ ψj 6= ∅. This can be easily reduced to the scenario similar to ψi

i.e. all the three tasks T1, T2 and T3 will become interdependent and thus, packed into
a single agent by the JDist.

It may be noted that in a set of sequential tasks within a job, say, {T1, T2, T3}, the
resource for a certain task(s) (T3) could be free while those of the others are already
assigned to agents of the previous jobs. In such scenarios, the JDist is forced to wait for
the agents to return and relinquish the resource(s). However, if T3 is an independent
task, the JDist will assign it to a separate agent and release it. The agent then follows
Algorithm 2 and executes the assigned task. The algorithm for the JDist is portrayed
in Algorithm 1.

5.2. Mobile Agent based Mechanism
Consider a scenario with repetitive jobs with similar tasks and associated resources
are landing on the JDist which are then assigned to the corresponding mobile agents
and release into the network of robots. Now, as soon as the mobile agent µ1 lands on
robot (say R1), it verifies the current state of that robot. If a matching state is found
(which in this case is S?

1), µ1 provides the code for the task T1 to the robot (R1 here).
Hence, the robot R1 commences the execution of task T1 by acquiring the resources ψ1

as per the program received from the agent µ1. After the execution of task T1 by R1,
the mobile agent µ1 updates the state of R1 to the next state (depending upon the next
task). Consequently, R1 relinquishes the resource ψ1 and waits for µ2 to arrive. The
mobile agent µ1 then leaves the robot, returns back to JDist and releases the task along
with the associated resource information. This task and resource is then assigned to
a new mobile agent for the next job (which in the current scenario is similar to the
previous job) by the JDist and is then released into the network. If µ1 does not find a
matching state, it migrates to another neighbouring robot in a conscientious manner,
thereby avoiding more recently visited robots.

The mobile agent µ1 for job J2 lands up in another robot (say R2) in state S?
1 and

makes it execute task T1 using the resource ψ1. In this manner, µ1 continues to make
all robots in state S?

1 to perform task T1 sequentially. When µ2, which is also migrating
within the network, lands in R1, it aids the latter in the execution of task T2 using
ψ2. Hence, both the robots R1 and R2 execute the tasks T2 (job J1) and T1 (job J2)
respectively in a concurrent manner forming a 2-stage pipeline. As time progresses all
the k robots start executing distinct tasks concurrently to form of a k-stage pipeline.
Here, the autonomous mobile agents act as tokens to acquire the associated resources
in order to carry out an execution. Algorithm 2 depicts the steps that each mobile agent
follows for the execution of their assigned tasks. Thus, it can be seen that by virtue of
following this algorithm, the set of agents µ order the execution of tasks, in a manner
that ensures mutual exclusion of shared resources among the jobs.

13

Accepted in ACM TAAS Pre-print copy

ALGORITHM 2: Sequence of steps followed by each mobile agent µi for the execution of their
assigned task Ti

1: Input: State Sx ∈ {S?
1 , S

Ti
x } and Program for task Ti ∈ T; { State is S?

1 if Ti is the first task
to be executed else State is STi

x }
2: Output: Execution of task Ti, ∀Rk ∈ R;
3: repeat
4: migrate to(Rk) ; {Agent migrates to a robot Rk}
5: S=get state(Rk) ; {Agent fetches the current state of robot Rk}
6: if Sx==S then
7: commence execution(Ti,ψi) ; {Agent makes robot Rk execute the code for Ti using ψi}
8: Sx+1 = get next state(); {Agent calls the function to get the next State Information

(SI) stored within it}
9: update state(Rk, Sx+1); {Agent updates the state of the robot Rk to the next state

carried by the agent}
10: end if
11: leave robot(Rk) ; {Agent migrates into the network to search for other robots}
12: until Job is present
Note: A mobile agent carries with it the program or code for a task Ti assigned to it, the state
Sx of the robots which it needs to search for and execute the code for Ti along with the very
next state the robot should transit (after execution of Ti), in accordance with the job whose task
Ti, it carries.

The proposed solution ensures that the free robots are selected and mutually ex-
cluded once they start a task within a specific job. Thus, once a robot is booked (mu-
tually excluded) for a job by an agent, the same robot continues to execute all tasks
related to this job. The robot is finally released only after the last task (contained
within the related agent) is executed. Mutual exclusion is also taken care of when
tasks common to multiple jobs require the same resource. Common tasks requiring
different resources occurring across multiple jobs are executed concurrently. Mobile
agents, once released into the network, act autonomously without any central con-
trol. With many networked robots in the scenario and with mobile agents knitting
through this network, this proposed CPS as a whole, performs in a decentralized and
distributed manner.

5.3. Asynchronous Execution Times
Unlike instructions in a CPU, the tasks executed by robots may not have fixed exe-
cution times. This could be due to a range of reasons which include wear and tear of
various parts, the nature of the paths traversed by a robot, obstacles, charging times
and network delays. This issue of non-uniformity in execution times of the various
tasks in the pipeline cannot be efficiently handled by the traditional method of using
a common clock.

In the present decentralized and distributed CPS, a mobile agent is the only en-
tity that has the code for the execution of a specific task. To mitigate the problem of
varying time periods in the robotic pipeline, the mobile agents do not leave a robot
until the concerned task is accomplished. Consider a case when Ri is executing task
Tj using µj and Tj takes more time than Tj−1 which is being executed by Ri+1 us-
ing µj−1. This forces Ri+1 (after the execution of Tj−1) to wait for the completion of
execution of Tj by Ri. This is because µj (currently within Ri) has not yet been re-
leased. Thus, even though the time durations that the robots take to switch from one
task to another within the pipeline keep varying over time, the mobile agents facili-
tate pipelined execution without the use of a common clock. This makes the proposed
mechanism adaptive to varying task execution times.

14

Accepted in ACM TAAS Pre-print copy

5.4. Addition/Deletion of task(s) on-the-fly
A real-world system is always prone to changes which could be sudden or gradual. For
a system comprising sequential tasks, these changes can be in the form of addition of
new tasks or the deletion of already existing tasks to/from the set T. There may also
be a case where an existing task is required to be replaced by a new or modified ver-
sion. Traditionally in a centralized system, one would have to bring the whole system
down by suspending the executions of all the tasks and then restart the same after the
modifications are made. This naturally is a time-consuming and inefficient exercise.
The proposed method for the execution of sequential tasks inherently allows for On-
The-Fly Programming (OTFP) without bringing the system down. In order to ensure
the modification of the task sequence, all the state transitions, from one state to the
next, are stored a priori locally in the state transition database of each robot. In this
context, modification could mean addition, deletion or altering the sequence in which
the tasks are executed.

The addition of a new task to the set T requires two new mobile agents — one that
updates the state change information in the robots (referred to as the Sequence Agent
(µseq)) and another that carries the program for the new task (µ′1). The former agent,
µseq, which is released into the network W with the new modified sequence, migrates
within W and updates the state transition database within each robot to reflect the
modifications. Thus, if the initial state transition database in all robots comprised the
sequence S?

1 , S2, S3,. . . , Sn and the new task to be inserted between T1 and T2 is T ′1
then this agent updates the sequence to S?

1 , S
′
1, S2, S3, . . . , Sn in all robots in R. This

would mean that a robot completing the execution of task T1 (in state S?
1) would now

transit to S′1 instead of S2 thereby executing the associated task T ′1 before T2 using the
second newly released agent µ′1. Once the modifications are done in each robot, the µseq

terminates itself. The second agent µ′1 is the one that carries the new program as its
payload and aids the robots to perform the new task T ′1. This agent behaves the same
way as all the other agents in the set µ.

Deletion is done by merely deleting the concerned state in the transition database
by this agent. It may be noted that if any of the task(s) previous to the task currently
being executed by the robot gets modified, then the robot continues with the successive
tasks and does not redo the entire job. The sequence can also be altered in a similar
manner to control the order in which the tasks in T are executed. Both addition and
deletion, thus facilitate the shuffling of the sequence of tasks in the pipeline on-the-fly.
The above feature thus provides OTFP facility to the system.

5.5. Mutual Exclusion for Parallel Tasks
Contrary to the pipelined case, all tasks in the set T can be executed concurrently in
a fully parallel CPS. Since each task Ti has its own dedicated resource ψi, the agent
µi can latch on to any robot Rj (provided it is free) and commence executing the asso-
ciated task. Thus, if there are n tasks (i.e. n agents) and n robots then at any point of
time all agents can execute their respective tasks using a robot each. If there are m
jobs comprising n tasks each and if all tasks take the same amount of time t for exe-
cution, then the total time required for execution of all the jobs would be m*t, where
* designates the multiplication operator. Mutual exclusion will be preserved, even if
the number of robots is greater than the number of jobs. This is so since each task is
associated with a single agent which in turn can use only one robot at any moment
of time. It may thus be noted that the mechanism described herein can cater to both
sequential and parallel sets of tasks.

15

Accepted in ACM TAAS Pre-print copy

5.6. Deadlock Freedom
According to Coffman et al. [1971], a system is in a deadlock state if all the four condi-
tions defined below hold simultaneously –

(1) Mutual Exclusion: The resources required are non-shareable and thus requires
mutual exclusion.

(2) No-Preemption: Resources already assigned cannot be preempted.
(3) Circular wait: Presence of circular list or chains of processes waiting for resources

acquired by their predecessors.
(4) Hold and Wait: A process is holding at least one resource and is also waiting to

occupy another resource.

The conditions (1) and (2) hold for the current proposed system. Mutual exclusion is a
necessary requirement since the resources become non-shareable once the robots latch
on to them. Preemption comes with the risk of indefinite starvation of a resource(s) by
the robot preempted by the system and thus adds to the overall cost of execution.

Consider the resource-allocation graph shown in Figure 1 which has been converted
to a pipeline representation portrayed in Figure 2. According to condition (3), if a
resource-allocation graph contains at least one cycle, then it can attain a deadlock
state. Thus, in order to show that the proposed system is deadlock free, it is sufficient
to prove that the graph is acyclic. By applying Kahn [1962] algorithm for topological
sorting on the graph shown in Figure 1, a pipeline representation similar to Figure
2 can be obtained. This proves that the graph is a Directed Acyclic Graph (DAG).
Hence, condition (3) does not hold for the proposed system thereby making it deadlock
free. Depending upon the type of job, condition (4) could hold for certain scenarios and
therefore does not guarantee the deadlock free behaviour of the proposed system. Even
though condition (3) is sufficient to ensure the deadlock free behaviour of the system,
further investigations to remove condition (4) could be carried out and forms the part
of future work of this paper.

6. IMPLEMENTATION
In order to validate the efficacy of the proposed mechanism, we chose an automated
warehouse as a CPS in order to implement the proposed mechanism. This CPS is used
to process shipments after the orders are received at the warehouse. The CPS within
the automated warehouse comprises a set of networked robots and smart racks. The
robots are required to fetch items from the racks and deliver them to the packaging
zones. These chores can be decomposed into several tasks such as follow a path to the
selected rack, pick the item, traverse towards the packaging zone and place the item
there. This sequence of tasks involves the use of shared resources such as the racks
and the paths. Warehouses generally optimize on space which means that the racks
are placed close-by thus allowing only one robot to move in between them. This path
as also the concerned rack thus form shared resources which can be used by only one
robot at any moment of time. This enforces the need to ensure mutual exclusion of
resources within the automated warehouse.

In order to ensure that mutual exclusion is preserved, warehouse management sys-
tems have to either constantly monitor and control the movement of robots or the
robots themselves have to manage and regulate such exclusions. The former method
is more centralized and resource intensive where a single or multiple set of servers
constantly monitor and control the robots. Centralized methods have their own draw-
backs [Minar et al. 2000]. The latter method, wherein the robots themselves as a whole
manage such mutual exclusions and executions, forms a decentralized and distributed
approach which is what we portray in this work.

16

Accepted in ACM TAAS Pre-print copy

Fig. 3: A warehouse with racks, robots and embedded boards with sensors

The performance of the proposed mechanism for ordering task execution was val-
idated by emulation followed by experiments using real robots. In order to test the
practical viability over large networks, the proposed method was emulated on real
networked nodes. Emulation (and not simulation) was carried out to ensure that the
experiment is closer to the real environment and captures the real-time issues such
as network failure, congestion, packet/data loss, etc. in the system. According to the
authors in [Chertov et al. 2006], emulation offers more concrete and reliable results
than simulation. Tartarus [Semwal et al. 2015], a mobile agent platform was used for
emulation of the proposed mechanism for sequential and interdependent task execu-
tion. Each instance of Tartarus running on a computer acts as a node in the network.
For the experiments, a 100-node network was created with sets of nodes running on
separate computers connected through a LAN. A separate node acted as the Job Dis-
tributor (JDist) which receives the request (job) for the items and converts it in the
form of tasks per request. Another additional PC (personal computer) was used to log
the status of all the entities and events during the experiments. These logs were used
to plot the graphs and analyze the results. It may be noted that these additional nodes
(JDist and PC) did not participate in the proposed mechanism.

Experiments were conducted to rigorously test the features of the proposed method
for scalability, adaptivity and OTFP. Each experiment was performed 10 times and the
average of the readings was taken into account while plotting the graphs ∗.

7. EXPERIMENTS AND RESULTS
In this section, we discuss the experiments conducted and results obtained from
both emulation and real-robots, separately. The section also compares the proposed
approach with its centralized counterpart and highlights the conditions when it is
favourable to use the former.

∗A video of the experiment performed is available at the following link:
http://www.iitg.ernet.in/cse/robotics/?page id=1993

17

http://www.iitg.ernet.in/cse/robotics/?page_id=1993

Accepted in ACM TAAS Pre-print copy

Fig. 4: Centralized versus the proposed decentralized and distributed approach

7.1. Emulation
As mentioned earlier, a 100-node Tartarus based network was deployed on 10 PCs over
a LAN wherein each node represented an instance of Tartarus. For honouring equal
distribution of load, each PC was initiated with 10 instances of Tartarus. Depending on
their functionality in the real world, the nodes in the emulation scenario are divided
into three types. The Robotic nodes (R) and the Shared resource nodes (Φ) form the
Primary nodes while the remaining constitute the Secondary nodes (Σ). In the present
context, these Σ nodes are the inactive nodes which merely allow the agent to flow
through in the network such as router, sensor nodes, etc. They may however be made
active so as to perform other tasks such as sensing, data processing, etc. based on
the application scenario. A static agent residing on each of the R- and Φ-type nodes
performed the job of waiting for the mobile agents in order to receive the code for the
task to be performed within them. For emulation, the tasks were designed such that it
would take 2 seconds to execute each of them assuming an ideal environment without
any unforeseen time lags. Figure 3 depicts the primary and secondary nodes for a
warehouse scenario.

7.1.1. Comparison with a Centrally Controlled System . In order to fortify our stand on the
use of this decentralized and distributed mechanism, it is essential to compare the
results of the same with those obtained using a centralized control mechanism. A
centralized emulation framework for the experimental set-up was thus made using
the same agent platform viz. Tartarus. A centralized server operating at a node was
responsible for posting the relevant commands using TCP-message based communi-
cation. This centralized scenario thus comprised the central node hosting the server
and the R and Φ nodes acting as its clients. The setup was obviously devoid of mobile
agents. The proposed mechanism for execution of mutually-exclusive sequential tasks
was emulated on this centralized framework. Instead of the mobile agents carrying the
programs required for the execution of the tasks, the robots herein had the required
programs to execute all the tasks, embedded in their respective memories a priori on-
board. The experiment comprised execution of series of jobs with increasing number

18

Accepted in ACM TAAS Pre-print copy

Fig. 5: Addition/Deletion of tasks on-the-fly

of tasks. Since the experiment was performed on an emulated framework, a total of
5 different soft computational tasks were chosen viz. Sorting (Sort), Merging (Merge),
Addition (Add), Subtraction (Sub) and Division (Div) of data within the nodes. The
5 tasks were repeated for jobs containing more than 5 tasks i.e. if a job has 7 tasks,
than the sequential tasks within this job comprises – Sort, Merge, Add, Sub, Div, Sort,
Merge. The tasks were designed in such a way that the total computational time for
each task was equal to 2 seconds in an ideal environment without any lags.

Initially, no resources are occupied until the execution commences. The central
server thus sends a message to the robot node R1 to commence the execution of task
T1. In order to ensure mutual exclusion, messages are passed to the central server by
each robot as and when a task is to be initiated or completed. On receiving a message
from a robot node, say Rj after the completion of task Ti (i, j ≥ 1), the centralized
server sends a message to the Rj+1th node informing that the resource ψi has been re-
linquished and that the task Ti can now be executed. In this way each robot executes a
task Ti only when the central server gives it a green signal to do so. The central server
thus manages task execution for all robot nodes and hence serves to ensure mutual
exclusion.

The variation in the performances of the centralized and the proposed mobile agent
based decentralized and distributed mechanisms have been portrayed in Figure 4. As
can be observed, when the number of tasks per job is below 30, the centralized mecha-
nism seems to perform a tad better than the proposed version. However, as the number
of tasks grow (beyond 30), the throughput of the centralized system degrades rapidly
since the average time for execution of a task increases. With increasing number of
tasks, the volume of information to be exchanged (between the robot nodes and the
server) in order to manage the execution of these tasks and ensure mutual exclusion,
also increases drastically. Such a large number of server-to-client communications re-
sults in a majority of time being wasted on acknowledging and replying to the various
nodes. When the central server is loaded with such a large number of requests, it takes
more time for the completion of the tasks due to these computational constraints. In
the case of the proposed decentralized approach, the rate of increase in the average
time required for completion of the jobs can be observed to be gradual thus indicating
the superiority of this approach. These results also show that the system is scalable
in the sense that it is hardly affected by the increase in number of tasks per job (aka.
mobile agents).

19

Accepted in ACM TAAS Pre-print copy

7.1.2. Task Addition and Deletion. As previously mentioned, each of the tasks takes 2
seconds to complete execution in an ideal environment. To study the effect of addi-
tion/deletion of tasks on-the-fly, tasks were added and deleted during execution. This
caused the length of the sequence of tasks in a job to vary at run time. Figure 5 shows
the average time spent per task after addition or deletion of tasks in the set T. The
numbers above and below the curve in the graph depict the number of tasks comprising
the job being executed. As can be seen in Figure 5, the experiment initially started off
with 10 tasks. While these tasks were being executed, a new task was inserted into the
system by the Job Distributor (JDist). This was achieved by following the procedures
mentioned in Section 5.4, eventually modifying the total number of tasks in the task
sequence to 11, 12, 15, 12, 20. . . and so on as depicted in Figure 5. It may be noted that
some of the tasks were also deleted in between the run. One can observe that the graph
is almost linear which clearly indicates that, though tasks are added/deleted through
OTFP, there seems to be no significant impact on the net time taken for execution.
This is so because the extra delays due to communication overheads and computa-
tional requirement are distributed among the nodes of the underlying network. This
concurrency reduces the effective increase in such lags. In a centralized approach, all
these overheads would add up on the controlling entity, thereby degrading its perfor-
mance.

7.2. Real-Robot Experiments
In order to provide a proof-of-concept of the actual working of the proposed technique
in the real world, a prototype of the warehouse automation scenario was implemented
using a set of mobile robots. The job of each mobile robot was to pick an item from a
rack, carry it to the packaging zone situated at another location and place it there, from
where on it could be parceled and dispatched. As shown in Figure 6a, the experimental
setup contains mobile robots and shared resources. The latter include the smart racks
and three zones viz. a line following zone, a wall following zone and a packaging zone,
all of which need to be shared i.e. they need to be used by the robots in a mutually
exclusive manner. A job is divided into four sequential tasks designated T1 to T4, which
are briefly described below:

(1) T1: A mobile robot waiting at the robot bay executes T1 by virtue of which it moves
forward before it detects a wall. On detecting the wall, it takes a right turn and
again moves forward to finally stop when it detects a black line.

(2) T2: This task makes the mobile robot to open its claws and start following the
black line before a green marker is detected. This marker denotes the location of
the smart rack.

(3) T3: The robot picks the item from the smart rack using its claws and then follows
the wall until a red marker is detected. It then places the item in the packaging
zone, thus executing task T3.

(4) T4: The robot follows a black line before a yellow marker is detected which denotes
the start location, thus reentering the bay once again, thereby accomplishing task
T4.

For experimentation with real robots, we used a set of LEGO R© MINDSTORMS R©

NXT robots. Since these robots cannot host the Tartarus platform within their con-
troller block, they were connected to respective computers (hosting Tartarus) via Blue-
tooth. An interface similar to LPA-PRO-NXT interface [Jha and Nair 2012] was used
to control the robots via these computers that formed the nodes of the network. The
movement of the robots was based on one castor wheel and a two-wheel differential
drive. A pair of claws attached to the front of the robots facilitated the picking of items
while an on-board ultrasonic sensor gauged the distance of objects in front. The robot

20

Accepted in ACM TAAS Pre-print copy

(a) (b)

Fig. 6: (a) Top view of the test-bed (b) Structure of one of the LEGO R© MINDSTORMS R©

NXT robot used in the experiments

was capable of following a black line path using a pair of IR sensors. In addition, a
colour sensor detected different markers laid on the floor. Figure 6b shows the struc-
ture of one such robot.

As soon as a request for an item is received by the JDist, the same is converted into
a job J and the corresponding set of mobile agents carrying their respective programs
(one per agent) is released into the network. A set of four experiments were performed
with the number of robots varying from 1 to 4. A total of 4 jobs were assumed to
be always fed into the system. In the first experiment, only one robot R1 was made
available at the bay. This signifies a case when one robot needs to perform all the
tasks in a sequential manner. R1 which is initially in state S?

1 is thus the only robot
available to receive the program for task T1 from agent µ1. After receiving the program,
R1 starts executing T1 since the shared resources viz. all the zones and smart racks
are free. As mentioned earlier, a mobile agent resides within the robot before the latter
completes the associated task. After the task is completed, the mobile agent leaves the
robot and starts migrating into the network in search of another robot in a similar
state that requires the associated program.

After task T1 is accomplished, R1 goes ahead in the pipeline only if the resources
required to execute T2 are available. This is only possible when R1 receives the pro-
gram to execute T2 via the corresponding agent µ2. Task T2 is that of picking an item
from the rack. The third task T3 is to place this item at the packaging zone. After T3
is accomplished R1 performs the final task T4 of following the black line and returning
to the bay from where it started. This experiment is one of the conventional ways of
performing a sequence of tasks with a single robot. It can thus be used as a baseline
while comparing the results obtained from experiments using the proposed decentral-
ized and distributed method using pipelined execution.

21

Accepted in ACM TAAS Pre-print copy

In the second, third and fourth set of experiments, the same jobs were executed
but now in a pipelined manner with the numbers of robots enumerated as 2, 3 and 4
respectively.

Figure 7 depicts four graphs (viz. 7a, 7b, 7c and 7d). Each graph herein corresponds
to the results obtained when the number of robots were varied from 1 to 4 respectively.
The X-axis in each graph represents the time consumed (in seconds) by the tasks while
the Y-axis represents the jobs to be done. The numbers imprinted on the boxes within
the graphs denote the execution times taken by the corresponding tasks.

(a) (b)

(c) (d)

Fig. 7: (a) Execution of tasks using a single robot (b), (c) and (d) Pipelined execution for
varying number of robots i.e. 2, 3 and 4 respectively

Figure 7a shows the results obtained when there is only one robot available to com-
plete the jobs. The different patterns filled inside the boxes in each row denote the
corresponding tasks viz. T1, T2, T3 and T4. As can be seen in the Figure 7, each row
of boxes i.e. tasks denotes a specific job. As soon as all the tasks comprising a job are
completed, the robot switches to executing the first task of the next job. In the case
when there is only a single robot there are no inter-job execution delays. This is so
because the robot does not have to wait for any shared resources to become free for its
use.

Figures 7b, 7c and 7d show results for cases when the number of robots available are
2, 3 and 4 respectively, in the experiments. In the Figure 7b, two distinct colours have
been used to show the two robots — blue signifying R1 while green representing R2.
It can be observed that when R1 is executing T1, R2 waits in the robot bay before the

22

Accepted in ACM TAAS Pre-print copy

Fig. 8: Execution of jobs comprising both sequential and independent tasks

resource ψ1 acquired by R1 is relinquished. When R1 completes the task T1, it relin-
quishes the associated resource ψ1, which in turn triggers R2 to commence execution of
T1 while R1 switches to execute T2 using resource ψ2. Execution commences only after
the associated agent (µ1 for T1 and µ2 for T2) reach the concerned robot and provide
the relevant programs. Thus, when the mobile agent µ1 triggers execution of T1 by R1,
the rest of the robots at the bay cannot execute T1 since the associated mobile agent
µ1 is now busy with R1. This inherently ensures proper ordering of execution of tasks
while also obeying mutual exclusion.

Subsequently, both R1 and R2 enter the pipeline and concurrently execute tasks T2
and T1 respectively. It can be observed that the robots seem to take unequal times
to execute the same tasks which in turn cause idle periods between the executions of
two consecutive tasks. Each idle period between the tasks along the row indicates the
extra time the robot waits for the resource of the subsequent task to be relinquished
by its predecessor. In the real world, execution times depend on the wear and tear that
the robots undergo, their controllers, charge on the battery and other environmental
conditions. In Figures 7c and 7d, these idle periods are more prominent due to the
presence of more robots. Thus, one cannot provide guarantees that a task will take the
same amount of time to complete as it did earlier as in the emulation experiments.
The speed-up obtained when 2, 3 and 4 robots was used were found to be 1.75, 1.84
and 2.21 respectively.

7.2.1. A mix of Sequential and Independent tasks within a job. Real-world jobs usually com-
prise heterogeneous tasks where a few of them could be sequential while the rest may
be independent. Results for the experiments conducted for such jobs have been por-
trayed in Figure 8. The experiment was conducted in an emulated environment simi-
lar to the one discussed in Section 7.1. As can be seen from the figure, job J1 and J6 are
composed of purely sequential tasks and thus are executed in sequence. Jobs J2, J3, J4
and J5 comprises two sequences of tasks which are independent of each other. Thus,
as shown in the figure, the proposed system manages to execute the two sequences of
tasks within a job in sub-optimal parallel manner.

23

Accepted in ACM TAAS Pre-print copy

Fig. 9: Execution of tasks using 3 robots - Addition and Deletion of task T2A on-the-fly

7.2.2. Modification of the Sequence of Tasks. Figure 9 shows the graph when a task is
added and deleted on-the-fly from the sequence of tasks T . In this experiment, a new
task T2A was introduced via µ2A during the execution of T2 in Job 2. It was then deleted
immediately after its execution in Job 2. The same task was again added during the ex-
ecution of T2 in Job 4. The additions and deletion were performed using mobile agents
as described in Section 5.4. The new task in the context of our warehouse scenario was
a detour from the normally used path which constituted the mobile agent µ2A and the
associated resource ψ2A. After R2 completed task T2, µ2A caused it to execute T2A in
Job 2. Since ψ2 is now free, R3 (saffron coloured row box) commenced execution of T2
using µ2 concurrently, as seen in Figure 9. It can be seen that the introduction of task
T2A introduced a large idle period in Job 3. This was because when R3 was executing
task T2, R2, having finished execution of T2A, commenced the execution of T3. The case
arose because the time for executing T2A by R2 was less than that for executing T2
by R3. Addition and deletion of tasks on-the-fly seemed to have no effect on the other
concurrently running tasks.

7.2.3. Removal of robots. The batteries of all the robots needs to be recharged after
their energy levels go below a certain predefined threshold. The threshold was chosen
in such a way that even if this threshold were to be crossed at the commencement of
a job, the robot would have enough energy to complete all the remaining tasks in that
job and then return to the robot bay for charging. This is synonymous to the removal
of a robot from the system. It can be observed in Figure 10, that R2 was removed after
it completed Job 2 in a 3-robot scenario. The absence of R2, caused R3 to perform the
task T1 in Job 5 just after R1 completed T1 in Job 4. As can be observed the pipeline
continues to execute tasks concurrently in spite of the absence of R2.

It can thus be observed from the results of the experiments, both emulation and real-
world, that though the task execution times vary, the system adapts to these changes
and maintains the pipeline even in the absence of a clock. Also, the resources associ-
ated to the tasks are used in a manner that mutual exclusion is preserved without any
direct communication.

24

Accepted in ACM TAAS Pre-print copy

Fig. 10: Execution of tasks using 3 robots - Removal of a robot (R2) on-the-fly

8. DISCUSSIONS AND CONCLUSIONS
This paper portrays a mechanism for ordering the execution of a set of interdepen-
dent tasks within a CPS of robots and sensor nodes operating in the real-world under
the constraint of mutual exclusion. The CPS, which forms part of an automated ware-
house has been used as the target application. This mechanism, however, can be easily
ported to other scenarios where shared resources are utilized and mutual exclusion
needs to be implemented. It has also been shown that a centralized solution could
no doubt be an option to solving the mutual exclusion problem but its performance
degrades as we scale the system. The use of mobile agents makes the mechanism de-
scribed herein decentralized, distributed and scalable and also allows for changes to
be made in the tasks as also the set of robots operating within the system, during run
times. The mechanism can also cater to more than a single set of sequential tasks ex-
ecuted concurrently thus forming multiple parallel pipelined sequential tasks where
the elements of the pipeline can be shared among other pipelines.

The proposed system is limited by the size of the network of nodes. For very large
networks (nodes> 1000), there could be considerable delays while searching for a robot
to be serviced by a mobile agent. The situation may worsen (delays may increase) if
bandwidth for communication is scarcely available. One solution to control such a lim-
itation is to use pheromone-conscientious migration strategy [Godfrey and Nair 2010],
which allows for a bi-directional search on part of the robotic nodes and the agents
across the network. Tackling the complexity of the tasks whose programs are carried
by the mobile agents, opens up future scope for the research. While on one side a box-
pushing operation may need just a single robot, complex tasks, such as carrying a long
object, may require multiple robots to synchronize their operations. After reserving
the required number of robots, the concerned agent within this proposed system could
release a new set of agents or clones [Semwal et al. 2016] capable of performing the
concerned tasks as also synchronizing them using stigmergy based mechanisms as
discussed in [Jha et al. 2014].

The Job Distributor (JDist) is the only central entity in the proposed system which
could be replaced by its distributed version. This means that instead of a single entity
that does the task of book-keeping of the allocated resources, each node could act as
an individual but scaled down version of the proposed JDist. These mini versions of
the JDist could then communicate with one another to ensure a distributed locking
mechanism. This work can also be extended to scenarios where different robots have
different abilities such that some subset of robots can execute only certain tasks. The

25

Accepted in ACM TAAS Pre-print copy

challenge would then be to choose only those robots which are fit for execution of the
required tasks. Since physical processes are performed in the real-world, the entities
of a typical CPS are bound to encounter unpredictable changes in the environment.
Further, these physical processes inherently operate at a different time-scale leading
to the creation of an asynchronous environment within the system.

Both these challenges are addressed inherently, to an extent by the mechanism de-
scribed in this paper. A robot could fail or be removed from the CPS environment
leading to unpredictability of the nature of execution of the pipeline. Unpredictable in-
cidents such as these can conventionally cause the stalling of the pipeline. The absence
of a common clock for the pipeline aids the mechanism in coping up with this situa-
tion. Since the mobile agents manage the execution and mutual exclusion, the waiting
times differ based on the availability of the shared resources which in turn aids in re-
synchronizing such unforeseen changes in the environment. This also addresses the
challenge posed by fluctuations in the execution times taken by the physical processes
or tasks performed by the robots. Additionally, since mobile agents carry the related
programs for task execution, this mechanism can support heterogeneity in terms of
the use of a range of computational entities including robots and sensor nodes. New
entities can be plugged into the CPS along with mobile agents carrying the programs
for the associated tasks. The use of mobile agents facilitates the OTFP feature which
allows such injection or addition and deletion of tasks on-the-fly. This feature can also
help in purging deprecated or faulty programs from the system and replacing them
with the correct ones during run time. It is also envisaged to augment this mechanism
with Self-healing as in [Jha et al. 2014] so that a failure within the CPS is quickly
noted and the concerned agent is drawn towards the node so that the task(s) can be
re-executed, if required.

ACKNOWLEDGMENTS

The authors would like to thank the Department of Science and Technology, Government of India, for the
funding provided under the FIST scheme to set up the Robotics Lab. at the Department of Computer Science
and Engineering, Indian Institute of Technology Guwahati, where the entire work reported herein, was
carried out.

The first and second authors would also like to acknowledge the Ministry of Human Resource Develop-
ment, Government of India, and Tata Consultancy Services (TCS), India, for the financial support provided
to them during the course of this work.

REFERENCES
Anchal, P. Saini, and C. R. Krishna. 2014. An Efficient Permission-Cum-Cluster Based Distributed Mutual

Exclusion Algorithm for Mobile Adhoc Networks. In Proceedings of the 2014 International Conference
on Parallel, Distributed and Grid Computing (PDGC). 141–146.

H. Attiya, A. Kogan, and J. L. Welch. 2010. Efficient and Robust Local Mutual Exclusion in Mobile Ad Hoc
Networks. IEEE Transactions on Mobile Computing 9, 3 (March 2010), 361–375.

R. Baheti and H. Gill. 2011. Cyber-physical Systems. The Impact of Control Technology 12 (2011), 161—-166.
S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic. 2004. Mobile ad hoc networking. John Wiley & Sons.
F. Bellifemine, A. Poggi, and G. Rimassa. 2001. JADE: a FIPA2000 compliant agent development environ-

ment. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems.
216–217.

S. C. Botelho and R. Alami. 1999. M+: A scheme for multi-robot cooperation through negotiated task alloca-
tion and achievement. In Proceedings of the IEEE International Conference on Robotics and Automation,
Vol. 2. 1234–1239.

A. Boukerche, R. B. Machado, K. R. L. Jucá, J. B. M. Sobral, and M. S. M. A. Notare. 2007. An agent based and
biological inspired real-time intrusion detection and security model for computer network operations.
Computer Communications 30, 13 (2007), 2649–2660.

26

Accepted in ACM TAAS Pre-print copy

S. Bulgannawar and N. F. Vaidya. 1995. A distributed K-mutual exclusion algorithm. In Proceedings of the
15th International Conference on Distributed Computing Systems. 153–160.

K. M. Chandy and J. Misra. 1984. The Drinking Philosophers Problem. ACM Transactions on Programming
Language and Systems 6, 4 (Oct. 1984), 632–646.

M. Chen, S. Gonzalez, and V. C. M. Leung. 2007. Applications and design issues for mobile agents in wireless
sensor networks. IEEE Wireless Communications 14, December (2007), 20–26.

R. Chertov, S. Fahmy, and N. B. Shroff. 2006. Emulation versus Simulation: A case study of TCP-targeted
denial of service attacks. In Proceedings of the 2nd International Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities, (TRIDENTCOM’06). 10 pp.–325.

M. M. Cruz-Cunha. 2011. Handbook of Research on Mobility and Computing: Evolving Technologies and
Ubiquitous Impacts. (2 Volumes). IGI Global,1–1584.

S. S. Dhenakaran and A. Parvathavarthini. 2013. An Overview of Routing Protocols in Mobile Ad-Hoc Net-
work. International Journal of Advanced Research in Computer Science and Software Engineering 3, 2
(2013), 251–259.

M. B. Dias and A. Stentz. 2000. A free market architecture for distributed control of a multirobot system. In
Proceedings of the 6th International Conference on Intelligent Autonomous Systems (IAS6’11). 115–122.

L. D. Fife and L. Gruenwald. 2003. Research Issues for Data Communication in Mobile Ad-hoc Network
Database Systems. ACM SIGMOD Record 32, 2 (June 2003), 42–47.

S. Franklin and A. Graesser. 1997. Is it an agent, or just a program? A Taxonomy of Autonomous Agents.
Intelligent Agents III 1193 (1997), 21–36.

B. P. Gerkey and M. J. Mataric. 2001. Principled Communication for Dynamic Multi-Robot Task Allocation.
Lecture Notes in Control and Information Sciences 271 (2001), 353–362.

B. P. Gerkey and M. J. Mataric. 2003. Multi-robot task allocation: Analyzing the complexity and optimality
of key architectures. In Proceedings of the IEEE International Conference on Robotics and Automation,
ICRA’03, Vol. 3. 3862–3868.

W. W. Godfrey and S. B. Nair. 2008. An immune system based multi-robot mobile agent network. Lecture
Notes in Computer Science LNCS (2008), 424–433.

W. W. Godfrey and S. B. Nair. 2012. A Pheromone based Mobile Agent Migration Strategy for Servicing
Networked Robots. In Proceedings of the 5th International ICST Conference on Bio-Inspired Models of
Network, Information, and Computing Systems, 533–541.

V. Hadzilacos. 2001. A Note on Group Mutual Exclusion. In Proceedings of the Twentieth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’01). 100–106.

S. S. Jha, W. W. Godfrey, and S. B. Nair. 2014. Stigmergy-Based Synchronization of a Sequence of Tasks in
a Network of Asynchronous Nodes. Cybernetics and Systems 45, 5 (June 2014), 373–406.

S. S. Jha and S. B. Nair. 2012. A Logic Programming Interface for Multiple Robots. In Proceedings of the 3rd
IEEE National Conference on Emerging Trends and Applications in Computer Science, (NCETACS’12).
152–156.

Y. Kambayashi, M. Takimoto, and Y. Kodama. 2005. Controlling Biped Walking Robots Using Genetic Al-
gorithms in Mobile Agent Environment. In Proceedings of the 3rd IEEE International Conference on
Computational Cybernetics, (ICCC’05). 29–34.

Y. Khaluf and F. Rammig. 2013. Task Allocation Strategy for Time-Constrained Tasks in Robots Swarms. In
Proceedings of the European Conference on Artificial Life. 737–744.

A. Khanna, A. K. Singh, and A. Swaroop. 2015. Dynamic Request Set based Mutual Exclusion Algorithm in
MANETs. International Journal of Wireless and Microwave Technologies (IJWMT) 5, 4 (2015), 1–14.

I. Suzuki and T. Kasami. 1985. A distributed mutual exclusion algorithm. ACM Transactions on Computer
Systems (TOCS) 3, 4 (1985), 344–349.

D. B. Lange. 1998. Mobile objects and Mobile agents: The future of distributed computing? In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP’98), Lecture Notes in Computer
Science, vol 1445., 1–12.

P. Maes, R. H. Guttman, and A. G. Moukas. 1999. Agents That Buy and Sell. ACM Communication 42, 3
(March 1999), 81–91.

J. Matani and S. B. Nair. 2011. Typhon: A Mobile Agents Framework for Real World Emulation in Prolog. In
Proceedings of the 5th International Conference on Multi-Disciplinary Trends in Artificial Intelligence
(MIWAI’11). 261–273.

E. G. Coffman, M. Elphick, and A. Shoshani. 1971. System Deadlocks. ACM Comput. Surv. 3, 2 (June 1971),
67–78.

A. B. Kahn. 1962. Topological sorting of large networks. Communications of the ACM 5, 11 (1962), 558–562.

27

Accepted in ACM TAAS Pre-print copy

N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes. 2000. Hive: Distributed agents for networking
things. IEEE Concurrency 8 (2000), 24–33.

S. Mostinckx, T. V. Cutsem, S. Timbermont, E. G. Boix, É. Tanter, and W. D. Meuter. 2009. Mobile-C: A
mobile agent platform for mobile C/C++ agents. Software - Practice and Experience 39 (2009), 661–699.

L. Null and J. Lobur. 2014. The essentials of Computer Organization and Architecture. Jones & Bartlett
Publishers.

A. Outtagarts. 2009. Mobile agent-based applications: A survey. International Journal of Computer Science
and Network Security 9, 11 (2009), 331–339.

L. E. Parker. 1998. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Transac-
tions on Robotics and Automation 14, 2 (1998), 220–240.

J. L. Posadas, J. L. Poza, J. E. Simó, G. Benet, and F. Blanes. 2008. Agent-based distributed architecture for
mobile robot control. Engineering Applications of Artificial Intelligence 21, 6 (Sept. 2008), 805–823.

W. W. Godfrey and S. B. Nair. 2010. A pheromone based mobile agent migration strategy for servicing
networked robots. In International Conference on Bio-Inspired Models of Network, Information, and
Computing Systems. Springer, 533–541.

F. L. W. Ratnieks and C. Anderson. 1999. Task partitioning in insect societies. Insectes Sociaux 46, 2 (1999),
95–108.

M. Raynal. 1986. Algorithms for mutual exclusion. The MIT Press, Cambridge, MA (1986).
T. Semwal, Nikhil S, S. S. Jha, and S. B. Nair. 2016. TARTARUS: A Multi-Agent Platform for Bridging

the Gap between Cyber and Physical Systems. In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems (AAMAS’16), 1493–1495.

M. Schumacher. 2001. Multi-agent systems. Objective Coordination in Multi-Agent System Engineering:
Design and Implementation (2001), 9–32.

T. Semwal, M. Bode, V. Singh, S. S. Jha, and S. B. Nair. 2015. Tartarus: A Multi-agent Platform for Integrat-
ing Cyber-Physical Systems and Robots. In Proceedings of the 2015 Conference on Advances In Robotics
(AIR’15). Article 20, 6 pages.

J. Shi, J. Wan, H. Yan, and H. Suo. 2011. A survey of Cyber-Physical Systems. In Proceedings of the 2011
International Conference on Wireless Communications and Signal Processing (WCSP’11). 1–6.

P. Tarau. 1999. Jinni: Intelligent mobile agent programming at the intersection of Java and Prolog. In
Proceedings of the 4th International Conference on The Practical Application of Intelligent Agents and
Multi-Agents, (PAAM’99), Vol. 99. 109–123.

W. Wu, J. Zhang, A. Luo, and J. Cao. 2015. Distributed Mutual Exclusion Algorithms for Intersection Traffic
Control. IEEE Transactions on Parallel and Distributed Systems 26, 1 (Jan 2015), 65–74.

O. R. Zaiane. 2002. Building a recommender agent for e-learning systems. In Proceedings of the International
Conference on Computers in Education. 55 – 59.

J. Gaber and M. Bakhouya. 2008. Mobile Agent-Based Approach for Resource Discovery in Peer-to-Peer
Networks. Agents and Peer-to-Peer Computing. 63–73.

N. Minar, K. H. Kramer, and P. Maes. 1999. Cooperating Mobile Agents for Dynamic Network Routing.
287–304.

W. W. Godfrey, S. S. Jha, and S. B. Nair. 2013. On a Mobile Agent Framework for an Internet of Things. In
Proceedings of the 2013 International Conference on Communication Systems and Network Technologies.
345–350.

F. Sempe and A. Drogoul. 2003. Adaptive patrol for a group of robots. In Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Vol. 3.
2865–2869 vol.3.

H. N. Chu, A. Glad, O. Simonin, F. Sempe, A. Drogoul, and F. Charpillet. 2007. Swarm Approaches for the
Patrolling Problem, Information Propagation vs. Pheromone Evaporation. In Proceedings of the 19th
IEEE International Conference on Tools with Artificial Intelligence(ICTAI’07), Vol. 1, 442–449.

28

	1 Introduction
	2 Agent based Systems
	2.1 Mobile Agents
	2.2 Mobile Agent Framework

	3 Preliminaries
	3.1 Constituents of the proposed CPS
	3.2 System Specifications

	4 The Task Execution Ordering Problem (TEOP)
	4.1 The Inherent Objectives

	5 The Proposed Mechanism
	5.1 Job Distributor
	5.2 Mobile Agent based Mechanism
	5.3 Asynchronous Execution Times
	5.4 Addition/Deletion of task(s) on-the-fly
	5.5 Mutual Exclusion for Parallel Tasks
	5.6 Deadlock Freedom

	6 Implementation
	7 Experiments and Results
	7.1 Emulation
	7.1.1 Comparison with a Centrally Controlled System
	7.1.2 Task Addition and Deletion

	7.2 Real-Robot Experiments
	7.2.1 A mix of Sequential and Independent tasks within a job
	7.2.2 Modification of the Sequence of Tasks
	7.2.3 Removal of robots

	8 Discussions and Conclusions

