1706.07625v2 [cs.IR] 18 Jul 2017

arxXiv

Specializing Joint Representations for the task of Product
Recommendation

Thomas Nedelec
Criteo Research
t.nedelec@criteo.com

ABSTRACT

We propose a unified product embedded representation that is opti-
mized for the task of retrieval-based product recommendation. To
this end, we introduce a new way to fuse modality-specific product
embeddings into a joint product embedding, in order to leverage
both product content information, such as textual descriptions and
images, and product collaborative filtering signal. By introducing
the fusion step at the very end of our architecture, we are able
to train each modality separately, allowing us to keep a modu-
lar architecture that is preferable in real-world recommendation
deployments. We analyze our performance on normal and hard
recommendation setups such as cold-start and cross-category rec-
ommendations and achieve good performance on a large product
shopping dataset.

CCS CONCEPTS

+Computing methodologies — Machine learning; Neural networks;

KEYWORDS

Recommender systems, representation learning, embeddings, second-
order interactions

ACM Reference format:

Thomas Nedelec, Elena Smirnova, and Flavian Vasile. 2017. Specializing
Joint Representations for the task of Product Recommendation. In Proceed-
ings of DLRS 2017, Como, Italy, August 27, 2017, 9 pages.

DOI: 10.1145/3125486.3125489

1 INTRODUCTION

Online product recommendation is now a key driver of demand, not
only in E-commerce businesses that recommend physical products,
such as Amazon [23], TaoBao [41] and Ebay [1], but also in online
websites that recommend digital content such as news (Yahoo! - [2],
Google - [22]), movies (Netflix - [4]), music (Spotify - [16]), videos
(YouTube - [8]) and games (Xbox - [20]).

One of the most popular architectures for recommendation at
scale (see [24], [7], [8]) divides the recommendation process in
two stages: a candidate generation stage that prunes the number of
recommendable items from a volume of potentially billions of items
to a couple of hundreds, followed by a second item selection stage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DLRS 2017, Como, Italy

© 2017 ACM. 978-1-4503-5353-3/17/08...$15.00

DOI: 10.1145/3125486.3125489

Elena Smirnova
Criteo Research
e.smirnova@criteo.com

Flavian Vasile
Criteo Research
f.vasile@criteo.com

that decides the final set of items to be displayed to the user,(see
Figure 3 in the Appendix for more details).

Due to lower constraints on the latency and the potential impact
resulting from an improvement on the candidate generation stage,
we choose to concentrate our efforts on the task of optimal can-
didate generation. We formalize the problem as a link prediction
task, where given a set of past pairs of co-purchased products we
try to predict the probability of being cobought for unseen pairs of
products. Related work in representation learning for recommen-
dation investigated the use of both collaborative filtering [9] and
content information [25], but to our knowledge, there has been no
attempt to unify them in a single representation. We see this as
an opportunity to investigate the leveraging effect of generating a
Specialized Joint Representation via a deep-learning approach.

In order to achieve this, we propose Content2Vec - a modular
deep architecture that leverages state-of-the-art architectures for
generating embedded representations for image, text and collab-
orative filtering (CF) input, re-specializes the resulting product
embeddings and combines them into a single product vector. This is
a very general architecture that can plugin any neural networks for
modeling the input information and re-use them for the problem
of product recommendation.

We argue that a modular architecture coupled with a module-
by-module training is the easiest way to put such a complex model
in production. In Content2Vec, most of the computation is spent
on modeling the modality-specific representations, which in the
case of periodic retraining should be able to leverage the previous
models as the initialization states and converge very fast on the
new input data. Furthermore, using pre-trained models for each
modality allows us to leverage external sources of data and do trans-
fer learning, whose value was repeatedly confirmed([42],[39]).

In the following, we formally define the set of associated require-
ments that define an optimal product embedding:

e Relevance: the representation should be optimized for
product recommendation relevance, as measured by the as-
sociated target metrics (modeling it as a link prediction task
and optimizing for the AUC of product pair prediction).

o Coverage: the representation should leverage all available
product information (in our case, all product information
available in the product catalog together with observed
product co-occurrences).

e Cross-modality expressiveness: the representation should
be able to account for interactions between various in-
formation sources such as text and image (can take into
account the fact that the word "red” and the “red” color
detector are correlated).

DLRS 2017, August 27, 2017, Como, Italy

e Robustness: the representation should operate well (rec-
ommendation performance will not degrade dramatically)
in hard recommendation situations such as product cold-
start (new products, new product pairs) and cross-category
recommendation. These are important use-cases in prod-
uct recommendation, when the product catalog has high
churn (as in the case of flash sales websites or classifieds)
or the recommendation needs to leverage cross-advertiser
signal (as in the case of new users and user acquisition
advertising campaigns). This is a different goal from sim-
ply trying to optimize for relevance metrics, due to the
inherent limitations of offline metrics in predicting future
online performance.

e Retrieval-optimized: the representation should be adapted
to a content-retrieval setup, both on the query and on the
indexing side, meaning that the vectors should be either
small, sparse or both.

We analyze the performance of our proposed architecture on the
five requirements presented above on an Amazon dataset [25] that
contain information on co-purchased products. We report our
improvements versus text, image ([25]) and collaborative-filtering
([9]) based baselines - and a simple combination of the three. We
show improvements both on normal and hard recommendation
regimes such as cold-start and cross-category setups.
Our main contributions are the following:

e We propose a novel way of integrating deep-learning item
representation in the context of large scale recommender
system with a two-stage serving architecture and intro-
duce the new task of Specialized Joint Representation for
optimal candidate selection in both cold start and normal
recommendation setups.

e We introduce a new deep architecture that merges content
and collaborative filtering signal for the task of product rec-
ommendation and propose the Cross Interaction Unit (CIU),
a new learning component that models the joint product
representation. We benchmark the different architectures
in two experimental setups (hard cold start, cross-category)
that test the robustness of our architecture.

The rest of the paper goes as follows: In Section 2, we cover previous
related work and the relationship with our method. In Section 3,
we present an overview of our new architecture and how we learn
to compute similarities between products.

Section 4 details the Content-specific embedding modules that
are used to build several representations from the different modali-
ties: text, image and collaborative filtering data. In Section 5, we
propose several architectures to fuse the modality-specific signals
and build a unified product embedding. In Section 6, we present
the experimental setup and go over the results in Section 6.2. In
Section 7, we summarize our findings and conclude with future
directions of research.

2 RELATED WORK

Our work fits in the new wave of deep learning based recommen-
dation solutions, that similarly to classical approaches can fall into

Thomas Nedelec, Elena Smirnova, and Flavian Vasile

tree categories, namely collaborative filtering based, content based
or hybrid approaches.

2.1 Collaborative filtering methods

Several approaches use neural networks to build better item rep-
resentations based on the co-occurrence matrix. The Prod2Vec
algorithm [9] implements Word2Vec ([27], [34]), an algorithm that
is at origin a shallow neural language model, on sequences of prod-
uct ids, to reach a low-dimensional representation of each product.
Among other embedding solutions that use the item relationship
graph are the more recent extensions to Word2Vec algorithm such
as Glove [31], SWIVEL [34], the graph embedding solutions pro-
posed in Node2Vec [10] and SDNE [40].

2.2 Content based methods

Content-based methods recommend an item to a user based upon
an item description and a user profile ([30]). This idea was deeply
investigated in the information retrieval literature: in the context of
web search, DSSM [14] and its extensions [35](C-DSSM) and [33]
are some of the successful methods that specialize query and docu-
ment text embedding in order to predict implicit feedback signal
such as document click-through rate. In the context of product rec-
ommendation, [25] feed a pre-trained CNN with products images.
The network was pretrained on the ImageNet dataset, an image
classification task that is very different from the task of image-based
product recommendation. The last layer of the network is used as
the product embedding. This representation is subsequently used
to compute similarities between products. Similarly, the authors
in [37] use CNNs to compute similarities between songs. [42] the
authors show that the low layers of DNNs trained on different tasks
are often similar and that good performance can be reached by
fine-tuning a network previously trained on another task. In the
case of recommendation systems, this fine tuning was implemented
in [39], where the authors specialize a GoogLeNet architecture for
predicting cobought events based on product pictures.

The performance of Collaborative Filtering (CF) models is often
higher than that of content-based ones but it suffers from the cold-
start problem. To take advantage of the best of both worlds, hybrid
models use both sources of information in order to make recom-
mendations. One possible way to incorporate product information
is using it as side information in the product sequence model, as
proposed in Meta-Prod2Vec [38], leading to better product embed-
dings for products with low signal (low number of co-occurrences).
In this work we continue the investigation of using both types of
signal, this time both at training and product recommendation time.

2.3 Modeling Second Order Interactions

Modeling second order interactions is a key problem in Machine
Learning since the introduction of the kernel trick by [5]. Recently,
real world applications have approximated polynomial kernels by
explicit cross features as shown in [6]. However, this approach can
not scale to a very large number of features. Recent work proposed
as a solution to factorize the second order terms and introduce Fac-
torization Machines [32] and Field Aware Factorization Machines
[17] that have achieved state of the art performance in many predic-
tions tasks. Within the deep learning community, [33] managed to

Specializing Joint Representations for the task of Product Recommendation

model second order interactions by merging information through
ReLUs. In our paper, we propose the Cross Interaction Unit, a sim-
pler solution that allows fast convergence and good performance
with modeling second order interactions.

In terms of architecture, our work is also similar to the one
proposed by [8], that introduces a scalable solution for video rec-
ommendation at YouTube. Unlike their proposed solution, where,
in order to support user vector queries, the candidate generation
step co-embeds users and items, we are interested to co-embed just
the product pairs because for most ecommerce website the number
of products is smaller than the number of website users. In our
approach, the personalization step can happen after the per-item
candidates are retrieved.

3 PROPOSED APPROACH: OVERVIEW

3.1 Architecture

Our proposed approach takes the idea of specializing the input
representations to the recommendation task and generalizes it for
inputs of different types, in order to leverage all product information
and in particular, product images, product title and description text.
The main criteria for the architecture is to allow for the simple
plugin of new sources of signal and for the upgrade of existing em-
bedding solutions with new versions (e.g. to replace AlexNet with
Inception NN for image processing). As a result, the Content2Vec
architecture has three types of modules, as shown in Figure 1:

o Content-specific embedding modules that take raw prod-
uct information and generate the product vectors. In this
paper we cover embedding modules for text, image, cate-
gorical attributes and product co-occurrences (description
of the differents tested modules in Section 4).

o The Joint Product Embedding modules that merge all
the product information into a joint product representation.
The two different architectures for this module are detailed
in Section 5.

o The Output layer that computes the probability for two
products to be cobought or not (this layer is a sigmoid
over the inner product between the two unified product
embedding vectors)

Content2Vec training follows the architecture, learning module-
by-module. In the first stage, we initialize the content-specific
modules with embeddings from proxy tasks (classification for image,
language modeling for text) and re-specialize them to the task of
product recommendation. For the specialization task, as mentioned
in Section 1, we frame the objective as a link prediction task where
we try to predict the pairs of products purchased together. We
describe the loss function in Section 3.2 and the different modules
in Section 4.

In the second stage, we concatenate the modality-specific em-
bedding vectors generated in the first stage into a general product
vector that is fusioned into a joint representation using the second
module. This will be described in depth in Section 5.

Finally, in the third stage, given the updated product vectors
from stage two, we compute the final probability of being cobought
using the output layer.

DLRS 2017, August 27, 2017, Como, Italy

Output layer

Overall Embedding Overall Embedding

of Product A of Product B
i
Image Text CF Image Text CF
Embeddi Embedding | ...| Embedding Embedding | | Embedding | ... | Embedding
Module Module Module Module Module Module

Content-specific Embedding
Modules

Figure 1: Content2Vec architecture combines content-
specific modules to produce embedding vector for each prod-
uct, then uses these vectors to compute similarities between
products. The modality-specific modules are presented in
section 4 and the Joint Product Embedding module in Sec-
tion 5

3.2 Learning a pair-wise item distance

We aim at learning a distance between products that is aligned with
the probability of two products being of interest for the same user.
The previous work on learning pair-wise item distances concen-
trated on using ranking loss [26] or siamese networks with L2 loss
[11]. In [43], they introduce the logistic similarity loss :

L) = Z ~Xj; log o(sim(as, by)) — X;; log o(=sim(a;. b)) (1)
i

where:

0 = (aj, bj) is the set of model parameters, where a; and b; are the
embedding vectors for the products A and B,

X l*} is the frequency of the observed item pair ij (e.g. the frequency
of the positive pair ij),

X is the frequency of the unobserved item pair ij (we assume that
all unobserved pairs are negatives),

o is the sigmoid function

and the similarity distance is defined as:

sim(ai,bj) =a< ai,bj > +f (2)

In the following, we detail the different modules used to learn
the distance between products. Based on these modules, we can
compute some similarities between products based either on their
text, their image or their collaborative filtering data. We combine
these metrics in the final module. These modules could also be used
on their own since they are trained separately to predict whether
two products are related or not.

4 CONTENT-SPECIFIC EMBEDDING
MODULES

Content-specific modules can have various architectures and are
meant to be used separately in order to increase modularity. Their
role is to map all types of item signal into embedded representa-
tions. In Figure 2 we give an illustrative example of mapping a

DLRS 2017, August 27, 2017, Como, Italy

[image vector ||Textvector | | CF Vector] | Image Vector ||Textvecmr | | CF Vector |
)|)| |)|)|
Image Text CF Image Text CF
Embeddi bedding | ... | Embeddi Embeddi Embedd | Emt
Module Module Module Module Module Module
N 7

< =~ i

Title: “7 Samurgf”
Description: . 4
//

Title: “The Ar;l"of War”|
Description:;i'..

Also bought with: B,C

Also bought with: A, D|

Product A:
“The Art of War” - book

Product B:
“Seven Samurai” - movie

Figure 2: An example of using the content-specific modules
to create embedded representations of two products with im-
ages, text and CF signal.

pair of products to their vector representations. In the following
we analyze four types of input signal and embedding solutions for
each one of them.

4.1 Embedding product images with AlexNet

For generating the image embeddings we propose reusing a model
trained for image classification, as in previous work by [21] and
[13]. In [13], the authors have shown how to use the Inception
architecture [36] and specialize it for the product recommenda-
tion task. However, the Inception architecture is very deep and
requires extensive training time. For ease of experimentation we
use AlexNet, which is a simpler architecture that was also a winner
on the ImageNet task [21] prior to Inception NN or more recently to
ResNet [12]. In section 6.2 we will show that, even if simpler, when
combined with additional product text information, the AlexNet-
based solution can perform very well on the recommendation task.

For our experiments, we use the pretrained version of AlexNet
available on Toronto’s university website. Our architecture can be
seen as a siamese network: the same network is used to build the
representation of product A and product B based on their respec-
tive image. We specialize the fc7 layer (last layer of AlexNet) to
detect product similarities by minimizing the negative sampling
loss presented in the previous section. In eq.1, a; is the value of
the fc7 layer when the input is the image of product A and b; the
same for product B. We only minimize the loss with respect to the
weights between fc6 and fc7 since [42] proved that it was suffi-
cient to reach good performance (and save a lot of computational
resources). At the end of the optimisation process, we reach visual
based embeddings that are specialized to predict if two products
could be co-bought or not.

4.2 Embedding product text with Word2Vec
and CNN on sentences

With this module, we want to compute products similarities based
on their text descriptions. The module is trained in two steps. First,

Thomas Nedelec, Elena Smirnova, and Flavian Vasile

we train a Word2Vec [28] model in order to reach a representation
of each word of the catalogue. Then, we train a TextCNN [18] that
combines the words representation to build a product text embed-
ding trained to detect whether two products were cobought or not.
To the best of our knowledge, this is the first attempt to employ a
TextCNN architecture for the task of product recommendation.

For generating word embeddings, we propose reusing Word2Vec,
a model for generating language models that has been employed
in a various of text understanding tasks. More recently, it has
been shown in [31] that Word2Vec is closely linked with matrix
factorization techniques applied on the word co-occurrence matrix.
We chose to train Word2Vec on the entire product catalog text
information and not use an available set of word embeddings such
as the one created on the Google Corpus. The main reason is that the
text distribution within product descriptions is quite different from
the general distribution. For example the word ’jersey’ has a very
different conditional distribution within the product description
corpus versus general online text.

TextCNN offers a simple solution for sentence-level embeddings
using convolutions. The convolutions act as a form of n-gram filters,
allowing the network to embed sentence-level information. We
learn the filters by minimizing the negative sampling loss to predict
if two products were cobought. The trainable parameters of the
model are the weights in the convolutional layer that we call filters.

We keep fixed the word embeddings that were trained through
Word2Vec as recommended in [18]. Using embeddings helps to
generalize to words that were not frequent in the training set. The
architecture has the advantage to allow to choose an arbitrary
length for the text input. The two siamese networks are fed by the
word embeddings of the first 10 token of the concatenated product
title and description of product A and B. We only tested with keep-
ing the first 10 tokens for ease of experiments (it is straightforward
to extend to a higher number of considered tokens). We provide a
comparison of performance with the image-based module in the
experiments section.

4.3 Embedding product co-occurrences with
Prod2Vec

Prod2Vec [9] is an extension of the Word2Vec algorithm to product
shopping sequences. As a result, Prod2Vec can be seen as a matrix
factorization technique on the product co-occurence matrix (see
[31]). In Content2Vec, the Prod2Vec-based similarity contains all
of the information that can be derived from the sequential aspect
of the user behavior, without taking into account the per-product
meta-data.

4.4 Embedding categorical product meta-data
with Meta-Prod2Vec

Meta-Prod2Vec [38] improves upon Prod2Vec by using the prod-
uct meta-data side information to regularize the final product em-
beddings. In Content2Vec, we can use the similar technique of
co-embedding product categorical information with product ids to
generate the embedding values for the categorical features.

Specializing Joint Representations for the task of Product Recommendation

5 THE JOINT PRODUCT EMBEDDING
MODULE

With these different modules, we can build several product em-
beddings that are modality-specific and specialized for the task of
product recommendation. In the next stage, we combine them in
order to build a unified representation of the product. This repre-
sentation will consider all the signals available on the product: text,
image and collaborative filtering data.

5.1 Joint Product Embedding with
performance constraints

As stated in Section 1, the function of the product embedding mod-
ule is two-fold: first, to model all interactions that exist between the
modality-specific embeddings with respect to the final optimization
objective, and second, to approximate interaction terms between
the products that cannot be explained by a linear combination of
the modality-specific similarities. With this in mind, we introduce
a new type of learning unit, the Cross Interaction Unit (eq. 4).

We note X (respectively X3) the two product embedding vectors
(obtained by stacking the modality-specific vectors):

_ mod;, y,mod; modn
X1 = [Xl ’Xl , ...,X1]

®)

where mod; are the different modalities considered by the architec-
ture. We define the Cross Interaction Unit as:

y = sim(F(X1), F(X2)) + sim(X1, X>) 4

where:
sim(., .) is a similarity function over two embedding vectors X1, X,
F(x) is a ReLu layer.

The F function can be seen as a module that will use information
coming from all the modalities to explain similarities that could not
be explained by simply using their linear contribution.

To be able to measure the incremental value of introducing this
residual vector we introduce a baseline architecture that computes
the final prediction based on the linear combination of the modality-
specific similarities denoted by Content2Vec-linear with the associ-
ated similarity function defined in eq. 5.

2

meModalities

SimCZ‘u—lin(XlaXZ) = WMSimm(Xlrnyxzrn) (5

Under this notation, the CIU-based architecture denoted as Con-
tent2Vec perf minimizes the logistic loss with the similarity function
defined in eq. 6.

simezy—res(X1,X2) = wmsimm(le,sz)
me(Modalities+Residual)

In order to learn the residual vector, we keep fixed the modality-
specific similarities and co-train the final weights of each of the
modalities together with the product-specific residual layer. For
example, in the case of using only image and text signals, our final
predictor can be defined as in the following equation where Py
and Pjmg are pre-set and wix¢, Wimg, Wres and Pres are learned
together:

(6)

DLRS 2017, August 27, 2017, Como, Italy

P(pos|X1,x2) = o Wext Prxe (pos|X{™*, X5)

im im
+ WimgPimg(pos|X; g,X2 9)

+ WresPres(P03|X{es,X2res)

with:

Pres(pos|X1, Xz) = a < F(IXP*E, X)), F(IXEXE, X)) > +
®)
In Section 6.2 we compare the performance of Content2Vec-perf
and Content2Vec-linear and show that, as expected, the proposed
architecture surpasses the performance of the linear model, while
allowing for a retrieval-based candidate scoring solution.

5.2 Joint Product Embedding with size
constraints

One of the main objectives of the paper is to investigate architec-
tures that can reach a unified product embedded representation
that is optimized for the task of retrieval-based product recommen-
dation. In order to enable an efficient retrieval task ([15] and [3]),
we implement an architecture that places a constraint on the size
of the final vector representing the product of small dimension
(we set arbitrarily the allowed dimension to 200 in our case). To
this end, we represent the product representation module by a
fully connected ReLU layer that compresses the representation of
the product into a vector of size 200. This layer takes as input a
concatenated version of all the vectors available on the products
from the modality-specific modules. After this compression layer,
we reach one unified vector for product A and one unified vector
for product B. These vectors are then used to compute product
similarities by computing the inner product between two products
representations. In the following, we will refer to this architecture
by Content2Vec-compressed.

The product representations coming from the modality-specific
modules are already relevant w.t.r.t the final task of product pair
prediction, as shown by the performance of Image and TextCNN
baselines in section 6.2. In order to avoid losing information coming
from the concatenated vector representation, different initializa-
tions of the fully connected layer are possible. Of course, the initial-
isation that would keep the incoming information from the trained
modalities networks would be a layer close to the identity matrix .
One way to approximate this objective would be to compute the
PCA over vector representation of the full training dataset, but this
is computationally expensive. We propose a simpler initialization
that considers 200 random products (the number of products con-
sidered is defined by the dimension we want to impose to the final
vector) from the training dataset and uses their representation as
rows of the matrix. Hence, at the beginning, the layer will com-
pute the similarities between each product and these 200 source
products.

DLRS 2017, August 27, 2017, Como, Italy

Thomas Nedelec, Elena Smirnova, and Flavian Vasile

Model trained on Books dataset

Books Movies Mixed

Modality Baselines
ImageCNN
TextCNN

Fusion Baselines
Fusion-linear
Fusion-crossfeat

Our approaches
Content2Vec-compressed
Content2Vec-perf

81% 78% 64%
72% 79% 76%
83% 83% 76%
86% 83% 83%
85% 81% 64%
89% 83% 77%

Model trained on Movies dataset Movies Books Mixed

Modality Baselines
ImageCNN
TextCNN

92% 59% 60%
90% 63% 65%

Fusion Baselines
Fusion-linear
Fusion-crossfeat

94% 64% 65%
94% 62% 63%

Our approaches
Content2Vec-compressed
Content2Vec-perf

95% 54% 58%
95% 60% 66%

Table 1: Comparative results in terms of AUC between the different architectures on the hard cold start dataset (test set: same
category as during training, different category as during training, mixed category)

6 EXPERIMENTAL RESULTS
6.1 Dataset

We perform our evaluation on the publicly available Amazon dataset
[25] that represents a collection of products that were co-bought on
the Amazon website. Each item has a rich description containing
product image, text and category. In terms of dimensionality, the
dataset contains around 10M pairs of products. We concentrate
on the subgraph of Book and Movie product pairs, because both
categories are large and they have a reasonable sized intersection.
This allows us to look at recommendation performance on cross-
category pairs (to evaluate a model trained only on Book pairs on
predicting Movie co-bought items) and mixed category pairs (to
evaluate the models on Book-Movie product pairs).

Based on the full Book & Movies data we generate two datasets
with different characteristics:

o The first dataset simulates a hard cold start regime, where
all product pairs used in validation and testing are over
products unseen in training. This tests the hardest recom-
mendation setup, where all testing data is new. We decided
to bench all of our hyperparameters on this regime and use
the best setup on all datasets, since tuning on the harder
dataset ensures the best generalization error (results shown
in Table 1).

e The second dataset simulates a soft cold start regime,
where some of the products in the test set are available at
training time. The dataset is generated by taking the top
200k most connected products in the original dataset and

sampling 10% of the links between them (results shown in
Table 2).

Hyper-parameters. We fixed the sizes of embedding vectors for
image CNN module to 4096 hidden units, for text CNN module
to 256, for Prod2Vec module to 50, for residual representation to
128. For optimization, we use the Adam algorithm ([19]) and we
manually set the initial learning rate based on the validation set
performance. The batch sizes vary for different datasets. We train
all the models until validation set performance stops increasing.

Loss. Instead of minimizing the logistic loss, we minimize the
Negative Sampling loss [29] which is a fast approximation of the
logistic loss. The prediction step can scale up to a large number of
items, by using all positive pairs and sampling the negatives on the
fly.

Evaluation task. We evaluate the recommendation methods on
the product link prediction task, similar to [13]. We consider the
observed product pairs as positive examples and all unknown pairs
as negatives. We generate negative pairs according to the frequency
of the products in the positive pairs (negative examples between
popular products are more likely to be generated) with a positive
to negative ratio of 1:2.

Evaluation metrics. For the link prediction task, we use the Area
Under Curve of the Precision/Recall (curve as our evaluation metric.

Baselines. We introduce several baselines and compare their per-
formances with our proposed architectures:

Specializing Joint Representations for the task of Product Recommendation

Recommendation Models Test

Baselines

ImageCNN 80%
TextCNN 78%
Prod2vec 86%
Fusion-linear 88%
Fusion-linear+ 89%
Without Prod2vec signal
Content2vec-compressed 87%
Content2vec-perf 89%
With Prod2vec signal
Content2vec-compressed+ 89%
Content2vec-perf+ 92%

DLRS 2017, August 27, 2017, Como, Italy

Table 2: Comparative results in terms of Area Under Precision-Recall Curve (AUPRC) between the different architectures on

the soft cold start dataset

o [mageCNN: prediction based on specialized image embed-
dings similarity (that previously showed state-of-the-art
results on the Amazon dataset [25])

o TextCNN: prediction based on specialized text embeddings
similarity

o Prod2Vec: prediction based on the product vectors coming
from the decomposition of the co-purchase matrix

o Fusion-Linear: prediction based on the linear combination
of text and image similarities

o Fusion-Crossfeat: prediction based on the linear combina-
tion of discretized image and text similarities and their
conjuctions: we bucketize the text and image-specific sim-
ilarity scores and create explicit feature conjunctions be-
tween them.

Our approaches.

o Content2Vec-compressed: prediction based on the compressed
version of the product representation

o Content2Vec-perf: prediction based on the linear combi-
nation of text and image similarities plus product-level
residual vectors similarities

o Content2Vec+: prediction based on the ensemble of Prod2Vec
and Content2Vec models

6.2 Results

The two following tables (Tables 1, 2) correspond to the two types
of dataset we consider: the hard cold start dataset where all product
pairs used in validation and testing are over products unseen in
training and the soft one where some of the products in the test set
are available at training time.

6.2.1 Difference of performance between baselines. To
the best of our knowledge, no study has been made so far on the
performance of TextCNN in the recommendation system setting.
We observe that it is slightly worse than ImageCNN when evaluated
on the same product category it was trained. On the mixed dataset
(pairs of products from both Books and Movies), TextCNN general-
ize better than ImageCNN. We cannot bench Prod2Vec on the hard

cold start dataset since no collaborative filtering data on the test
products were available at training time. When good collaborative
filtering data is available, Prod2Vec outperfoms both TextCNN and
ImageCNN but the performance of Prod2Vec strongly depends on
the degree of connectivity of the products graph. For new products,
Prod2Vec can not be used.

6.2.2 Combining product signals. The results show that first
our two main proposed method Content2Vec-compressed and Con-
tent2Vec perf can leverage the additional signal provided by each of
the input modalities in a joint manner and leads to significant gains
in AUC versus the one-signal baselines (ImageCNN, TextCNN) and
their linear combination (Content2Vec-linear).

From the point of view of robustness, Content2Vec-perf learns
product representations that perform better than the baseline meth-
ods on out-of-sample recommendations such as cross-category
pairs and mixed-category pairs (Table 1). However, there still exists
a gap for improvement.

6.2.3 Tradeoff between performance and reaching a com-
pressed product representation. Content2Vec-compressed per-
forms slightly worse than Content2Vec-perf but it uses a more
compressed representation than enables a more efficient retrieval
system. We also remark that the distance and the representation
learned by Content2Vec-compressed is more category-specific that
Content2Vec-perf since Content2Vec-perf is performing better in the
cross-category setting. Besides, the training time before reaching
a good Content2Vec-compressed model is higher than Content2Vec-
perf.- Hence, there exists a clear trade-off in order to choose be-
tween Content2Vec-perf and Content2Vec-compressed: in terms of
prediction performance, training time and cross-category efficiency,
Content2Vec-perf has better results, while Content2Vec-compressed
still achieves good prediction performance and offers a compressed
product representation.

6.2.4 Incorporating Prod2Vecsignal. Content2Vec-perf+, our
proposed hybrid architecture that combines content and CF signal
achieves better performance than the content and CF-only models.
It confirms that even on a setting where good collaborative data

DLRS 2017, August 27, 2017, Como, Italy

are available, the representation can be improved by using all other
signals. We find also interesting that our content-based method
Content2Vec-perf has a similar performance than a collaborative-
filtering based method such as Prod2Vec.

7 CONCLUSIONS

In this paper, we propose Content2vec, a new product representation
architecture which addresses most of the requirements outlined in
the joint Product Representation task. It generates relevant repre-
sentations by optimizing for the target offline metric i.e AUC of
hold-out product pairs prediction and covers all input signal by
using a representation module for each type of signal. It also offers
cross-modality expressiveness by the introduction of the product
embeddings modules and optionally pair-wise expressiveness in the
pair embedding module, passes robustness checks by performing
better than baselines on hard cold start and cross-category evalua-
tion tasks, and offers the possibility for retrieval-optimized vectors
with the Content2vec-compressed version.

This work has several key contributions: We develop a method
that is able to use all product signal for the task of product rec-
ommendation using a modular architecture that can leverage fast
evolving solutions for each type of input modality. We define a set
of requirements for evaluating the resulting product embeddings
and show that our method leads to significant improvements over
the single signal approaches on hard recommendation situations
such as cold-start and cross-category evaluation. We show how to
build a compressed product representation that is able to take into
consideration all signal available on the product to perform well on
some hard cold start setting and improve the collaborative filtering
representation in a normal recommendation scenario. Finally, in
order to model the joint aspects of the product embedding with
keeping some linearities in the model we introduce a new type of
learning unit, named Cross Interaction Unit and show the resulting
gains on a real product co-purchases dataset.

For the next steps, we would like to improve Content2vec for cross-
category tasks and impose some sparsity constraints on product
representations to increase the performance of the final product
retrieval system.

Thomas Nedelec, Elena Smirnova, and Flavian Vasile

REFERENCES

[1] DataStax Academy. 2013. Slideshare presentation. http://www.slideshare.net/
planetcassandra/e-bay-nyc. (2013). Accessed: 2016-04-08.

[2] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Raghu Ramakrishnan.
2013. Content recommendation on web portals. Commun. ACM 56, 6 (2013),
92-101.

[3] Artem Babenko, Relja Arandjelovi¢, and Victor Lempitsky. 2016. Pairwise Quan-
tization. arXiv preprint arXiv:1606.01550 (2016).

[4] Robert M Bell and Yehuda Koren. 2007. Lessons from the Netflix prize challenge.
ACM SIGKDD Explorations Newsletter 9, 2 (2007), 75-79.

[5] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. 1992. A train-
ing algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory. ACM, 144-152.

[6] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. 2015. Simple and scalable
response prediction for display advertising. ACM Transactions on Intelligent
Systems and Technology (TIST) 5, 4 (2015), 61.

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, and
others. 2016. Wide & deep learning for recommender systems. In Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems. ACM, 7-10.

[8] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on

Recommender Systems. ACM, 191-198.

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,

Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in Your Inbox:

Product Recommendations at Scale. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD ’15).

ACM, New York, NY, USA, 1809-1818. DOI:http://dx.doi.org/10.1145/2783258.

2788627

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 855-864.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction

by learning an invariant mapping. In 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE, 1735-1742.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 770-778.

Ruining He and Julian McAuley. 2015. VBPR: visual bayesian personalized

ranking from implicit feedback. CoRR (2015).

[14] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management. ACM, 2333-2338.

[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Quantized neural networks: Training neural networks with low

precision weights and activations. arXiv preprint arXiv:1609.07061 (2016).

Chris Johnson. 2015. fiAlgorithmic Music Recommendations at Spotify. (2015).

Yuchin Juan, Damien Lefortier, and Olivier Chapelle. 2017. Field-aware factor-

ization machines in a real-world online advertising system. In Proceedings of

the 26th International Conference on World Wide Web Companion. International

World Wide Web Conferences Steering Committee, 680-688.

[18] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882 (2014).

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980 (2014).

[20] Noam Koenigstein, Nir Nice, Ulrich Paquet, and Nir Schleyen. 2012. The Xbox
recommender system. In Proceedings of the sixth ACM conference on Recommender
systems. ACM, 281-284.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems. 1097-1105.

Jiahui Liu, Peter Dolan, and Elin Renby Pedersen. 2010. Personalized news

recommendation based on click behavior. In Proceedings of the 15th international

conference on Intelligent user interfaces. ACM, 31-40.

[23] Matt Marshall. 2006. Venture Beat article. http://venturebeat.com/2006/12/10/
aggregate-knowledge-raises- 5m-from-kleiner-on-a-roll/. (Dec. 2006). Accessed:
2016-04-08.

[24] P.E Mazare. 2016. Product Recommendation at Criteo. http://labs.criteo.com/

2016/09/product-recommendation-criteo/. (2016).

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.

2015. Image-based recommendations on styles and substitutes. In Proceedings

of the 38th International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 43-52.

[26] Brian McFee and Gert R Lanckriet. 2010. Metric learning to rank. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10). 775-782.

[

[11

=
&

[13

e
N

[19

[22

[25

http://www.slideshare.net/planetcassandra/e-bay-nyc
http://www.slideshare.net/planetcassandra/e-bay-nyc
http://dx.doi.org/10.1145/2783258.2788627
http://dx.doi.org/10.1145/2783258.2788627
http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/
http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/
http://labs.criteo.com/2016/09/product-recommendation-criteo/
http://labs.criteo.com/2016/09/product-recommendation-criteo/

Specializing Joint Representations for the task of Product Recommendation

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

[43]

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. ICLR workshop (2013).
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning word em-
beddings efficiently with noise-contrastive estimation. In Ad-
vances in Neural Information Processing Systems 26, CJ.C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (Eds.).

Curran Associates, Inc., 2265-2273. http://papers.nips.cc/paper/
5165-learning-word-embeddings-efficiently- with-noise- contrastive-estimation.
pdf

Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation
systems. In The adaptive web. Springer, 325-341.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, 1532-1543. http://www.aclweb.org/
anthology/D14-1162

Steffen Rendle. 2012. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST) 3, 3 (2012), 57.

Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016.
Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial
Features. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 255-262.

Noam Shazeer, Ryan Doherty, Colin Evans, and Chris Waterson. 2016. Swivel: Im-
proving Embeddings by Noticing What’s Missing. arXiv preprint arXiv:1602.02215
(2016).

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In Proceedings of the 23rd International Conference on World Wide Web.
ACM, 373-374.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2818-2826.

Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Advances in Neural Information Pro-
cessing Systems. 2643-2651.

Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec:
Product Embeddings Using Side-Information for Recommendation. In Proceedings
of the 10th ACM Conference on Recommender Systems. ACM, 225-232.

Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, and Serge
Belongie. 2015. Learning visual clothing style with heterogeneous dyadic co-
occurrences. In Proceedings of the IEEE International Conference on Computer
Vision. 4642-4650.

Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 1225-1234.

Tracey Xiang. 2013. TechNode article. http://technode.com/2013/06/14/
how-does-taobao-uses-user-data/. (June 2013). Accessed: 2016-04-08.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transfer-
able are features in deep neural networks?. In Advances in neural information
processing systems. 3320-3328.

Lilei Zheng, Khalid Idrissi, Christophe Garcia, Stefan Duffner, and Atilla Baskurt.
2015. Logistic similarity metric learning for face verification. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 1951-1955.

DLRS 2017, August 27, 2017, Como, Italy

A INFRASTRUCTURE OF THE
RECOMMENDATION SYSTEM

Recommended
items

Query

Stage 2:
Final recommendation
item set generation

Ranking

Candidate
items

Item
representations

Build / update
index job

Stage 1: Candidate item set generation

Item
inverted index

Retrieval service

Figure 3: 2-Stage Recommender System Architecture.

http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf
http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf
http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://technode.com/2013/06/14/how-does-taobao-uses-user-data/
http://technode.com/2013/06/14/how-does-taobao-uses-user-data/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Collaborative filtering methods
	2.2 Content based methods
	2.3 Modeling Second Order Interactions

	3 Proposed approach: overview
	3.1 Architecture
	3.2 Learning a pair-wise item distance

	4 Content-specific embedding modules
	4.1 Embedding product images with AlexNet
	4.2 Embedding product text with Word2Vec and CNN on sentences
	4.3 Embedding product co-occurrences with Prod2Vec
	4.4 Embedding categorical product meta-data with Meta-Prod2Vec

	5 The Joint Product Embedding Module
	5.1 Joint Product Embedding with performance constraints
	5.2 Joint Product Embedding with size constraints

	6 Experimental Results
	6.1 Dataset
	6.2 Results

	7 Conclusions
	References
	A Infrastructure of the recommendation system

