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ABSTRACT
Automated music playlist generation is a specific form of music rec-
ommendation. Generally stated, the user receives a set of song sug-
gestions defining a coherent listening session. We hypothesize that
the best way to convey such playlist coherence to new recommen-
dations is by learning it from actual curated examples, in contrast
to imposing ad hoc constraints. Collaborative filtering methods can
be used to capture underlying patterns in hand-curated playlists.
However, the scarcity of thoroughly curated playlists and the bias
towards popular songs result in the vast majority of songs occur-
ring in very few playlists and thus being poorly recommended. To
overcome this issue, we propose an alternative model based on a
song-to-playlist classifier, which learns the underlying structure
from actual playlists while leveraging song features derived from
audio, social tags and independent listening logs. Experiments on
two datasets of hand-curated playlists show competitive perfor-
mance compared to collaborative filtering when sufficient training
data is available andmore robust performance when recommending
rare and out-of-set songs. For example, both approaches achieve a
recall@100 of roughly 35% for songs occurring in 5 or more train-
ing playists, whereas the proposed model achieves a recall@100
of roughly 15% for songs occurring in 4 or less training playlists,
compared to the 3% achieved by collaborative filtering.
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1 INTRODUCTION
The ability of recommender systems to suggest coherent sets of
items is particularly important in the music domain, where songs
are usually grouped into listening sessions. Identifying whether a
set of songs fits well together becomes then a crucial and challeng-
ing question. The study presented in [8] analyzes interviews with
practitioners and postings to a dedicated playlist-sharing web site.
They indicate that there is a wide variety of factors (e.g., mood or
purpose) that intervene in the process of compiling a playlist and
suggest that the quality of a playlist and its potential coherence are
not a clearly defined concept.

A common approach to playlist generation relates playlist coher-
ence to homogeneity, meaning that the songs in a playlist should
be content-wise similar (see e.g., [14, 20, 22, 23, 29]). Even though
this assumption may be reasonable for some playlists, it imposes
ad-hoc constraints that need not hold valid in general.

We prefer to adopt a statistical learning approach. We analyze
hand-curated music playlists seeking common patterns that cap-
ture which songs fit well together. This is achieved by defining a
quantitative criterion that needs to be fulfilled, on average, over
playlists, thus providing a principled approach to modeling the
often ambiguous concept of playlist coherence.

Collaborative Filtering (CF) methods as described in [2, 5] or
the collaborative latent Markov embedding presented in [7] are
utilized to reveal latent patterns from hand-curated music playlists.
However, CF has well-known limitations particularly detrimental
for the task of playlist modeling. Most importantly, CF methods are
only aware of the songs occurring in the set of training playlists.
As a consequence, the songs that never occurred in the training
playlists, to which we refer as “out-of-set” songs, can not be recom-
mended. Also, songs that occur rarely in the training playlists are
poorly represented by CF models. This problem is likely to arise
due to two main reasons: firstly, the amount of carefully curated
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playlists is rather scarce (especially compared to the abundant–but
not curated–listening logs derived from music streaming services);
secondly, music consumption is biased towards popular songs [6]
and thus the vast majority of songs occur in very few playlists.
Finally, CF is not aware of song characteristics, which can be in-
formative in some cases (e.g., in order to extend playlists with a
specific instrumentation or within a genre).

The aforementioned limitations of CF can be mitigated through
its hybridization with content-based methods [1]. In this line, we
observe that by mining external data sources we can gather a large
volume of song-level descriptions (e.g., audio, text descriptions from
micro-posts or social-tagging platforms, or play counts from music
streaming services). They constitute rich side-information that can
be leveraged to make CF robust to rare and out-of-set songs.

In this work, we introduce a novel hybrid playlist continuation
model that integrates hand-curated playlists with multi-faceted
song features derived from audio, social tags and independent
listening logs. Previous hybrid approaches to playlist continua-
tion enhanced their performance through the combination of inde-
pendently obtained scores by means of weighting heuristics and
re-ranking [16, 20]. Instead, we blend the different sources of infor-
mation into a jointly trained system, where learning is driven by
the optimization of a quantitative criterion. The proposed model
can then evaluate rare and even out-of-set songs, as long as song
features are available, to identify songs fitting a given playlist. An
implementation and data are provided for reproducibility.1

The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the hybrid playlist
continuation model. The datasets of hand-curated music playlists
and song features are described in Section 4. Section 5 details the
configuration of the proposed model. In Section 6 we elaborate on
the experimental results. Finally, Section 7 concludes the paper.

2 RELATEDWORK
The automated generation of coherent music playlists has often
been approached from a content-based perspective. By quantifying
aspects of interests in songs, a recommender system can enforce
smooth transitions. For example, [23] proposes to exploit timbral
similarities to create a playlist of songs most similar to a given
seed song. The quality of the resulting playlists is then quantified
based on the criterion that the recommended songs are by the
same artist, from the same album, or from the same genre as the
seed. In [29], playlist generation is treated as a “traveling salesman
problem”, where distances are defined by timbral similarities. This
approach is extended in [22] by incorporating artist similarities
computed on the basis of web-based data. The artist similarities
are used to prefilter which pairwise song similarities should be
calculated, resulting in an accelerated and higher-quality recom-
mendation process. Targeting the playlist generation problem for
given start and end songs, [14] propose a multi-stage approach that
considers distances between all candidate songs to the start and end
songs. These distances are approximated using a single Gaussian
to represent the timbral features of each song.

Collaborative filtering methods have been proven powerful to
mine underlying structure from, generally, user-item interactions

1https://github.com/andreuvall/HybridPlaylistContinuation

(see e.g., [30]). In particular, CF has been applied to music playlist
generation by treating playlists as users, to whom songs should
be recommended. In [2], a CF latent-factor model is tailored to
mine a collection of Internet radio stations. The model features a
specific latent-factor design that accounts for artist, time of the
day and song adjacency. Latent variable models based on LDA [4]
have also been applied to playlist modeling in [36], where a general
music taste model is compared to a specific playlist model. In a
similar line, [7] presents the latent Markov embedding for playlist
modeling. It is inspired by collaborative methods and represents
songs from radio playlists into a Euclidean latent space. The latent
Markov embedding puts special attention on the sequential nature
of playlists and can be used to generate new playlists.

Hybrid approaches combining CF and song features have also
been proposed. Playlists are modeled as random walks on song
hypergraphs in [25], where the edges are derived from multimodal
song features and the weights are learned from hand-curated music
playlists. In [16], the songs in a collection of hand-curated playlists
are represented by topic models extracted from song-level social
tags. Frequent sequential patterns are mined at the topic level, so
that given a playlist, a next topic can be predicted. To extend music
playlists, the scores provided by a memory-based CF algorithm are
re-ranked using the next topic predicted. Another hybrid approach
for the task of playlist continuation is presented in [20]. In a first
stage, suitable next songs are preselected based on the combined
score of a memory-based CF algorithm, TF-IDF features derived
from social tags, metadata and personal preferences. In a second
stage, the song candidates are re-ranked to match the recent songs.

Similar to our approach, relating song features and collaborative
patterns through neural networks has also been proposed in [35].
A convolutional neural network is trained to predict the CF fac-
tors of a song, given the log-compressed mel-spectrogram of the
song. However, the two approaches are fundamentally different.
Our approach integrates collaborative patterns and song features
into an enhanced recommendation model. Instead, the method pro-
posed in [35] emulates CF when usage data is insufficient, and its
performance is naturally upper-bounded by the performance of CF.

For a comprehensive survey on music playlist continuation, we
point the interested reader to [5] or Chapter 13 in [30].

3 HYBRID MUSIC PLAYLIST CONTINUATION
In this section we introduce the hybrid playlist continuation model.
It is based on a song-to-playlist classifier, whose predictions can be
used to recommend playlists continuations. We finally describe the
evaluation methodology followed to assess its performance.

3.1 Song-to-Playlist Classifier
Assume T is a collection of hand-curated playlists where each
playlist t ∈ T is regarded as a set of songs.2 Furthermore, for each
playlist t a continuation tr (of possibly several songs) is known
and withheld as a ground-truth. Let S be the set of unique songs
within the collection of playlists T . Given a song s ∈ S , we denote
its D-dimensional feature vector as xs ∈ RD . We further define a

2As traditional CF models, the proposed model regards playlists as sets in that it does
not exploit the song order. See [34] for a treatment where the order is considered.

https://github.com/andreuvall/HybridPlaylistContinuation
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Figure 1: Sketch of the neural network definition. The input
is a song feature x ∈ RD . The network output is pointwise
passed through a logistic activation function. This yields a
vector of predicted probabilities ŷ ∈ [0, 1] |T | approximating
the binary target y ∈ {0, 1} |T | , i.e., the playlists the song be-
longs to. The set of parameters θ is learned from examples
and its dimension depends on the network architecture.

binary target vector ys ∈ {0, 1} |T | indicating the playlists to which
the song belongs.

The proposed song-to-playlist classifier is based on a neural
network f( · ;θ ), where θ is a set of parameters common for all
songs. The network takes a song feature xs as input and its output
is pointwise passed through a logistic activation function yielding
ŷs = σ (f(xs ;θ )) ∈ [0, 1] |T | , a vector of probabilities approximating
the actual binary target ys . Figure 1 sketches the neural network def-
inition. The song-to-playlist classifier makes as many independent
decisions as playlists in the collection.3 Thus, the set of network
parameters θ is estimated on the training set {xs , ys }s ∈S in order
to minimize the following binary cross-entropy cost function

L
(
θ | {xs , ys }s ∈S

)
=

−
∑
s,t

ys,t log
(
ŷs,t

)
+
(
1 − ys,t

)
log

(
1 − ŷs,t

)
. (1)

The terms ys,t and ŷs,t denote the components of ys and ŷs cor-
responding to playlist t , respectively. The dimensionality of the
set of parameters θ depends on the network architecture, which is
discussed in Section 5. The summation is done over all the possible
song-playlist pairs, both occurring (ys,t = 1) and non-occurring
(ys,t = 0) in the training playlists.4

Note that the training set {xs , ys }s ∈S comprises the song features
xs and the playlist-belonging targets ys (derived from hand-curated
playlists). The cost function (1) integrates both sources of informa-
tion into a jointly learned hybrid model.

3.2 Recommending Playlist Continuations
Given a set of candidate songs, we use the trained song-to-playlist
classifier f( · ;θ∗) to predict the vector of probabilities ŷs ∈ [0, 1] |T |

for each candidate song s . The predicted vector is dense (not sparse),
i.e., it contains the probability of song s belonging to each playlist

3We also experimented with a softmax activation function yielding a per-song prob-
ability distribution over playlists. However, the proposed approach provided more
consistent results.
4We experimented with different weighting schemes for positive and non-positive
observations as suggested in [18], but none showed a consistent improvement.

t ∈ T .5 Then, for each playlist t ∈ T , we rank all the candidate
songs according to their predicted probability ŷs,t .

The song-to-playlist classifier can evaluate any song for which a
feature vector is available, even if the song does not belong to S . As
we will see in Section 6, this enables the recommendation of out-of-
set songs, and also has a positive impact on the recommendation of
songs occurring only in few training playlists. On the other hand,
as user- and factorization-based CF models, the proposed model
can only extend the playlists for which it has been trained.

3.3 Evaluation
A large-scale on-line evaluation where users could assess the qual-
ity of the produced playlist continuations should be the preferred
option (see e.g., [30]). However, this would require a complex in-
frastructure beyond the scope of this work. We instead opt for the
standard off-line evaluation performed in [2, 5, 16, 20], where the
ability of the model at retrieving withheld playlist continuations is
assessed. Precisely, we follow [2], where the length of each withheld
continuation depends on the length of the corresponding playlist.
This is contrast to [5, 16, 20], where only one song is withheld
regardless.

We define S∗ by joining S and the set of unique songs in the
ground-truth playlist continuations. For every s in S∗, we predict
the vector of probabilities ŷs indicating its fit to each playlist t ∈ T .
We arrange the predicted probability vectors as columns of a dense
matrix of probabilities Ŷ ∈ [0, 1] |T |× |S∗ | , that has as many rows as
playlists in T and as many columns as songs in S∗.

Given a playlist t , we rank all the songs in S∗ not already included
in t according to the probabilities from the corresponding playlist
row in Ŷ. This results in a sorted list of song candidates. For each
song in the withheld playlist continuation tr , we compute its rank
and average precision within the full list of song candidates, and
we further compute its recall within the lists of top 10, top 30 and
top 100 song candidates. Having the results for all the songs in all
the withheld playlist continuations, we finally report the median
rank, the Mean Average Precision (MAP) and the mean recall at 10,
30 and 100. Even though lists of top 30 or top 100 song candidates
may seem impractical for actual applications, those and even longer
lists are used to assess playlist continuations in [2, 5, 16, 20].

4 DATASETS
We use two datasets of hand-curated playlists. The “AotM-2011”
dataset [25] is a collection of playlists derived from the Art of
the Mix6 database. Each playlist is represented by song titles and
artist names, linked to the corresponding identifiers of the Million
Song Dataset7 (MSD) [3], where available. As we will describe in
Section 4.2, the connection to the MSD is essential to our approach
in order to gather additional song descriptions, from which we
extract song-level features.

We also use a private playlists dataset from “8tracks”,8 an on-line
platform where users can share playlists and listen to playlists other

5This property is also found in CF models based on latent factors (see e.g., [18]), where
a dense matrix of song-playlist preferences is predicted on the basis of a sparse matrix
of interactions.
6www.artofthemix.org
7https://labrosa.ee.columbia.edu/millionsong
8https://8tracks.com

www.artofthemix.org
https://labrosa.ee.columbia.edu/millionsong
https://8tracks.com
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users prepared. Similar to the AotM-2011 dataset, each playlist is
represented by song titles and artist names. Mimicking the AotM-
2011 dataset, we use fuzzy string matching to resolve the song
titles and artist names from the 8tracks dataset against the MSD.
Precisely, we adapt the code released in [21] for a very similar task.
The matching results in roughly 2,5M song identifiers from the
8tracks dataset (many are spelling duplicates) resolved into 241,123
unique song identifiers from the MSD. The link between the 8tracks
dataset and the MSD lets us gather song descriptions and makes
the comparison to the AotM-2011 dataset fair.

4.1 Playlist Continuation Sets
The AotM-2011 dataset contains a considerable number of playlists
with songs by one or very few artists. Preliminary experiments
conducted on this dataset resulted in a particularly high retrieval
performance when utilizing the proposed hybrid model with fea-
tures derived from social tags. This result could be explained by the
fact that some tags inform about the artist name, which would en-
tail data leakage. To prevent that, we discard artist-themed playlists
by keeping only the playlists with at least 7 unique artists and
with a maximum of 2 songs per artist. The 8tracks dataset does not
have this issue because the terms of use of the platform require
that no more than 2 songs from the same artist or album may be
included in a playlist. Nevertheless, we apply the same filters to
both datasets for the sake of consistency. We further filter both
datasets by keeping only the playlists with at least 14 songs linked
to the MSD. This is to ensure that the song-to-playlist classifier has
a sufficient number of songs in each playlist to learn from.

So far we have discarded complete playlists not satisfying the
specified requirements. Now, for the sake of comparability, we
discard the songs within playlists for which some type of feature
is missing (the types of features are explained in Section 4.2). As a
result, the playlists are shortened and the exact amount of unique
artists may be affected.

Finally, in order to set up the training and the test set, we discard
all the playlists that have become shorter than 5 songs after the
song filtering. We then split each playlist leaving approximately
80% of the songs as a training example and the rest as a withheld
continuation. The training examples form the training set and the
withheld continuations form the test set. In this setting, a song may
occur in both splits. Pure collaborative filtering approaches need to
further ensure that songs occurring in the test set also occur in the
training set, otherwise they can not be recommended. Our hybrid
approach can deal with out-of-set songs, so this is not necessary.

The filtered AotM-2011 dataset has 2,715 playlists with 12,355
songs by 4,097 artists. The filtered 8tracks dataset has 3,272 playlists
with 14,613 songs by 5,119 artists. We name the final datasets
“playlist continuation sets”. Detailed statistics regarding the dis-
tribution of unique songs per playlist, unique artists per playlist
and song frequency in the datasets is reported in Table 1.

4.2 Song Features
The MSD, together with the accompanying “Last.fm Dataset”9 and
the “Taste Profile Subset,”10 provide an heterogeneous collection of

9https://labrosa.ee.columbia.edu/millionsong/lastfm
10https://labrosa.ee.columbia.edu/millionsong/tasteprofile

data for a million contemporary songs. We use song descriptions
based on audio, social tags, and listening logs to extract state-of-the-
art song features. For the audio content, the MSD splits songs into
segments of variable length (typically under a second) and provides
12-dimensional timbral coefficients (similar to MFCCs) for each
segment. Regarding the social tags, the “Last.fm Dataset” provides
tagging activity at the song-level and at the artist-level, along with
weights describing the relevance of each tag for each song and
artist. Finally, the “Taste Profile Subset” provides user-song play
counts derived from independent listening logs.11

The feature extraction process is described next and is the same
for the AotM-2011 and the 8tracks datasets. The extraction of song
features from audio and from social tags requires the pre-estimation
of models on a set of representative songs (see the details below).
We prepare separate sets of songs for the AotM-2011 and for the
8tracks datasets. For each dataset, we select playlists with at least
10 songs linked to the MSD, by at least 5 artists, such that no artist
has more than 2 songs in the playlist. The selected playlists are then
a superset of the corresponding playlist continuation sets and we
assume that the unique songs within them are representative. To
prevent leaking ground-truth data we exclude the songs that appear
only in the test split of the corresponding playlist continuation set.
We refer to the obtained song collections as the “development song
sets”. For the AotM-2011 dataset we obtain 48,393 songs and for
the 8tracks dataset we obtain 47,617 songs.

4.2.1 Average Timbral Features. This feature represents the av-
erage of the timbral coefficients over all the segments in a song.
Each song is then described by a 12-dimensional vector. We include
it as a simple timbre-based reference.

4.2.2 Vector-Quantized Timbral Features. We run the k-means
clustering algorithm on the whole pool of segment-level timbral
coefficients of the development song set. We set the number of clus-
ters to 200, thus obtaining 200 representative timbral centroids.12
For each song in the playlist continuation set, we assign each frame
to the closest centroid. The vector-quantized (VQ) timbral feature
amounts to the count of frames the song has assigned to each
centroid and therefore it is 200-dimensional. This approach has
been successfully utilized in [17] for music autotagging and further
investigated in [31] for music similarity.

4.2.3 I-Vectors from Timbral Features. I-vectors were first intro-
duced in the field of speaker verification [9]. Recently they have
been successfully utilized for music similarity and music artist
recognition tasks [12, 13]. We build a Gaussian mixture model with
1,024 components on the entire pool of segment-level features of the
development song set. Using the songs in the playlist continuation
set we train the total variability space yielding 200-dimensional
i-vectors. Following the standard i-vector extraction pipeline, we
further transform the i-vectors using a linear discriminant analysis
model fit on the training split of the playlist continuation set.

11The MSD also provides high-level features such as danceability or energy. However,
these features are not documented within the MSD nor were they within their original
source, the now discontinued Echo Nest API (the.echonest.com).
12We extract 200-dimensional vectors for all the feature types (except for the average
timbre). Our experiments indicate that 200-dimensional vectors carry rich information
and fixing the dimension across features makes the comparison fair.

https://labrosa.ee.columbia.edu/millionsong/lastfm
https://labrosa.ee.columbia.edu/millionsong/tasteprofile
the.echonest.com
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Table 1: Descriptive statistics for the playlists within the AotM-2011 and the 8tracks playlist contin-
uation sets. We report the distribution of the number of songs per playlist, the number of artists per
playlist, and the song frequency in the dataset (i.e., the number of playlists in which each song occurs).

Training set Test set
min 1q med 3q max min 1q med 3q max

AotM-2011
Songs per playlist 4 6 7 9 21 1 1 2 2 5
Artists per playlist 3 6 7 9 21 1 1 2 2 5
Song frequency 1 1 1 2 35 1 1 1 1 11

8tracks
Songs per playlist 4 6 8 10 30 1 2 2 2 8
Artists per playlist 3 6 8 10 28 1 2 2 2 8
Song frequency 1 1 1 2 119 1 1 1 1 27

4.2.4 Semantic Features from Social Tags. The embedding of
words into continuous vector spaces [26] allows us to map social
tags into a semantic feature space. We gather the song-level so-
cial tags corresponding to the development song set and build a
music-aware text corpus by fetching the Wikipedia13 pages of the
collected tags. We run the implementation of the continuous bag-
of-words algorithm available in word2vec14 on the text corpus to
obtain a dictionary of 200-dimensional semantic features for the
most relevant words. Then, for each song in the playlist continua-
tion set we look up the words within the song-level social tags. If
a tag is compound of several words (e.g., “pop rock”) we compute
the average feature value. The final song semantic feature is the
weighted average of all its tags’ features, where the weights are
given by the relevance of each tag for the song. Likewise we com-
pute the semantic features for the artist-level social tags, only that
given a song we use the social tags related to the song’s artist.

4.2.5 Latent Factors from Listening Logs. We factorize the user-
song play counts from the “Taste Profile Subset” using the weighted
factorization model presented in [18], which is specifically designed
for implicit feedback datasets. We use a depth of 200 factors. We
discard the user latent factors, which are unrelated to our playlist
continuation problem. We keep the song latent factors, that carry
rich song information.

5 MODEL CONFIGURATIONS
Both for the AotM-2011 and the 8tracks playlist continuation sets,
we split each playlist in the training set leaving approximately 20%
of the songs for validation, which we use to determine appropri-
ate model configurations. The ground-truth playlist continuations
remain untouched until the final evaluation.

5.1 Proposed Hybrid Model
The proposed model is powered by the song-to-playlist classifier
presented in Section 3.1. Precisely, for every playlist continuation
set and each type of song features we fit an independent song-
to-playlist classifier, with possibly different configurations. The
considered neural network architectures, hyperparameters, training
strategies and feature preprocessing are detailed in Appendix A.1.

13https://en.wikipedia.org
14https://code.google.com/p/word2vec

5.2 Collaborative Filtering Baseline
We compare our hybrid model to a CF baseline to assess the ad-
vantage of integrating song descriptions and hand-curated music
playlists. We choose the state-of-the-art Weighted Matrix Factor-
ization (WMF) model introduced in [18] because it is specifically
designed to perform CF on implicit feedback datasets like playlists.
The comparison to our model is technically simple. We just need
to replace the probabilities predicted by our song-to-playlist clas-
sifier with the scores predicted by the WMF model trained on the
playlist continuation sets. After that, the evaluation methodology
remains valid. Further details on the WMF depth, hyperparameters
and training strategy are discussed in Appendix A.2.

6 RESULTS
We evaluate the proposed playlist continuation model using the
different types of song features, first as standalone features and
then as combined features. Finally, we assess the performance of
the proposed model to recommend rare and out-of-set songs.

Remember that the evaluation consists in, given a query playlist,
retrieving the songs from its withheld continuation among all the
songs in the dataset that did not occur in the query. Note that these
continuations have a median length of only 2 songs (Table 1) while
the AotM-2011 and the 8tracks datasets have a total of 12,355 and
14,613 songs, respectively. A perfect model would rank the songs
from the withheld continuations in the top positions (low ranks).
An extremely poor model would rank them in the last positions
(high ranks). A random model would, on average, rank them in the
middle of the list of song candidates. Thus the actual rank values
depend on the number of songs in each dataset.

Table 2 reports the results of the proposed hybrid model with
the different types of song features and also the results of the CF
baseline, for the AotM-2011 and the 8tracks datasets. The different
models have been sorted according to their median rank score.

6.1 Standalone Features
We start by analyzing the results achieved using standalone features
in order to provide insights on their retrieval power for the specific
task of playlist continuation.

The performance of the different standalone features is consis-
tent in both datasets (Table 2). Latent factors derived from listening
logs are the most expressive feature, followed by more than 300

https://en.wikipedia.org
https://code.google.com/p/word2vec
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Table 2: Retrieval performance of the proposed model for each dataset and each type of song features, and of the CF
baseline.We report themedian rank, theMAP and the recall at lists of length 10, 30 and 100. Themedian rank compares
to 12,355 song candidates for the AotM-2011 dataset and to 14,613 song candidates for the 8tracks dataset. Lower is
better. For MAP and recall@{10, 30, 100} higher is better. As a reference, we include a random playlist continuation
model where the fitness of each song-playlist pair is drawn at random from a uniform distribution in [0, 1].

dataset feature med rank MAP recall@10 recall@30 recall@100

AotM-2011 i-vectors + song tags + listening logs 860 1.75% 3.28% 8.07% 17.61%
song tags + listening logs 871 1.69% 3.21% 7.79% 17.43%
i-vectors + listening logs 952 1.64% 3.27% 7.05% 16.28%
listening logs 993 1.64% 3.10% 7.37% 16.32%
i-vectors + song tags 1326 1.22% 1.98% 4.74% 11.73%
song tags 1372 1.25% 2.34% 5.26% 12.99%
CF 1444 1.96% 3.99% 7.84% 14.56%
artist tags 1535 0.68% 1.14% 3.11% 8.68%
i-vectors 2715 0.53% 0.80% 2.07% 4.85%
VQ timbres 3425 0.21% 0.26% 0.97% 2.94%
average timbres 3525 0.23% 0.28% 0.79% 2.54%
random 6087 0.11% 0.20% 0.28% 0.79%

8tracks i-vectors + song tags + listening logs 448.5 3.35% 6.59% 13.31% 26.85%
song tags + listening logs 471 3.23% 6.18% 13.03% 26.37%
i-vectors + listening logs 544 2.76% 5.38% 12.11% 24.07%
listening logs 612.5 2.61% 4.83% 10.99% 23.28%
i-vectors + song tags 778 2.36% 4.91% 10.19% 20.54%
song tags 935 2.26% 4.15% 8.91% 18.57%
CF 1000 2.65% 5.06% 10.14% 19.60%
artist tags 1102.5 1.28% 2.29% 6.07% 14.55%
i-vectors 1985.5 0.67% 1.07% 2.64% 7.53%
VQ timbres 2897 0.44% 0.60% 1.47% 4.50%
mean timbres 3253.5 0.31% 0.33% 1.31% 3.76%
random 7320 0.09% 0.12% 0.23% 0.66%

additional rank positions by the semantic features extracted from
song-level tags. Their artist-based counterpart performs worse by
approximately 200 rank positions and is the first set of song features
to perform worse than the CF baseline. They are followed by far
(1,200 rank positions in the AotM-2011 dataset and almost 900 rank
positions in the 8tracks dataset) by the i-vectors extracted from
timbral features. Other audio-based features perform worse, but
clearly better than random.

The different types of features are ordered similarly in terms of
their achieved MAP or their recall scores, with the exception that
the CF baseline achieves a competitive recall@100 in the AotM-
2011 dataset. It is also interesting to observe that the MAP values
are very low for all the song features. Similar results were already
observed in [24, 28] and could be explained by the nature of the
playlist continuation problem. That is, a playlist may be contin-
ued using different songs, all of them potentially relevant, but the
precision score penalizes any continuation that does not exactly
match the withheld continuation. Still, we present the MAP scores
for reference.

6.2 Combined Features
We extend the analysis by assessing the retrieval performance of
combinations of song features. To keep the number of combinations

to a moderate amount we pick only the best performing song fea-
tures derived from audio (i.e., the i-vectors extracted from timbral
features) and the best performing song features derived from social
tags (i.e., the semantic features extracted from song-level social
tags). We also use the latent factors extracted from listening logs.
We evaluate all the possible combinations of pairs of song features
and also the combination of the three. A combined song feature
vector is simply the concatenation of the individual feature vec-
tors. Since all the feature vectors we combine are 200-dimensional,
the combinations of two features result in a 400-dimensional fea-
ture vector and the combination of the three features result in a
600-dimensional feature vector.

Combining features improves the performance of the playlist
continuation model (Table 2). The most interesting case is the com-
bination of all three types of features, which improves the median
rank score by more than 100 positions compared to the best stan-
dalone feature (the latent factors extracted from listening logs).
Furthermore, the recall@100 is improved by almost 1 percentage
point (p.p.) in the AotM-2011 dataset and by more than 3 p.p. in the
8tracks dataset. We also observe that the gain of combining features
seems to relate to their individual performance. For example, the
semantic features extracted from song-level social tags perform
better than the i-vectors extracted from timbral features. Then, the
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combination of latent factors and semantic features performs better
than the combination of latent factors and i-vectors.

The fact that the combined song features provide enhanced per-
formance and the observation that the gain is related to their in-
dividual performance suggests that the different types of feature
indeed carry different and complementary song information.

6.3 Cold-Starting Rare and Out-of-Set Songs
We now assess the potential advantage of the proposed hybrid
model compared to the CF baseline. The proposed hybrid model
outperforms the CF baseline when it uses song features derived
from song-level tags, listening logs, or any combined feature includ-
ing them (Table 2). The combination of all the features achieves a
recall@100 almost 3 p.p. higher than CF for the AotM-2011 dataset.
This difference increases to 8 p.p. in the 8tracks dataset.

The performance gap between the proposed hybrid model and
the CF baseline could be explained by the ability of the proposed
model to deal with rare and out-of-set songs, together with the
fact that in both datasets half of the songs occur only in 1 training
playlist and three quarters of the songs occur only in 2 training
playlists (Table 1). To investigate this effect, we analyze the perfor-
mance of the best performing hybrid model and the CF baseline
as a function of how often the songs in the withheld playlist con-
tinuations occurred in training playlists (Figure 2). The proposed
hybrid model performs comparably to the CF baseline for songs
with 5 or more occurrences in training playlists. For songs with 4
or less occurrences in training playists, the proposed hybrid model
consistently outperforms the CF baseline in all the metrics and
its performance is fairly constant regardless of the number of oc-
currences, even for songs that never occurred in training playists.
Thus this result seems to explain the superior performance of the
proposed hybrid model.

7 CONCLUSION
In this work we have introduced a hybrid music playlist contin-
uation model that integrates collaborative information encoded
in hand-curated playlists with multi-faceted state-of-the-art song-
level features. In contrast to previous hybrid approaches, the pro-
posed model fuses the different sources of information into a joint
learning procedure driven by the optimization of a quantitative
criterion.

We examined the performance of the model using standalone
song features, as well as their combinations. Our experiments in-
dicate that features derived from independent listening logs out-
perform those derived from social tags, which in turn outperform
those derived from audio. Combining features improves perfor-
mance further, suggesting that the different types of song features
indeed carry different and complementary song information.

Most importantly, the proposed hybrid model is robust to the
cold-start problem for rare and even out-of-set songs. Indeed, our
experimental results confirm that the proposed model consistently
outperforms the CF baseline when data is scarce. If data is abundant,
the proposed model performs comparably to the CF baseline.
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A MODEL CONFIGURATIONS
A.1 Proposed Hybrid Model
We conducted an initial exploration of architectures by evaluat-
ing networks with {2, 3, 4} hidden layers, {50, 100, 200, 500} hid-
den units, learning rate values in {0.1, 0.5, 1.0} and batch sizes of
{10, 50, 100, 200} songs. We also experimented with the hyperbolic
tangent, the logistic function and the rectifier as activation func-
tions for the hidden layers. We did not perform all the combinations
of the aforementioned parameter values, but used the preliminary
results to narrow down the actual parameter search space.

Given the results of the preliminary analysis, we systematically
explored all the combinations of networks with {2, 3} hidden layers
and with {50, 100, 200} hidden units. We fixed the learning rate to
0.5, the batch size to 50 songs and the hyperbolic tangent as the

activation function for hidden layers. Recall that the output layer of
the network is passed through logistic functions (see Section 3.1).

We use batch normalization [19]. We also experimented with
different dropout probabilities [32] and with L1 and L2 regulariza-
tion to prevent overfitting. We finally decided to use dropout with
probabilities 0.1 and 0.5 at the input layer and the hidden layers,
respectively.

The features were preprocessed. Namely, the average timbral
features, the i-vectors from timbral features, the semantic features
from social tags, the latent factors from listening logs and the com-
bined features were standardized and L2-normalized. The vector-
quantized timbral features were only L1-normalized according to
their histogram-like nature.

The networks were optimized to minimize the cost function (1)
using AdaGrad15 [11] with Nesterov momentum [27]. We trained
for a maximum of 1,000 epochs but stopped before if the cost func-
tion was not significantly minimized during 100 epochs. The cost
function drove the optimizer, but the best model was chosen on
the basis of the highest recall achieved on the validation set. We
also used the recall on the validation set to decide an appropriate
number of epochs for the final training on the entire training set.

15Since AdaGrad re-scales the learning rate at every update, setting the learning rate
to 0.5 actually refers to setting its initial value.
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Table 3 reports the final configuration of each network. We imple-
mented the networks using Lasagne [10], which is built on top of
Theano [33].

Table 3: Final network configuration for eachplaylist contin-
uation set and each set of features. The learning rate is set
to 0.5, the batch size to 50 songs and the hyperbolic tangent
is the activation function for all the hidden layers. We use
batch normalization and dropout with probabilities 0.1 and
0.5 in the input layer and the hidden layers, respectively.

dataset feature layers units epochs

AotM-2011 average timbres 2 50 100
VQ timbres 3 50 300
i-vectors 3 50 200

song tags 3 100 250
artist tags 3 50 600

listening logs 3 100 310

i-vectors + song tags 3 50 500
i-vectors + logs 3 100 230
song tags + logs 3 100 200
i-vectors + song tags + logs 3 100 150

8tracks average timbres 3 50 200
VQ timbres 3 50 450
i-vectors 3 50 500

song tags 2 100 408
artist tags 2 100 500

listening logs 2 50 540

i-vectors + song tags 3 100 300
i-vectors + logs 3 100 360
song tags + logs 3 100 520
i-vectors + song tags + logs 3 100 360

A.2 Collaborative Filtering Baseline
TheWeightedMatrix Factorization (WMF) model introduced in [18]
generally mines user-item interactions while leveraging the inten-
sity of the interactions (e.g., the number of clicks on websites, or the
play counts on on-line streaming services). Modeling playlists is a
slightly different problem because the examples consist of binary
values without intensity information. Thus, the default weighting
scheme proposed in [18] is not suited for our task. We used the val-
idation sets to experiment with different weights for the observed
playlist-song interactions and found that assigning them aweight of
2 yielded best results. We also experimented with different weights
for the L2-regularization term and decided to use a factor of 10. We
use the implementation provided in [15].
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