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ABSTRACT

In the last decade, driven also by the availability of an unprece-
dented computational power and storage capabilities in cloud en-
vironments, we assisted to the proliferation of new algorithms,
methods, and approaches in two areas of artificial intelligence:
knowledge representation and machine learning. On the one side,
the generation of a high rate of structured data on the Web led to
the creation and publication of the so-called knowledge graphs. On
the other side, deep learning emerged as one of the most promis-
ing approaches in the generation and training of models that can
be applied to a wide variety of application fields. More recently,
autoencoders have proven their strength in various scenarios, play-
ing a fundamental role in unsupervised learning. In this paper, we
instigate how to exploit the semantic information encoded in a
knowledge graph to build connections between units in a Neural
Network, thus leading to a new method, SEM-AUTO, to extract and
weight semantic features that can eventually be used to build a rec-
ommender system. As adding content-based side information may
mitigate the cold user problems, we tested how our approach be-
haves in the presence of a few ratings from a user on the Movielens
1M dataset and compare results with BPRSLIM.

KEYWORDS

Recommender Systems, Deep Learning, Autoencoders, Knowledge
graphs, Linked Open Data, DBpedia

ACM Reference format:

Vito Bellini, Vito Walter Anelli, Tommaso Di Noia, and Eugenio Di Sciascio.
2017. Auto-Encoding User Ratings via Knowledge Graphs in Recommen-
dation Scenarios. In Proceedings of DLRS 2017, Como, Italy, August 27, 2017,
7 pages.

https://doi.org/10.1145/3125486.3125496

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DLRS 2017, August 27, 2017, Como, Italy

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5353-3/17/08...$15.00
https://doi.org/10.1145/3125486.3125496

Vito Walter Anelli
Polytechnic University of Bari
Via E. Orabona, 4
Bari, Italy 70126
vitowalter.anelli@poliba.it

Eugenio Di Sciascio
Polytechnic University of Bari
Via E. Orabona, 4
Bari, Italy 70126
eugenio.disciascio@poliba.it

1 INTRODUCTION

Recommender systems (RS) are nowadays used in many of the
services we daily access in order to provide a personalized experi-
ence in the browsing and selection of items in a catalogue. Their
success strongly depends on how they can identify and exploit
user tastes and preferences while suggesting potentially relevant
items. RS mainly rely on the rates users provide to items, to pre-
dict the importance for unrates ones. Over the years, collaborative
filtering (CF) approaches have shown to be very effective in sug-
gesting accurate recommendations especially in the presence of
many data in the user-ratings matrix while they suffer in situations
of very sparse matrices. CF fail in providing good recommenda-
tion in situations where we have users who rated a few items
(cold users) and items with a few ratings (cold items). This latter
problem is mitigated in case the recommendation engine adopts
a content-based (CB) approach where characteristics of the items
are exploited to find those similar to the ones rated by the user in
the past. Combining CF and CB usually leads to obtain better rec-
ommendation results [13][16][22]. As a matter of fact, adding side
information to a collaborative filtering approach has proven to be
more effective while computing recommendations to the end user
[20]. Recently, among the ideal candidates to get side information
to be injected in recommender systems we surely find knowledge
graphs!. On the one hand, information encoded in such structures
is an excellent mine of meaningful data that can be exploited to
describe and categorize items in a catalogue. Among the various
knowledge graphs available online, we have those belonging to the
Linked Open Data (LOD) cloud such as DBpedia [1] or Wikidata
[30]. There, encyclopedic information is encoded in terms of RDF
triples (subject, predicate, object) thus creating a huge intercon-
nected graph of knowledge.

After being successfully adopted to cope with many tasks related
to artificial intelligence such as image recognition or natural lan-
guage processing, deep learning techniques are rapidly entering the
world of recommender systems [3]. Built around the basic notion of
a neural networks (NN), over the years many new techniques and
approaches have been developed under the deep learning umbrella.

Uhttps://googleblog.blogspot.it/2012/05/introducing-knowledge-graph-things-not.
html
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Among them, autoencoders are a particular configuration of a NN
whose main aim is that of training a model able to reproduce the
inputs of a system. They have been successfully adopted for feature
selection [29] as well as a generative model of data [14].

In this paper we present a novel way to build a user profile by
using features computed by means of an Autoencoder. The seman-
tic information of classes and categories of a knowledge graph is
exploited to draw the topology of the underlying neural network.
Each class and category associated to an item is represented by a
neuron in the hidden layer of the network which autoencodes the
ratings of the users. After training the resulting neural network,
the weights computed as inputs of the neurons in the hidden layer
are then interpreted as the importance of the corresponding fea-
ture in the rating process from the users. Eventually, the vectors
of feature weights are used to estimate the utility associated to
items unknown to (unrated by) the user thus computing a top-N
recommendation list.

The remainder of this paper is structured as follows: in the next
section we report related work on the usage of autoencoders and
deep learning techniques as well as Linked Open Data for recom-
mendation tasks. Then we introduce the notion of autoencoder and
that of semantic-autoencoder. In Section 4 we describe our recom-
mendation model followed by the description of the experimental
setting and of the metrics we used in the evaluation. Conclusions
and Future Work close the paper.

2 RELATED WORK

Autoencoders and Deep Larning. Autoencoders have recently
attracted attention in the Recommender System community. In [33]
the authors utilize the idea of Denoising Auto-Encoders for learn-
ing from corrupted inputs. The proposed approach assumes that
observed user-item interactions are a corrupted version of user’s
preferences. The model then learns a latent representation of cor-
rupted user-item preferences that can lead to a better reconstructed
input. By training on corrupted data we can recover co-preference
patterns. The authors show that this is an effective approach in col-
laborative filtering scenarios. [28] introduces a CF approach based
on Stacked Denoising Autoencoders in order to learn a non-linear
representation of the users-items in order to alleviate the cold start
problem by integrating side information. So they came up with a
Hybrid Recommender System. The main idea of this work is to use
a hidden layer (Autoencoder’s bottleneck) of size k « N (number of
features) to let the network find the low-dimensional representation
to feed a Deep Neural Network. Experimental results show that side
information brings only a small improvement if an item has many
ratings. A pure CF approach has been settled with autoencoders
in [26]. They compare item-based autoencoding and user-based
autoencoding, outperforming all the baselines in terms of RMSE. A
Hybrid Recommender System is presented in [5]. Here the authors
use side information to address the problem of the sparse user-
item matrix, then jointly learn users and items’ latent factors from
side information and collaborative filtering from the rating matrix.
Other works like [31] are focused on learning users preferences in
a high-dimensional semantic latent space, with the advantage of
being able to recommend items using content that describes the
items. As the authors say, describing items in a semantic space
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provides the intersubstitutability of items or, in other words, items
may be substituted by nearby items in such a space. Deep Learning
is used in [32] to tackle CF’s sparsity problem by integrating aux-
iliary information, such as item content information. Ratings and
side information can be used together, where a collaborative topic
regression method is capable to learn a latent representation. Then,
a collaborative deep learning model jointly performs representation
for content information and collaborative filtering for the ratings
matrix. Mapping user and items to a latent space, as done in [6]
seems to be a good approach to address the recommendation qual-
ity in content-based recommender systems. Using a rich feature
set from different domains to represent users and items, allows
the model to provide quality recommendation across all domains,
as well as having a semantically rich user latent feature vector.
Linked Open Data. Many approaches have been proposed for
exploiting information extracted from Linked Open Data in recom-
mendation tasks. One of the very first proposals in this direction
is [10] where the authors introduced for the first time the idea of
using Linked Open Data in a recommender system. A system for
recommending artists and music using DBpedia was presented in
[23]. Several other approaches have been proposed afterwards such
as a knowledge-based framework leveraging DBpedia for the cross-
domain recommendation task [7, 8], a content-based context-aware
method able to adopt a semantic representation based on a combina-
tion of distributional semantics and entity linking techniques [18],
a hybrid graph-based algorithm based on learning-to-rank method
and path-based features extracted from heterogeneous information
networks built upon DBpedia and collaborative information [21].
To the best of our knowledge, the only works dealing with auto-
mated feature selection from knowledge graphs are [17, 24]. While
the former analyzes the performance of a recommender system
after a feature selection based on classical statistical methods such
as Information Gain, Chi Squared etc., the latter adopts a technique
based on ontological schema summarization.

3 AUTOENCODERS

Artificial Neural Networks (ANNs) are computational models orig-
inally proposed to catch underlying relationships in a set of data
by using positive and negative examples fed into the network (su-
pervised learning). ANNs are composed by an input layer, one o
more hidden layers and an output layer. Every layer is made of
units and every layer is fully-connected, meaning that every unit
is connected with all the units in the following layer. Connections
between units are usually initialized with a random weight. In a
conventional neural network, the task is then predicting a target
vector y from an input vector x.

Autoencoders are ANNs that apply the backpropagation algo-
rithm, setting the target values to be equal to the inputs in an
unsupervised fashion. Roughly, in an autoencoder network one
tries to “predict” x from x. The idea is to first compress (encode)
the input vector to fit in a smaller representation, and then try to
reconstruct (decode) it back. This means that the model learns in the
hidden layers, a representation of the input and therefore a latent
representation of the knowledge behind the input data. The task
performed by autoencoders is quite similar to that of a Principal
Component Analysis (PCA) operation. We suppose to have a two
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layers ANN, with only one hidden layer using linear functions, the
number of hidden units is less than the number of input units, the
input and output layers composed by the same number of neurons,
and we want the output to mimic as close as possible the input.
After training, the hidden layer will be a representation of the input
in a space with a number of dimensions denoted by the number
of neurons of the hidden layer. It is noteworthy that the overall
training is proportional to the number of training cases and this
operation is more inefficient with respect to PCA. Moreover, if we
want to represent the input non-linearly (using curved dimensions)
the training of the neural network will become more efficient com-
pared to other methods because its complexity remains linear in
the number of training cases. We can extend the neural network
by injecting more hidden layers before and after the original one.
The new subnetwork added before the original hidden layer will
be trained to encode the input in the new latent space while the
one we added after will decode the data in the original space. As
known initializing weights in deep NN can be a non trivial task and
this problem can be alleviated performing a pre-training operation
or using the same methods by Echo-state networks. One of the
first and more famous autoencoder [12] encoded 784 pixel images
in a 30 dimensions space, initializing the weights using Restricted
Boltzmann Machines (RBM).

Autoencoders can obviously be employed for entities different
than images. One of the first examples was the Latent Semantic
Analysis [15], in which the basic idea was to exploit the PCA to
word count vectors to extract similarities between documents. This
is a very common task in information retrieval that has been proved
to be much better accomplished using autoencoders [11]. We can
trivially convert documents into bags-of-words and generate the
word count vectors. Extracting similarities in the high dimensional
space of the words can be a really expensive operation and can
be addressed using a much more compact representation using
autoencoders for both documents and queries. The most important
difference with the previous example is that, in this case, what we
want to predict is a probability distribution representing the chance
of encountering a specific word in a document, and this affects the
model in terms of cost function and optimization objectives.

3.1 Semantics-aware autoencoders

Autoencoders, just like other methods for latent representation, are
unable to provide an explanation for the latent factors they provide.
To address this issue, we propose to give a meaning to connection
with the hidden layer and to its neurons by exploiting semantic
information explicitly available in knowledge graphs. The main
idea of the SEM-AUTO approach is to map connections between
units from layer i to layer i+1, reflecting the nodes available in a
knowledge-based graph (KG) as shown in figure 1. In particular, we
mapped the autoencoder network topology with the categorical
information related to items rated by users. The mapping with KG
makes the hidden layer of SEM-AUTO of variable length in the
number of units, depending on how much categorical information
is available for items rated by a specific user. Items not found in
the knowledge graph are just ignored because we cannot retrieve
any content description about them. Suppose a user u with n rating.
Let m < n be the number of items rated by u available in the
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Figure 1: Architecture of a semantic autoencoder.

graph and C; = {cj1,¢i2,...,cij} be the set of j categorical nodes
associated in the KG to the item i. Then, S = U?il C; is the set of
features mapped into the hidden layer for the user and the number
of hidden units in SEM-AUTO is equal to |S|. Our assumption is that
most of the valuable information encoded in a knowledge graph
is represented by categorical information. Therefore, meanwhile
SEM-AUTO retrieves categorical information of user’s rated items
from KG, it builds the network on-the-fly by reflecting the graph
topology. Once the network is built, the training process for a user
takes place feeding the neural network with the item’s ratings
provided by the user, normalized by [0,1].

It is worth noticing that the neural network we build is not fully
connected.

In order to make the results of the network consistent during
multiple trainings, weights are not initialized randomly, but to
a very small value close to zero. We found that the smaller the
weights, the better the network convergence with smaller root
mean squared error. As the nodes in the hidden layer correspond
to categories in the knowledge graph, once the model has been
trained, the sum of the weights of edges entering a node represents
somehow its worthiness in the definition of a rating. If we consider
the nodes associated (connected) to a specific item, their weight
may be considered as an initial form of explanation for a given
rating.

Please note, that such autoencoders do not need bias nodes
because these latter are not representative of any semantic data in
the graph. Hence, the structure of a generic hidden units looks like
the one depicted in Figure 2.

w1

Activation

function Output

w3
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Figure 2: Structure of units
As activation function, in our implementation we used the well
known sigmoid function o(x) = H%
As a result, once the network converges we have a latent represen-
tation of features associated to a user profile together with their
weight. However, very interestingly, this time the features also have
an explicit meaning as they are in a one to one mapping with ele-
ments (nodes) in a knowledge graph. Our autoencoder is therefore
capable to learn for each user the semantics behind her ratings and
weight them.
The rationale behind our idea is to catch the side information shared
among items rated by a user, so that it gains higher value, tending
towards 1, for positively rated items. On the other side, information
shared among negatively rated item will tend towards 0. There-
fore, our autoencoder finds the best value for those features that
approximate the target user ratings by taking into account what
are the best features the user is interested in. Features in a user
profile are normalized within the interval [0, 1] using a standard
min-max normalization.
Given the trained autoencoder, a user profile is then built by con-
sidering the features associated to items she rated in the past.
It is worth noticing that in order to train our autoencoder, according
to the semantic structure of the data contained in the hidden layer, at
least 2 ratings are required for each user, otherwise a constant value
for all the features would be spread to approximate the targeted
user ratings.

4 COMPUTING RECOMMENDATIONS

As we said before the weight associated to a feature f}, is the sum-
mation of the weights wj, computed in the semantic autoencoder
for each edge entering the node representing the feature itself. As
we train an auto encoder for each user, we have weights changing
depending on the original user profile P(u) = {(i,r)} with i being
an item rated by the user and r its associated rating. More formally,
we have
j=inndeg(f,)
w(fn,u) = Z Win
j=0

where inndeg(f;) is the number of edges entering the node rep-
resenting the feature f,. As an example, if we consider the ex-
cerpt of the network in Figure 1 represented in Figure 3, for
American_films we have

w(American_Films,u) = wi1 + wap

By means of the weights associated to each feature, we can
now move a user profile P(u) from the userxitem space to the
userxfeature one. Given F(i) as the set of features composing an
item defined as

F(i) = {fn | there is an edge in the autoencoder between i and f, }
we represent the user profile as
Pu) = {{fn, w(fn,w)) | fn € F(i) with i being rated by u} (1)

Due to the high sparseness of the feature-item matrix, the pure
content-based information available in the user profile could not be
enough to provide valuable recommendations. Hence, we exploited
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collaborative information available in the original dataset to further
enhance user profiles.

We projected them in a Vector Space Model where each feature is a
dimension of the vector space and computed the cosine similarity
between users and, for each user we computed the set K(u) contain-
ing the k users most similar to u. Then, for each feature f;, ¢ P(u)
and for each user u’ € K(u) we estimated w(f,,, u) as

> wifpu)

u’ €K(u)

w(fou) = @

and eventually we added {f, w(f;,, u)) to P(w).

After this post-processing step, ratings for unknown items i to u
can be computed by combining the weights in the user profiles
associated to F(i). In our implementation we just sum their values.

rGuy = ) wifaw 3)
anF(Z)

5 EXPERIMENTS

In this section, we present the experimental evaluations. We de-
scribe the structure of the dataset used in the experiments and
the evaluation protocol. In this experimental setup we focused on
cold-users with a number of ratings equal to 2, 5 or 10.

5.1 Dataset

We conducted the experiment on the Movielens 1M dataset, which
is composed by 6040 users and 3952 items. Each user has at least
20 ratings and ratings are made on a 5-star scale.

In our experiments, we referred to the freely available knowledge
graph of DBpedia?. In order to map items in Movielens to resources
in DBpedia we adopted a freely available mapping>. The mapping
contains 3573 mapped movies of 3952 total movies in the dataset.
For each item we extracted categorical information by considering
the two RDF predicates:

http://purl.org/dc/terms/subject

Zhttps://dbpedia.org
3https://github.com/sisinflab/LODrecsys-datasets
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http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

The former links to categories as the one available in Wikipedia
while the latter is used to classify in a more engineered ontology
all the resources available in DBpedia.

5.2 Evaluation protocol

Here, we show how we evaluate performances of our methods in
recommending items to cold-start users. We split the dataset using
Hold-Out 80/20, ensuring that every user have 80% of their ratings
in the training set and the remaining 20% in the test set. We look
for users in the test set that have at least 10 rates, and we selected
them as potential cold user candidates. The protocol presented in
the following is inspired by [34]. We made the candidate users
cold by removing their ratings from the training set. We tested our
approach with profiles reduced to 2, 5 and 10 ratings.

(1) Setup the cold-start user scenario
o Randomly choose 25% of users from cold user candidates
and put them into set U,
e Yu € U, move out their ratings from the training set to
Fe
(2) Evaluate the cold-start user scenario
e Create an empty set R
e Forn € {2,5,10} do
- Yu € U¢ do:
* randomly pick up n of his ratings from F, and move
them to the training set
Train the model
- Vu € U, generate recommendation for all unrated items
— Evaluate recommendations for cold-users only

5.3 Metrics

In this work we avoided to use Root Mean Squared Error (RMSE).
It is known that it may estimate the same error for top-N items
and bottom-N items, without taking into account that an error
in top-N items should be more relevant compared to an error for
lower ranked items. For this reason, we chose to use Precision and
Recall and nDCG to evaluate the accuracy of our model in cold user
scenarios.

Precision is defined as the proportion of retrieved items that are
relevant to the user.

ILu(N) N TS|

N
where L, (N) is the recommendation list up to the N-th element
and TS} is the set of relevant test items for u. Precision measures
the system’s ability to reject any non-relevant documents in the
retrieved set.
Recall is defined as the proportion of relevant items that are re-
trieved.

Precision@N =

ILu(N) N TS|

TS},
Recall measures the system’s ability to find all the relevant docu-
ments.

Recall@N =
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Precision and recall can be combined with each other in the F1
measure computed as the harmonic mean between precision and
recall.

Precision@N - Recall@N
' Precision@N + Recall@N
In information retrieval, Discounted cumulative gain (DCG) is a
metric of ranking quality that measures the usefulness of a docu-
ment based on its position in the result list. Recommended results
may vary in length depending on the user, therefore is not possibile
to compare performance among different users, so the cumulative
gain at each position should be normalized across users. Hence,
normalized discounted cumulative gain, or nDCG, is computed as:

F1@N =2

N
nDCG,@N =

1 2Mup — 1

IDCG@N pz_; log,(1+p)

where p is the position of an item in the recommendation list and
IDCG@N indicates the score obtained by an ideal ranking of L,,(N).
Accuracy metrics are a valuable way to evaluate the performance
of a recommender system. Nonetheless, it has been argued [27]
that also diversity should be taken into account when evaluating
users’ satisfaction. In order to evaluate the diversification power of
our approach we also measure ERR-IA[2].

n r—1
1
ERR-IA= "~ 3" P(tlg) [ [ (1~ RDR;
r=1 t i=1

where r is the position of an item i, ¢ is the topic (in our case topics
are movie genres as stated in Movielens Datatset ancillary files),
P(t|q) is the conditional probability of the topic given the query
(user profiles in this case), R; is the probability of the relevance
of the item and R, is the probability of the relevance of the list of
items from 1 to r. With this metric, the contribution of each item
in the recommendation list is based on the relevance of documents
ranked above it. The discount function then depends also on the
relevance of previously ranked documents.

5.4 Results Discussion

In our experiments, we compared our approach with the imple-
mentation of BPRSLIM [19, 25] available in MyMediaLite* [9] as
baseline. BPRSLIM is a CF state-of-the-art sparse linear method
that leverages the objective function as Bayesian personalized rank-
ing. In Table 1 we report only those configurations for which our
semantic-autoencoder gets the best results compared to BPRSLIM.
We can see that for a number of ratings equal to 2 and 5, we out-
perform BPRSLIM in terms of precision and nDCG. From Table 1
we see that our approach gets much better results also in terms
of recall and ERR-IA for very cold users, i.e., with only 2 ratings
in the profile. As the number of ratings grows, the collaborative
component becomes more relevant and BPRSLIM beats our SEM-
AUTO approach. This result is more evident if we compare the
plots in Figure 4 and 5 reporting the value of F1 for users with 2
and 5 ratings in their profile respectively. In the former, with only 2
ratings, SEM-AUTO shows a much better behavior than BPRSLIM
while in the latter case BPRSLIM is never beaten by SEM-AUTO. It

*http://mymedialite.net
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#ratings | k fil@10 precision@10 | recall@10 nDCG@10 | ERR-IA@10
BPRSLIM 9 - 0.021741632 0.032649007 0.016297099 0.023353576 0.018825394
SEM-AUTO 10 | 0.023096283 0.033046358 0.017751427 | 0.028283378 | 0.02600731
BPRSLIM 5 - 0.039078954 0.050066225 0.032046252 0.045158629 0.042121369
SEM-AUTO 100 | 0.038598535 0.054039735 0.030020531 | 0.048623943 | 0.047124717

Table 1: Experimental Results. #ratings represents the number of ratings in cold users. k is the number of similar users be-

longing to K(u) used in Equation (2)

is interesting to note that, depending on the number of ratings in
the user profile,the performance in term of accuracy decreases as
the number of neighbors increases. Another interesting result here
is that increasing the number of ratings we need a higher number
of neighbors in K(u) to compute w(f;,,u) in Equation (2) to reach
results comparable with BPRSLIM. As for diversity, in very cold
user situations, SEM-AUTO shows to diversify recommendation
results better than BPRSLIM.
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k

Figure 4: Plot for 2 ratings.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel method to design semantics-
aware autoencoders (SEM-AUTO) driven by information encoded
in knowledge graphs. As for classical applications of autoencoders
to feature selection, we compute a latent representation of items
but, in our case, we can attach an explicit semantics to selected
features. This allows our system to exploit both the power of deep
learning techniques and, at the same time to have a meaningful and
understandable representation of the trained model. We used our
approach to autoencode user ratings in a recommendation scenario
via the DBpedia knowledge graph and proposed a simple algorithm
to compute recommendations based on the semantic features we
extract with our autoencoder. Experimental results show that even
with a simple approach that just sums the weights associated to
features we are able to beat state of the art recommendation algo-
rithms for cold user scenarios. The preliminary results presented in
this paper pave the way to various further investigations. We are

—8— Autoencoder
—— BPRSLIM
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Figure 5: Plot for 10 ratings.

currently testing SEM-AUTO on other knowledge graphs such as
Wikidata to see how much our results depend on the underlying
semantic data. Moreover, we want to exploit the features extracted
from SEM-AUTO as side information in hybrid state of the art ap-
proaches to test their representational effectiveness. Finally, having
an explicit representation of latent features opens the door to a bet-
ter user modeling by means of preference based languages such as
CP-theories [4] that can be further exploited to provide meaningful
explanations to the user for recommendation results.
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