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We present Autogen—an algorithm that for a wide class of dynamic programming (DP) problems auto-

matically discovers highly efficient cache-oblivious parallel recursive divide-and-conquer algorithms from

inefficient iterative descriptions of DP recurrences. Autogen analyzes the set of DP table locations accessed

by the iterative algorithm when run on a DP table of small size and automatically identifies a recursive access

pattern and a corresponding provably correct recursive algorithm for solving the DP recurrence. We use Au-

togen to autodiscover efficient algorithms for several well-known problems. Our experimental results show

that several autodiscovered algorithms significantly outperform parallel looping and tiled loop-based algo-

rithms. Also, these algorithms are less sensitive to fluctuations of memory and bandwidth compared with

their looping counterparts, and their running times and energy profiles remain relatively more stable. To

the best of our knowledge, Autogen is the first algorithm that can automatically discover new nontrivial

divide-and-conquer algorithms.

CCS Concepts: • Theory of computation → Dynamic programming; Divide and conquer; Shared

memory algorithms;

Additional Key Words and Phrases: Autogen, automatic discovery, dynamic programming, recursive, divide-

and-conquer, cache-efficient, parallel, cache-oblivious, energy-efficient

Chowdhury and Ganapathi were supported in part by NSF grants CCF-1162196, CCF-1439084, and CNS-1553510. Tschudi

was supported by an NSF REU supplement for CNS-1553510. Kuszmaul and Leiserson were supported in part by NSF

grants CCF-1314547, CNS-1409238, and IS-1447786; NSA grant H98230-14-C-1424; and FoxConn. Solar-Lezama’s work

was partially supported by DOE Office of Science award #DE-SC0008923. Bachmeier was supported by MIT’s Undergrad-

uate Research Opportunities Program (UROP). Part of this work used the Extreme Science and Engineering Discovery

Environment (XSEDE) [2, 52], which is supported by NSF grant ACI-1053575.

Authors’ addresses: R. Chowdhury, Computer Science Department, Stony Brook University, Stony Brook, NY 11794, USA;

email: rezaul@cs.stonybrook.edu; P. Ganapathi, Bengaluru, Karnataka, India; email: pramod@learningisbeautiful.in; S.

Tschudi, Google Inc., S. Tschudi (stschudi), 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA; email: stschudi42@

gmail.com; J. J. Tithi, Intel Corporation, SC12, 3600 Juliette Ln, Santa Clara, CA 95054, USA; email: jesmin.jahan.tithi@

intel.com; C. Bachmeier, C. E. Leiserson, and A. Solar-Lezama, MIT Computer Science and Artificial Intelligence Labora-

tory, Cambridge, MA 02139, USA; emails: {cabach, cel, asolar}@csail.mit.edu; B. C. Kuszmaul, 37 Vaille Ave Lexington, MA

02421, USA; email: kuszmaul@gmail.com; Y. Tang, chool of Software, Shanghai Key Laboratory of Intelligent Information

Processing, Fudan University, Shanghai, China; email: yuantang@fudan.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 2329-4949/2017/10-ART4 $15.00

https://doi.org/10.1145/3125632

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 4. Publication date: October 2017.

mailto:permissions@acm.org
https://doi.org/10.1145/3125632
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3125632&domain=pdf&date_stamp=2017-10-05


4:2 R. Chowdhury et al.

ACM Reference format:

Rezaul Chowdhury, Pramod Ganapathi, Stephen Tschudi, Jesmin Jahan Tithi, Charles Bachmeier, Charles E.

Leiserson, Armando Solar-Lezama, Bradley C. Kuszmaul, and Yuan Tang. 2017. Autogen: Automatic Discov-

ery of Efficient Recursive Divide-&-Conquer Algorithms for Solving Dynamic Programming Problems. ACM

Trans. Parallel Comput. 4, 1, Article 4 (October 2017), 30 pages.

https://doi.org/10.1145/3125632

1 INTRODUCTION

Autogen is an algorithm for automatic discovery of efficient recursive divide-and-conquer dy-

namic programming (DP) algorithms for multicore machines from naïve iterative descriptions
of the dynamic programs. DP [5, 17, 46] is a widely used algorithm design technique that finds
optimal solutions to a problem by combining optimal solutions to its overlapping subproblems
and explores an otherwise exponential-sized search space in polynomial time by saving solu-
tions to subproblems in a table and never recomputing them. DP is extensively used in computa-
tional biology [4, 20, 27, 56] and in many other application areas including operations research
[28], compilers [36], sports [19, 41], games [45], economics [42], finance [40], and agriculture
[33].

Dynamic programs are described through recurrence relations that specify how the cells of a DP
table must be filled using already-computed values for other cells. Such recurrences are commonly
implemented using simple algorithms that fill out DP tables iteratively. These loop-based codes are
straightforward to implement, often have good spatial cache locality,1 and benefit from hardware
prefetchers. But looping codes suffer in performance from poor temporal cache locality.2 Iterative
DP implementations are also often inflexible in the sense that the loops and the data in the DP
table cannot be suitably reordered in order to optimize for better spatial locality, parallelization,
and/or vectorization. Such inflexibility arises because the codes often read from and write to the
same DP table, thus imposing a strict read-write ordering of the cells.

Recursive divide-and-conquer DP algorithms (see Table 1) can often overcome many limitations
of their iterative counterparts. Because of their recursive nature, such algorithms are known to
have excellent (and often optimal) temporal locality. Efficient implementations of these algorithms
use iterative kernels when the problem size becomes reasonably small. But unlike in standard loop-
based DP codes, the loops inside these iterative kernels can often be easily reordered, thus allowing
for better spatial locality, vectorization, parallelization, and other optimizations. The sizes of the
iterative kernels are determined based on vectorization efficiency and overhead of recursion, not
on cache sizes, and thus the algorithms remain cache oblivious3 [23] and more portable than cache-
aware tiled iterative codes. Unlike tiled looping codes, these algorithms are also cache adaptive

[6]—they passively self-adapt to fluctuations in available cache space when caches are shared with
other concurrently running programs.

For example, consider the dynamic program for solving the parenthesis problem [24] in which
we are given a sequence of characters S = s1 · · · sn and we are required to compute the minimum
cost of parenthesizing S . Let G[i, j] denote the minimum cost of parenthesizing si · · · sj . Then the

1Spatial locality—whenever a cache block is brought into the cache, it contains as much useful data as possible.
2Temporal locality—whenever a cache block is brought into the cache, as much useful work as possible is performed on

this data before removing the block from the cache.
3Cache-oblivious algorithms—algorithms that do not use the knowledge of cache parameters in the algorithm description.
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Table 1. Work (T1), Serial Cache Complexity (Q1), Span (T∞), and Parallelism (T1/T∞) of I-DP and R-DP

Algorithms for Several DP Problems

Here, n = problem size, M = cache size, B = block size, and p = #cores. By Tp we denote running time on p processing

cores. We assume that the DP table is too large to fit into the cache, and M = Ω(Bd ) when Θ(nd ) is the size of the DP table.

On p cores, the running time is Tp = O (T1/p +T∞) and the parallel cache complexity is Qp = O (Q1 + p (M/B )T∞) with

high probability when run under the randomized work-stealing scheduler on a parallel machine with private caches. The

problems in the lower section are non-DP problems. For insertion sort, T1 for R-DP is O (nlog2 3).

DP table G[0 : n, 0 : n] is filled up using the following recurrence:

G[i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

∞ if 0 ≤ i = j ≤ n,
vj if 0 ≤ i = j − 1 < n,
min

i≤k≤j
{(G[i,k] +G[k, j]) +w (i,k, j )} if 0 ≤ i < j − 1 < n,

(1)

where the vj s and function w (·, ·, ·) are given.
Figure 1 shows a serial looping code Loop-Parenthesis implementing Recurrence 1. Though

the code is really easy to understand and write, it suffers from poor cache performance. Observe
that the innermost loop scans one row and one column of the same DP table G. Assuming that G
is of size n × n and G is too large to fit into the cache, each iteration of the innermost loop may
incur one or more cache misses, leading to a total of Θ(n3) cache misses in the ideal-cache model
[23]. Such extreme inefficiency in cache usage makes the code bandwidth bound. Also, this code
does not have any parallelism as none of the three loops can be parallelized. The loops cannot also
be reordered without making the code incorrect,4 which makes the code difficult to optimize.

Figure 1 shows the type of parallel looping code Par-Loop-Parenthesis one would write to
solve Recurrence 1. We can analyze its parallel performance under the work-span model ([17],
Chapter 27), which defines the parallelism of a code asT1/T∞, whereTp (p ∈ [1,∞)) is the running
time of the code on p processing cores (without scheduling overhead). Clearly, the parallelism of
Par-Loop-Parenthesis is Θ(n3)/Θ(n2) = Θ(n). If the size M of the cache is known, the code can

be tiled to improve its cache performance to Θ(n3/B
√
M )), where B is the cache line size. However,

such rigid cache-aware tiling makes the code less portable and may contribute to a significant loss
of performance when other concurrently running programs start to use space in the shared cache.

4Compare this with iterative matrix multiplication in which all six permutations of the three nested loops produce correct

results.
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Fig. 1. Left upper half: A parallel looping code that evaluates Rec. 1. Left lower half: Autogen takes the serial

parenthesis algorithm as input and automatically discovers a recursive divide-and-conquer cache-oblivious

parallel algorithm. Initial call to the divide-and-conquer algorithm is Apar (〈G,G,G〉), where G is an n × n
DP table and n is a power of 2. The iterative base-case kernel of a function Fpar is Floop-par . Right: Pictorial

representation of the recursive divide-and-conquer algorithm discovered by Autogen. While cells in a dark

red block are updated using data only from light blue blocks (Cpar ), cells in a red dotted block are updated

using data from that block itself (Apar ) as well as from light blue blocks (Bpar ).

Finally, Figure 1 shows the type of algorithm Autogen would generate from the serial code.
Though designing such a parallel recursive divide-and-conquer algorithm is not straightforward,
it has many nice properties. First, the algorithm is cache oblivious, and for any cache of size M and

line size B, it always incurs Θ(n3/(B
√
M )) cache misses, which can be shown to be optimal. Second,

its parallelism is Θ(n3−log2 3) = ω (n1.41), which is asymptotically greater than the Θ(n) parallelism
achieved by the parallel looping code. Third, since the algorithm uses recursive blocking, it can
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Fig. 2. Input and output of Autogen.

passively self-adapt to a correct block size (within a small constant factor) as the available space
in the shared cache changes during runtime. Fourth, it has been shown that function Cloop-par is
highly optimizable like a matrix multiplication algorithm, and the total time spent inside Cloop-par

asymptotically dominates the time spent inside Aloop-par and Bloop-par [51]. Hence, reasonably
high performance can be achieved simply by optimizing Cloop-par .

We ran the recursive algorithm and the parallel looping algorithm from Figure 1 both with
and without tiling on a multicore machine with dual-socket eight-core 2.7GHz Intel Sandy Bridge
processors (2 × 8 = 16 cores in total), per-core 32KB private L1 cache and 256KB private L2 cache,
and per-socket 20MB shared L3 cache, and 32GB RAM shared by all cores. All algorithms were
implemented in C++, parallelized using Intel Cilk Plus extension, and compiled using Intel C++
Compiler v13.0. For a DP table of size 8, 000 × 8, 000, the recursive algorithm without any nontrivial
hand-optimizations ran more than 15 times faster than the nontiled looping code, and slightly
faster than the tiled looping code when each program was running all alone on the machine. When
we ran four instances of the same program on the same socket each using only two cores, the
nontiled looping code slowed down by almost a factor of 2 compared to a single instance running
on two cores, the tiled looping code slowed down by a factor of 1.5, and the recursive code slowed
down by a factor of only 1.15. While the nontiled looping code suffered because of bandwidth
saturation, the tiled looping code suffered because of its inability to adapt to cache sharing.

In this article, we present Autogen—an algorithm that for any problem from a very wide class of
DP problems can automatically discover an efficient cache-oblivious parallel recursive divide-and-
conquer algorithm from a naïve serial iterative implementation (or any black-box implementation)
of the DP recurrence (see Figure 2). Autogen works by analyzing the set of DP table locations
accessed by the input serial algorithm when run on a DP table of suitably small size and identifying
a recursive fractal-like pattern in that set. For the class of DP problems handled by Autogen, the
set of table locations accessed by the algorithm is independent of the data stored in the table. The
class includes many well-known DP problems such as the parenthesis problem, pairwise sequence
alignment, and the gap problem, as well as problems that are yet to be encountered. Autogen
effectively eliminates the need for human involvement in the design of efficient cache-oblivious
parallel algorithms for all known and yet-to-be-identified problems in that class.

Our contributions. Our major contributions are as follows:

(1) [Algorithmic.] We present Autogen—an algorithm that for a wide class of DP prob-
lems automatically discovers highly efficient cache-oblivious parallel recursive divide-
and-conquer algorithms from iterative descriptions of DP recurrences. Autogen works
by analyzing the DP table accesses (assumed to be independent of the data in the table)
of an iterative algorithm on a table of small size, finding the dependencies among dif-
ferent orthants of the DP table recursively, and constructing a tree and directed acyclic
graphs that represent a set of recursive functions corresponding to a parallel recursive
divide-and-conquer algorithm. We prove the correctness of the algorithms generated by
Autogen.

(2) [Experimental.] We have implemented a prototype of Autogen that we have used to
autogenerate efficient cache-oblivious parallel recursive divide-and-conquer algorithms

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 4. Publication date: October 2017.
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(pseudocodes) from naïve serial iterative descriptions of several DP recurrences. We
present experimental results showing that several autogenerated algorithms without any
nontrivial hand-tuning significantly outperform parallel looping codes in practice and
have more stable running times and energy profiles in a multiprogramming environment
compared to looping and tiling algorithms.

A preliminary version of this work appeared in the proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP 2016) [12]. In the current
version, we have added three new sections: Section 5 on a more space- and time-efficient version of
the Autogen algorithm, which we call the deductive Autogen; Section 6.3 on extending Autogen
to handle nonorthogonal regions; and Section 7.4 on experimental results comparing inductive and
deductive Autogen. We have also added a section named “Conclusions” (Section 8).

2 RELATED WORK

Systems for autogenerating fast iterative DP implementations exist. The Bellman’s GAP compiler
[26] converts declarative programs into optimized C++ code. A semiautomatic synthesizer [38]
exists that uses constraint solving to solve linear-time DP problems such as maximal substring
matching, assembly-line optimization, and the extended Euclid algorithm.

There are systems to automatically parallelize DP loops. EasyPDP [47] requires the user to se-
lect a directed acyclic graph (DAG) pattern for a DP problem from its DAG patterns library. New
DAG patterns can be added to the library. DPX10 [55] is also a DAG and pattern-based system
like EasyPDP, but it targets distributed-memory machines and dynamic programs for filling out
two-dimensional DP tables with O (1) dependency per cell (e.g., the Smith-Waterman algorithm
for sequence alignment [56]). EasyHPS [18] uses the master-slave paradigm in which the master
scheduler distributes computable subtasks among its slaves, which in turn distribute subsubtasks
among slave threads. A pattern-based system exists [37] that uses generic programming tech-
niques such as class templates to solve problems in bioinformatics. Parallelizing plugins [39] use
diagonal frontier and row splitting to parallelize DP loops.

To the best of our knowledge, there has been no previous attempt to automate the process of
discovering efficient cache-oblivious and cache-adaptive parallel recursive algorithms by analyz-
ing the memory access patterns of naïve serial iterative algorithms. The work that is most related
to Autogen but completely different in many aspects is Pochoir [48, 49]. While Pochoir tailors
the implementation of the same cache-oblivious algorithm to different stencil computations, Au-
togen discovers a (possibly) brand new efficient parallel cache-oblivious algorithm for every new
DP problem it encounters.

Recently, a subset of the authors of the current article developed another system called Bellma-
nia [30] that uses solver-aided tactics to derive parallel recursive divide-and-conquer implemen-
tations of DP algorithms. Bellmania includes a high-level language for specifying DP algorithms
and a calculus that facilitates gradual transformation of these specifications into efficient recur-
sive implementations. A user interactively guides the step-by-step transformation process while
an SMT-based back-end verifies each step.

The algorithms generated by Autogen are based on two-way recursive divide-and-conquer,
which have optimal serial cache complexity but often have lower parallelism compared with itera-
tive wavefront algorithms due to artificial dependencies among subtasks [50]. Recently we showed
how to systematically transform these two-way recursive algorithms into recursive wavefront al-
gorithms that use closed-form formulas to compute at what time each recursive function must be
launched in order to achieve high parallelism without losing cache performance [11, 25].

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 4. Publication date: October 2017.



Autogen: Automatic Discovery of Efficient Recursive Divide-&-Conquer Algorithms 4:7

Compiler technology for automatically converting iterative versions of matrix programs to serial
recursive versions is known [3]. The approach relies on heavy machineries such as dependence
analysis (based on integer programming) and polyhedral techniques. Autogen, on the other hand,
is a much simpler stand-alone algorithm that analyzes the data access pattern of a given naïve (e.g.,
looping) serial DP code when run on a small example and generates a provably correct parallel
recursive algorithm for solving the same DP.

3 THE AUTOGEN ALGORITHM

In this section, we describe the Autogen algorithm.

Definition 3.1 (I − DP /R − DP /Autogen). Let P be a given DP problem. An I-DP is an iterative
(i.e., loop-based) algorithm for solving P. An R-DP is a cache-oblivious parallel recursive divide-
and-conquer algorithm (if it exists) for P. Autogen is our algorithm for autogenerating an R-DP
from a given I-DP for P.

We make the following assumption about an R-DP.

Assumption 1 (Number of Functions). The number of distinct recursive functions in an R-DP

is upper bounded by a constant (e.g., the R-DP in Figure 1 has three distinct recursive functions).

This assumption implies that the number of distinct recursive functions in an R-DP is indepen-
dent of the size of any DP problem on which the R-DP will be run. As a result, the R-DP generated
by our Autogen algorithm will not be tied to one specific problem size. We are not aware of any
R-DP for which Assumption 1 is not true.

Algorithm. The four main steps of Autogen are:

(1) [Cell-set generation.] A cell set (i.e., set of cell dependencies representing DP table cells
accessed) is generated from a run of the given I-DP on a DP table of small size. See Sec-
tion 3.1.

(2) [Algorithm-tree construction.] An algorithm tree is constructed from the cell set in
which each node represents a subset of the cell set and follows certain rules. See Sec-
tion 3.2.

(3) [Algorithm-tree labeling.] The nodes of the tree are labeled with function names, and
these labels represent a set of recursive divide-and-conquer functions in an R-DP. See
Section 3.3.

(4) [Algorithm-DAG construction.] For every unique function of the R-DP, we construct
a DAG that shows both the order in which the child functions are to be executed and the
parallelism involved. See Section 3.4.

Example. Autogen works for arbitraryd-dimensional (d ≥ 1) DP problems under the assumption
that each dimension of the DP table is of the same length and is a power of 2. For simplicity of
exposition, we explain Autogen by applying it on an I-DP for the parenthesis problem, which
updates a two-dimensional DP table. The solution is described by Recurrence 1, which is evaluated
by the serial I-DP. In the rest of the section, we show how Autogen discovers the R-DP shown in
Figure 1 from this serial I-DP.

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 4. Publication date: October 2017.



4:8 R. Chowdhury et al.

3.1 Cell-Set Generation

A cell is a spatial grid point in a DP table identified by its d-dimensional coordinates. A d-
dimensional DP tableG is called a level-0 region. The orthants of identical dimensions of the level-0
region are called level-1 regions. Generalizing, the orthants of level-i regions are called level-(i + 1)
regions.

We assume that each iteration of the innermost loop of the given I-DP performs the following
update:

G[x]← f (G1[y1],G2[y2], . . . ,Gs [ys ]) or

G[x]← G[x] ⊕ f (G1[y1],G2[y2], . . . ,Gs [ys ]),

where s ≥ 1; x is a cell of table G; yi is a cell of table Gi ; ⊕ is an associative and commu-
tative operator (such as min, max, +, ×); and f is an arbitrary function. We call the tuple
〈G[x],G1[y1], . . . ,Gs [ys ]〉 a cell tuple. Let G[X ],G1[Y1], . . . ,Gs [Ys ] be regions such that x ∈ X ,
and yi ∈ Yi for 1 ≤ i ≤ s . Then we call the tuple 〈G[X ],G1[Y1], . . . ,Gs [Ys ]〉 a region tuple. In sim-
ple words, a cell tuple (region tuple, respectively) tells us which cell (region, respectively) is being
written to by reading from which cells (regions, respectively). The size of a cell/region tuple is
1 + s . For any given I-DP, the set of all cell tuples in its DP table is called a cell set.

Given an I-DP, we modify it such that instead of computing its DP table, it generates the cell
set for a problem of suitably small size, usually n = 64 or 128. For example, for the parenthesis
problem, we choose n = 64 and generate the cell set {〈G (i, j ),G (i,k ),G (k, j )〉}, where G is the DP
table, 0 ≤ i < j − 1 < n, and i ≤ k ≤ j.

3.2 Algorithm-Tree Construction

Given an I-DP, a tree representing a hierarchy of recursive divide-and-conquer functions that
is used to find a potential R-DP is called an algorithm tree. The way we construct level-i nodes
in an algorithm tree is by analyzing the dependencies between level-i regions using the cell set.
Every node in the algorithm tree represents a subset of the cell set satisfying certain region-tuple
dependencies. Suppose the algorithm writes into DP tableG and reads from tablesG1, . . . ,Gs (one
or more of them can be the same as G). The algorithm tree is constructed as follows.

At level 0, the only regions possible are the entire tablesG,G1, . . . ,Gs . We analyze the cell tuples
of the cell set to identify the region tuples at this level. As all the write cells belong toC and all the
read cells belong toG1, . . . ,Gs , the only possible region tuple is 〈G,G1, . . . ,Gs 〉. We create a node
for this region tuple and it forms the root node of the algorithm tree. It represents the entire cell
set. For example, for the parenthesis problem, as all the write and read cells belong to the same DP
table C , the root node will be {〈G,G,G〉}.

The level-1 nodes are found by distributing the cell tuples belonging to the root node among
region tuples of level 1. The level-1 regions are obtained by dividing the DP table G into four
quadrants: G11 (top-left), G12 (top-right), G21 (bottom-left), and G22 (bottom-right). Similarly, each
Gi for i ∈ [1, s] is divided into four quadrants: Gi

11,G
i
12,G

i
21, and Gi

22. The cell tuples of the cell
set are analyzed to find all possible nonempty region tuples at level 1. For example, if a cell tuple
〈д,д1, . . . ,дs 〉 is found to have д ∈ Gk and дi ∈ Gi

ki
for i ∈ [1, s] and k,ki ∈ {11, 12, 21, 22}, then

we say that 〈д,д1, . . . ,дs 〉 belongs to region tuple 〈Gk ,G
1
k1
, . . . ,Gs

ks
〉. Different problems will have

different nonempty region tuples depending on their cell dependencies. For the parenthesis prob-
lem, there are four nonempty level-1 region tuples and they are 〈G11,G11,G11〉, 〈G22,G22,G22〉,
〈G12,G11,G12〉, and 〈G12,G12,G22〉.

Sometimes two or more region tuples are combined into a node. The region tuples that write to
and read from the same region depend on each other for the complete update of the write region.

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 4. Publication date: October 2017.
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Fig. 3. First two levels of the algorithm tree for the parenthesis problem before and after applying Rule 1.

The following rule guarantees that such region tuples are processed together to avoid incorrect
results.

Rule 1 (Combine Region Tuples). Two region tuples at the same level of an algorithm tree that

write to the same region X are combined into a single node if they also read from X .

For example, in Figure 3, for the parenthesis problem, at level 1, the two region tuples
〈G12,G11,G12〉 and 〈G12,G12,G22〉 are combined into a single node {〈G12,G11,G12〉, 〈G12,G12,G22〉}.
The other two nodes are {〈G11,G11,G11〉} and {〈G22,G22,G22〉}. The three nodes represent three
mutually disjoint subsets of the cell set and have different region-tuple dependencies. Once we
find all level 1 nodes, we recursively follow the same strategy to find the nodes of levels ≥ 2 par-
titioning the subsets of the cell set further, depending on their region-tuple dependencies.

3.3 Algorithm-Tree Labeling

Two nodes of the algorithm tree are given the same function name provided they have the same
output fingerprints as well as the same input fingerprints as defined next.

Output Fingerprints. The output fingerprints of nodes in an algorithm tree help in identifying
if the region tuples belonging to two different nodes in the tree are decomposed and distributed
among their respective child nodes in the same way. Since a node will correspond to an R-DP func-
tion with its region tuples as inputs and its child nodes will correspond to recursive function calls,
the output fingerprints indicate if two functions make recursive function calls that look similar
based on what inputs they receive.

The output fingerprint of a node is the set of all output fingerprints of its region tuples. The
output fingerprint of a region tuple is defined as the set of all its subregion tuples present
in the child nodes. A subregion tuple of a region tuple 〈W ,R1, . . . ,Rs 〉 is defined as a tuple
〈w, r1, . . . , rs 〉, where w and ri are octant ids (e.g., w, ri ∈ {11, 12, 21, 22} for two-dimensional ma-
trices, and w, ri ∈ {111, 112, 121, 122, 211, 212, 221, 222} for three-dimensional matrices) such that
〈Ww ,Rr1 , . . . ,Rrs

〉 is a region tuple, where i ∈ [1, s]. For example, suppose a node u has only one
region tuple 〈X ,Y ,Z ,Y 〉 and two child nodes u1 and u2 with region tuples 〈X11,Y11,Z22,Y12〉 and
〈X22,Y21,Z11,Y22〉, respectively. Thenu’s output fingerprint will be {〈11, 11, 22, 12〉, 〈22, 21, 11, 22〉}.
Input Fingerprints. The input fingerprints are used to determine if the region tuples associated
with any two given algorithm-tree nodes look structurally similar based on how many times each
(sub)matrix appears in each region tuple and at what locations. Thus, they check the structural
similarity (order and repetitions) between the inputs received by the R-DP functions corresponding
to those two nodes.

The input fingerprint of a node is the set of all input fingerprints of its region tuples. The input
fingerprint of a region tuple 〈X1, . . . ,X1+s 〉 is a tuple 〈p1, . . . ,p1+s 〉, where ∀i ∈ [1, 1 + s], pi is
the smallest index j ∈ [1, i] such that X j = Xi . For example, consider two nodes u1 and u2 with
region tuples 〈X ,Y ,Z ,Z ,Y 〉 and 〈Z ,X ,U ,U ,X 〉, respectively. Both of them will have the same
input fingerprint 〈1, 2, 3, 3, 2〉.
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Fig. 4. (a) A small part of the labeled algorithm tree for the parenthesis problem that only shows three

expanded nodes. (b) Algorithm DAGs for the three functions A,B, and C in the parenthesis problem showing

the order of execution of functions.

In the parenthesis problem, nodes {〈G1221,G1122,G1221〉, 〈G1221,G1221,G2211〉} and
{〈G12,G11,G12〉, 〈G12,G12,G22〉} are given the same function name because they have the
same output and input fingerprints.

Threshold Level. In an algorithm tree, at least one new function is invoked at every level starting
from level 0 till a certain level l , beyond which no new functions are invoked. We label the nodes
of the tree with function names level by level until we reach level l and at that point we stop. We
call l the threshold level and it has a constant upper bound as per Assumption 1.

It is easy to see that once we reach a level l in which no new functions are found, no new func-
tions will be found in higher levels. Since we already encountered each of the functions found in
level l in one of the lower levels (levels 0 to l − 1), the functions it recursively calls were also en-
countered in one of those levels. Now level l + 1 cannot contain any new functions simply because
it will only contain functions recursively called by functions in level l . The same argument also
applies to all levels higher than l + 1.

The labeled algorithm tree for the parenthesis problem is given in Figure 4(a).

3.4 Algorithm-DAG Construction

In this step, we construct a DAG for every function. An algorithm tree does not give information
on (1) the sequence in which a function calls other functions and (2) the parallelism involved in
executing the functions. The DAGs address these two issues using the rules that follow.

We define a few terms before listing the rules. Given a function F, we define W(F) and R(F)
as the write region and the set of read regions of the region tuples in F, respectively. For a region
tupleT = 〈W ,R1, . . . ,Rs 〉, we define W(T ) =W and R(T ) = {R1, . . . ,Rs }. A region tupleT is called
flexible provided W(T ) � R(T ); that is, the region tuple does not write to a region it reads from. A
function is called flexible if all of its region tuples are flexible. If a function F calls two functions
F1 and F2, then the function ordering between F1 and F2 will be one of the following: (1) F1 → F2—
that is, F1 is called before F2; (2) F2 → F1—that is, F2 is called before F1; (2) F1 ↔ F2—that is, either
F1 → F2 or F2 → F1; and (4) F1 | |F2—that is, F1 can be run in parallel with F2.

If a function F calls two functions F1 and F2, then the order in which F1 and F2 are executed is
determined by the following rules.

Rule 2. If W (F1) �W (F2) andW (F1) ∈ R (F2), then F1 → F2.

Rule 3. If W (F1) =W (F2)and F1 is flexible but F2 is not, then F1 → F2.
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Rule 4. If W (F1) =W (F2) and both F1 and F2 are flexible, then F1 ↔ F2.

Rule 5. If F1 and F2 satisfy none of the rules 2, 3, and 4, then F1 | |F2.

Rule 2 states that if F2 reads from a region F1 writes to, then F1 must execute before F2. This
rule ensures that these two functions do not violate the one-way sweep property (Property 1 in
Section 4), which says that unless a DP table cell is fully updated (i.e., will not be modified later),
it cannot be used to update another cell. We will formally define this property in Section 4 when
we prove the correctness of the Autogen algorithm.

Rule 3, too, is needed to prevent the violation of the one-way sweep property. It says that if F2

reads from and writes to a region that is also written to but not read from by F1, then F1 must
execute before F2.

Rule 4 says that if F1 and F2 writes to the same region but neither of them reads from that
region, then it does not matter in which order those two functions execute. The associativity and
commutativity properties of the update operator ⊕ ensure that both F1 → F2 and F2 → F1 produce
the same result. We do not execute these two functions in parallel in order to avoid race conditions.

Rule 5 implies that if F1 and F2 write to different regions and neither of them reads from a region
that the other one or itself is writing to, then those two functions can safely execute in parallel.

Based on these rules, we construct a DAG-like structure (possibly with some cycles) for every
function. We then modify each such structure by deleting redundant edges from it as per the
following rules and we end up with a DAG.

The following rule removes cycles created by Rule 4 by explicitly fixing an order of execution
between F1 and F2, that is, by choosing either F1 → F2 or F2 → F1.

Rule 6. In the algorithm tree, if a function F calls two functions F1 and F2, then in the DAG of F,

we create nodes d1 and d2 corresponding to F1 and F2 (if they are not already present), respectively.

If F1 → F2, then we add a directed edge from d1 to d2. On the other hand, if F1 ↔ F2, then we add a

directed edge either from d1 to d2 or from d2 to d1, but not both.

The following rule removes redundant shortcut edges.

Rule 7. Let d1,d2, and d3 be three nodes in a DAG. If there are directed edges from d1 to d2, from

d2 to d3, and from d1 to d3, then mark the directed edge from d1 to d3 provided neither of the two other

edges (i.e., from d1 to d2 and from d2 to d3) are already marked. Mark all such edges in the DAG until

no more edges can be marked. Finally, delete all marked edges from the DAG.

The set of all modified DAGs for all functions represents an R-DP for the given I-DP. The algo-
rithm DAGs for the parenthesis problem is given in Figure 4(b).

Threshold Problem Size and Reruns

Suppose the R-DP algorithm for the problem includes at least m distinct functions. From Sec-
tion 3.3, the threshold level has an upper bound of m. In order to make sure that the cell set used
by Autogen captures the dependency patterns of the DP accurately, we should use a DP table with
each dimension of size at least n = 2m+k to generate the cell set, where k is a problem-specific nat-
ural number.

Empirically, we have found that the number of functions required to represent an R-DP algo-
rithm for most problems is at most four. Considering m = 4 and k = 2, we get n = 64. If we are
unable to generate all the functions, we increase the value of k and build the algorithm tree again.
We continue this process until we generate functions that call no new functions. Such a threshold
value of n is called the threshold problem size for the given DP problem.
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Space/Time Complexity of Autogen

We analyze the space and time complexities of Autogen using parameters d, s, and l , where d is
the number of dimensions, 1 + s is the cell-tuple size, and l is the threshold level.

Let the size of the small DP table Autogen uses to generate the cell set be nd . Let Δ be an upper
bound on the maximum number of cells a cell depends on. Then Autogen generates O (nd Δ) cell
tuples. Hence, the total space complexity of Autogen is O (nd Δds ). To construct an algorithm tree,
the cell-tuples are scanned O (l ) times. Other parts of the algorithm take asymptotically less time
than the time taken for algorithm-tree construction. So, the total time complexity of Autogen is
O (nd Δdsl ).

4 CORRECTNESS & CACHE COMPLEXITY

In this section, we give a proof of correctness for Autogen and analyze the cache complexity of
the autodiscovered R-DPs.

4.1 Correctness of Autogen

We prove that if an I-DP satisfies the following two properties, then Autogen can be applied on
the I-DP to get a correct R-DP under Assumption 1.

Property 1 (One-Way Sweep). An I-DP for a DP table G is said to satisfy the one-way sweep

property if the following holds: ∀ cells x ,y ∈ G, if x depends on y, then y is fully updated before x
reads from y.

Property 1 says that at most one state (i.e., the final state) of a DP table cell can be used to update
other cells. Indeed, if a computation (e.g., most DP problems) can be described by a recurrence, then
it already satisfies this property (see Section 6.1 for a DP problem that violates Property 1).

Property 2 (Fractal Property). An I-DP satisfies the fractal property if the following holds.

Let Sn and S2n be the cell sets of the I-DP for DP tables [0..n − 1]d and [0..2n − 1]d , respectively,

where n ≥ 2k (k is the problem-specific natural number). Let S ′n be the cell set generated from S2n

by replacing every coordinate value j with �j/2� and then retaining only the distinct tuples. Then,

Sn = S ′n .

Property 2 basically says that the pattern of updates performed by an I-DP is independent of the
problem size. This property ensures that the R-DP generated by Autogen for a given DP will not
depend on the size of the DP table used to generate the cell set in Section 3.1. Of course, the table
must not be too small as otherwise the cell set may not be able to capture the dependence patterns
accurately (see the paragraphs on “Threshold problem size and reruns” at the end of Section 3.4).

We are now in a position to define the class of DP problems targeted by Autogen.

Definition 4.1 (Fractal - DP Class). An I-DP is said to be in the Fractal-DP class if the following
conditions hold: (1) it satisfies the one-way sweep property (Property 1), (2) it satisfies the fractal
property (Property 2), and (3) the cell-tuple size (1 + s ) has a constant upper bound.

We prove next that if the input DP belongs to the Fractal-DP class, then Autogen generates
a correct R-DP for that DP.

Theorem 4.2 (Correctness). Given an I-DP from the Fractal-DPclass as input, Autogen gen-

erates an R-DP that is functionally equivalent to the given I-DP.

Proof. Let the I-DP and R-DP algorithms for a problem P be denoted by I and R, respectively.
We use mathematical induction to prove the correctness of Autogen in d dimensions, assuming
d to be a constant. We first prove the correctness for the threshold problem size (see Section 3.3)
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Table 2. T1 and T2 Are Two Cell-Tuples In both subtables, columns 2 to 5 represent the

rour conditions for the two cell tuples. Columns I and R show the ordering of the cell

tuples for I and R algorithms, respectively. The order of cell updates in R is consistent

with that in Table 1

(i.e., n = 2q for some q ∈ N) and then show that if the algorithm is correct for n = 2r , for any r ≥ q,
then it is also correct for n = 2r+1.

Basis. To prove that Autogen is correct for n = 2q , we have to show the following: (1) number of
nodes in the algorithm tree is O (1), (2) both I and R apply the same set of cell updates, and (3) R
never violates the one-way sweep property (Property 1).

(1) The size of the algorithm tree is O (1): A node is a set of one or more region tuples (see Rule 1).
Two nodes with the same input and output fingerprints are given the same function names. The
maximum number of possible functions is upper bounded by the product of the maximum number
of possible nodes at a level (≤ 2d ((2d − 1)s + 1)) and the maximum number of children a node can

have (≤ 22d ((2d−1)s+1) ). The height of the tree is O (1) from Assumption 1 and the threshold-level
definition. The maximum branching factor (or the maximum number of children per node) of the
tree is also upper bounded by a constant. Hence, the size of the algorithm tree is O (1).

(2) Both I and R perform the same set of cell updates: There is no cell tuple of I that is not con-
sidered by R. In Section 3.2, we split the entire cell set into subsets of cell tuples, subsubsets of cell
tuples, and so on to represent the different region tuples. As per the rules of construction of the
algorithm tree, all cell tuples of I are considered by R.

There is no cell tuple of R that is not considered by I. Let there be a cell tuple T in R that is not
present in I. As the cell tuples in R are obtained by splitting the cell set into subsets of cell tuples,
subsubsets of cell tuples, and so on, the original cell set should includeT . This means that I should
have generated the cell tupleT , which contradicts our initial assumption. Hence, by contradiction,
all the cell tuples of R are considered by I.

(c ) R never violates the one-way sweep property (Property 1): We prove that for any two cell tuples
T1 and T2, the order of execution of T1 and T2 in R is exactly the same as that in I if changing the
order may lead to violation of the one-way sweep property. The relationship between the tuplesT1

and T2 can be defined exhaustively as shown in Table 2 with the four conditions:W (T1) ∈ (or �)
R (T1),W (T2) ∈ (or �) R (T2),W (T1) ∈ (or �) R (T2), andW (T1) = (or �)W (T2). A few cases do not
hold as the cell tuples cannot simultaneously satisfy paradoxical conditions (e.g., cases 3, 5, 11,
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and 13 in Table 2). The relation between T1 and T2 can be one of the following five: (1) T1 = T2,
(2) T1 → T2 (i.e., T1 is executed before T2), (3) T2 → T1 (i.e., T2 is executed before T1), (4) T1 | |T2

(i.e.,T1 andT2 can be executed in parallel), and (5) T1 ↔ T2 (i.e., eitherT1 → T2 orT2 → T1, both of
which will produce the same results because of the associativity and commutativity properties of
the update operator ⊕).

Columns I and R represent the ordering of the two cell tuples in I and R algorithms, respectively.
Column I is filled based on the one-way sweep property (Property 1) and column R is filled based
on the four rules 2, 3, 4, and 5. It is easy to see that for every case in which changing the order
of execution of T1 and T2 may lead to the violation of the one-way sweep property, both R and I
apply the updates in exactly the same order. Hence, R satisfies the one-way sweep property.

Induction. We show that if Autogen is correct for a problem size of n = 2r for some r ≥ q ∈ N,
it is also correct for n = 2r+1.

From the previous arguments we obtained a correct algorithm R for r = q. Algorithm R is a
set of DAGs for different functions. Let Gn and G2n represent two DP tables of size nd and (2n)d ,
respectively, such that n ≥ 2q . According to Property 2, the dependencies among the regions Gn

11,

Gn
12,G

n
21,G

n
22 must be exactly the same as the dependencies among the regionsG2n

11 ,G
2n
12 ,G

2n
21 ,G

2n
22 .

If they were different, then that would violate Property 2. Hence, the region tuples for the two DP
tables are the same. Arguing similarly, the region tuples remain the same for the DP tables all the
way down to the threshold level. In other words, the algorithm trees for the two problem instances
are exactly the same. Having the same algorithm trees with the same dependencies implies that
the DAGs for DP tables Gn and G2n are the same. Therefore, if Autogen is correct for n = 2r for
some r ≥ q ∈ N, it is also correct for n = 2r+1.

4.2 Cache Complexity of an R-DP

A recursive function is closed provided it does not call any other recursive function but itself,
and it is semiclosed provided it only calls itself and other closed functions. A closed (semiclosed,
respectively) function H is dominating provided no other closed (semiclosed, respectively) function
of the given R-DP makes more self-recursive calls than made by H and every nonclosed (non-
semiclosed, respectively) function makes strictly fewer such calls.

Theorem 4.3 (Cache Complexity). If an R-DP includes a dominating closed or semiclosed func-

tion Fk that calls itself recursively akk times, then the serial cache complexity of the R-DP for a DP ta-

ble of size nd isQ1 (n,d,B,M ) = O (T1 (n)/(BM (lk /d )−1) + S (n,d )/B + 1) under the ideal-cache model,

where lk = log2 akk , T1 (n) = total work = O (nlk ), M = cache size, B = block size, M = Ω(Bd ), and

S (n,d ) = space complexity = O (nd ).

Proof. Suppose the R-DP algorithm consists of a set F of m recursive functions F1, F2, . . . , Fm .
For 1 ≤ i, j ≤ m, let ai j be the number of times Fi calls Fj . Then, for a suitable constant γi > 0, the

cache complexity QFi
of Fi on an input of size nd can be computed recursively as follows:

QFi
(n) =

{
O (nd−1 + nd/B) if nd ≤ γi M,∑m

j=1 ai jQFj
(n/2) + O (1) otherwise.

If Fk is a closed function, then QFk
(n) = akkQFk

(n/2) + O (1) for nd > γkM . Solving the recur-

rence, we get the overall (for all values of nd ) cache complexity as QFk
(n) = O (nlk /(BM (lk /d )−1)+

nd/B + 1), where lk = log2 akk .

If Fk is a dominating semiclosed function, then QFk
(n) = akkQFk

(n/2) + o (nlk /(BM (lk /d )−1))

for nd > γkM . For all sizes of the DP table, this recurrence also solves to

O (nlk /(BM (lk /d )−1) + nd/B + 1).
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If Fk is a dominating closed (semiclosed, respectively) function, then (i ) akk ≥ aii for ev-
ery closed (semiclosed, respectively) function Fi , and (ii ) akk > aj j for every nonclosed (non-
semiclosed, respectively) function Fj . The algorithm tree must contain at least one path P =
〈Fr1 , Fr2 , . . . , Fr |P | 〉 from its root (= Fr1 ) to a node corresponding to Fk (= Fr |P | ). Since |P | is a small
number independent of n, and by definition ari ri

< ar |P |r |P | holds for every i ∈ [1, |P | − 1], one can
show that the cache complexity of every function on P must be O (QFk

(n)). This result is obtained
by moving upward in the tree starting from Fr |P |−1

, writing down the cache complexity recurrence
for each function on this path, substituting the cache complexity results determined for functions
that we have already encountered, and solving the resulting simplified recurrence. Hence, the
cache complexity QFr1

(n) of the R-DP algorithm is O (QFk
(n)). This completes the proof.

It is important to note that the serial cache complexity and the total work of an R-DP algorithm
are related. Let Fk be a dominating closed function that calls itself akk number of times and let
P = 〈Fr1 , Fr2 , . . . , Fr |P | 〉 be a path in the algorithm tree from its root (= Fr1 ) to a node corresponding
to Fk (= Fr |P | ). Let q out of these |P | functions call themselves akk times and q is maximized over
all possible paths in the algorithm tree. The work can be found by counting the total number of
leaf nodes in the algorithm tree. Using the master theorem repeatedly, we can show that T1 (n) =
O (nlog akk logq−1 n).

5 THE DEDUCTIVE AUTOGEN ALGORITHM

In Section 3, we developed the Autogen algorithm using an inductive approach. The major limi-
tation of the inductive Autogen algorithm is that if the number of recursive functions in an R-DP
is very high, say, 100, the length n of each dimension of the DP table used for generating the cell
set can be larger than 2100. Thus, both the space and time complexities of the algorithm can be
prohibitively high and hence impractical.

In this section, we present a deductive method to construct the Autogen algorithm. It addresses
the limitation of the inductive Autogen. We call this algorithm the deductive Autogen algorithm
[25]. Deductive Autogen differs from inductive Autogen in the first two steps only.

Algorithm. The four main steps of deductive Autogen are:

(1) [Generic iterative kernel construction.] A very general iterative kernel is constructed from
the given iterative algorithm. See Section 5.1.

(2) [Algorithm-tree construction.] An algorithm tree is constructed from the generic iterative
kernel. See Section 5.2.

(3) [Algorithm-tree labeling.] Same as Section 3.3.
(4) [Algorithm-DAG construction.] Same as Section 3.4.

5.1 Generic Iterative Kernel Construction

In this step, we construct a generic iterative kernel from the given iterative algorithm. The generic
kernel can replace the iterative kernel of each recursive function in the standard two-way R-DP
corresponding to the iterative algorithm. We explain how to construct such a kernel through an
example later.

We will construct a generic kernel for our parenthesis R-DP from the iterative algorithm Loop-
Parenthesis given in Figure 1. The generic kernel will accept three (n′ + 1) × (n′ + 1) subtables of
the original (n + 1) × (n + 1) DP tableG[0 : n, 0 : n] as inputs, namely, X [0 : n′, 0 : n′],U [0 : n′, 0 :
n′], and V [0 : n′, 0 : n′], where 0 ≤ n′ ≤ n. These are the same subtables that an R-DP function
receives when it invokes this generic kernel. Since Autogen assumes that n + 1 is a power of
2 and in each level of recursion it divides each dimension of the input table into equal halves,
we can safely assume that n′ + 1 is also a power of 2. The kernel will update each G[i, j] ∈ X
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Fig. 5. The generic iterative kernel for the parenthesis problem derived from Loop-Parenthesis of Figure 1.

using G[i,k] ∈ U and G[k, j] ∈ V following Recurrence 1 for i, j,k ∈ [0,n]. When n′ = n, that is,
X ≡ U ≡ V ≡ G, the generic kernel will apply exactly the same set of updates on G as applied by
Loop-Parenthesis and in exactly the same order.

We assume that each pair of subtables from X , U , and V are either completely overlapping or
completely disjoint, which follows from the way Autogen recursively dividesG into subtables and
passes the subtables to R-DP functions through recursive calls. Let (xr ,xc ) be the index of the top-
left corner cell of X in G; that is, cell X [i, j] corresponds to cell G[xr + i,xc + j]. Similarly, (ur ,uc )
for U and (vr ,vc ) for V . When n′ = 0, that is, X ≡ G[xr ,xc ], U ≡ G[ur ,uc ], and V ≡ G[vr ,vc ],
Recurrence 1 and thus Loop-Parenthesis in Figure 1 imply that X will be updated provided

(1) xr = ur (= i ), (2) xc = vc (= j ), (3) uc = vr (= k ),

(4) j ≥ i + 2, (5) i ≤ k, and (6) k ≤ j .

Observe that conditions (1) to (3) trivially hold when we make the initial R-DP function call
with X ≡ U ≡ V ≡ G. The way G is recursively decomposed and passed to recursive functions
ensures that those conditions continue to hold for each function call that updates X at least once.

Conditions (4) to (6) are enforced by the loop bounds in Loop-Parenthesis. But in the generic
kernel those conditions will be moved inside the innermost loop, leaving each loop to span the
entire range from 0 to n′ without changing the direction of any loop. Those conditions will be
checked right before applying each update on X to make sure that the generic kernel does not
apply an update not allowed by Recurrence 1.

The resulting generic looping kernel that we call Generic-Loop-Parenthesis is shown in
Figure 5.

The Θ(nh ) work required for a DP problem can be mapped to a Θ(nh ) hypercubic grid. Then,
the conditions satisfied by the indices (e.g., in Line 8 of Generic-Loop-Parenthesis in Figure 5)
can be viewed as choosing half-spaces in that hypercubic grid. The grid points that satisfy all the
conditions form a polyhedron in theh-dimensional integer space. Updates will be applied on points
in that polyhedron.

5.2 Algorithm-Tree Construction

The major difference between the algorithm-tree construction phases of inductive and deductive
Autogen lies in the way region-tuple dependencies are found. While the inductive version explic-
itly generates the cell set and recursively distributes its contents among region tuples in order to
determine which region-tuple dependencies exist (see Section 3.2), the deductive version identi-
fies such dependencies without ever explicitly generating and storing the entire cell set. Instead,
deductive Autogen determines whether a given region-tuple dependency exists or not either by
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Table 3. Dependencies of Quadrants in the Parenthesis Problem

solving an integer programming feasibility testing problem or by explicitly checking each cell tuple
belonging to the given region tuple to see if the corresponding update is allowed by the underlying
DP recurrence.

Consider the parenthesis problem as an example. Let A(〈G,G,G〉) be the initial R-DP func-
tion call that takes the entire DP table G[0 : n, 0 : n] as input. The R-DP will divide G into four
quadrants: G11,G12,G21, and G22. As shown in Table 3, the total number of possible region-tuple
dependencies at this level is 4 × 4 × 4 = 64, though only four of them exist. The region-tuple depen-
dencies that exist are then recursively broken down into subregion-tuple dependencies as needed.
Continuing in this way, we can create the entire algorithm tree.

We will now focus on computing the existence of a region-tuple dependency. LetX [0 : n′, 0 : n′],
U [0 : n′, 0 : n′] andV [0 : n′, 0 : n′] be arbitrary (n′ + 1) × (n′ + 1) subtables of the (n + 1) × (n + 1)
DP table G. For Z ∈ {X ,U ,V }, let (zr , zc ) be the coordinates of the top-left corner cell of Z in G,
where both zr and zc are functions ofn (and so isn′). Now asking whether region-tuple dependency
〈X ,U ,V 〉 exists is the same as asking whether there exist i, j,k,n such thatG[i, j] ∈ X ,G[i,k] ∈ U ,
and G[k, j] ∈ V , that is, if there exists an n such that U and V include cells that can be used to
update X according to Recurrence 1. Formally, we ask if i, j,k,n ≥ 0 exist such that

(1) xr ≤ i ≤ xr + n
′ and ur ≤ i ≤ ur + n

′,

(2) xc ≤ j ≤ xc + n
′ and vc ≤ j ≤ vc + n

′,

(3) uc ≤ k ≤ uc + n
′ and vr ≤ k ≤ vr + n

′,

(4) j ≥ i + 2, (5) i ≤ k, and (6) k ≤ j .

Observe that the previous conditions are similar to the ones used for designing the generic
looping kernel in Section 5.1, but the first three conditions have a more general form because we
now assume that the locations of X , U , and V in G are not necessarily related.
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Fig. 6. Looping code for checking region-tuple dependencies in the parenthesis R-DP.

Clearly, the region-tuple dependency checking problem earlier can be cast as an integer pro-
gramming feasibility testing problem. Since both the number of variables and the number of in-
equalities are bounded from above by constants, the space needed to encode the problem (i.e.,
input length) is Θ(1). Hence, the integer programming problem given earlier can be checked for
feasibility in Θ(1) time (see, e.g., [31, 34]).

Alternatively, we can modify Generic-Loop-Parenthesis from Figure 5 to check for region-
tuple dependencies in a brute-force manner. We check only cell tuples belonging to the given
region tuple until we either find one that is allowed by the underlying DP recurrence (meaning
the region-tuple dependency exists) or exhaust the entire set (meaning the given region-tuple
dependency does not exists). The resulting algorithm, which we call Region-Dependency, is given
in Figure 6. We first choose a small value for n′ large enough to capture all types of dependency
relationships implied by the underlying DP recurrence. We then keep n′ fixed to that value for all
levels of the algorithm-tree construction phase while increasing n as we go deeper into the tree
by setting n = 2tn′ at level t . This approach is the opposite of what inductive Autogen does (see
Section 3), which keeps n fixed but reduces n′ as it goes deeper into the algorithm tree.

Space/Time Complexity of Deductive Autogen

We analyze the space and time complexities of the deductive Autogen using the three parameters
d, s, and l , where d is the number of DP table dimensions, 1 + s is the cell-tuple size, and l is the
threshold level. Let the total number of functions in the output R-DP bem. Thenm ≥ l .

The number of subregion-tuple dependencies for a given region-tuple dependency at any level

is 2d (1+s ) . If we consider a total of l levels, then the number of region-tuple dependencies will

be O (m2d (1+s ) ). The time taken to check the existence of a region-tuple dependency is д(d, s ) for

some function д. Hence, the total time taken to construct the algorithm tree is O (m2d (1+s )д(d, s )).
The time taken to construct the DAGs is asymptotically smaller than the time taken to create the
algorithm tree. Therefore, the total time taken for a deductive Autogen algorithm to generate an

R-DP is O (m2d (1+s )д(d, s )). If we run this algorithm serially, then the space usage is O (m21+s ).

6 EXTENSIONS OF AUTOGEN

In this section, we briefly discuss how to extend Autogen to (1) handle one-way sweep property
(Property 1) violation and (2) sometimes reduce the space usage of the generated R-DP algorithms.

6.1 Handling One-Way Sweep Property (Property 1) violation

The following three-step procedure works for dynamic programs that compute paths over a closed
semiring in a directed graph [54]. Floyd-Warshall’s algorithm for finding all-pairs shortest path
(APSP) [22] belongs to this class and is shown in Figure 7.
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Fig. 7. (a) An autogenerated R-DP algorithm from the cubic space Floyd-Warshall’s APSP algorithm. In

the initial call to A3D
FW

(〈X ,Y ,X ,X 〉), X points to G[1..n, 1..n, 1..n] and Y points to an n3 matrix whose top-

most plane is initialized with G[1..n, 1..n, 0]. (b) An R-DP algorithm obtained by projecting the 3D matrix

G[1..n, 1..n, 0..n] accessed by the algorithm in column (a) to its 2D base G[1..n, 1..n, 0].

(i ) Project I-DP to higher dimension. Violation of the one-way sweep property means that some
cells of the DP table are computed from cells that are not yet fully updated. By allocating space
to retain each intermediate value of every cell, the problem is transformed into a new problem
where the cells depend on fully updated cells only. The technique effectively projects the DP onto
a higher-dimensional space, leading to a correct I-DP that satisfies the one-way sweep property.

(ii ) Autodiscover R-DP from I-DP. Autogen is applied on the higher-dimensional I-DP that satisfies
Property 1 to discover an R-DP in the same higher-dimensional space.

(iii ) Project R-DP back to original dimension. The autogenerated R-DP is projected back to the
original lower-dimensional space. One can show that the projected R-DP correctly implements
the original I-DP [15, 17].

6.2 Space Reduction

Autogen can be extended to analyze and optimize the functions of an autogenerated R-DP for a
possible reduction in space usage. We explain through an example.
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Example. The LCS problem [13, 29] asks one to find the longest of all common subsequences [17]
between two strings. In LCS, a cell depends on its three adjacent cells. Here, we are interested in
finding the length of the LCS and not the LCS itself. Starting from the standard Θ(n2) space I-DP,
we generate an R-DP for the problem that contains four recursive functions. The autogenerated
R-DP still uses Θ(n2) space and incurs O (n2/B) cache misses. One can reason as follows in order
to reduce the space usage of this R-DP and thereby improving its cache performance.

The autogenerated R-DP has two functions of the form F(n) �→ {F(n/2), F(n/2),H(n/2)}, where
H is of the form H(n) �→ {H(n/2)}. Given their dependencies, it is easy to see that in H, the top-
left cell of the bottom-right quadrant depends on the bottom-right cell of the top-left quadrant.
Also, in F, the leftmost (topmost, respectively) boundary cells of one quadrant depend on the
rightmost (bottommost, respectively) quadrant of the adjacent quadrant. When there is only a
dependency on the boundary cells, we can copy the values of the boundary cells, which occu-
pies O (n) space, between different function calls and we no longer require quadratic space. At
each level of the recursion tree, O (n) space is used, and the total space for the parallel R-DP algo-
rithm is O (n logn). This new R-DP algorithm will have a single function and its cache complexity
improves to O (n2/(BM )). Space usage can be reduced further to O (n) by simply reusing space
between parent and child functions. Cache complexity remains O (n2/(BM )).

6.3 Non-Orthogonal Regions

In this section, we generalize the definition of a region to include nonrectangular areas as well.
We restrict ourselves to two-dimensional DP tables. As per the original definition of a region, the
entire DP table was divided orthogonally into four equal quadrants, which are then recursively
subdivided into subquadrants in the same way until each subdivision contained only a single cell.
Each such (sub)quadrant was called a region. This definition of a region may not work correctly
for DP recurrences that fill out nonrectangular areas of a DP table, for example, for the Cocke-
Younger-Kasami (CYK) algorithm for parsing context-free grammars [16, 32, 57]. We extend the
definition of a region to handle such DP problems.

We define a term called compute shape that will be used subsequently.

Definition 6.1 (Compute Cells, Compute Shape). The set of all cells that will be computed in a DP
table for a given DP problem by its DP algorithm is called compute cells. The geometric shape and
area the compute cells represent is called compute shape.

Given a DP problem that does not violate Property 1, the fixed polygonal compute shape S with
q vertices p1,p2, . . . ,pq is found. The shape S is scaled down by a factor of 2 to S ′ having vertices
p ′1,p

′
2, . . . ,p

′
q such that ∀i , p ′i corresponds to pi . The shape S ′ can move as opposed to S , which is

fixed on the DP table. The shape S ′ is moved inside the fixed shape S without rotating such that S ′

is completely contained in S and for some i , pi = p
′
i and that common area is denoted by S ′i . If all

the cells inside S ′i , for some i , depend on the cells inside S ′i alone, then the area S ′i is called a region,
more specifically a self-dependent region. The disjoint areas when all self-dependent regions are
removed from S are also called regions. If we obtain parallelograms for regions, then they can be
divided into four equal parallelograms using lines parallel to the sides of the parallelogram, and
each of those smaller parallelograms will be regions at the next level.

As an example, Figure 8 shows the use of the generalized definition of regions to divide compute
shapes in two DP problems with nonorthogonal regions.

7 EXPERIMENTAL RESULTS

This section presents empirical results showing the performance benefits and robustness of
Autogen-discovered algorithms.
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Fig. 8. Nonorthogonal regions for the first three levels depicted for (a) Cocke-Younger-Kasami (CYK) algo-

rithm [16, 32, 57] and (b) spoken word recognition [43].

7.1 Experimental Setup

All our experiments were performed on a multicore machine with dual-socket eight-core 2.7GHz5

Intel Sandy Bridge processors (2 × 8 = 16 cores in total) and 32GB RAM. Each core was connected
to a 32KB private L1 cache and a 256KB private L2 cache. All cores in a processor shared a 20MB L3
cache. All algorithms were implemented in C++. We used the Intel Cilk Plus extension to parallelize
and Intel C++ Compiler v13.0 to compile all implementations with optimization parameters -O3
-ipo -parallel -AVX -xhost. PAPI 5.3 [1] was used to count cache misses, and the MSR (Model-
Specific Register) module and likwid [53] were used for energy measurements. We used likwid
for the adaptivity (Figure 13) experiments. All likwidmeasurements were end to end (i.e., captured
everything from the start to the end of the program).

Given an iterative description of a DP in the Fractal-DP class, our Autogen prototype gen-
erates pseudocode of the corresponding R-DP algorithm in the format shown in Figure 1. We im-
plemented such autodiscovered R-DP algorithms for the parenthesis problem, gap problem, and
Floyd-Warshall’s APSP (2-D). In order to avoid overhead of recursion and increase vectorization
efficiency, the R-DP implementation switched to an iterative kernel when the problem size be-
came sufficiently small (e.g., 64 × 64). All our R-DP implementations were the straightforward
implementation of the pseudocode with only trivial hand-optimizations. With nontrivial hand-
optimizations, R-DP algorithms can achieve even more speedup (see [51]). Trivial optimizations
included:

(i) copy-optimization—copying transpose of a column-major input matrix inside a basecase
to a local array, so that it can be accessed in unit stride during actual computation;

(ii) write optimization in the basecase—if each iteration of an innermost loop updated the
same location of the DP table, we performed all those updates in a local variable instead
of modifying the DP table cell over and over again, and updated that cell only once using
the updated local variable after the loop terminated;

(iii) using registers for variables that are accessed many times inside the loops; and
(iv) using #pragma directives to autovectorize/autoparallelize code.

Nontrivial optimizations that we did not apply included:

(i) using Z-morton row-major layout (see [51]) to store the matrices,
(ii) using pointer arithmetic and converting all multiplicative indexing to additive indexing,

and
(iii) using explicit vectorization.

5All energy, adaptivity, and robustness experiments were performed on a Sandy Bridge machine with a processor speed

2.00GHz.
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The major optimizations applied on I-DP codes included the following: parallelization, use of
pragmas (e.g., #pragma ivdep and #pragma parallel), use of 64 byte-aligned matrices, write
optimizations, pointer arithmetic, and additive indexing.

We used Pluto (version 0.11.3) [7]—a state-of-the-art polyhedral compiler—to generate parallel
tiled iterative codes for the parenthesis problem, gap problem, and Floyd-Warshall’s APSP (2D).
Optimized versions of these codes are henceforth called tiled I-DP. After analyzing the autogen-
erated codes, we found that the parenthesis implementation had temporal locality as it was tiled
along all three dimensions, but FW-APSP and gap codes did not as the dependence-based stan-
dard tiling conditions employed by Pluto allowed tiling of only two of the three dimensions for
those problems. While both parenthesis and FW-APSP codes had spatial locality, the gap imple-
mentation did not as it was accessing data in both row- and column-major orders. Overall, for any
given cache level, the theoretical cache complexity of the tiled parenthesis code matched that of
parenthesis R-DP assuming that the tile size was optimized for that cache level. But tiled FW-APSP
and tiled gap had nonoptimal cache complexities. Indeed, the cache complexity of tiled FW-APSP
turned out to be Θ(n3/B), matching the cache complexity of its I-DP counterpart. Similarly, the
Θ(n3) cache complexity of tiled gap matched that of I-DP gap.

The major optimizations we applied on the parallel tiled codes generated by Pluto included:

(i) use of #pragma ivdep, #pragma parallel, and #pragma min loop count(B) directives;
(ii) write optimizations (as was used for basecases of R-DP);

(iii) use of empirically determined best tile sizes; and
(iv) rigorous optimizations using pointer arithmetic, additive indexing, and so forth.

The type of trivial copy optimization we used in R-DP did not improve spatial locality of the
autogenerated tiled I-DP for the gap problem as the code did not have any temporal locality. The
code generated for FW-APSP had only one parallel loop, whereas two loops could be parallelized
trivially. In all our experiments, we used two parallel loops for FW-APSP. The direction of the
outermost loop of the autogenerated tiled code for the parenthesis problem had to be reversed in
order to avoid violation of dependency constraints.

All algorithms we tested were in-place; that is, they used only a constant number of extra mem-
ory/register locations in addition to the given DP table. The copy optimization required the use
of a small local submatrix per thread, but its size was also independent of the input DP table size.
None of our optimizations reduced space usage. The write optimization avoided directly writing
to the same DP table location in the memory over and over again by collecting all those updates
in a local register and then writing the final value of the register to the DP cell.

In the following part of the section, we first show performance of R-DP, I-DP, and tiled I-DP im-
plementations for all three problems when each of the programs was run on a dedicated machine.
We show that R-DP outperformed I-DP in terms of runtime, scalability, cache misses, and energy
consumption. Next, we show how the performance of R-DP, I-DP, and tiled I-DP implementations
changed in a multiprogramming environment when multiple processes shared cache space and
bandwidth.

7.2 Single-Process Performance

Figures 9 to 11 show detailed performance results of I-DP, tiled I-DP, and R-DP implementations
of the parenthesis problem (Figure 9), the gap problem (Figure 10), and Floyd-Warshall’s APSP
(Figure 11). For each of the three problems, our R-DP implementation outperformed its I-DP coun-
terpart, and forn = 8, 192, the speedup factors with respect to parallel I-DP on 16 cores were around
18, 17, and 6 for parenthesis, gap, and Floyd-Warshall’s APSP, respectively. For parenthesis and gap
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Fig. 9. Performance comparison of I-DP, R-DP, and tiled I-DP for the parenthesis problem: (a) Giga updates

per second achieved by all algorithms, (b) L2 cache misses for each program, (c) strong scalability with #cores,

p when n is fixed at 8, 192 (in this plot T l
1 denotes the running time of I-DP when p = 1), and (d) ratios of

total joule energy consumed by Package (PKG) and DRAM. Here, tiled I-DP is an optimized version of the

parallel tiled code generated by Pluto [7].

problems, I-DP consumed 5.5 times more package energy and 7.4 times more DRAM energy than
R-DP when n = 8, 192. For Floyd-Warshall’s APSP, those two factors were 7.4 and 18, respectively.

For the parenthesis problem, tiled I-DP (i.e., our optimized version of Pluto-generated parallel
tiled code) and R-DP had almost identical performance for n > 6, 000. For n ≤ 6, 000, R-DP was
slower than tiled I-DP, but for larger n, R-DP was marginally (1–2%) faster on average. Though
tiled I-DP and R-DP had almost similar L2 cache performance, Figure 12 shows that R-DP incurred
noticeably fewer L1 and L2 cache misses than those incurred by tiled I-DP, which helped R-DP to
eventually fully overcome the overhead of recursion and other implementation overheads. This
happened because the tile size of tiled I-DP was optimized for the L2 cache, but R-DP, being cache
oblivious, was able to adapt to all levels of the cache hierarchy simultaneously [23].

As explained in Section 7.1 for the gap problem, tiled I-DP had suboptimal cache complexity,
matching that of I-DP. As a result, tiled I-DP’s performance curves were closer to those of I-DP
than R-DP, and R-DP outperformed it by a wide margin. This was similar for Floyd-Warshall’s
APSP. However, in case of a gap problem, tiled I-DP incurred significantly fewer L3 misses than
I-DP (not shown in the plots), and as a result, it consumed less DRAM energy. The opposite was
true for Floyd-Warshall’s APSP.
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Fig. 10. Performance comparison of I-DP, R-DP, and tiled I-DP for the gap problem: (a) Giga updates per

second achieved by all algorithms, (b) L2 cache misses for each program, (c) strong scalability with #cores,

p when n is fixed at 8, 192 (in this plot T l
1 denotes the running time of I-DP when p = 1), and (d) ratios of

total joule energy consumed by Package (PKG) and DRAM. Here, tiled I-DP is an optimized version of the

parallel tiled code generated by Pluto [7].

7.3 Multiprocess Performance

R-DP algorithms are more robust than both I-DP and tiled I-DP. Our empirical results show that
in a multiprogramming environment, R-DP algorithms were less likely to significantly slow down
when the available shared cache/memory space was reduced (unlike tiled code with temporal
locality), and less likely to suffer when the available bandwidth was reduced (unlike standard
I-DP code and tiled I-DP without temporal locality). Figures 13 and 14 show the results for the
parenthesis problem. We saw similar trends for our other benchmark problems (e.g., FW-APSP).

We performed experimental analyses of how the performance of a program (R-DP, I-DP, and
tiled I-DP) changed if multiple copies of the same program were run on the same multicore pro-
cessor (Figure 13). We ran up to four instances of the same program on an eight-core Sandy Bridge
processor with two threads (i.e., cores) per process. The block size of the tiled code was optimized
for best performance with two threads. With four concurrent processes, I-DP slowed down by 55%
and tiled I-DP by 130%, but R-DP lost only 17% of its performance (see Figure 13). The slowdown
of the tiled code resulted from its inability to adapt to the loss of the shared cache space, which
increased its L3 misses by a factor of 4.6 (see Figure 13). On the other hand, L3 misses incurred
by R-DP increased by less than a factor of 1.6. Since I-DP did not have any temporal locality, loss
of ache space did not significantly change the number of L3 misses it incurred. But I-DP already
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Fig. 11. Performance comparison of I-DP, R-DP, and tiled I-DP for the Floyd-Warshall’s APSP: (a) Giga

updates per second achieved by all algorithms, (b) L2 cache misses for each program, (c) strong scalability

with #cores, p when n is fixed at 8, 192 (in this plotT l
1 denotes the running time of I-DP when p = 1), and (d)

ratios of total joule energy consumed by Package (PKG) and DRAM. Here, tiled I-DP is an optimized version

of the parallel tiled code generated by Pluto [7].

Fig. 12. The plots show the L1 and L3 cache misses incurred by the three algorithms for solving the paren-

thesis problem. L2 cache misses are shown in Figure 9(b).
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Fig. 13. The plots show how the performances of standard looping, tiled looping, and recursive codes for

the parenthesis problem (for n = 213) are affected as multiple instances of the same program are run on an

eight-core Intel Sandy Bridge with 20MB shared L3 cache.

incurred 3700 times more L3 misses than R-DP, and with four such concurrent processes the pres-
sure on the DRAM bandwidth increased considerably (see Figure 13), causing significant slowdown
of the program.

We also report changes in energy consumption of the processes as the number of concurrent
processes increases (Figure 13). Energy values were measured using likwid-perfctr (included
in likwid), which reads them from the MSR registers. The energy measurements were end to end
(start to end of the program). Three types of energy were measured: package energy, which is
the energy consumed by the entire processor die; PP0 energy, which is the energy consumed
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Fig. 14. The plots show how changes in the available shared L3 cache space affect (a) the number of L3

cache misses and (b) the serial running time of the tiled looping code and the recursive code solving the

parenthesis problem for n = 213. The code under test was run on a single core of an eight-core Intel Sandy

Bridge processor with 20MB shared L3 cache. A multithreaded Cache Pirate [21] was run on the remaining

cores.

by all cores and private caches; and finally DRAM energy, which is the energy consumed by the
directly attached DRAM. We omitted the PP0 energy since the curves almost always looked similar
to that of package energy. A single instance of tiled I-DP consumed 5% less energy than an R-DP
instance, while I-DP consumed 9 times more energy. Average package and PP0 energy consumed
by tiled I-DP increased at a faster rate than that by R-DP as the number of processes increased. This
happened because both its running time and L3 performance degraded faster than R-DP, both of
which contributed to energy performance. However, since for I-DP L3 misses did not change much
with the increase in the number of processes, its package and PP0 energy consumption increased
at a slower rate compared to R-DP’s with fewer than three processes. However, as the number of
processes increased, energy consumption increased for I-DP at a faster rate, and perhaps because
of the DRAM bandwidth contention its DRAM energy consumption increased significantly.

We measured the effect of reducing the available shared L3 cache space on running times and
L3 cache misses of serial R-DP and serial tiled I-DP6 (shown in Figure 14). In this case, the serial
tiled-I-DP algorithm was running around 50% faster than the serial R-DP code. The Cache Pirate
tool [21] was used to steal cache space.7 When the available cache space was reduced to 50%, the
number of L3 misses incurred by the tiled code increased by a factor of 22, but for R-DP the increase
was only 17%. As a result, the tiled I-DP slowed down by over 50%, while for R-DP the slowdown
was less than 3%. Thus, R-DP automatically adapted to cache sharing [6], but the tiled I-DP did
not. This result can be found in the second column of Figure 13.

7.4 Inductive Vs. Deductive Autogen

In this section, we compare the performance of inductive (Section 3) and deductive (Section 5)
versions of Autogen. For constructing algorithm trees in deductive Autogen, we used the ap-
proach based on the generic iterative kernel (i.e., Region-Dependency in Section 5.2). Table 4
compares the time taken by the programs to generate R-DP algorithms for the parenthesis problem,
Floyd-Warshall’s APSP (3D version), and the gap problem. Both programs were run on a multicore

6With tile size optimized for best serial performance.
7Cache Pirate allows only a single program to run, and does not reduce bandwidth.
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Table 4. Comparison of the Time Needed by the Inductive and the Deductive Versions of Autogen to

Generate R-DP Algorithms for Three Dynamic Programming Problems (Both Programs Were Run on a

Multicore Machine with Dual-Socket 8-Core 2.7GHz Intel Sandy Bridge Processors (2 × 8 = 16 Cores in

Total) and 32GB RAM)

machine with 16 cores (dual-socket Intel Sandy Bridge) and 32GB RAM. Though the running times
were low for both programs, the deductive version clearly outperformed the inductive version.

We also ran both programs on Sankoff’s Θ(n6) time and Θ(n4) space DP for combined align-
ment and folding of RNA secondary structures (particularly, Recurrence 15 in [44]), where n is the
length of the RNA sequences. While deductive Autogen was able to generate a correct R-DP in
0.63s, inductive Autogen ran out of space in the 32GB RAM before it could identify all recursive
functions.

8 CONCLUSIONS

We have presented the Autogen algorithm that can generate provably correct and highly efficient
parallel recursive algorithms for a wide class of DP problems called the Fractal-DP. The input to
Autogen is a black-box implementation of any correct algorithm (e.g., an inefficient serial iterative
algorithm) for solving the given DP problem. Autogen uses the input black-box implementation
to discover the access pattern of the given DP problem and learn a decomposition that can be used
to generate a recursive divide-and-conquer algorithm for solving it. The process is fully automatic.

Autogen has been designed for DP problems that are data oblivious; that is, DP table accesses
are independent of the data values in the table itself. However, there are important DP problems
such as knapsack, Viterbi, and subset sum that do not fall into that category. We are now actively
working on extending Autogen to handle such data-dependent DP problems as well as classes of
data-oblivious DP problems beyond Fractal-DP.
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