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Abstract

Summarization research is notorious for its lack of adequate
corpora: today, there exist only a few small collections of
texts whose units have been manually annotated for textual
importance. Given the cost and tediousness of the annota-
tion process, it is very unlikely that we will ever manually
annotate for textual importance sufficiently large corpora of
texts. To circumvent this problem, we have developed an
algorithm that constructs such corpora automatically.

Our algorithm takes as input anhAbstract, Texti tuple and
generates the correspondingExtract, i.e., the set of clauses
(sentences) in theText that were used to write theAbstract.
The performance of the algorithm is shown to be close to that
of humans by means of an empirical experiment. The exper-
iment also suggests extraction strategies that could improve
the performance of automatic summarization systems.

1 Introduction

1.1 Motivation

All research on the automatic generation of generic abstracts
assumes that the first task a summarization system needs to
perform is that ofextracting the most important units in a
text. These units can be phrasal expressions[Boguraev and
Kennedy, 1997], clauses[Marcu, 1999], sentences[Kupiec
et al., 1995, Teufel and Moens, 1997, Mani and Bloedorn,
1998, Hovy and Lin, 1999], or paragraphs[Saltonet al.,
1994, Mitraet al., 1997, Stralkowskiet al., 1998].

In order to train and/or evaluate the performance of an ex-
traction engine, one cannot rely on existinghAbstract, Texti
tuples. Although abstracts reflect in a condensed form the
semantics of the texts for which they were written, most of-
ten there is no clear mapping between abstracts and the col-

lection of important units in texts that were used to write
them. For example, Teufel and Moens[1997] have found
that only 31.7% of the sentences in the abstracts of the 202
articles in their corpus of computational linguistic papers
could be perfectly aligned with sentences in the correspond-
ing texts. For a corpus of 188 scientific/technical papers,
Kupiec et.al.[1995] have found that only 79% of the sen-
tences in the abstracts could be perfectly matched with sen-
tences in the corresponding texts. And in our own work (see
section 3), we have found that human judges considered that
only 15% of theclausesin 10 abstracts taken from the Ziff-
Davis corpus, a collection of newspaper articles announcing
computer products, matched perfectly clauses in the corre-
sponding texts.

To manage this linguisticgap between abstracts and texts,
researchers in summarization usually employ the following
methodology: A panel of judges first labels the units in a
collection of texts as important or unimportant. The set of
units that are considered important by a majority of judges
are taken to be “gold standard”. Learning-based extraction
engines then use these “gold standards” in order to be trained
and evaluated. Non-learning-based systems use the “gold
standards” only to be evaluated. The evaluation employs
traditional recall and precision figures that measure the de-
gree of overlap between the units considered important by
an extraction engine and the units considered important by a
majority of the human judges.

In spite of this dependence on annotated data, summa-
rization research is notorious for its lack of adequate cor-
pora, a situation that prevents rapid progress in the field: to-
day, there exist only a few small collections of texts whose
units have been manually annotated for textual importance[Ed-
mundson, 1968, Kupiecet al., 1995, Teufel and Moens, 1997,
Jing et al., 1998, Marcu, 1999]. Given the cost and te-
diousness of the annotation process, it is very unlikely that
we will ever manually annotate for textual importance suffi-
ciently large corpora. To circumvent this problem, we have
developed an algorithm that constructs such corpora auto-
matically.
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1.2 Towards the automatic derivation of corpora for sum-

marization research

The assumption that characterizes all current summarization
systems is that only certain parts of a text are important and
that abstracts can be written using only these important parts,
which are calledextracts. And our own experiment (see
section 3) validates this assumption: when given a collec-
tion of 10hAbstract, Texti tuples from the Ziff-Davis corpus,
14 subjects agreed that the information presented in the ab-
stracts reflected the semantics of only 35.88% of the texts.
The semantics of the other 64.12% of the texts was never
reflected in the abstract.

In the work described here, we want to automate the te-
dious step of manually identifying the extract, i.e., the units
in a text that were used to write the abstract. More precisely,
we want to take advantage of the existence of large electronic
corpora ofhAbstract, Texti tuples, in order to automatically
derive tuples of the formhAbstract, Extract, Texti, where the
Extractcomponent contains the clauses/sentences of theText
that were used to write theAbstract.

The potential payoff of creating large, genre-specific cor-
pora ofhAbstract, Extract, Texti tuples is two-fold:

1. First, the pairshExtract, Texti can be used in order to
train and evaluate the extraction engines of summariza-
tion systems, i.e., the engines responsible for identify-
ing the most important parts of texts.

2. Second, the pairshAbstract, Extracti can be used in
order to train and evaluate the interpretation and gen-
eration engines of summarization systems, i.e., the en-
gines responsible for mapping the selected textual units
into coherent texts.

Determining the parts of a text that were used by the au-
thor of an abstract of that text is not trivial even for humans
(see section 3). Sometimes, abstracts use clauses that can be
found almost in unmodified form in the original texts. But
other times, abstracts use clauses that reflect only parts of
the clauses of the original text. It is possible that one clause
in an abstract represents parts or all of the information given
in a few clauses in the corresponding text. And it is also
possible that a sentence in a text is realized as two separate
sentences in the corresponding abstract. For example, when
14 subjects evaluated how the clauses in 10 abstracts from
the Ziff-Davis corpus were related to the clauses in the cor-
responding texts (see section 3), they considered 321 times
that there was a perfect match between a clause in an ab-
stract and a clause in the corresponding text; 514 times that
the meaning of a clause in a text was reflected fully by the
meaning of a clause in the abstract, with the clause in the
abstract realizing some additional meaning; 467 times that
the meaning of a clause in the abstract was reflected fully by
the meaning of a clause in the text, with the clause in the text
realizing some additional meaning; 709 times that there was
a certain semantic overlap between one clause in an abstract

and another clause in the text; and 59 times that a clause in
the abstract was not semantically related to any clause in the
text, but rather, that it was written on the basis of the abstrac-
tor’s knowledge, by employing an interpretation process that
involved the understanding of the whole text.

Given that there is no clear match between the clauses
in a text and the clauses in the corresponding abstract,the
most difficult problem that we have to solve if we are to au-
tomate the process of determining the clauses in a text that
were used to write an abstract of it is that of determining the
length of the extract.Most often, there is no correlation be-
tween the length of a text, the length of its abstract, and the
length of the extract that was used to write the abstract. For
example, in the 10 texts in our experiments the length of the
abstracts varied from 4.22% to 31.69% of the original texts,
while the length of the extracts on which the human judges
agreed varied from 21.46% to 56.78% of the original texts.
In some cases the lengths of the abstracts and extracts were
comparable (14.54% vs. 18.68% of the original text), but in
other cases they were wildly different (6.49% vs. 56.78% of
the original text).

2 An algorithmic approach to determining extracts

The fundamental assumption of our approach to building
hAbstract, Extract, Texti tuples fromhAbstract, Texti tuples
is that anExtractcorresponds to the subset of clauses in the
Text whose semantic similarity with theAbstract is maxi-
mal. In the general case, given a textT of n clauses, there
areC1

n+C
2

n+: : :+C
n
n = 2n�1 extracts of non-zero length

that can be built for that text. LetEM be the extract whose
similarity with the corresponding abstract is maximal. Since
iterating over all possible extracts is exponential, we adopt a
different approach to determiningEM .

The key idea of our approach to determiningEM is the
following. Instead of answering the question “should we in-
clude this clause into the extract?”, we answer a comple-
mentary question: “if we remove this clause from the text,
can we still write the abstractA?”. By answering the com-
plementary question we have a clear way of determining the
number of clauses that are to be included in the extract. To
understand why, assume that we initially assign toEM all
clauses in the textT . Also assume that we are using a sim-
ple, normalized cosine-based similarity metric, such as that
used by Hearst[1997]. If we represent bothEM and the ab-
stractA as sequences ofht, w(t)i pairs, wheret is a token
andw(t) is its weight, we can compute the similarity be-
tween the extractEM and the abstractA using the formula
shown in (1) below, wherew(t)A andw(t)EM represent the
weights of tokent in abstractA and extractEM respectively.

sim(EM ; A) =

P
t2EM[A

w(t)EMw(t)AqP
t2EM

w(t)2EM
P

t2A w(t)2A

(1)
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Input: A tuplehAbstract, Texti.
Output: A tuplehAbstract, Extract, Texti.

1. Break theAbstractandText into clauses;
2. Perform stemming and delete the stop words in

both sets of clauses;
// Build the core extract

3. EM = ClausesOf(Text);
4. while ((E = EM nCijCi 2 EM^

(8Cj 2 EM )(i 6= j !
sim(EM nCi;Abstract) �
sim(EM nCj;Abstract)))^
E > EM )

5. EM = E;
6. end while

// Clean-up the core extract
7. Eliminate fromEM the clauses that have

a rhetorical status ofweaksatellite;
8. Eliminate fromEM the short clauses that have

a rhetorical status ofstrongsatellite;
9. Eliminate fromEM the subtitles;
10. Eliminate fromEM the clauses that are not

similar to any clause in the Abstract;
11. Add toEM the clauses in Text that are most

similar to each clause in the Abstract;
12. Add toEM the unique clauses in Text that

contain at least two words from the Abstract
that are not used in any other clauses;

13. Eliminate fromEM all short redundant clauses;
14.return Extract= EM ;

Figure 1: The extraction algorithm.

The weights of tokens are given by their frequencies in the
extract and abstract respectively.

If we delete fromEM a clauseCi that is totally unrelated
to the abstractA we obtain a new extractEM n fCig whose
similarity with A is greater than that ofEM (sim(EM n
fCig; A) and sim(EM ; A) have equal numerators but the
denominator ofsim(EM n fCig; A) is smaller than the de-
nominator ofsim(EM ; A) because its a sum over less terms).

If we apply a greedy approach and repeatedly delete from
EM clauses so that at each step the resulting extract has max-
imal similarity with the abstract, we eventually converge to a
state where we can no longer delete clauses without decreas-
ing the similarity ofEM with the abstract. We consider that
the extractEM that characterizes this stage is the extract that
we are looking for.

This greedy approach to determining theExtractcompo-
nent of a tuplehAbstract, Extract, Texti when theAbstract
andText components are known represents the core of our
algorithm. The full algorithm is presented in figure 1. We
present now its main steps.

In the first step, we use a shallow clause boundary and
discourse marker identification (CB-DM-I) algorithm in or-
der to determine the elementary textual units and the cue
phrases that play a discourse role both in theAbstractand
the Text [Marcu, 1997a]. The CB-DM-I algorithm explic-
itly encodes knowledge of the role that 450 cue phrases, i.e.,
phrases such ashowever, in addition toandalthough, have
in signaling clause boundaries and rhetorical relations that
hold between adjacent spans of text. This knowledge was
derived from a corpus study[Marcu, 1997b]. The CB-DM-I
algorithm, which is linear in the number of words in a text,
recalls about 80% of the clause boundaries, with a preci-
sion of 90%. Once the clause-like units have been identi-
fied, their stop words are removed and the remaining words
are stemmed.

The most important part of the extraction algorithm is
that that builds the core extract (lines 3–6 in figure 1). The al-
gorithm greedily determines an extractEM of maximal sim-
ilarity with the Abstractby deleting clauses from the origi-
nal text so that the similarity of the remaining extract with
the abstract is maximal at every single step. Obviously, such
an approach does not guarantee that the algorithm converges
towards the extract of maximal similarity with the abstract.
But nevertheless, we have empirically noticed that even such
a simple algorithm produces good extracts. In figure 2, we
plot the similarity between the devolving extractsEM , i.e.,
extracts from which clauses are deleted repetitively, and the
correspondingAbstractsfor the ten texts in our experiment
(see section 3). In figure 2, a 0 abscissa corresponds to an
extract that contains alln clauses in the original text, a 1
abscissa to an extract that containsn� 1 clauses, and so on.

As it is shown in figure 2, the similarity between a de-
volving extract and its corresponding abstract increases slowly
as clauses are removed from the extract. The slow increase
can be explained by the fact that, initially, the text contains
many clauses that are not related to the abstract. By re-
moving these clauses from the abstract, we only decrease
slightly the value of the denominator in equation (1); how-
ever, the value of the numerator does not change too much.
After reaching a maximum, the similarity drops sharply, the
end of each graph representing the similarity between the
abstract and the clause in the text that is most similar to the
abstract. The sharp decrease can be explained by the fact that
by the time the maximum is reached, there are few clauses
left in the extract, each of them being similar to the abstract.
By removing any of these clauses, it is not only the denom-
inator of equation (1) that decreases, but also, to an even
larger degree, its numerator. As figure 2 shows, the maximal
similarity is reached for each text when there are only few
clauses left in the extract, so presumably, the algorithm does
not determine extracts that contain an unreasonable number
of clauses from the original text.

Once we have built the core abstractEM , we perform on
it a set of cosmetic procedures. The first two such procedures
are informed by work in the psycholinguistics of discourse
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Figure 2: Behavior of the algorithm that builds the core ex-
tract.

markers and discourse relations.
Theories of discourse posit that textual units of coher-

ent texts are related by means of rhetorical relations, i.e.,
relations that hold between two non-overlapping text spans
callednucleusandsatellite. The distinction between nuclei
and satellites comes from the empirical observation that the
nucleus expresses what is more essential to the writer’s pur-
pose than the satellite; and that the nucleus of a rhetorical
relation is comprehensible independent of the satellite, but
not vice versa.

Recent research in the psycholinguisticof discourse mark-
ers suggests that some rhetorical relations are stronger than
others[Deaton and Gernsbacher, 1997, Fayol, 1997]. In or-
der to account for this difference in strength, we have divided
discourse markers into two classes. In the first class, we have
put the discourse markers that signal relations whose satel-
lites are rarely selected for summarization, i.e., satellites sig-
nalled by markers such asinstead of, with, andbefore. We
call such satellitesweak satellites. In the second class we
have put discourse markers that signal relations whose satel-
lites are sometimes selected for summarization, i.e., satel-
lites signalled by markers such asalthough, given that, and
since. We call such satellitesstrong satellites. The extrac-
tion algorithm (see lines 7–8 in figure 2) removes from the
extractEM all clauses that play the rhetorical role of weak
satellites and all short clauses (the clauses that have less than
three non-stop words) that play the rhetorical role of strong
satellites.

In our experiment, we have noticed that human judges
never considered subtitles of texts to be semantically related
to clauses in abstracts. To account for this, the extraction
algorithm removes fromEM all subtitles.

The greedy construction of the extractEM has employed
up to this step a global measure of similarity between all
clauses inEM and all clauses in the given abstract. However,
in our experiment, we have noticed that abstracts are rarely
written by using single words taken from multiple clauses. It
is rather that abstracts are written using sequences of words

from one or many clauses. To account for this, the extraction
algorithm enforces that each clause in the extract is seman-
tically similar to at least one clause in theAbstract(line 10
in figure 1). The clauses inEM whose maximal similar-
ity with individual clauses from theAbstractis not above a
certain threshold (0.25 in our implementation) are removed
fromEM .

SinceEM is constructed in a greedy manner, it is pos-
sible that it does not reflect the global maximum of similar-
ity with the abstract. In our experiments, we have noticed
that most often it is desirable that for each clause in theAb-
stract, the extractEM to contain the clause in the text that is
most similar to it. Also, we have noticed that it is desirable
to include inEM the clauses in the text that contain at least
two non-stop words from the abstract, provided that no other
clauses use those words. Lines 11–12account for adding
these clauses toEM (in the case they are not already mem-
bers of it). In most cases, few text is added toEM during the
last two steps, as most of the clauses that are individually
similar to those in the abstract have been already selected.

In the last step of the algorithm, we perform an internal
checking of the set of selected clauses: if two clauses inEM
are very similar, the shortest is removed.

The most expensive part of the algorithm corresponds to
its core, which isO(n2), wheren is the number of units in
theText. All other steps are either linear orO(n�m), where
n andm are the numbers of units in theTextandAbstractre-
spectively. Although the algorithm is time-consuming, given
the nature of the problem, this is not a major shortcoming be-
cause corpora ofhAbstract, Extract, Texti tuples have to be
constructed only once.

3 Experiment

3.1 Materials and method

In order to evaluate the extraction algorithm, we carried out
the followingexperiment. We randomly selected 10hAbstract,
Texti tuples from the Ziff-Davis corpus, a collection of news-
paper articles announcing computer products. The average
length of the abstracts in the 10 tuples was 133 words and the
average length of the texts was 1066 words. We ran the CB-
DM-I algorithm[Marcu, 1997a] and broke each abstract and
each text into clause-like units. On average, the abstracts
yielded 9.7 units, while the texts yielded 85.1 units. The
clause-like units in each abstract and each text were labeled
in increasing order with a natural number from 0 ton � 1,
wheren was the number of units in the abstract and text re-
spectively.

We presented the 10hAbstract, Texti tuples of labeled el-
ementary units to 14 independent judges and asked them to
determine what were the units in the texts whose semantics
was reflected by the units in the abstracts. Eleven judges an-
alyzed all 10 tuples, while three judges analyzed only some
of the tuples. Overall, we collected 125 independent judg-
ments.
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In order to determine what were the units in texts whose
semantics was reflected by the units in the abstracts, we
asked the judges to determine foreach unit in an abstract, the
units in the corresponding text that best reflected its mean-
ing. The degree of overlap between textual units in abstracts
and textual units in texts was assessed using five categories.

� If a judge considered that the meaning of a unitt in
a text matched perfectly the meaning of a unita in
the corresponding abstract, they expressed that as an
equality,a = t. For example, ifa = “The monochrome

Sparcstation-2 40 Mhz CPU provides almost twice the perfor-

mance of the Sparcstation-1 CPU.” andt = “The monochrome

Sparcstation-2 has a 40 Mhz CPU that offers almost twice the

performance of the Sparcstation-1 CPU, officials said.”, then
a = t.

� If a judge considered that the meaning of a unitt in a
text was reflected entirely by the meaning of a unita
in the abstract, witha realizing some additional mean-
ing that was not reflected byt, they expressed that as
a > t (a includest). For example, ifa = “At $14,995,

the Sparcstation-2 includes a 207Mbyte disk drive, 16Mbytes

of memory expandable to 96Mbytes and up to 414Mbytes of

internal disk storage.” andt = “The Sparcstation-2 offers as

much as 414MB of internal disk storage;”, thena > t.

� If a judge considered that the meaning of a unita in
an abstract was reflected entirely by the meaning of
a unit t in the text, witht realizing some additional
meaning that was not reflected bya, they expressed
that asa < t (a included int). For example, ifa =
“The 2GX costs $17,995.” and t = “The Sparcstation 2GX

is priced at $17,995 with 16MB of memory they said.”, then
a < t.

� If a judged considered that none of the above situations
applied, but nevertheless, thata and t shared some
meaning, they represented the relation between the two
asa 6= t. For example, ifa = “Sun Microsystem Inc.

announces Sparcstation 2 and three workstations suitable for

three dimensional graphics applications.” andt = “– Sun Mi-

crosystems last week at a press conference deployed its next

generation of Sparcbased workstations, including an aggres-

sively priced set of faster platforms aimed at 3D applications.”,
thena 6= t.

� If a judge considered that there were no units in the
text that shared a significant meaning with a unita in
the abstract, they represented that asi(a). Presumably,
such units occurred in an abstract as a result of an in-
terpretation process that required the understanding of
parts or the whole text.

The judges were told to rely on their intuitive notion of se-
mantic similarity in assessing the relation between units in
texts and units in abstracts.

1 5 4 6 12 3 10 7 13 11 9 14 2 8

60%

80%

Judges

Kappa
Agreement

70%

50%

Figure 3: Bottom-up clustering of the agreement among the
14 judges — the clause level.

3.2 Results

3.2.1 Agreement

Clause-level agreement. We measured the inter-judgeagree-
ment using the kappa coefficient(K) [Siegel and Castellan,
1988], a measure that has been applied extensively in re-
cent empirical studies of discourse. The kappa coefficient
measures pairwise agreement among a set of judges who
make category judgments, with correction for chance ex-
pected agreement (K = (p(A)� p(E))=(1� p(E)), where
p(A) is the proportion of times in which the judges agree and
p(E) is the proportion of times that one would expect them
to agree by chance).

In an attempt to detect outliers, we computedK using
a bottom-up, hierarchical clustering procedure. By analyz-
ing the dendogram of the clustering results in figure 3, one
can notice that there are two distinct groups of judges that
are characterized by agreement figures above 60%, which
is the traditional threshold that is considered to reflect the
existence of substantial agreement. The first group is com-
prised of three judges (1, 5, and 4) and the second group of
six judges (6, 12, 3, 10, 7, 13). When these two groups are
clustered, they yield a group characterized by a kappa coef-
ficient of 58.85%. The other five judges who participated in
the experiment monotonically decrease the kappa agreement
when added to the clustering group.

The results in figure 3 show that there is substantial vari-
ation with respect to the notion of semantic similarity that
human judges employ. This variation is natural given that
the experiment relied completely on judges’ intuitions: for
example, some judges considered two textual units to match
perfectly (they used equality) only when the units used ex-
actly the same words; in contrast, other judges considered
two textual units to match perfectly even when the semantic
similarity arose from the use of synonyms, antonyms, or hy-
pernyms. Nevertheless, we believe that judgments pertain-
ing to the nine subjects whose kappa agreement was 58.85%
can be safely taken as “gold standard” for semantic similar-
ity.

The experiment described in this section provides a very
fine-grained perspective on the relationship between abstracts
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Figure 4: Bottom-up clustering of the agreement among the
14 judges, for the case of modified, binary judgments — the
clause level.
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Figure 5: Bottom-up clustering of the agreement among the
14 judges — the sentence level.

and extracts, a relationship that we plan to explore in future
work on generating abstracts. However, in order to evaluate
the extraction algorithm that was presented in section 2, we
need to consider only a watered-down version of the judg-
ments. Since we are interested to assess whether the ex-
traction algorithm correctly detects the units in a text that
were used to write the corresponding abstract, we rewrote
the similarity judgments using a binary scale. According to
this scale, a unit of text was considered to be important for
summarization if it was judged to be semantically similar
(=; >;<; or 6=) with at least one unit in the corresponding
abstract.

When we apply the bottom-up, hierarchical clustering
procedure on the binary judgments, we obtain the dendo-
gram in figure 4. As one can see, when one assesses only
whether a unit in a text is semantically related to a unit in
the corresponding abstract, the agreement among judges is
significant: the agreement of 11 judges is above 70% and
the agreement of all 14 judges is 64.47%.

Sentence-level agreement. The majority of summarization
systems use sentences as elementary units of interest. Since
we are interested to automatically build adequate summa-
rization corpora for such systems as well, we also assessed
the ability of human judges to determine the sentences (not
clauses) in a text that were used to write the abstracts. In or-
der to do this, we automatically rewrote the clause-level sim-

60%

80%

Judges

Kappa
Agreement

70%

50%

1 11 4 3 5 12 10 6 13 9 87 2 14

Figure 6: Bottom-up clustering of the agreement among the
14 judges, for the case of modified, binary judgments — the
sentence level.

ilarity judgments, so that they reflected sentence-level simi-
larities: if a clause of a sentence in a text was judged to be
semantically related to a clause of a sentence in the corre-
sponding abstract, we assigned the same semantic judgment
to the relation between the two sentences.

Figures 5 and 6 show the dendograms produced by the
clustering procedure. At sentence level, the kappa coeffi-
cient among 11 judges is 60.62% in the case of fine-grained
judgments. When the clustering procedure is applied to bi-
nary judgments, 13 judges agree at 72.55% level. Although
judge 8 is an outlier, he reduces the agreement to only 68.53%,
which is still statistically significant.

3.3 Evaluation of the performance of the extraction algo-

rithm

In order to evaluate the performance of the extraction algo-
rithm, we first used the human judgments in order to deter-
mine an upper-bound of the average human performance on
the task of identifying the extracts that were used to write ab-
stracts. For each judge, we determined the set of units from
each text that were considered by a majority of the other 13
judges to be similar with units in the corresponding abstract.
We hence determined for each text the “gold standard” ex-
tract on which a majority of 13 judges agreed and then com-
pared the extract produced by the fourteenth judge with the
gold standard. The comparison employed traditional recall
and precision figures, which reflect the percent of textual
units correctly selected by a judge with respect to the gold
standard and the percent of textual units correctly selected by
a judge with respected to the total number of selected units
respectively.

In addition, we computed the recall and precision results
that characterized the extracts constructed automatically, by
the extraction algorithm. In this case, the recall and precision
figures were computed with respect to gold standards that
characterized the majority opinion of all 14 judges. Table 1
shows the average recall and precision results that character-
ize the human judgments foreach document, as well as the
results of the extraction algorithm. To enable a better com-
parison of the manual and automatic approaches, in addition
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Doc Judges Extraction algorithm
ZF109- Rec Prec F-val Rec Prec F-val
662-269 84.80 74.36 78.15 82.35 73.68 77.78
714-915 76.97 63.31 68.32 68.75 52.38 59.46
712-593 88.21 78.24 81.56 56.25 75.00 64.29
685-555 97.80 93.10 94.96 85.71 60.00 70.59
645-951 95.86 84.50 89.43 100.00 92.86 96.30
666-869 82.69 75.28 77.69 57.14 66.67 61.54
715-629 80.17 79.50 78.95 72.73 80.00 76.19
754-223 90.20 91.90 90.51 100.00 85.00 91.89
601-903 89.17 70.22 77.44 80.00 57.14 66.67
631-813 94.23 99.04 96.4 100.00 100.00 100.00
Average 88.01 80.94 83.34 80.29 74.27 76.47

Table 1: Performance of the extraction algorithm — the
clause level.

Doc Judges Extraction algorithm
ZF109- Rec Prec F-val Rec Prec F-val
662-269 86.67 86.70 85.90 80.00 85.71 82.76
714-915 78.18 68.14 71.54 66.67 57.14 61.54
712-593 90.77 78.95 83.41 63.64 87.50 73.68
685-555 97.44 92.86 94.63 83.33 62.50 71.43
645-951 97.20 86.86 91.42 100.00 91.67 95.65
666-869 80.00 80.83 79.56 54.55 66.67 60.00
715-629 82.83 79.72 80.36 77.78 77.78 77.78
754-223 91.07 92.83 91.50 92.86 81.25 86.67
601-903 88.64 77.34 81.75 81.82 64.29 72.00
631-813 94.51 100.00 97.04 100.00 100.00 100.00
Average 88.73 84.42 85.71 80.06 77.45 78.15

Table 2: Performance of the extraction algorithm — the sen-
tence level.

to the recall and precision figures, we also show in table 1
the F-values (F = 2� Rec� Prec=(Rec+ Prec)).

As table 1 shows, the performance of the extraction algo-
rithm comes very close to the average performance of human
judges, the F-value pertaining to the program being about
only 7% smaller than that pertaining to the judges. The re-
sults in table 2, which depict the recall, precision, and F-
value figures that pertain to sentence-level extracts, show the
same difference in performance between humans and the ex-
traction algorithm. The automatically generated extracts that
correspond to the results shown in table 2 were obtained by
simply extending the boundaries determined by the extrac-
tion algorithm in figure 1 from clause-level to sentence-level.
That is, if a sentences contained a clausec that was selected
by the extraction algorithm, then the whole sentences was
considered to be part of the sentence-based extract.

When we tried to apply the extraction algorithm directly
at sentence level, we obtained recall and precision results
that were about 10% lower than the results reported in ta-
ble 2. This suggests that clauses are better than sentences for
the task of determining the extracts that comprise all the in-
formation in a text that is realized in an abstract of it. When
we determined the extracts using only the core algorithm
(lines 3–6 in figure 1), we obtained 65.11%, 65.58%, 64.7%
recall/precision/f-val figures at the clause level and 68.43%,
71.54%, 69.26% at the sentence level. This shows that the
core algorithm, which is general, does most of the job.

4 Discussion

4.1 Discussion of the approach

The most important criticism that can be brought up in con-
nection with our approach to building large corpora for sum-
marization research is that it assumes that abstracts objec-
tively represent in a condensed form the most important parts
of texts. However, as it has been often emphasized, abstracts
are subjective artifacts: for a given text, it is highly likely
that different people would build different abstracts. To a
certain extent, when the units in a text are labeled manually
for textual importance by a large number of judges, the sub-
jective nature of the enterprise is factored out. We believe
that the same argument holds at the corpus level as well: al-
though it is possible that the abstracts of single documents
are highly subjective, when one considers abstracts of thou-
sands of documents the subjective nature of the entire corpus
is factored out.

4.2 Discussion of the methodology

Obviously, the extraction algorithm that we presented in this
paper is highly sensitive to the notion of semantic similarity
that it employs and to the nature and size of the semantic
units that it computes with. In our experiments, we have
tried a variety of methods: we have run versions of the al-
gorithms that did not delete the stop words from the clauses,
that employed morphing instead of stemming, that did not
employ any kind of morphing and stemming, and combina-
tions of them. The combinations and the order of the steps
shown in figure 1 produced the best results. However, many
other combinations came close to the performance results
discussed in section 3.3 (within approximately 5 to 10%).

Besides computing recall and precision figures, we have
also manually compared the extracts determined by the pro-
gram and the extracts on which the judges agreed. Our vi-
sual comparison suggested that the simple notion of seman-
tic similarity that we employed here can provide an adequate
solution to the problem of buildingExtractsfrom hAbstract,
Texti tuples. The cases in which a more sophisticated mea-
sure of similarity would have been required in order to de-
termine that two units were related did not occur frequently.
For example, in one such case, the abstract talked about the
weightof a computer, while the text just mentioned that the
computer washeavy. By applying WordNet-based notions
of semantic similarity we can presumably detect the similar-
ity betweenweightandheavy[Fellbaum, 1998]; however, it
is not clear yet how much improvement in performance we
will get from that.

4.3 Discussion of the results

From a summarization perspective, the most interesting re-
sult pertains to the length of the extracts. The average length
of the ten extracts on which the judges agreed was 367 words.
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That means that in order to generate abstract that represented
on average 17.59% of the length of the texts, professional ab-
stractors needed to rely on 35.88% of the texts (at least for
the text genre of the Ziff-Davis corpus). This corresponds to
a 2.76 average ratio between the length of an extract and the
length of the abstract that is generated from it. This result
strongly suggests that in order to build abstracts, automatic
summarization systems will have to first select important
units that comprise about two times and a half the number of
words that will be eventually used in the abstract. The sim-
ple catenation of the selected units will not suffice. Rather, it
seems that an interpretation stage is required, one that would
eliminate the units that are redundant and that would present
the information in the selected units in a more compact form.

We have used the extraction algorithm in order to create
a corpus of 6942hAbstract, Extract, Texti tuples using as in-
put hAbstract, Texti tuples from the Ziff-Davis corpus. The
average length of the 6942 texts was 970 words and the av-
erage length of the abstracts was 123 words. The lengths of
the automatically generated extracts was 283 words. The ab-
stract to text compression rate was 17.86%, and the extract
to text compression rate was 34.70%. These figures are very
close to those that characterized the compression rates asso-
ciated with the 10 texts for which extracts were determined
manually (17.59% and 35.88% respectively). This corpus is
already used by a number of summarization research groups.

References

[Boguraev and Kennedy, 1997] Branimir Bogu-
raev and Christopher Kennedy. Salience-based content
characterisation of text documents. InProceedings of the
ACL’97/EACL’97 Workshop on Intelligent Scalable Text
Summarization, pages 2–9, Madrid, Spain, July 11 1997.

[Deaton and Gernsbacher, 1997] J.A. Deaton and M.A.
Gernsbacher. Causal conjunctions and implicit causal-
ity cue mapping in sentence comprehension.Journal of
Memory and Language, 1997.

[Edmundson, 1968] H.P. Edmundson. New methods in au-
tomatic extracting.Journal of the Association for Com-
puting Machinery, 16(2):264–285, April 1968.

[Fayol, 1997] Michel Fayol. On acquiring and using punc-
tuation: A study of written French. In Jean Costermans
and Michel Fayol, editors,Processing Interclausal Rela-
tionships. Studies in the Production and Comprehension
of Text, pages 157–178. Lawrence Erlbaum, 1997.

[Fellbaum, 1998] Christiane Fellbaum, editor.Wordnet: An
Electronic Lexical Database. The MIT Press, 1998.

[Hearst, 1997] Marti A. Hearst. TextTiling: Segmenting
text into multi-paragraph subtopic passages.Computa-
tional Linguistics, 23(1):33–64, March 1997.

[Hovy and Lin, 1999] Eduard Hovy and Chin-Yew Lin. Au-
tomated text summarization in summarist. In Inderjeet

Mani and Mark Maybury, editors,Advances in Automatic
Text Summarization. The MIT Press, 1999. To appear.

[Jinget al., 1998] Hongyan Jing, Regina Barzilay, Kathleen
McKeown, and Michael Elhadad. Summarization eval-
uation methods: Experiments and analysis. InProceed-
ings of the AAAI–98 Spring Symposium on IntelligentText
Summarization, pages 60–68, Stanford, 1998.

[Kupiecet al., 1995] Julian Kupiec, Jan Pedersen, and
Francine Chen. A trainable document summarizer. In
Proceedings of the 18th ACM/SIGIR Annual Conference
on Research and Development in Information Retrieval,
pages 68–73, Seattle, Washington, 1995.

[Mani and Bloedorn, 1998] Inderjeet Mani and Eric Bloe-
dorn. Machine learning of generic and user-focused sum-
marization. InProceedings of Fifteenth National Confer-
ence on Artificial Intelligence, Madison, WI, 1998.

[Marcu, 1997a] Daniel Marcu. The rhetorical parsing of
natural language texts. InProceedings of the 35th Annual
Meeting of the Association for Computational Linguistics
(ACL–97), pages 96–103, Madrid, Spain, July 7-12 1997.

[Marcu, 1997b] Daniel Marcu.The rhetorical parsing, sum-
marization, and generation of natural language texts.
PhD thesis, Department of Computer Science, University
of Toronto, December1997.

[Marcu, 1999] Daniel Marcu. Discourse trees are good indi-
cators of importance in text. In Inderjeet Mani and Mark
Maybury, editors,Advances in Automatic Text Summa-
rization. The MIT Press, 1999. To appear.

[Mitra et al., 1997] Mandar Mitra, Amit Singhal, and Chris
Buckley. Automatic text summarization by paragraph ex-
traction. InProceedings of the ACL’97/EACL’97 Work-
shop on Intelligent Scalable Text Summarization, pages
39–46, Madrid, Spain, July 11 1997.

[Saltonet al., 1994] Gerard Salton, Chris Buckley, and
Amit Singhal. Automatic analysis. Theme generation
and summarization of machine-readable texts.Science,
264:1421–1426, June 3 1994.

[Siegel and Castellan, 1988] Sidney Siegel and N.J. Castel-
lan.Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill, Second edition, 1988.

[Stralkowskiet al., 1998] Tomek Stralkowski, Jin Wang,
and Bowden Wise. A robust practical text summarization.
In Working Notes of the AAAI–98 Spring Symposium on
Intelligent Text Summarization, pages 26–33, Stanford,
CA, March 23–25 1998.

[Teufel and Moens, 1997] Simone Teufel and Marc Moens.
Sentence extraction as a classification task. InPro-
ceedings of the ACL’97/EACL’97 Workshop on Intelli-
gent Scalable Text Summarization, pages 58–65, Madrid,
Spain, July 11 1997.

144


