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Abstract Automated collaborative filtering is quickly be-
coming a popular technique for reducing information over-
load, often as a technique to complement content-based in-
formation filtering systems. In this paper we present an
algorithmic framework for performing collaborative filtering
and new algorithmic elements that increase the accuracy of
collaborative prediction algorithms. We then present a set
of recommendations on selection of the right collaborative
filtering algorithmic components.

1 Introduction

Automated collaborative filtering is quickly becoming a
popular technique for reducing information overload, of-
ten as a technique to complement content-based informa-
tion filtering systems. Automated collaborative filtering has
seen considerable success on the Internet, being used at
sites like Amazon.com—the largest book store on the Inter-
net, CDNow.com—the largest CD store on the Web, and
MovieFinder.com—one of the most visited movie sites on
the Internet.

Content-based and collaborative filtering use different types
of data to arrive at a filtering decision. Content-filtering
tools select the right information for the right people by
comparing representations of content contained in the docu-
ments to representations of content that the user is interested
in. Content-based information filtering has proven to be ef-
fective in locating textual documents relevant to a topic us-
ing techniques such as vector-space queries[19], “intelligent”
agents[12], and information visualization[26].

Automated collaborative filtering systems work by collecting
human judgments (known as ratings) for items in a given do-
main and matching together people who share the same in-
formation needs or the same tastes. Users of a collaborative
filtering system share their analytical judgments and opin-
ions regarding each item that they consume so that other
users of the system can better decide which items to con-
sume. In return, the collaborative filtering system provides
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useful personalized recommendations for interesting items.

Collaborative filtering provides three key additional ad-
vantages to information filtering that are not provided by
content-based filtering: (i) support for filtering items whose
content is not easily analyzed by automated processes;
(ii) the ability to filter items based on quality and taste;
and (iii) the ability to provide serendipitous recommenda-
tions.

First of all, in collaborative filtering, humans determine the
relevance, quality, and interest of an items in the information
stream. As a result, filtering can be performed on items that
are hard to analyze with computers, such as movies, ideas,
feelings, people, and politicians.

Second, collaborative filtering systems can enhance infor-
mation filtering systems by measuring, in dimensions be-
yond that of simple content, how well an item meets a user’s
need or interests. Humans are capable of analyzing on di-
mensions such as quality or taste, which are very hard for
computer processes. A content-based search of the Associ-
ated Press could retrieve all articles related to Minnesota
Governor Jesse Ventura, but by combining content filtering
with collaborative filtering, a search could return only those
relevant articles that are well-written!

Finally, a collaborative filtering system will sometimes make
serendipitous recommendations—recommending items that
are valuable to the user, but do not contain content that the
user was expecting. We have found that serendipitous rec-
ommendations occur frequently in the movie domain, with
the collaborative filtering system accurately recommending
movies that a user would never have considered otherwise.

The potential for collaborative filtering to enhance informa-
tion filtering tools is great. However, to reach the full poten-
tial, it must be combined with existing content-based infor-
mation filtering technology. Collaborative filtering by itself
performs well predicting items that meet a user’s interests
or tastes, but is not well-suited to locating information for
a specific content information need.

In this paper, we present an algorithmic framework for per-
forming collaborative filtering and examine empirically how
existing algorithm variants perform under this framework.
We present new, effective enhancements to existing predic-
tion algorithms and finally conclude with a set of recommen-
dations for selection of prediction algorithm variants.

2 Problem Space

The problem of automated collaborative filtering is to pre-
dict how well a user will like an item that he has not rated
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Star Wars Hoop Dreams Contact Titanic
Joe 5 2 5 4
John 2 5 3
Al 2 2 4 2
Nathan 5 1 5 [ ? |

Figure 1: Collaborative filtering can be represented as the
problem of predicting missing values in a user-item matrix.
This is an example of a user-item rating matrix where each
filled cell represents a user’s rating for an item. The predic-
tion engine is attempting to provide Nathan a prediction for
the movie ’Titanic’.

given a set of historical preference judgments for a commu-
nity of users.

Preference judgments can be explicit statements recorded
from the user or implicit measures that are inferred from
available data on user activity. Explicit measures are gener-
ally a single numeric summary rating for each item[17, 21, 9],
with high values representing a strong interest in an item and
low values representing a strong disinterest. Users are gen-
erally instructed to rate an item as they would like to have
seen that item predicted.

Implicit ratings are commonly derived from data sources
such as purchase records or web logs, thereby leveraging data
already collected for other purposes. Other sources of im-
plicit preference data that have been explored are time spent
reading[15] and URL references in Usenet postings[23]. Lit-
tle work has been done on automatic collaborative filtering
using implicit ratings although one technique that has been
considered for supporting implicit ratings is to map implicit
measures such as time-spent-reading into an explicit rating
scale, and then use previously proven collaborative filtering
algorithms. For the purposes of this article, we will consider
explicit user ratings on a scale of 1 to 5.

A prediction engine collects all the ratings and uses collabo-
rative filtering technology to provide predictions. An active
user provides the prediction engine with a list of items, and
the prediction engine returns a list of predicted ratings for
those items. Most prediction engines[17, 21, 9] also provide a
recommendation mode, where the prediction engine returns
the top n highest predicted items for the active user from
the database. In order to provide a fluid user interface, a
prediction engine has performance constraints. Latency of a
prediction request must be less than 1 second and prediction
engines must often support throughput of several hundred
prediction requests per second[25].

The problem space can be formulated as a matrix of users
versus items, with each cell representing a user’s rating on
a specific item. Under this formulation, the problem is to
predict the values for specific empty cells. In collaborative
filtering, this matrix is generally very sparse, since each user
will only have rated a small percentage of the total number of
items. Figure 1 shows a simplified example of a user-rating
matrix where predictions are being computed for movies.

The most prevalent algorithms used in collaborative filter-
ing are what we call the neighborhood-based methods. In
neighborhood-based methods, a subset of appropriate users
are chosen based on their similarity to the active user, and a
weighted aggregate of their ratings is used to generate pre-
dictions for the active user. Other algorithmic methods that
have been used are Bayesian networks[5], singular value de-
composition with neural net classification[4], and induction
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rule learning[3]. As an example of a neighborhood based
method, consider Figure 1 again. We wish to predict how
Nathan will like the movie “Titanic.” Joe is Nathan’s best
neighbor, since the two of them have agreed closely on all
movies that they have both seen. As a result, Joe’s opinion
of the movie Titanic will influence Nathan’s prediction the
most. John and Al are not as good neighbors because both
of them have disagreed with Nathan on certain movies. As
a result, they will influence Nathan’s predictions less than
Joe.

In this paper we will explore the space of neighborhood-
based collaborative filtering methods and describe some new
better performing algorithms that we have developed.

Neighborhood-based methods can be separated into three
steps.

1. Weight all users with respect to similarity with the
active user.

. Select a subset of users to use as a set of predictors
(possibly for a specific item).

. Normalize ratings and compute a prediction from a
weighted combination of selected neighbors’ ratings.

Within specific systems, these steps may overlap or the order
may be slightly different.

We will begin by discussing related work in the field of collab-
orative filtering and, when applicable, examining which tech-
niques were used to implement the three steps of
neighborhood-based methods.

3 Related Work

The concept of collaborative filtering is relatively new, and
descends from work in the area of information filtering[1].
The term collaborative filtering was coined by Goldberg et
al.[8], who were the first to publish an account of using col-
laborative filtering techniques in the filtering of information.
They built a system for filtering email called Tapestry which
allowed users to annotate messages. Annotations became
accessible as virtual fields of the messages, and users could
construct filtering queries which accessed those fields. Users
could then create queries such as “show me all office memos
that Bill thought were important.” The collaborative filter-
ing provided by Tapestry was not automated, and required
users to construct complex queries in a special query lan-
guage designed for the task.

GroupLens[17, 11] first introduced an automated collabora-
tive filtering system using a neighborhood-based algorithm.
GroupLens provided personalized predictions for Usenet
news articles. The original GroupLens system used Pear-
son correlations to weight user similarity, used all available
correlated neighbors, and computed a final prediction by
performing a weighted average of deviations from the neigh-
bor’s mean:
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Pa,i represents the prediction for the active user a for item
4. n is the number of neighbors and wq,, is the similarity

Pa,i = Ta + (1)



weight between the active user and neighbor u as defined by

the Pearson correlation coefficient:
m — -
i:l(ravi - 7"0.) * ('ru,i - Tu)

Og % Oy

(2)

We,u =

The Ringo music recommender[21] and the Bellcore Video
Recommender[9] expanded upon the original GroupLens al-
gorithm. Ringo claimed better performance by computing
similarity weights using a constrained Pearson correlation
Do (e i— )% (ru,i—4

coefficient: wq,, = o ) where 4 was cho-
sen because it was the midpoint of their seven-point rating
scale. Ringo limited membership in a neighborhood by only
selecting those neighbors whose correlation was greater than
a fixed threshold, with higher thresholds resulting in greater
accuracy, but reducing the number of items for which Ringo
was able to generate predictions for. To generate predic-
tions, Ringo computed a weighted average of ratings from
all users in the neighborhood.

The Bellcore Video Recommender[9] used Pearson correla-
tion to weight a random sample of neighbors, selected the
best neighbors, and performed a full multiple regression on
them to create a prediction.

Breese et al.[5] performed an empirical analysis of several
variants of neighborhood-based collaborative filtering algo-
rithms. For similarity weighting, Pearson correlation and
cosine vector similarity were used, with correlation being
found to perform better.

Other collaborative filtering systems have been developed
which do not make use of neighborhood-based prediction al-
gorithms. The Fab system[2] integrates content and collab-
orative filtering by identifying user tastes via content pro-
files, collecting ratings from users, and forwarding highly
rated documents to users with similar profiles. Other sys-
tems include the PHOAKS system for recommending web
resources|23], Referral Web[10], and active collaborative fil-
tering by Maltz and Ehrlich[13].

4 Methodology

4.1 Data & Experimental Technique

In order to compare the results of different neighborhood
based prediction algorithms, we ran a prediction engine us-
ing historical ratings data collected for purposes of anony-
mous review from the MovieLens movie recommendation
site[6]. The historical data consisted of 122,176 ratings from
1173 users, with every user having at least 20 ratings. 10% of
the users were randomly selected to be the test users. From
each user in the test set, ratings for 5 items were withheld,
and predictions were computed for those 5 items using each
variant of the tested neighborhood based prediction algo-
rithms.

For each item predicted, the highest ranking neighbors that
have rated the item in question are used to compute a predic-
tion (they form the user’s neighborhood for that item). Note
that this means that a user may have a different neighbor-
hood for each item. All users in the database are examined
as potential neighbors for a user—no sampling is performed.

The quality of a given prediction algorithm can be measured
by comparing the predicted values for the withheld ratings
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to the actual ratings.

4.2 Metrics

There are three key dimensions on which the quality of a
prediction algorithm can be measured.

Coverage. Coverage is a measure of the percentage of items
for which a recommendation system can provide predictions.
A basic coverage metric is the percentage of items for which
predictions are available. Common system features that
can reduce coverage are small neighborhood sizes and sam-
pling of users to find neighbors. We compute coverage as
the percentage of items over all users for which a predic-
tion was requested and the system was able to produce a
prediction. Unless otherwise noted, all experimental results
demonstrated in this paper had maximal coverage. Maximal
coverage may be slightly less than perfect (99.8% in our ex-
periments) because there may be no ratings in the data for
certain items, or because very few people rated an item, and
those that did had zero correlations with the active user.

Accuracy. Many metrics have been proposed for assessing
the accuracy of a collaborative filtering system. They di-
vide into two main categories: statistical accuracy metrics
and decision-support accuracy metrics. Statistical accuracy
metrics evaluate the accuracy of a filtering system by com-
paring the numerical prediction values against user ratings
for the items that have both predictions and ratings. Mean
absolute error (MAE) has been used previously to measure
prediction engine performance by Shardanand & Maes[21]
and Sarwar, et al[20]. Other metrics that have been used
are root mean squared error[20] and correlation between rat-
ings and predictions[9, 11, 20]. All of the above metrics were
computed on results data and generally provided the same
conclusions, so we only report mean absolute error.

Decision-support accuracy metrics evaluate how effectively
predictions help a user select high-quality items from the
item set. They are based on the observation that, for many
users, filtering is a binary process. The user either will or will
not view the movie. If this is the case, then the difference
between a prediction of 1.5 and 2.5 is irrelevant if the user
only views movies recommended with a prediction of 4 or
more. For our decision support accuracy measure, we use
ROC sensitivity.

ROC sensitivity is a measure of the diagnostic power of a
filtering system. Operationally, it is the area under the re-
ceiver operating characteristic (ROC) curve—a curve that
plots the sensitivity and specificity of the test. Sensitivity
refers to the probability of a randomly selected good item
being accepted by the filter. Specificity is the probability of a
randomly selected bad item being rejected by the filter. The
ROC curve plots sensitivity (from 0 to 1) and 1—speci ficity
(from 0 to 1), obtaining a set of points by varying the pre-
diction score threshold above which the movie is accepted.
For example, a particular point might correspond to setting
the filter at a prediction of exactly 4—watch any movie rec-
ommended with a prediction of 4 or above. The area under
the curve increases as the filter is able to retain more good
items while accepting fewer bad items. For use as a metric,
we must determine which items are "good” and which are
"bad.” For that task, we use the user’s own ratings. We
consider the ”goodness” model one where ratings of 4 and
5 indicate signal and 1, 2, and 3 are noise, which we call



Component Variants Tested

Pearson Correlation
Spearman Correlation
*Vector Similarity
Entropy
Mean-squared-difference

Similarity Weight

Significance Weighting | No significance weighting

n/50 weighting

None
(variance — variance,,) /
(variancepma, — varianCeyin)

Variance Weighting

Selecting Neighborhoods Weight Thresholding
Best-n neighbors

Combined

No normalization
Deviation from mean
Z-score

Rating Normalization

Figure 2: List of prediction algorithm components tested and
the variants of each component that were tested. *Vector
Similarity was considered, but was rejected due to previous
work][5].

ROC-4. The range of ROC sensitivity is 0 to 1, where 0.5 is
random and 1 is perfect. The ROC curve is related to the
recall-fallout curve—for a more in-depth explanation, please
see [24, 22]

4.3 Experimental Design

This paper presents conclusions derived from empirical anal-
ysis of prediction algorithm components. The components
tested are listed in Figure 2 along with the variations of each
component that were tested. For each component, the per-
formance using each of the variations was measured. All
components except the one being measured were held con-
stant to ensure that the results reflected the differences in
the component being tested. In each case, the variations of
a component were tested on the best performing algorithm
at the time of the experiment.

5 Weighting Possible Neighbors

5.1 Similarity Weighting

The first step in neighborhood-based prediction algorithms
is to weight all users with respect to similarity with the active
user. When you are given recommendations for movies or
books, you are more likely to trust those that come from
people who have historically proven themselves as providers
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ROC-4
Spearman
7288 |
7127

Pearson
.7288

| Top-50 neighbors
| _Best non-personalized average

Figure 3: Comparative performance of two different similar-
ity metrics, Pearson correlation and Spearman correlation.
The best-50 neighbors are selected using each algorithm and
a prediction is computed from those neighbors. Spearman
correlation performs as well as Pearson correlation, but is
not subject to model assumptions.

of accurate recommendations. Likewise, when automatically
generating a prediction, we want to weight neighbors based
on how likely they are to provide an accurate prediction.

Several different similarity weighting measures have been
used. The most common weighting measure used is the Pear-
son correlation coefficient. Pearson correlation measures the
degree to which a linear relationship exists between two vari-
ables.

The Pearson correlation coefficient (Equation 2) is derived
from a linear regression model that relies on a set of assump-
tions regarding the data, namely that the relationship must
be linear, and the errors must be independent and have a
probability distribution with mean 0 and constant variance
for every setting of the independent variable[14]. When these
model assumptions are not satisfied, Pearson correlation be-
comes a much less accurate indicator of similarity. It is not
uncommon for these model assumptions to be violated in
collaborative filtering data.

Spearman rank correlation coefficient (Equation 3) is sim-
ilar to Pearson, but does not rely on model assumptions,
computing a measure of correlation between ranks instead
of rating values.
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In our experiments, we have found that Spearman corre-
lation performs similarly to Pearson correlation. Figure 3
shows results for both Spearman and Pearson correlation,
using several different neighborhood selection mechanisms
that are discussed in the section Selecting Neighborhoods.
Note that the results are very close between Spearman and
Pearson. The large number of tied rankings (there are only
five distinct ranks for each user) results in a degradation of
the accuracy of Spearman correlations. Future work could
determine if increasing the size of the ranking scale increases
the difference in accuracy between Spearman and Pearson.

Other similarity measures include the vector similarity “co-
sine” measure, the entropy-based uncertainty measure, and
the mean-squared difference algorithm. The vector similar-
ity measure has been shown to be successful in information
retrieval[19], however Breese has found that vector similar-
ity does not perform as well as Pearson correlation in col-
laborative filtering[5]. The measure of association based on
entropy[16] uses conditional probability techniques to mea-
sure the reduction in entropy of the active user’s ratings that
results from knowing the another user’s ratings. In our tests,
entropy has not shown itself to perform as well as Pearson
correlation. We also found that the mean-squared difference
algorithm, introduced in the Ringo system[21], also did not
perform well compared to Pearson correlation.



MAE ROC-4 MAE ROC-4
N/50 devaluing | None N/50 devaluing [ None |™ Pearson — no variance weighting 0.7740 0.7287
| Top-50 neighbors 7678 (p =0.02) | 7906 .7288 | 7211 | Pearson — variance weighting 0.7774 0.7278

Figure 4: Small numbers of co-rated items leads to many
misleadingly high correlations. To account for this, corre-
lations based on less than 50 co-rated items are multiplied
by a significance weight of n/50 where n is the number of
commonly rated items. The result is a significantly large
increase in accuracy.

5.2 Significance Weighting

One of the issues that has not been addressed in previously
published systems is the amount of trust to be placed in a
correlation with a neighbor. In our experience with collabo-
rative filtering systems, we have found that it was common
for the active user to have highly correlated neighbors that
were based on a very small number of co-rated items. These
neighbors that were based on tiny samples (often three to
five co-rated items) frequently proved themselves to be ter-
rible predictors for the active user. The more data points
that we have to compare the opinions of two users, then
the more we can trust that the computed correlation is rep-
resentative of the true correlation between the two users.
‘We hypothesized that the accuracy of prediction algorithms
would be improved if we were to add a correlation signifi-
cance weighting factor that would devalue similarity weights
that were based on a small number of co-rated items. For
our experiments, if two users had fewer than 50 commonly
rated items, we applied a significance weight of n/50, where
n is the number of co-rated items. If there were more than
50 co-rated items, then a significance weight of 1 was ap-
plied. In this manner, correlations with small numbers of
co-rated items are appropriately devalued, but correlations
with 50 or more commonly co-rated items are not dependent
on the number of co-rated items. Figure 4 compares the re-
sults of a Spearman correlation-based prediction algorithm
with and without the devaluing term. As can be seen from
the figure, applying the significance weighting increased the
accuracy of the prediction algorithm by a relatively large
amount. Similar results were found for Pearson correlation.

5.3 Variance Weighting

All the similarity measures described above treat each item
evenly in a user to user correlation. However, knowing a
user’s rating on certain items is more valuable than others
in discerning a user’s interest. For example, we have found
that the majority of MovieLens users have rated the movie
“Titanic” highly. Therefore knowing that two users rated
Titanic high tells us very little about the shared interests
of those two users. Opinions on other movies have been
known to distinguish users’ tastes. The movie “Sleepless in
Seattle” has shown itself to separate those users who like
action movies from those who like romance movies. Know-
ing that two people agree on “Sleepless in Seattle” tells us
a lot more about their shared interests than Titanic would
have. We hypothesized that giving the distinguishing movies
more influence in determining a correlation would improve
the accuracy of the prediction algorithm. To achieve this,
we modified the Pearson correlation algorithm to incorpo-
rate an item-variance weight factor. The Pearson correla-
tion(Equation 2) can be represented as the covariance of two
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Figure 5: Performance of the prediction algorithm with and
without variance weighting. Contrary to our hypothesis,
variance weighting did not improve the accuracy of the pre-
dictions.

users’ ratings, after the ratings have been scaled to z-scores
(mean 0, standard deviation 1). This is shown in Equation 4.

m . .
Zizl Za,i * Zu,i

m

(4)

By incorporating a variance weight term, we will increase
the influence of items with high variance in ratings and de-
crease the influence of items with low variance. The new
correlation, incorporating the variance weight term is shown
in equation 5.

Wa,u =
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We computed an item variance weight as v;

where var; E“=ln_1 , and varmin and varmes re-
spectively are the minimum and maximum variances over
all items. Contrary to our initial hypothesis, applying vari-
ance weighting terms to correlation had no significant effect
on the accuracy of the prediction algorithm. These results
are shown in Figure 5. We are currently examining differ-
ent ways of accounting for item variance to determine if the
hypothesis is wrong or our implementation is flawed. One
explanation is that our variance weighting scheme does not
take into account the fact that a user who disagrees with the
popular feeling provides a lot of information.

(5)
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6 Selecting Neighborhoods

After you have assigned similarity weights to users in the
database, you must determine which other users’ data will
be used in the computation of a prediction for the active user.
It is useful, both for accuracy and performance, to select a
subset of users (the neighborhood) to use in computing a
prediction instead of the entire user database[21]. This can
be seen in Figure 6 which shows how the mean absolute
error of the prediction increases as the neighborhood size
is increased. In addition, commercial collaborative filtering
systems are beginning to handle millions of users, making
consideration of every neighbor infeasible. The system must
select the best neighbors, discarding the remaining users.

Another consideration in selecting neighborhoods suggested
by Breese[5] is that high correlates (such as those with corre-
lations greater than 0.5) can be exceptionally more valuable
as predictors than those with lower correlations.

Two techniques, correlation-thresholding and
best-n-neighbors, have been used to determine how many
neighbors to select. With both of these techniques, contri-
butions from the few exceptionally valuable high correlations
tend to get lost in the noise from the many lower correla-
tions when the algorithms are configured to give acceptable
coverage.
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Figure 6: As you increase the size of the neighborhood, the
quality of the prediction decreases, indicated by mean ab-
solute error. This experiment was performed using Pearson
correlation with n/50 significance weight.

Al gorithm coverage | MAE ROC- 4

Al nbors 99. 8% 0. 776069 | 0.72593
m n-abs-corr=0.1 99. 4% 0.770466 | 0.73011
m n- abs-corr=0. 2 84. 0% 0.792018 | 0.73942
m n- abs-corr=0. 3 60. 9% 0. 757773 | 0.76919
m n- abs-corr=0. 4 42. 9% 0.781000 | 0.76581
m n-abs-corr=0.5 19. 6% 0.762424 | 0.82114

Figure 7: Increasing the absolute correlation weight thresh-
olds to limit neighborhood sizes quickly results in loss of
prediction coverage.

The first technique, used by Shardanand and Maes[21], is to
set an absolute correlation threshold, where all neighbors
with absolute correlations greater than a given threshold
are selected. Setting a high threshold limits your neighbor-
hood to containing very good correlates, but for many users
high correlates are not available, resulting in a small neigh-
borhood that cannot provide prediction coverage for many
items. This is demonstrated in Figure 7, which demonstrates
the loss of prediction coverage when using an absolute cor-
relation threshold. Setting a lower correlation threshold re-
sults in a large number of lower correlates, nullifying the
purpose of thresholding. This can also be seen in Figure 7,
where an absolute weight threshold of 0.1 provides approxi-
mately the same accuracy as using all the available users in
the dataset.

The second technique is to pick the best n correlates for a
given n. This technique performs reasonably well, as it does
not limit prediction coverage. However, picking a larger n
will result in too much noise for those who have high cor-
relates. Picking a smaller n can cause poor predictions for
those users who do not have any high correlates, although
in our experiments, this effect did not occur until the neigh-
borhood size was reduced below 10. Both of these effects
can been seen in Figure 6.

Figure 8 shows an overview of the best performing neigh-
borhood selection algorithms. The weight thresholding al-
gorithm using a high threshold performed the best, but sac-
rificed too much coverage. The best-n method provided the
best performance with no loss in coverage. Combining a
low similarity weight threshold with best-n techniques did
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Algorithm Coverage | MAE ROC-4
min-abs-corr=0.3 60.9% 0.757773 | 0.76919
min-abs-corr=0.5 19.6% 0.762424 | 0.82114
min-abs-corr=0.1, nnbors=20 99.4% 0.763836 | 0.73447
min-abs-corr=0.1, nnbors=40 99.4% 0.765492 | 0.73134
max-nbors=20 99.8% 0.765686 | 0.73228

Figure 8: The best performing neighborhood selection algo-
rithms according to mean absolute error. Using a similarity
weight threshold of 0.3 resulted in the lowest amount of er-
ror, but had an unacceptable loss of 39% coverage.

not result in a significant improvement over using best-n.
We believe that this is because there is little difference in
predictive value between extremely low correlates (less than
0.1) and moderately low correlates (0.1-0.3).

7 Producing a Prediction

Once the neighborhood has been selected, the ratings from
those neighbors are combined to compute a prediction, after
possibly scaling the ratings to a common distribution. The
basic way to combine all the neighbors’ ratings into a predic-
tion, as used in Ringo[21], is to compute a weighted average
of the ratings, using the correlations as the weights. The
basic weighted average makes an assumption that all users
rate on approximately the same distribution.

The approach taken by GroupLens[17] was to compute the
average deviation of a neighbor’s rating from that neighbor’s
mean rating, where the mean rating is taken over all items
that the neighbor has rated. The deviation-from-mean ap-
proach is demonstrated in Equation 1. The justification for
this approach is that users may rating distributions centered
around different points. One user may tend to rate items
higher, with good items getting 5s and poor items getting
3s, while other users may give primarily 1s, 2s, and 3s. In-
tuitively, if a user infrequently gives ratings of 5, then that
user should not receive many predictions of 5 unless they are
extremely significant. The average deviation from the mean
computed across all neighbors is converted into the active
user’s rating distribution by adding it to the active user’s
mean rating.

An extension to the GroupLens algorithm is to account for
the differences in spread between users’ rating distributions
by converting ratings to z-scores, and computing a weighted
average of the z-scores (Equation 6).
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Figure 9 compares the performance of the three rating nor-
malization techniques. The bias-from-mean approach per-
forms significantly better than the non-normalized rating
approach (p = 0), however, z-scores do not perform signifi-
cantly better than the bias-from-mean approach, suggesting
that differences in spread between users’ rating distributions
do not effect predictions.

(6)

Pa,i =Tq +0q *



Normalization Algorithm MAE ROC-4
Average z-score 0.760290 | 0.73221
Average deviation frommean | 0.765686 | 0.73228
Simple weighted average 1.162838 | 0.63840

Figure 9: Performance of prediction algorithm with and
without normalization. Note the significant increase in ac-
curacy from using deviation-from-mean normalization.

8 Conclusions

Collaborative filtering is an exciting new approach to fil-
tering information that can select and reject items from an
information stream based on qualities beyond content, such
as quality and taste. It has the potential to enhance existing
information filtering and retrieval techniques.

In this paper we have presented an algorithmic framework
that breaks the collaborative prediction process into compo-
nents, and we provide empirical results regarding variants
of each component, as well as present new algorithms that
enhance the accuracy of predictions.

The empirical conclusions in this paper are drawn from
an analysis of historical data collected from an operational
movie prediction site. The data is representative of a large
set of rating-based systems, where the domain of predictions
is high volume targeted entertainment with a generally high
level of quality control. Domains of this criteria include
movies, videos, books, & music. There is reason to believe
that these results are generalizable to other prediction do-
mains, but we do not yet have empirical results to prove
it. Our algorithmic recommendations are certainly a good
place to start when exploring a new and different prediction
domain.

We have made new contributions in each of the three steps
of the neighborhood-based prediction algorithm. We showed
that Spearman correlation performed as well as Pearson cor-
relation and because it is not dependent on model assump-
tions, it should perform consistently across diverse datasets.
We demonstrated that incorporating significance weighting
by devaluing correlations that are based on small numbers
of co-rated items provided a significant gain in prediction
accuracy. While we hypothesized that decreasing the contri-
butions of items which had a low rating variance across all
users would increase predictions accuracy, it proved false,
with variance weights decreasing the prediction accuracy.
Best-n neighbors proved to be the best approach to selecting
neighbors to form a neighborhood. Finally, deviation-from-
mean averaging was shown to increase prediction accuracy
significantly over a normal weighted average, while z-score
averaging provided no significant improvements.

For those who are considering using a neighborhood-based
prediction algorithm to perform automated collaborative fil-
tering, we have the following recommendations: If your rat-
ing scale consists of a small number of discrete ranks (i.e.
integers 1-5, 1-7, or 1-20), use Spearman correlation as
your similarity weighting measure. If your rating scale is
not discrete, but continuous, you may want to consider Pear-
son correlation. If your rating scale is binary or unary, you
will have to consider a different approach — see Breese[5]
for more information. It is important to use a significance
weight to devalue correlates with small numbers of co-rated
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Algorithm MAE ROC-4
average 0.8277 | 0.6786
bias-from-mean average | 0.7982 | 0.7127
Z score average 0.8012 | 0.7049

Figure 10: Deviation-from-mean average performs much bet-
ter than the average rating as a non-personalized prediction
algorithm.

items as it will often give you a larger gain in accuracy than
your choice of similarity algorithm. Finally, users will rate
on slightly different scales, so use the deviation-from-mean
approach to normalization.

In the progress of examining personalized algorithms, we
also discovered a much more accurate non-personalized av-
erage algorithm. Automated collaborative filtering systems
use non-personalized average algorithms to provide predic-
tions when not enough is known about the user to provide a
personalized prediction. The normal approach is to compute
the average rating of the item being predicted over all users

(Equation 7).
Dt T
= 7
= 7

However, we have found that computing a deviation-from-
mean average over all users (Equation 8)

Pa,i =

ZZ:I (ru,i -

Tu)
n

(8)

results in a much more accurate non-personalized prediction
as is demonstrated in Figure 10.

Pa,i = Ta +

9 Future Work

This paper presents results taken from an empirical analy-
sis of one class of prediction domain. Ideally, the next step
would be to apply the framework to a diverse set of pre-
diction domains, and determine what results hold generally
across prediction domains. Unfortunately, sufficiently large
test sets containing a rating range of more than two are not
readily available.

Further success of collaborative filtering systems require
that collaborative filtering systems integrate with existing
content-based filtering and retrieval technology. This could
happen at the algorithmic level, integrating content weight-
ing schemes such as text vectors[19] with collaborative filter-
ing weights, or as a pipeline process, such as performing first
selecting a set of documents based on content and ranking
them based on collaborative filtering. Some initial work has
been done in this field[2], but much more work remains to
be done.

Another challenge is scaling prediction algorithms to handle
extremely large datasets. It may become impractical to com-
pute correlations between the active user and all other users
in the data, except in an infrequent off-line manner. Tech-
niques of dimensionality reduction are currently being inves-
tigated in an attempt to reduce the amount of online compu-
tation. Example techniques are sampling of users, singular
value decomposition (used in Latent Semantic Analysis[7]),
and stereotypical modeling[18].
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