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Abstract

The paper investigates, how SaAc, a purely functional lan-
guage based on C syntax, relates to APL in terms of ex-
pressiveness and run-titne behavior. To do so, three differ-
ent excerpts of real world ApL programs are examined. It
is shown that after defining the required APL primitives in
SAc, the example programs can be re-written in SAc with an
almost one-to-one correspondence. Run-time comparisons
between interpreting APL programs and compiled SAC pro-
grams show that speedups due to compilation vary between
2 and 500 for three representative benchmark programs.

Keywords: Language Comparison, SAC, Compilation, Run-
time Performance.

1 Introduction

Array-oriented programming languages basically fall into
two categories: languages that provide a high-level of ab-
straction for concise program design and fairly low-level lan-
guages aiming at utmost run-time efficiency.

APL [9], J [6], and N1aL [10] are typical representatives of
the first category. The main objective in the design of these
languages is to support means for specifying algorithms on
arrays in a very concise and abstract manner. They provide
array operations overloaded with many different combina-
tions of array shapes, including scalars.

Although overloading improves conciseness, reusability,
and elegance of programs, it causes difficulties when it comes
to executing them efficiently with respect to raw run-times.
It usually requires dynamic typing and execution in an in-
terpreting environment. Much effort has been devoted to
improving the run-time efficiency of such programs by appli-
cation of sophisticated optimization techniques {4, 5] and by
attempts to compile them [20, 7, 5, 3]. However, since com-
pPlete shape and type inference generally requires rather so-
phisticated analysis methods, code efficiency in many cases
is less than satisfactory.

Languages such as FORTRANSO [1], HPF (8], or ZPL [12]
fall into the second category. They derive from low-level (im-
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perative) languages, e.g. FORTRAN or C, which have been
primarily designed to facilitate compilation into efficiently
executable code. Arrays in languages like FORTRAN90 are
supported by so-called inirinsic array operations. Similar
to their APL counterparts, these intrinsics are “hard-wired”
into the compilers and can be applied to arrays of any rank.

Since the introduction of these array languages consider-
able efforts have been made to improve the code generated
for programs that heavily use such intrinsic operations. Af-
ter first attempts that were based on scalarizing the intrin-
sics and trying to apply conventional low-level optimization
techniques, e.g. loop fusion, loop splitting, and forward sub-
stitution (for surveys see [22, 2, 21]), more recent papers sug-
gest optimizations on higher levels of abstraction [11, 13, 14].
Although this work aims at combining high-level abstrac-
tions with run-time efficiency, there is still a significant dif-
ference relative to the APL approach of improving run-time
performance. In a language like FORTRAN90, there is no
way of defining new (non-intrinsic) array operations that
are applicable to arrays of any rank. Although this may
seem to be a minor restriction on first glance, it has a con-
siderable impact on the programming style. Being able to
define new array operations that are applicable to arrays of
any rank allows the programmer to adjust the set of basic
array operations to the needs of any given algorithm. In-
stead of problem-specific loop nestings, new more generally
applicable operations may be defined, which subsequently
may be combined to express the desired functionality. As
a consequence, programs become more modular and easier
to understand, which in turn increases code reusability and
makes programs less error-prone.

The design of SAc [15, 16] tries to strike for a balance be-
tween high-level abstractions and compilation into efficiently
executable code. It amalgamates a well-known syntax (that
of C proper), functional abstractions that -are inherently free
of side-effects, and means to specify high-level array opera-
tions that are applicable to arrays of any rank. 1t has been
shown that rank-invariant SAC programs can be compiled
into code whose efficiency is competitive, both in terms of
raw run-times and memory space consumptions, with equiv-
alent hand-coded FORTRAN programs [16, 17, 18]. Although
ApPL-like operators can be easily defined in SAc [19], it has
not yet been tested how well SAC lends itself to writing
programs completely in APL style, and which nm-time be-
haviour can be expected of them.

The purpose of this paper is to find answers to these
questions. To do so, we set out, in Section 2, with fragments
of real-world APL programs and try to re-code them as close
as possible in SAc. In Section 3, we compare the run-times
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of the interpreted APL programs and of the compiled Sac
programs. Section 4 contains some notes on the suitability
of SAc as a target language for compiling APL. In Section 5
we summarize to which extend SAc can be used to emulate
APL programs and things that need to be done in SAc to
improve its expressiveness while maintaining the run-time

edge.
2 Writing APL programs in SAC

In this section, we investigate the relationship between APL
and SAc from a programmer’s point of view or, more specif-
ically, how APL programs may be re-coded in SAc. The
answer to this question may also shed light on how much
effort is required to compile APL programs into SAC code.

To this end, we have selected three existing APL-bench-
mark programs: McoNv, LoGD, and ToMcATv [3]. Each of
them is manually translated into an equivalent SAc-program.
The emphasis in translation clearly is on the creation of SAC-
code that remains as close as passible to the original APL-
specification. As a consequence, the resulting SAc-programs
are neither the most elegant nor the most efficient implemen-
tations of the underlying algorithms.

2.1 The MCONYV benchmark

Mconv is a kernel routine adopted from a seismic signal
processing application. It implements one-dimensional con-
volution, taking two double-precision floating point vectors
as arguments: the trace vector tr and the (usually) much
shorter wavelet vector wv. Fig. 1 shows the original APL-
implementation and below that the translated SAc-code.
Convolution is implemented as inner product of the wavelet
vector wv with a skewed copy of the trace vector tr reshaped
into a matrix.

r+gv conv tr;h;n;t
h+tr, (T1+n+epuv) po
t+(n) p(n,ph)ph
r~(ptr)tav+.x ¢t

double[] conv( double[] wv, double[] tr)

{
h
t

cat( 0, tr, genarray( shape(wv)-1, 0d));
rot( iota( shape(wv)),

genarray( shape(uv), h));
take( shape(tr), VxM( wv, t));

r

return( r);

3}

Figure 1: McONV in APL and SAcC

The SAc translation follows exactly this scheme. The
Sac library function genarray(shp,val) is equivalent to
“shppval” The library function cat(d,A,B) is equivalent
to “A, [d]B” while shape (a) just means “pa”. So, the first
line of APL-code can be translated without any problems.
However, the second line is not as simple as the first one.
Although, the vector h may easily be expanded to a matrix
using the genarray function, SAc, for the time being, pro-
vides no means to rotate each line of a matrix by a different
offset, as does “¢” in APL. Here, additional specification
effort is required. However, Fig. 2 shows how this lack of

51

functionality may be overcome. Both, the "¢.” and the “¢”
operators of APL can be expressed in SAC using the SAc-
specific wITH-loop construct and the SAc-version of rotate
with constant rotation offset!.

int[] iota( int[] shp)

{
res = with( . <= [i] <= .)
genarray( shp, i);
return( ras);
}
double[] rot( int[] v, double[] a)
{
res = with( . <= iv ¢= ,)
genarray( shape(v),
rotate( 0, ~v[iv], aliv]));
return( res);
¥
double[] VxM( double[] v, double[] m)
{
neutr = genarray( [shape(m)[1]], 0d);
res = gith( [0] <= iv < shape(v))
fold( +, neutr, v[iv] * m[iv]);
return(res);
}

Figure 2: Additional Sac functions for Mconv

The result of conv is computed as the inner product of
the wavelet vector wv and the skewed matrix t. Again, SAC
does not provide a similarly general mechanism as APL’s
“ w.a ” operator. However, its concrete instantiation in the
benchmark, i.e. " +.x ” applied to a vector and a matrix,
may well be expressed in SAC. One possible SAC imple-
mentation of this vector-matrix product is the function VxM
given in Fig. 2.

2.2 The LOGD benchmark

Similar to MconNv, LoGD represents a kernel routine of a
signal processing application; it transforms a huge vector of
double precision floating point numbers. Two slightly differ-
ent APL implementations of LoGD have been investigated;
they are referred to as LoGgD1 and LoGD2 from here on.

We start with LoGD1 whose original APL specification
and the translated Sac code are shown in Fig. 3. A closer
look reveals that the SAc code of the function logd is noth-
ing but a literal translation of the corresponding APL op-
erators into their counterpart functions fram the SAc array
library. Moreover, the translation of the function diff which
is also used in LoGD1 is nearly as simple. However, instead
of dropping the rightmost element of the sig vector and
adding a zero on its left end, we may use the SAc function
shift (dim,offset ,nev,A) which shifts an array A along the
dim axis offset elements to the right and fills the leftmost
positions of A with the scalar value new.

The alternative APL specification LoGD2 differs from
LoGD1 only w.r.t. the implementation of the diff function
which here uses an n-ary “ a/ " operator. Fig. 4 shows both
the alternative APL specification of diff and the equivalent

!Note that upen a positive rotation offset, SAC rotates a vector to
the right rather than to the left, as APL does.
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double[] diff( doublel[] sig)

{
res = ( sig - shift( 0, 1, 0d, sig));
return( res);
}
double[] logd( double[] wv)
{
res = max( -50d, min( 5Od,
50d * (diff( wv) / (0.01+wv))));
return( res);
}

Figure 3: Logp1 in APL and SAc

RES+~DIFF SIG
RES+~~2—/0.0E0,SIG

double[] minus_2_reduce( int n, double] v)
{
with ( . ¢= iv € ) {

tl = tile( [n], iv, v);

val = t1[1] - t1[0];

ras =

}
genarray( shape(v)-n+1, val);
roturn( res);

}

doublel] diff( double[] x)

{
res = minus_2_reduce( 2, cat( 0, [0d], x));
raturn( res);

}

Figure 4: LoGD2 in APL and SAc

SAcC code. Since for the time being SAC does pnot support
higher-order functions, the functionality of the n-ary “ a/ ™
operator cannot be expressed in its general form. However,
in conjunction with a specific operator to be applied, e.g.
subtraction as in the benchmark example, it is well possi-
ble to emulate it in SAC, as is shown by the defimition of
the function minus_2 reduce in Fig. 4. The library func-
tion tile(shp,offset,a) selects a subarray of a with the
shape shp, starting at index position offset. Actually, tile
is a combination of take and drop. After having selected
the appropriate 2-element subvector of v, its first element is
subtracted from the second one as is specified in APL by the
negative left operand to the n-ary “ e/ ” operator.

2.3 The TOMCATYV benchmark

The benchmark TOMCATYV is a vectorized mesh generation
program. Implemented in FORTRAN, TOMCATYV is part of
both the SPEC CFP’92 and the SPEc CFP’95 benchmark
suites. Our APL version is directly based on the original
FORTRAN source code. However, some minor modifications
have been made insofar as always a fixed number of it-
erations is performed, and the code which computes the
termination condition is manually lifted from the iteration
loop. This is done to assure fair run-time comparisons be-
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tween SAc and APL, as the SAC compiler would automati-
cally move the corresponding statements outside the itera-
tion loop, but the APL interpreter has no opportunity to do
so. Since this benchmark is decidedly larger than Mconv
and LoGD, we restrict the comparison between APL and SAcC
code to a representative set of selected subroutines.

r+x compmesh y;ax;yx;xy;yy;a;b;c;pax;pxy;qxx;qxy;pyy;qyy
ux+1 ~2171 ol (2¢dx)—x
ya+—1l —2471 ol (2dy)—y
ay+——2 1{0 "1l (2ex)—=x
yy—-—2 1l0 "1l (2ey)—-y

a+0.260% (xyXxy)+t+yyXyy
b+0.260% (yxXyx)+xxXxx
c+0.126X (xyXxx)+tyxXyy

pxx+—(1 2171 0dx)—(2.0%1 1171 —1lx)—1 0ol—1 ~2lx
qxx—(1 2071 oly)—(2.0x1 1171 ~1ly)—1 ol™1 ~2ly
PYY—(2 110 —1lx)—(2.0%1 171 ~1ix)—-0 1172 ~1lx
qyy+(2 140 —1ly)—(2.0x1 141 ~“1ly)—-0 1172 ~1ly

Pxy+—(€(2 2ix)——2 2¢x)+(~2 —2ix)—2 ~2x
qxy+—((2 2iy)——2 20y)+(72 ~2ly)-2 “2ly

aat+—b

dd+b+b+(2.0+0.98) Xa

rx+ (axXpxx)+(bXpyy)—cXpuy
ry+ (axqux)+(bxXqyy) —cXquny
r+0

Figure 5: ToMcATV: function compmesh in APL

A major routine of TOMCATV is compmesh. This funec-
tion recieves two square matrices x and y of size N as argu-
ments and creates a total of four square matrices of size N-2.
The APL implementation of compmeshis shown in Fig. §, its
translation to SAc in Fig. 6. We note that there are two
different signatures for the two versions of compmesh. Since
APL is limited to monadic and dyadic operators, additional
parameters and return values can only be realized by global
variables. The APL version of compmesh returns all four re-
sult matrices via the global variables aa, dd, rx, and ry; the
actual return value of compmesh is not used. This contrasts
with SAcwhich provides the required flexibility by support-
ing functions with any number of formal parameters and
return values.

The body of compmesh essentially uses three different cat-
egories of operations: rotation along both axes using “d¢”
and “e ”, selection of submatrices using “!” and various
arithmetic operations. The first and the third categories
pose no problems as far as translation into SAC code is con-
cerned. However, since the SAc library functions take and
drop do not support take or drop vectors with negative el-
ements, applications of them cannot literally be translated
into SAac. Instead, any APL “{” operation in compmesh must
be expressed as a nested take and drop operation in the SAC
version.

Most of the other functions of the ToMcATV benchmark
can be translated more or less straightforwardly into equiv-
alent SAC code, as demonstrated for compmesh, an exception
being the function fma It searches for the matrix element
with the highest absolute value. The value of this element



double[], doublel],
double[], double[] compmesh( doublae[] x, double[] y)
{

xx = take( shape(x)-2,
drop( [1, 0], (rotate( 1, -2, x) - x)));
yx = take( shape(x)-2,
drop( [1, 0], (rotate( 1, -2, y) - y)));
xy = take( shape(x)-2,
drop( [0, 1], (xrotate( O, -2, x) - x)));
yy = take( shape(x)-2,
drop( [0, 1], (rotate( 0, -2, y) - y)));
a = 0.260 = (xy*xy + yy*yy);
b = 0.250 & (yx*yx + xx#xx);
c = 0.125 » (xy*xx + yx+yy);
pxx = take( shape(x)-2, drop( [1,2], x))
- (2.0 * take( shape(n)-2, drop( [1,1], x))
- take( shape(x)-2, drop( [1,0], x)));
qxx = take( shapa(x)-2, drop( [1,2], y))
- (2.0 » take( shape(x)-2, drop( {1,1], y))
- take( shapa(x)-2, drop( [1,0]1, ¥)));
pyy = take( shape(x)-2, drop( [2,1], x))
- (2.0 » take( shape(x)-2, drop( [1,1], x))
- take( shape(x)-2, drop( [0,1], x)));
qyy = take( shape(x)-2, drep( [2,1], y))
- (2.0 * take( shape(x)-2, drop( [1,1], y))
- take( shapa(x)-2, drop( [0,1], ¥)));
pxy = (drop( [2,2], x)
- take( shape(x)-2, drop( [0,2], x)))
+ (take( shape(x)-2, x)
- take( shapa(x)-2, drop( [2,0], x)));
gy = (drop( [2,2], y)
- taka( shape(x)-2, drop( [0,2], y)))
+ (take( shapa(x)-2, y)
- take( shape(x)-2, drop( [2,0], ¥)));
aa = -1d » b;
dd = b+ b + (2.0/0.98) * a;
x = a * pxax + (b*pyy - c*pxy);
ry = a * gxx + (b*qyy - cequy);

raeturn( aa, dd, rx, ry);
Figure 6: TOMCATV: function compmesh in SAC

is returned along with the coordinates of its first occurrence
in the row-wise unrolling of the matrix. Notwithstanding
the problem that additional parameters have to be commu-
nicated to and from the function via global variables, the
APL implementation of fma is short and concise as can be
seen in Fig. 7.

The problem with translating fma to SAc is that nei-
ther the functionality of the dyadic “.” nor reduction along
a single coordinate are directly supported by SAc. In or-
der to keep the translated SAC code as close as possible to
the original APL specification, we have implemented both as
Sac functions, as can be seen in Fig. 7. Since SAC, unlike
ArL, strictly distinguishes between arrays and scalars, two
versions of max_reduce are required, one that operates on
vectors and returns a scalar, and one that operates on ar-
rays with at least rank two and returns an array whose rank
is reduced by one. The first version may simply be imple-
mented as a call to the SAcC library function maxval which
returns the maximum value of all elements of a given array.
The second version, in contrast, may only be specified by a
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z+fma y;t;ay;v
ay+ly

ve[/ay

t—[/v

i+vit
jrayli;]1.t
z+~y[i;j]

double[] max_reduce(double[] array)
{
res = with (. <= iv <= .)
genarray( take( [dim(array)-1], shape(array)),
maxval ( array[iv]));
raturn(res);

}

double max_reducae(double[.] array)
{
return(maxval (array)) ;

}

int iota(double[.] vect, double val)
{
pos = O;
while ((pos < shape(vect)[0]) 22 (vect[pos] != val)) {
poat+;
}
return(pos);

}

double, int, int fma( double[] y)
{
ay = abs(y);
max_reduce(ay);
max_reducea(v) ;
ieta(v, t);
iota(ay[i], t);
y[ilj];
return(z, i, j);

NG oot &

Figure 7: ToMcATV: function fma in APL and SAcC

WITH-loop which first derives the result shape and then ap-
plies maxval to each subvector of the innermost rank. The
dyadic “¢” which determines the index position of the left-
most occurrence of a value in a vector, can best be specified
in a C-like fashion as shown in Fig. 7. However, once the
functions max_reduce and iota have been implemented, the
SAC version of fma itself becomes a rather literal translation
of the original APL source. ’

3 Performance Comparisen:
Interpreted APL vs Compiled SAC

In this section, we compare the performance of the APL and
the SAc implementations of the three benchmarks McoNv,
LogD, and ToMcCATV, as described in Section 2. Our test
system is a Pentium-II with 266MHz clock frequency and
64MB of main memory. For the interpretation of the ArL
programs we use APL+WIN 3.0 running under Windows95,
The manually translated SAc programs are compiled by the
current SAC prototype compiler SAc2c v0.8 running under
LINUX, kernel revision 2.0.35. Gnu gcc 2.7.2.1 is used as a
backend compiler to generate host machine code. All APL
run-times given below are determined by the “ [Jts” system
function; the SAC run-times are user CPU times measured
by the LINUX shell command time. They all are the minirmnal



run-times of ten independent runs of the respective bench-
mark programs.

3.1 Performance of MCONYV

Mconv tame time me
p tr p wv APL SAc timeSAc
10,000 50 0.22 sec 0.09 sec 2.4
10,000 100 0.44 sec 0.20 sec 2.2
10,000 150 0.71 sec 0.32 sec 2.2
10,000 200 0.99 sec 0.42 sec 2.4
5,000 200 0.49 sec 0.20 sec 2.5
15,000 200 1.48 sec 0.71 sec 2.1
30,000 200 — 2.29 sec —
45,000 200 — 3.78 sec -
60,000 200 — 5.80 sec —
150,000 200 — 15.17 sec —

Figure 8: Performance of McoNV

Fig. 8 shows the run-times of the McoNv benchmark
for various problem sizes determined by the lengths of the
trace vector and the (shorter) wavelet vector. The compiled
SAc code achieves speedups relative to interpreted APL pro-
grams by factors of 2 and more although the SAC imple-
mentation exactly follows the same algorithm as the APL
program. Moreover, the problem sizes are varied within a
range in which the interpreter should perform quite well.
There is no explicit iteration and the array sizes are large
enough to amortize setup costs over a large number of array
elements.

A closer look at the two implementations in Fig. 1 reveals
that by far the largest part of the execution time is spent
on creating, transforming, and reducing two huge interme-
diate matrices of shape “ (pwv), 1+ (ptr)+puv”. However,
whereas the APL interpreter more or less executes the pro-
gram as it 1s specified, the SAc compiler transforms the orig-
inal specification in a way that completely avoids interme-
diate matrices. In fact, SAC owes its performance edge over
APL to compiled code from which intermediate matrices are
completely eliminated in this particular case. Even more im-
portant than speeding up the execution times is the massive
reduction in memory consumption. Whereas 15,000 by 200
is roughly the largest problem size that can be dealt with
by the APL interpreter, requiring about 48MB of memory
to hold the two intermediate matrices alone, SAC may easily
handle a problem size that is ten times larger, as shown in
Fig. 8. This may also be seen as evidence that SAc actually
succeeds in avoiding intermediate matrices.

Thus, it turns out that the original APL implementation
of Mconv, though being elegant and concise, is only of im-
ited practical use due to its enormous memory demands.
This led to the idea of re-implementing MCONV in APL in
a less memory-consuming way. This program is shown in
Fig. 9 along with a SAc translation which is kept to it as
close as possible. While the value of the temporary h in the
function conv is computed just as before, the result of conv
is specified as a map operation of VxV_at over the indices of
the trace vector tr. Note that w and h are global variables,
s0 they can be used in the specification of VxV_at. The func-
tion VxV_at ignores its first operand which is just a dummy.
It computes a vector product on the wavelet vector w and
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r+dummy VxVat n
r+~((pu)tnlh) +. xu

r+wWy conv tr

uEuv

h+tr, (T 1+n+puv) p0
r+0°.VxVat tptr

double VxV( double[] v1, double[] v2)
{
return( sum( vl * v2));

}

double VxV_at( int dummy, int[] iv,
double[] h, double[] wv)
{
res = VxV( wv, tile( shape(uv), iv, h));
return( res);

3}

double[] OP_VxV_at( int scal, int[] vect,
double[] h, double[] wv)

{

res = with( . <= iv <= .) {

val = VxV_at( acal, iv, h, wv);
}
genarray( shape( vect), val)
return( res);

B ]
double[] conv( double[] wv, doublel] tr)
{
h = cat( 0, tr, genarray( shape(wv)-1, 04));

res = OP_VxV_at( 0, iota( shape(tr)), h, wv);
return( ree);

¥

Figure 9: McoNvopt: improved implementation of McoNv

the corresponding subvector of h starting at index position
n. The SAc implementation exactly imitates the APL pro-
gram in order to allow for a fair performance comparison.
The two major differences are that wv and h are explicitly
passed as arguments in function applications rather than be-
ing global variables and that outer and inner products have
to be specialized to the specific operations since SAC does
not support higher-order functions.

Run-time measurements for both the APL and the SAc
implementations of McoNvopt are taken for the same prob-
lem sizes as those for McoONvV; the results are sumnmarized
in Fig. 10. The memory requirements of the APL implemen-
tation are successfully reduced and do now allow for larger
problem sizes. However, for problem sizes that McONV can
succesfully deal with, a severe slowdown by factors between
3.8 and 15 is encountered. For the SAC implementation of
McoNvopt it is just the opposite: McoNvopt is faster by
factors between 3 and 7 compared to McoNv. Thus, al-
though largely imitating the APL specification, McONVopt
turns out to be an almost ideal SAc implementation of the
McoNV benchmark in terms of run-time behaviour.

However, this immediately raises the question why is the
APL version that slow? Considering the particular imple-
mentation, one would expect run-times to scale linearly both



Mconvopt b b time
P tr pwy 'meAPL 'meSAC ﬁm:SAC
10,000 50 3.40 sec 0.03 sec 113.3
10,000 100 3.52 sec 0.04 sec 88.0
10,000 150 3.62 sec 0.05 sec 72.4
10,000 200 3.79 sec 0.06 sec 63.2
5,000 200 1.26 sec 0.03 sec 42.0
15,000 200 5.52 sec | 0.09 sec 61.3
30,000 200 27.19 sec 0.17 sec 159.9
45,000 200 83.98 sec 0.28 sec 2999
60,000 200 ( 185.70 sec 0.35 sec 530.6
150,000 200 | > 30 min 0.92 sec —

Figure 10: Performance of McoNvopt

with the length of the trace vector and with the length of
the wavelet vector. This is exactly the case with the Sac
implementation, but not with the APL implementation. The
latter is extremely sensitive against increasing lengths of the
trace vector whereas the effect of the length of the wavelet
vector on run-times is almost negligible. It is reasonable
to assume that the APL implementation of the outer prod-
uct with a user-defined function is the performance killer in
the APL version of McoNvopt. Unfortunately, we haven’t
managed to find an APL implementation of McONvopt with
better performance figures. A much more elegant and pre-
sumably also faster implementation could be had with the
CcuUT-operator which, however, is not available in our APL
interpreter.

3.2 Performance of LOGD

Loepl bi . time

puv tmeppy | liMmegac Tmeg , ¢

500,000 0.99 sec 0.23 sec 43
1,000,000 2.31 sec 0.47 sec 49
1,500,000 3.57 sec 0.71 sec 5.0

Locp2 b b time

p WY 'meAPL lmeSAC ﬁmeSAC

500,000 1.38 sec 0.23 sec 6.0
1,000,000 2.85 sec 0.51 sec 5.6
1,500,000 | 4.56 sec | 0.74 sec 6.2

Figure 11: Performance of LogD

Fig. 11 includes the performance data for the two vari-
ants of the LoGD benchmark. In the case of LoGD1, SAc
achieves a speedup of a factor of about five over the inter-
preted APL implementation. Whereas the APL version of
LoaGD2 is slightly slower than that of LoGgp1, the equiva-
lent Sac version takes about the same time, resulting in a
speedup by a factor of about 6. Here again the question
must be raised why is SAc so much faster than APL for this
benchmark? The APL version of LoGD1 is non-iterative,
and represents good quality coding style. The entire pro-
gram does not contain more than 8 built-in APL operators
which step by step transform a relatively large data vector,
i.e., the overhead inflicted by the APL interpreter should be
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negligible relative to useful computations. So, compilation
per sé cannot be expected to improve performance signif-
icantly beyond what can be accomplished with interpreta-
tion. However, in SAC compilation is the key to large-scale
program restructuring based on detailed program analysis.
For both LoGp1 as well as LoGD2, the SAG compiler is able
to generate target code which completely avoids the creation
of all intermediate arrays produced by the individual oper-
ators. In fact, the original SAC specification is internally
transformed into a single, complex array operation which is
then applied to the argument vector. This large-scale code-
restructuring optimization technique, called wiTH-loop fold-
ing, is described in detail in [19, 18]. For both versions of
the LoGp benchmark, wITH-loop folding is the key to the
superior performance of SAC relative to APL.

3.3 Performance of TOMCATV

TOMCATV time time time
P mat APL SAC limsSAc
20, 20 1.59 sec 0.11 sec 14.5
40, 40 4.45 sec 0.38 sec 11.7
60, 60 8.68 sec 0.79 sec 11.0
80, 80 | 14.23 sec 1.50 sec 9.5

100, 100 | 22.41 sec 2.47 sec 91

120, 120 | 32.54 sec 4.05 sec 80

Figure 12: Performance of ToMCATV

Run-time figures for the third benchmark, TOMCATYV, are
shown in Fig. 12 for various sizes of the square matrices be-
ing transformed. Similar to LoGD, the SAC implementation
of TOMCATV is significantly faster than the APL version.
Speedup factors are between 8 for the largest problem size
under consideration and more than 14 for the smallest prob-
lem size. This speedup degression with increasing problem
sizes can simply be explained by the decline of the interpre-
tive overhead relative to the overall computation performed.

Similar to LoGD, the wiTH-loop folding optimization tech-
nique generates target code that avoids large numbers of su-
perfluous intermediate arrays. The APL implementation of
the function compmesh (cf. Fig. 5) alone creates almost 90
large intermediate matrices provided that no specific opti-
mizatjons apply what seems difficult in an interpreting envi-
ronment. Here, the SAC strategy of implementing all array
operations by the more general WITH-loop construct com-
bined with the capability of folding subsequent WITH-loops
to form a single more complex one provides an enormous
optimization potential. In fact, the SAc compiler succeeds
in transforming the implementation of compmesh into four
complex WITH-loops, each specifying how to compute one
result matrix. However, this folding cannot be had without
problems. Whereas the APL interpreter computes interme-
diate results which are shared in the computation of more
than one result matrix, WITH-loop folding results in comput-
ing each result matrix from seratch. As the run-time figures
show, this does not at all outweigh the positive performance
impact of wiTH-loop folding. However, an additional op-
portunity for an optimization becomes apparent. Sharing
of intermediate results may well be re-introduced by fusion
of two or more WITH-loops to a single compound WITH-loop



that computes several result arrays simultaneously. With-
loop fusion, however, has not yet been implemented into the
SAc compiler, but remains subject to future work. Never-
theless, it makes clear that in particular the more complex
ToMcATV benchmark provides various additional opportu-
nities for optimization that presumably change the relative
run-time performance further in favor of Sac.

4 A Note on Compiling APL to SAC

Since manual translation of APL programs into SAC can ob-
viously be done more or less directly and the benchmarks
show speedups between 2 and 500, compiling APL to Sac
appears to be a worthwhile undertaking. The main problem
is to specify transformation rules for alllegitimate APL con-
structs or at least for some large subset of them. This sec-
tion is to identify to which extend SAc and its compiler have
to be extended and what kind of restrictions may possibly
have to be imposed on APL programs in order to facilitate
a smooth compilation of APL to SAcC.

Many of the pre-defined APL functions are available in
SAc either as built-in (so-called intrinsic) operations, or as
part of the SAc standard library. Including into the Sac
standard library most of the APL operators that are not yet
supported poses no major problem. Exceptions are the APL
operators “c” and “3” that manipulate nested arrays, the
problem being that SAc does not support arrays that contain
subarrays of different shapes. Including them would require
drastic changes of both the current type system and of the
internal array representation from straight data vectars, say,
into nested vector representations.

User-defined APL functions can be more or less one-to-
one translated into equivalent SAc functions. Exceptions
relate to the usage of global variables. Since SAcC is a purely
functional language, there is no concept of side-effects. In-
stead, results of function applications have to be passed ex-
Plicitly as function values to the calling context. As a conse-
quence, compilation of APL functions requires an analysis to
detect and subsequently eliminate side-effects. Techniques
for deing so can be found in the APEX compiler [3] which
compiles APL to SISAL.

The compilation of the higher-order APL functions such
as “"w.a” or “°.a ” is more difficult since SAc does not
(yet) support higher-order functions. Instead, each combi-
nation of higher-order APL operators and functions has to
be replaced by a specialized SAc version, as is done in the
APEX compiler. Exceptions are “ @/ ” and “ a# ” which
in some contexts can be realized in SAC using so-called fold
WITH-loops. However, this is only possible if the reduction
function o is associative and commutative since the folding
order in SAC is non-deterministic.

Though it is possible in principle to compile APL into
SAc programs, a compiler implementation would have to
take care of another problem. In contrast to APL, SAC re-
quires programs to be statically typed as an essential prereq-
uisite for compilation into highly efficient code. This could
be considered a conceptual advantage for APL programs as
well since typing, beyond efficiency considerations, also im-
provea confidence in program correctness. Unfortunately,
the type system of SAC also rejects programs whose APL
counterparts may be type-correct, but whose array shapes
cannot be inferred statically. However, in a follow-up ver-
sion of the SAC compiler the type system will be relaxed
so that only the ranks but not the exact shapes need to be
known statically, which likely covers most APL programs.
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5 Conclusion

The objective of this paper was to find out how much ef-
fort it takes to translate APL programs into SAC programs
and how both versions compare with respect to run-time
performance. Our findings are based on three benchmark
programs which also gives some insight into the expressive-
ness of both languages.

The means for defining rank-invariant functions in SAC
considerably facilitate the translation of APL programs into
SAc programs. Supporting in SAc higher-order functions
would not only improve the elegance of SAc specifications
but also the compilation of APL programs which make use of
this feature. Moreover, adding new data structures to SAc
would help to implement nested arrays, and the type system
would have to be relaxed in order to facilitate compilation
of programs in which the exact shapes cannot be inferred
statically.

The run-time figures presented in this paper show that
the compiled SAc programs outperform the interpreted APL
programs by factors of 2 to 500. These improvements can
be attributed to the various optimizations implemented in
the current SAc compiler. In particular, WiTH-loop-folding
has shown to be essential for avoiding superfluous tempo-
rary arrays. Closer examination of the code generated by
the Sac compiler for the given benchmarks exposed further
opportunities of program optimization, e.g. WITH-loop fu-
sion or memory pre-allocation analysis, both of which are
not yet included in the SAC compiler.
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