Check for
Updates

INFO: Interactive APL Documentation

George Mebus
Cognos/LEX2000 Inc.
2 Independence Way

Princeton, NJ 08540

George@LEX2000.com

ABSTRACT

A large body of APL code may be hard to understand and
analyze, particularly if you are not its author. A code system
that spans multiple workspaces (WSs) compounds that
problem.

INFO is a Multi-WS system written in APL+Win that pro-
vides convenient interactive documentation of APL+Win
and APL+DOS multi-WS systems. The User has a variety of
displays that give insight into the system structures and rela-
tionships within single- or multi-WS systems. An adminis-
trator can easily set up and maintain the INFO static analysis
data bases for any number of WS groups.

This paper demonstrates INFO by showing how INFO
documents itself. A distribution package contains the com-
plete code and instructions for setting up this self-
documentation.

1. INTRODUCTION

For large systems of APL code, such as our LEX2000 Fi-

nancial Reporting Software products, it is necessary to break

the code into several WSs. Some reasons for using multiple

WSs are:

® 10 reduce the amount of code that is resident in com-
puter memory at one time;

e to separate code by major responsibilities, then use only
the WS that you need for a particular job;

e to maintain single copies of objects (functions and vari-
ables) common to several WSs and then copying them
as needed, rather than duplicating them in each WS;

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

APL99, 07/99, Scranton, USA

©1999 ACM 1-58113-126-7/99/0 008 5.00

63

e to keep collections of code that are seldom used from
being always resident in memory.

One’s ability to remember and understand the interrelation-
ships among various functions decreases as the body of code
increases, as less of it is one’s own and as the original code
gets older and gets changed. Some help is then needed to
illustrate those relationships or to track how a variable
changes among the function calling chains; one needs help in
searching out information in the extended WS (the chosen
WS with all of the objects from other WSs that are used in
it).

INFO gives such help. INFO provides a User with scrollable
alphabetically-ordered lists of the functions and/or variables
or all names used in the extended WS. It displays function
and variable definitions, name uses in functions (where and
how used), function calling trees and “name usage trees” that
show where a name is assigned, referenced and changed
within function calling tree structures. INFO also supports
flexible regular expression text searches. Each display is in a
separate window; a name (or group of names) in the text of
any window can be used to launch the display of other in-
formation about it (them).

An Administrator can easily define WS file groups that tell
which WSs share sets of objects among themselves and how
they are shared. Static analysis files are then generated for
all with one button click. Thereafter, the INFO form shows
when a WS has changed and allows quick incremental up-
dates to the analysis data base, again, with the click of a
button.

2. EVOLUTION

When I joined what has become LEX2000 Inc. ten years
ago, I inherited a fairly large body of APL code (about 900
functions) in six WSs with little documentation and few
comments. This code was for an application with which I
was not familiar. Its developer had recently died. To be able
to both develop and maintain this code required extra assis-
tance. A debugger from Uniware was helpful in showing
some detail workings, but gave no special insight into the
design. The need to develop some “insight tools” was the
genesis of INFO.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F312627.312726&domain=pdf&date_stamp=1998-12-01

To determine the calling structure of APL code, each name
used in each function must be found and the chain of func-
tion dependencies forged from them. Doing that analysis on
demand in a WS wastes much time and space. Quick, com-
prehensive displays of such interrclationships can only be
accomplished by a static preprocessing of the information
and storing the results in a data base. This is INFO'’s ap-
proach.

Three static analysis files characterize the information about

a WS:

1. definitions of functions and variables in the WS and
related information about them;

2. the names used in each function, where and how;

3. the functions that use each name, where and how.

These files give quick access to the information required for
INFO’s variety of displays. They also require a lot of proc-
essing to generate.

2.1 Incremental Updates

As the LEX2000 code grew to double the original size and
moved to new platforms (32-bit machines and then Win-
dows), its complexity (and obscurity) also grew, and INFO
had to grow with it to meet new challenges. For example,
development code is always changing; so then must the
contents of the INFO static analysis data base. This created
the need to frequently re-analyze everything to keep up to
date. That took too much time, so the data base was seldom
current.

The data base and processing were redesigned to allow in-
cremental updating so that only objects that had changed
were re-analyzed and their information updated. This saved
a lot of time in many cases, but not always.

The original multiple WS structure involved five separate
WSs and one other (QPKFNS) for holding “packages” of
shared and specialized objects that were copied by the others
when needed. INFO would document a WS by copying all
of these foreign objects from QPKFNS and then determining
which in this extended WS had changed for the incremental
updates. Unfortunately, the incremental updating still had
some high overhead problems:

=  copying objects from the large QPKFNS WS (and Iater
from every other WS in LEX2000 for DOS);

e comparison of the Ovr of every function to determine
which had changed;

e  re-creation of the function calling tree structure that is
saved for each extended WS;

o if a QPKFNS common object (one used by all the other
WSs) had been even trivially changed, then every WS
would be re-evaluated and the changed object would be
re-analyzed for every one -- a great waste of processing.

One special feature of the DOS version of INFO was the
incremental WSDOCs. WS documentation was important in

64

the early 1990’s because so little could be seen in a computer
screen’s worth of text. From its data base knowledge of
which functions had changed, INFO could generate incre-
mental WSDOC change pages on demand, reducing the
amount of paper used for WSDOCs while allowing frequent,
timely updates.

2.2 Windows

When APL+Win became an effective development system,
the advantages of Windows for INFO control and presenta-
tion became more obvious. The generation of separate resiz-
able display windows offered more flexible control and
comparison of various views. Better interactive displays
were possible using color to identify text search results. A
Windows control form could be much more convenient and
capable than the set of command words used in the DOS
version. So a conversion to the current Windows-based
INFO began in 1997, still using command words at first but
later being driven by the more convenient menus.

A new approach was also taken to incremental updating of
the data bases. Update speed was increased and automated
by: g :

e evaluating each WS separately (including the
QPKFNS), then linking the results of dependent WSs at
the time that a main WS is “opened” by the User;

e saving and comparing Oat (timestamp) results for
functions, then comparing the Ovr of only those func-
tions that have changed timestamps;

e  using a modular function calling tree structure that can
be incrementally updated;

33399 E~)?
A3¥e-ID-0p
23%963-33

itre-ay-0s _ o0
w an-—ov-§




= notification by display color that some WSs in a WS
file proup have been changed and that the data base
files need updating.

These and other changes have made the maintenance of
INFO data bases nearly automatic -- it is easy to keep them
up to date. Because INFO makes on-demand documentation
so easily available, the need for complete WSDOCSs seems to
have vanished. WSDOC generation is not currently imple-
mented in INFO, but the original incremental code has been
retained for possible inclusion in the future.

3. AUSER’S TOUR

The best way to see what INFO does is to take a walk around
the main form. When INFO is opened and a WS file se-
lected, the User is presented with something like what you
see in Figure 1 above.

3.1 Selections

The first step to using this form is to select the File Group
(if one has been defined) or the Info Path to a folder con-
taining INFO static analysis data base files. A Browse but-
ton can be used to find the desired folder. In Figure 1, a File
Group comprised of an alternative version of the three WSs
that make up the INFO documentation system have already
been selected.

Once the file group has been chosen one must select the
primary WS to be documented. INFOA in the WS list has
been opened by double-clicking the primary (“left”) mouse
button on that line or selecting the INFOA row and either
pressing the Enter key or clicking the Open button. Related
information from the other WSs was then automatically
linked to the one chosen and names of all the functions in the
extended WS have been displayed alphabetically in the
Names listview.

With this extended WS opened, we may notice several

things:

e a “ws” letter and timestamp are associated with each
name;

e  the selected name appears in an edit field immediately
above the Names list;

®  a status line at the bottom shows how many names have
been selected and how many there are in total;

e a “Functions” check box is checked, as are four others
below it. )

The “ws” letters show in which WS each of the functions
resides. They match the “ws” identifier letters in the WSs
listview at the top of the form.

The name in the edit field can be retyped by the User; as
each letter is typed, the matching word is selected if there is
an exact match, otherwise the alphabetically next word is
selected. If a pattern match is required instcad, the Match

65

Pattern box can be checked and one or more patterns en-
tered in the form used for the APL+ ]fns user command.
This typically results in several names being selected. The
status bar message t€lls how many and the Selections to
top button will move all selections to the top of the list for
better observation.

The four check boxes below the Functions box classify the
functions by whether they call others and are called by oth-
ers:

Top call others but are not called;

Mid call others and are called;

Bot (bottom) are called but call no others; and
Lone are neither called nor call others.

Unchecking all but Lone will show all the orphans, then
checking the Top will together show all that are not called
by other functions. This kind of display may be helpful in
showing functions that are not used and may be unnecessary.

If the Variables box is also checked, then the names of
global variables defined in the WSs will be added in their
proper alphabetic locations. Instead of timestamps, their
Stats column values are indications of type, depth and
shape. If only the Variables box is checked, only variable
names are shown.

If the Names box is checked, then all the Functions and
Variables boxes are disabled and all names used in any
function in the extended WS will be displayed and can be
selected as described above

Name lists can be reordered by clicking on the column head-
ers of the list box. The first click will reorder the rows to
alphabetize the column clicked. An immediate second click
reverses the ordering. Thus if a group of names has been
moved to the top of the list by Selections to top, the origi-
nal order can be regained by clicking the “Name” column
heading.

3.2 Real Information

Why do we need all these ways of selecting names? Because
we can display a great variety of information about the se-
lected names when the secondary (right) mouse button is
clicked on the Names listview or when the F10 key is
pressed. Either action presents a menu as shown in Figure 2.
Most of the menu’s selections open an information display
window.



function name
locked function
recursive function
left argument
right argument
result

local name
referenced
assigned

indexed

index assigned or selective assigned
strand assigned

:  label

e~ DER=4d4d

K

Table 1. Name Identification Symbols

£

v vasDatily v;B
(1% n Formaets 12-digit timestamp mumber yyyyumeidhlaum
{23 & presumes v is & character wveClor or iftoplager
133
FIT Y :if a2xbidr v s if mumbsr
151 13f Ray ¢ wi2p‘'0* wm special format i¥ 0
{61} alse o wveTvy n alse juskt get char rep
173 rendif
jies :endif J
(94 vli2+vy ¢ B8« 1 111 0118110061101
411101 veBuey ¢ (i~f)/v)e"— M
¥
v vaalatify v
ren B Q; 9« 10%s
Lopy=i-y Qup 4 5= GLo= Qe 104w+
v saDatIF Yy av
. Ddr 4
qn calsa 8
L cendifl T 8
L 11F 4 5

Now, let us look at the items in each section of the menu.
3.3 Definitions

The first section of this menu is concemed with “Object”
(function or variable) definitions. The Both Function def
and names combines the next two entries for functions in a
single display. The Object Definition listing is a normal
listing for a function or a value display for a variable. If the
variable is nested, the standard nested “Display™ form is
used. The Function Name uses shows where and how
namecs are used in a function.

66

——
Figure 3. A “Both” display window

Figure 3 shows a “Both™ display window for a small INFO
function named AaDat ify. The top part is a normal func-
tion listing and after that is the “function name uses” -- a
compact display of each name used in the function, alpha-
betically ordered.

To the left of the names is a digest of how the name is used
in the function and to the right are the particulars in a com-
pact form. Each use is identified by a single symbol; multi-
ple symbols after a line number show multiple uses for the
name on that line. Note that the symbols associated with a
line are in “chronological” order. For example, the name v
is first referenced, then assigned in the same statement on
lines 5, 6, 9 and 10. Table 1 shows the complete list of
name identification symbols



A "Statistics” display window shows information about the
selected name or names, telling in which WS they reside,
their sizes and other specific information such as number of
lines and timestamp for a function, type/shape/depth for a
variable. Figure 4 shows statistics for a function and a vari-
able.

¥ VAaNMLATY ¥

Formals 12-digiz timasien: mumber

yrypmmditibue
Wy = INFOA; RIdE » B3d; LINES = 10; TS = 1999 Jam 39 23138 3

saBLspNIn
TIPE = Boploean: DEFTH = |, SNAPE « 0 2
WS = IKFOA; SI3E = 23|

Figure 4. A Statistics Display Window

3.4 Trees

IDMAT
15 1AALASE
16 1R eadRNS

. IBISPLIT

. [11]AaMATIOTA

110 18 201aaMATIOTA

1201 IDORDER

*+ {0v 11 28 311IDORDER

LrlbiHIth|thlh

o

Figure 5. A Function Calling Tree

The second section of the menu is concerned with the dis-
play of function calling trees. These are currently imple-
mented as text but may use Widows tree structures in the
future. Figure 5 on the next page shows the Function call-
ing Tree display for a function named IDMAT: It calls four
functions. The line numbers of IDMAT on which they are
called precede the function names. Those line numbers are
colored blue.

The letters preceded by underbars are WS identifiers. The
indented text shows the “who calls whom” relationships.
Line numbers in brackets before functions names mean that
they belong to the calling function, that they are the lines of
the calling function on which the named function is called.
Specifically Figure 5 shows that TDMAT calls AACASE on
line 5, ReadNMS on line 6, AAMATIOTA on lines 10 18 20,
and ITDORDER on line 20. Also, ReadNMS calls SPLIT on
its line 8 and AAMATIOTAon 11.

A CGET

Y g aarmal _Loadiis)

| I . . aAafma_Page Clickl2alld

Y g . . AAfmMatin Hait(11)

I . « . . AafmMarn Makell]
e g - - sAFma_Makel173 179 19h1

Figure 6. An Inverse Function Calling Tree

Note that TDORDER is recursive, calling itself on its lines 11
28 31. Where a function whose subtree expansion has al-
ready been shown appears again lower in the tree, its expan-
sion is not shown again. Instead, up arrows are displayed in
the column markers to show that the expansion appears
above. The name of first-time expansions are also displayed
on the far left to make the expansion easier to find.

Figure 6 shows an Inverse function calling Tree that illus-
trates the “who is called by whom™ relationships. Although
this looks very much like the forward calling tree, notice that
the functions named in the tree have bracketed line numbers
after the function names instead of before. It shows that the
function GET is called by AAfmA I_Load on line 15 of that
function. The trail of calls continues to the top functions
which are both Make functions, defining the Windows forms
that start the whole process.

The name usage trees expand on the idea of function calling
trees to show how a selected name (typically a non-global
variable) is used within a calling tree structure. Figure 7
demonstrates the local Name Usage irees for a variable
named LocalNameFns.

Tl Mamelins

Loca lName¥fns
A e IDMAT = 0B; 14- 1&r 2@
IDORDER A ¢ hd [201IDORDER -~ 18
_An + + Ig® 11 24 31)IDORDER -~ 18
A T - 0] 18-
LA * (251 IDORCER - 18
ADORDER A v hd EJ1I1DOREER -— 17 24
AT + + [0y 12 29 321DORDER =-—- 17 24
A e o~  8; 192 28
A + {31 100RDER — 1T 24

Figure 7. Local Name Usage Trees

Some additions to the normal function calling tree are:

®  There are multiple trees;

] The selected name is listed above the trees;

®  Name usage summaries appear between the WS identi-
fiers and the function names. These summaries are es-
pecially useful in quickly spotting where a value is
assigned and reassigned;



e Line numbers and specific uses follow the function
names showing exactly where changes and references
are made.

Global Name Usage trees differ from their local versions
only in that they do not start where a name is first localized,
but always begin at a “top” function. Figure 8 illustrates a
global name usage tree for the same name as used before.
They are generally much larger, as this is.

Finally, Add names to NoShows allows you to add the
selected function names to a(n as yet hidden) list of names
not to include in a Tree display. This feature can be used to
avoid the clutter of low-level utility functions that don’t
really aid your understanding of the function being ex-
panded. We will say more about that when we examine the
Manage Tree Displays... dialog in Figure 12a..

3.5 Finding text strings

The third section of the right-click mouse menu has entries
called Find..., Print the current names list and Print the
selected names. The printing is just what you would ex-
pect it to be and won’t be examined here. The Find capa-
bilities, however deserve some special attention.

LocatNamarns*

g

Figure 9. The Find Dialog

When you open the Find dialog, you may notice first that the
name selected in the INFO Control form names list appears

68

in the edit control near the bottom of the Find dialog and that
it is enclosed in quotes. Check boxes for Match Case and
Tokens tell how to search for the text string. The frame

- 5 parmdisp Moke
A afEDASy Gon _T - Ld3 29 J=...laarmnDicp Gen
v A~ - s 1523917 -- 0% 15«
[ IDORDER _A - - ~ 1291 200ROER —- 1%
A * 1 R . 16% td 23 35 IIBORDER -——- LA
{oonner A - s = [ILIDORDER — iV 74
-t * 4 1 , Tew 18 29 321DORDER — 17 24
A » Lidmiz
AT + - 1IALT -~ 47 15~
o A e A Li42 [42)0 == Q. 19« 28
A e . . (L9 IDMAT — 8 14~ 18~ 20
A« + v o+ % [IVIPORDER - 1
A L3 A k4 (33 \PORDER =~ 17 24
A . 154412
_A = b 1 + 190y —~~  ©B; i8¢ 2a
I asrms Mare
- 4 128 35 51...1aarmDisp Cez
- 4 haDRmersa Maxe
-1 + 18 13 18 ...1safRlispy Ganm

Figure 8. A Global name Usage Tree

Where lo Search contains six options, enabled or disabled
according to the current situation. They are:

All Functions

Functions Named in Names List

Functions Selected in Names List

Functions Named in Current Window

Functions Selected in Current Window

Text in Current Window

If we simply click the Find button or press Enter, the search
begins. Because the All Functions option is chosen, all
functions in the extended WS will be searched for this string
and the results displayed as shown in Figure 10.

Although not shown in this publication except by lighter
print, every occurrence of the text found is colored magenta
The first occurrence is selected and pressing the F3 key will
move the selection to the next occurrence; Shift+F3 will
move to the previous. It may be interesting to compare the
results in this display window with those obtained from a
Usage Tree as shown in Figure 7. One difference is that
Find displays each entire line containing the searched text,
but the functional context is not made obvious as it is in the
Usage Tree. Another difference is that Find also displays
matches in comments. .



Besides displaying a name selected in the names list, one can
type a string in the edit control. The up and down arrows
will cycle through the set of strings already used, and there is
always one empty string in the list so you can easily start
over. These strings may be arbitrarily complex patterns
through the use of five “operators” (or OPs): AND, OR,
THEN, TO and WO. They may be used in upper case or
lower case. Each may be used in a dyadic form (e.g.,
'global' and 'FNS' will match the two quoted
strings only where they both appear in the same statement or
comment). The arguments can be arbitrarily complex pat-
terns. The other form each OP can take is a prefix form with
any number of strings or other patterns as right arguments --
the processing is like an OP reduction of these arguments. If
several names are selected in the names list when Find is
selected or Cul+F is  pressed, the  pattern
OR 'namel' 'name2' 'name3d' ...
in the Find dialog edit control.

will be placed

The meanings of the OPs are:

Figure 11. The Filé Menu

e  AND -- all arguments are matched only where all the
argument patterns occur in the same statement;

e  OR -- any argument pattern is matched wherever it is
found;

e  THEN -- all arguments are matched only where the first
pattern precedes the second (and the second precedes
the third ._.) in a statement;

. TO -- all text is matched from the first pattern to the
second (and the second to the third ...) in a statement;

® WO -- (meaning “without™) the first pattern is matched
only if the second is not also found in a statement. If
there are more than two argument patterns, the reduc-

tion model applies as if it was written:
‘patternl' wo 'pattern2' wo 'pattern
3 ' . . . and then evaluated from right to left.

Thus, patterns of some complexity may be searched and one
match may vary quite a lot from the next. That is why color
is used to mark the matches and why the Find Next and
Find Previous (shown in Figure 15) highlight matches in
sequence -- even if the matches overlap.

3.6 Dropdown Menus

Before leaving the INFO Control form, let us peruse the
Dropdown menus at the top of the form. They offer some
additional capabilities and repeat some others already scen.
The four menus are : File, Edit, View and Window. As you
have seen with other menus, these all have shortcut keys
assigned so that nearly any operation can be done with or
without the mouse. Even if some menus are clumsy ways to

' Lo al Ranefas®

Ltoce of toksn:
HROIR Nhas

is & gioned _XsL of SFS Incices fhsl localaze vame

(1.3 ]
1n eloe ¥ (FACAYEYCEIN AR E ol g R NAmeR TR
1241 Fr (=F1 ;1 € aJonllioned L5 1A

THRA™ Waw & -

* IDeglabel THOMAT Nawe, In;dec X sza L¥emelaon; Show; UNED ; Vs ore

114 MEED~1 >3 8amaTne+@
1301 fore w e FNS BAMATIOTA lum rlaleidy 8 RS LORivds 9
iz Ao~ Usars (P 1699 O+ JDORIER  Fits paMAIIOTA IDUSAXE) o8
JOCRCER Bas 2
%) A fovalaaalos LS globed JLsE oF FAX Andicms thad .ocalfxe Hare
(511! - mFomilf FICL cheet o -a LlamaFaw
T Py %
v X-DEF T NFEANS SWCHS,DooallsreFos ODEP, JSED D D0, E1 0
1351 USRI . dmaidan ot roegd
o ras 3
v igaer JED U damax Rame, 0 L0 (Nepthe: Enll nec Boek (o lobai [ 10
119) i Unexs 2O &x.«.ﬁw:."aﬂ-g&é&d ZPMAT Mane
58l

Eadg~ " (E0dzel »r ol Kanclrm 1V oPop s Favarsl () - ssMATIOMA FRZLI

Flgure 10 The Fmd Resulls Display

B JUF alrsady usea, rr
A 20 loycaitied SERLiE

o giodal e rOOMS

* #&Ghai iiat ror XMILH

B o PR

it e o]



perform an action, they are good reminders of shortcuts that
may be more efficient.

The File Menu in Figure 11 offers two capabilities. The
second is Quit -- exiting from INFO, which can also be done
by clicking the Close button or the Windows standard
Alt+F4.

The first, Save seltings, saves the positions, option values,
check values and other settings of the INFO Control form
and any other form or dialog that INFO displays. These
settings are saved to a file named INFO.INI in the Windows
folder.

The INFO Control form is fully resizable and there is a hori-
zontal “splitter” separating the Files listview from the tabbed
pages below it. The splitter can adjust the relative areas
assigned to those two regions. As one uses more features of
INFO (like the form size and splitter position) the Save set-
tings will be used to record values and positions of these
features.

The Edit Menu has three capabilities. The first is Find
which we have already explored. The second Edit Menu

Speaify {haracter Fopert

i o

Figure 12b. The; Character Dialog

entry is the Manage Tree Displays dialog shown in Figure
12a:

The Tree Properties frame of this dialog provides spinners
to establish the number of character columns each tree level
should be indented and how many levels should be dis-
played, and a check box for whether to use the NoShows list
to hide a specific set of function names when generating tree
displays. This shows the otherwisc hidden NoShows list and
gives tools to manage it One may select function names
from the current list of functions in the extended WS and can

A

Figure 13. The View Menu

Manasge

£r
captrontitlies
comps naREF
-] compineRED
] compi neTEER
combineTR
D

type other names in the edit control over the No Show
Functions list. Names can be added to or deleted from the
list; the changes made can be removed or can be permanently
saved to the “Save settings” file, INFO_INI.

Note also that in the NoShow Management frame, a
combo named NoShow list allows specification of and se-
lection from a set of named NoShow lists. Each File Group
that an Administrator may define identifies the NoShow list
that it uses when the File Group is opened

When a User selects Add names to NoShows as described
earlier, the names are added to the current list of NoShow
names.

The third is a Character... dialog which allows adjustments
to the character sets used for INFO forms, for the Display

Figuré 12

windows and for printing. The font, size and style can be
specified for each as shown in Figure 12b: 1 like
APLPLUSI 9 pt Regular and will continue to use it for the
remainder of the paper.

The View Menu is a strict subset of the right-click mouse
menu discussed thoroughly above.




The Window Menu controls the display windows generated
by commands in the View Menu or the right-click mouse
menu. The illustration in Figure 14 was captured when four
display windows had been opened, and they are listed on the
bottom section of the menu. F_Found is the result of a Find
operation. The other three are various views of information

Figure 16. The Window File Menu

for the function IDMAT . B_IDMAT is a “Both” display,
|_IDMAT is an inverse calling tree and S_IDMAT is a sta-
tistics display. The windows are listed in alphabetical order
by object name then by single letter prefix. The top window
is checked. You can get to any of these windows by clicking
its menu entry; the top window can also be accessed by
Cul+l.

The first section of the menu allows the User to make the set
of display windows more orderly by Cascading them. They
can all be closed, iconized or normalized (i.e., un-iconized).

3.7 Display Window Features

The Display windows are not only for display of information
about APL objects and their relationships, useful as that is.
Like the Names list on the INFO Control form, their displays
include the names of functions, global variables and local
names along with other information. Although the display
windows are read-only, their text can be selected, and any
name or set of names in a selection can be used to launch
another display window. This flexibility provides much of
INFO’s power.

A right-click mouse menu much like that for the INFO Con-
trol Names list is available. If the name of a function is in-
cluded in a selected area of a display window the menu looks
like Figure 15.

The first two sections of the menu are identical to that for the
Names list and work identically for names in the selected
area. The third section has more features. Copy is available
for copying the selected text to the clipboard. Two more
Find-related items, Find next match (F3) and Find previ-
ous match (Shift+F3) also appear. These allow stepping
from one matched pattern to the next (or previous). Clearly,
the use of the F3 keys is more convenient than using these
menu entries.

Mo
Figure 17. The Window Edit Menu

71

One additional note about the Find operation: it can find text
patterns in the text of any display window -- even a Find
Results window., These matches are displayed in red (in
addition to the original magenta matches of the Find Re-
sults).

The two Print entries will print either the full text of the top
window or its selected text. A feature of the printing is that
it has some smarts. It tries to break a line first at a comment
or statement separator, then at a delimiter. Also, if page
breaks are needed, it inserts them at pairs of newlines unless-

A

Figure 14. The Window Menu

this would increase the number of pages printed. A header
with the window caption, a timestamp and “Page n of N”
numbering is printed at the top of the page in Roman bold.

Figure 15. Window Right-Click Mouse Menu

3.8 Window Dropdown Menus

You may have noticed that the display windows have drop-
down menus with the same names as those on the INFO
Control form. There are some differences.

The File menu shown in Figure 16 duplicates the Print fca-
tures in the right-click mouse menu, and allow quitting
(closing) the window. Note that Esc will close the window.
It is different from the CtrH-Q needed for the INFO Control



form so that one may repeatedly press the Esc key to indi-
vidually close windows without accidentally closing the
INFO form by going too far.

it ii]é

Clpds

A 19990305 10%
O 199928 2002

The Edit menu shown in Figure 17 has the offerings of the
INFO Control form with the addition of the extra items in
the Window right-click mouse menu.

The View menu is identical to that on the INFO Control
form, so it need not be re-displayed.

The Window menu in Figure 18 is completely different from
its INFO Control form counterpart. All of the shortcut keys
listed are more useful than the menu itself, but this is a good
way to remind Users that they are there.

If several display windows are open, one can scroll through
them in forward or reverse order. One can also scroll the
text of a window up or down without the mouse (just as
APL+Win allows). Finally, you can always get back to the
INFO Control form by using Ctrl+1 -- the same shortcut
used to get from the INFO form to the top display window;
thus one may toggle back and forth between the two.

That concludes the User’s Tour. I hope you got the impres-
sion that this is a useful, integrated set of capabilities that can
quickly give new insight into the workings of a large system
of APL code.

During this tour you surely noticed that the static analysis
data base was already in place and current and you may have
wondered just how that happened. Another tour that aims to
answer this question is about to launch.

72

4. AN ADMINISTRATOR’S TOUR

If, when on the Info page (as we have been until now), we
observe that one or more of the WS entries say “Needs Up-
date” instead of the friendlier “OK” as shown in Figure 19,
or notice that the background color of the WS name list has
changed from white to pink, it is an indication that some
coding changes have been made that are not yet reflected in
the static data base.

CombaneREP )%
(nl mRI-Aats

Figure 19. Change Notice

When the Update tab is clicked, the Update (or Adminis-
trator’s) page is presented. From this page onc maintains the
data base of existing File Groups and adds new ones. Let us
consider the maintenance first in Figure 20.

Note that the button that said “Open” when we were on the
Info page now says “Update.” Clicking that button causes
an incremental update of the changed functions and variables
to be made. Figure 20a shows such an update caught in the
act. An Update Log window collects and displays the his-
tory of the update processing, capturing the status bar mes-
sages from the bottom of the INFO form and other
information about the update. Once the update is completed,
a return to the Info page allows selection on the Update Log
of those functions and variables that were added and
changed for viewing their definitions and uses, just as in any
other display window.

That’s all there is to updating the data base. You may notice
in Figure 20 at the top of the page, just under the Update
tab, are the options Update and Replace. As you have
already guessed, if the Replace option was selected instead,
the button would say Replace; clicking it would cause a
complete replacement of the data base files for the selected



WS(5s) -- a full analysis of all functions and variables in each
WS, just as was done when the data base files were first
created.

4.1 First Steps

So, how were they first created? Clearly, the Administrator
had more to do than just click a button. Our tour will dis-
cover all the steps necessary for initially setting up the INFO
static analysis data base for the INFO WS files themselves.

As has often been seen, the files to be analyzed are named
INFOA, INFOAUXA and INFODOCA. They are slightly
altered versions of the real group of INFO WS files named
INFO, INFOAUX and INFODOC for reasons to be ex-
plained later. For now, let us look at the Update page con-
trols that determine what gets processed. Although it is not
essential to do 50, we can consider the controls in geographi-
cal order.

First is the File Group. The text “Alternate Info” was typed
in as the name that would identify the file group. As you
see, the field is a combo control; it allows selection of exist-
ing file groups as well as specification of a new one.

Next, the Source Path was specified. In this case a library
number was used, but a file path name is just as acceptable
and the Browse button can be used to find the path where the
INFO WSs reside. A history of source paths is maintained

The File Spec limits the names of files in the Source Path to

Copying abjects from P:\APLM\GNINFOR
0SS == Apaipring ob)estE.., Pops
05 =« Camparisng 2 functioyss... Dons

06 —— 0 fapctions added. O deleted, and 2 replaced.

Replaced functions arg:
SArmESVEFGOROR_Click parmis_Saverilesroup

120:03:08 =~ Gathoring Bames LAFormarion rrom FUnCLIOBnE...

Figure 20a. Update in Action

73

be considered as members of the file group. In this case
info*a indicates that only files with names beginning with
“info” and ending with ”a” are displayed in the WS list. The
check boxes to the right further specify whether Windows
and/or DOS WSs are included in the group.

The INFO Path determines where the static analysis data
base files will be installed.

The NoShow List is a name of a set of NoShow names --
functions that will not be included in function calling tree
expansions. Each file group can have its own NoShow list
or one can be shared among several file groups. When a file
group is selected on the Info page, the associated NoShow
list is automatically loaded with the rest of the file group
information.

At this point, the data base files can be generated. Assuming
they do not already exist, the Update or Replace option
selection is immaterial -- a complete analysis will be per-
formed and a complete data base will be created. When
done, the contents of each WS could be examined individu-
ally, but the interrelationships among the WSs have not been
established. This is the tricky part.

4.2 Connections and the Donor Model

INFO’s handling of multiple-WS connections is based on

what I call the “Donor” model which is:

e a “donor” WS provides objects to other WSs either as
its entire contents or in smaller groups called “compo-

INFOALBGA A
{HFODDCA D

19590205 1856
13930128 2602

19350205 1857
15950128 2004




nents;”

e if a donor WS provides components, it identifies them
to INFO in a resident variable or niladic function named
AAComponentObjectNames (its absence means
the WS is only donated in its entirety) ;

e  “Receiver” WSs in some manner receive componenis
from the donor WSs, either by directly copying them or
by reading a file component from a “package™ file.
Which components are received from donors are identi-
fied by component numbers.

Expanding, the value of aaComponentObjectNames
can be almost any organization of a set of groups of names:

a vector of nested vectors of names;

a vector of matrices of names;

a vector of vectors of space-separated names;

a matrix with space-separated names on rows;

a newline-separated character vector with
separated names between the newlines.

space-

Each group in the set is identified by the index number of its
position in the list - its row or element location. This posi-
tion pumber is known as its “Component”. With
AAComponentObjectNames defined in each WS that
acts as a donor (which could be any or all WSs in the file
group) and the knowledge of which component numbers

uPrae ir

1 v xvaslomponentOblectiNames
11 x< ,cUPABJS
v

Figure 21. INFODOCA Component definition

from each donor are received by the receiver, the Adminis-
trator can define the WS connections.

4.3 The Organization of INFO

With that in mind, let us look at the three WSs that comprise

this multi-WS system called INFO.

e INFO.W3 is the start-up WS that contains the always-
resident functions. It copies in all of INFOAUX. W3
and a subset of the INFODOC.W3 objects when they
are needed, then discards them when they are not

74

INFO creates and handles all the Windows GUI inter-
actions -- forms, display windows and dialogs.

e INFOAUX specializes in generating the information
shown in the Info page display windows. This includes
Find processing, Trees and Statistics displays.

e INFODOC handles the analysis of functions and vari-
ables in the Update page processing. It also contains
the old WSDOC generation code although that is not
currently used in INFO.

Self-documentation of its own WSs presents INFO with a
dilemma. INFO gets the function and variable definitions by
copying the WS to be documented into the INFO WS. Since
namespaces are not (yet) implemented in APL+, the resident
INFO functions and variables have been given “‘funny”
names beginning with the two characters AA to avoid name
conflicts with the objects copied in. Definitions of only the
non-funny objects are then extracted and placed in the first
data base file. Then those copied objects can be erased and
the INFODOC functions (which do not have funny names)
can be brought in to process their definitions.

But when the WS to be documented is INFO itself, the funny
names don’t prevent name conflicts at all. There is a perfect
match of every one, so no non-funny names are found and
nothing gets documented.

The solution adopted here is to generate an Alternate INFO
WS set (the INFOA set) that has all occurrences of aa
names replaced by names beginning with oA and then
document the resulting WSs. In this way the alternate set
has no conflict with the original and it can be completely
documented. A function named AlterW3 is used to per-
form the transformation on each of the three WSs and gener-
ate or update the alternate WSs. In fact, Alteri3 can be
used to make a completely functional new INFO processor

with any desired “funny” name prefix if one finds that desir-
able.

To recap, we document an alternate version of the INFO
WSs: INFOA, INFOAUXA and INFODOCA. INFOA uses
all of its own objects (the default connection of a WS to
itself), connects to all of INFOAUXA and to one component
of INFODOCA identified as component number 1.

The description of the single component definition in
INFODOCA is shown in Figure 21. ’

First, the variable UPOBIS is displayed. It is an 1l-row
character matrix with one name per row. INFODA copies in
this set of names, then copies those named objects in prepa-
ration for function and variable definition processing. The
definition of AAComponentObjectNames is a function
that just returns the ravel of an enclosed UPOBJS -- a one-
element nested vector of character matrices. That satisfies
the requirements of INFO WS connection evaluation.



4.4 Getting Connected

Thus, in our illustration, the three WSs with a file specifica-
tion of info*a have been created, located, and had their data
base files created. We only need to save the File Group in-
formation, including WS connections, to enjoy complete
multi-WS documentation. When the Save button on the
Update page is clicked, a dialog is presented for saving
[changes to] the definitions of the File Group and editing the
WS Connections.

If a new File Group is being defined, the Create File Group
Definition dialog in Figure 22 appears, telling the new
name, allowing the definition of WS Connections and offer-
ing to copy the contents of an existing NoShow names list
into a new NoShow list. If OK is clicked here the new file
group with all the definitions shown here and on the Update
page will be saved to the INFO.INI file. If the Edit WS
Connections box is checked, the Connections editor will
appear. We will see this soon.

If an existing File Group definition is being revised, the
Change File Group Definition dialog (Figure 22a) asks
whether to replace the existing definition with any changes
in the Update page specifications and whether to Edit the
WS Connections. In our case we will uncheck the Replace
existing File Group box and will check the Edit box.
Clicking OK opens the Workspace Connections dialog (Fig-
ure 23).

This Connections editor is basically a listview control. Use
of a third-party grid may be more elegant but INFO wants to
use only the facilities provided by APL+Win,

Note that the three WS names in the system appear both
down the left side and across the top of the listview. Ini-
tially, the word ALL appears down the diagonal of the array,
all other entries are blank and the WS id column (next to the
Workspace colurnn) is blank. To specify the connections
and the WS id letters the Administrator does the following:

e Clicks a Workspace row of the listview (I chose
INFOA). That WS name is then displayed at the first
line of the dialog - in this case Workspace INFOA,;

e  Enters or changes the WS id letter in the edit control
labeled has WS letter, and presses Enter;

e  Clicks the column header for a donor WS in preparation
for identifying which components of this WS the re-
ceiver WS will use (I chose INFODOCA). Note that
the WS name appears in the line that says and uses
these components of Workspace INFODOCA;

e  Enters the connection component numbers in the long
edit control just above the listview and presses Enter.
In this case the 1 indicates that INFOA uses component
1 of INFODOCA;

o In the same manner declares that INFOA connects to
ALL of INFOAUX (by typing an A and pressing Enter)
and gives appropriate WS identifier letters to the other
WSs; then

75

e  Clicks the OK button to save all of this information to a
file pamed INFOGRP.SF in the static data basc.

Pefirntit fon

new stuff
Figure 22. Creating a New File Group

With that, the setup of the File Group has been completed.
Thereafter, any changes made to INFO code is reflected in
the INFOA code by executing Alterw3 on the modified
WS(s). Upon opening INFO and selecting the Alternate Info
file proup, the fact that changes have been made are an-
nounced in black and pink. Moving to the Update page and

gre 22a. Ch ig aising File Grou

clicking the Update button makes the data base reflect the
new changes.



Figure 23. Workspace Connections Editing

76

5. PLANNED ENHANCEMENTS

There is always room for improvement. A number of

changes are required, anticipated or hopéd for the future.

Among them are:

e true Windows tree controls instead of indented text

e improved handling of objects in different WSs with
identical names.

ACKNOWLEDGEMENT

I wish to thank David E. Siegel for his consistent support
and encouragement in making this paper possible and for
insightful suggestions that have made INFO a much better
tool.





