
INFO:  Interactive APL Documentat ion 

George Mebus 
Cognos /LEX2000 Inc. 
2 Independence Way 
Princeton, NJ 08540 

George@LEX2000.com 

A B S T R A C T  

A large body of  APL code may be hard to understand and 
analyze, particularly if you are not its author. A code system 
that spans multiple workspaces (WSs) compounds that 
problem. 

INFO is a Multi-WS system written in APL+Win that pro- 
vides convenient interactive documentation of APL+Win 
and APL+DOS multi-WS systems. The User has a variety of 
displays that givv insight into the system structures and rela- 
tionships within single- or multi-WS systems. An adminis- 
trator can easily set up and maintain the INFO static analysis 
data bases for any number of  WS groups. 

This paper demonstrates INFO by showing how INFO 
documents itself. A distribution package contains the com- 
plete code and instructions for setting up this self- 
documentation. 

1.  I N T R O D U C T I O N  

For large systems of APL code, such as our LEX2000 Fi- 
nanciai Reporting Software products, it is necessary to break 
the code into several WSs. Some reasons for using multiple 
WSs are: 
• to reduce the amount of code that is resident in com- 

puter memory at one time; 
• to separate code by major responsibilities, then use only 

the WS that you need for a particular job; 
• to maintain single copies of objects (functions and vari- 

ables) common to several WSs and then copying them 
as needed, rather than duplicating them in each WS; 

Permission to make digital or hard copies of all or part 
of this work for personal or classroom use is granted 
without fee provided that copies are not made or dis- 
tdbuted for profit or commercial advantage, and that 
copies bear this notice and the full citation on the first 
page. To copy otherwise, to republish, to post on 
servers or to redistribute to lists, requires pdor specific 
permission and/or a fee. 
APLgg, 07/99, Scranton, USA 
©1999ACM 1-58113-126-719910 008 5.00 

to keep collections of code that are seldom used from 
being always resident in memory. 

One's  ability to remember and understand the interrelation- 
ships among various functions decreases as the body of code 
increases, as less of  it is one's own and as the original code 
gets older and gets changed. Some help is then needed to 
illustrate those relationships or to track how a variable 
changes among the function calling chains; one needs help in 
searching out information in the extended WS (the chosen 
WS with all of the objects from other WSs that are used in 
it). 

INFO gives such help. INFO provides a User with serollable 
alphabetically-ordered lists of  the functions and/or variables 
or all names used in the extended WS. It displays function 
and variable definitions, name uses in functions (where and 
how used), function calling trees and "name usage trees" that 
show where a name is assigned, referenced and changed 
within function calling tree structures. INFO also supports 
flexible regular expression text searches. Each display is in a 
separate window; a name (or group of  names) in the text of 
any window can be used to launch the display of  other in- 
formation about it (them). 

An Administrator can easily define WS file groups that tell 
which WSs share sets of objects among themselves and how 
they are shared. Static analysis files are then generated for 
all with one button click. Therea~r ,  the INFO form shows 
when a WS has changed and allows quick incremental up- 
dates to the analysis data base, again, with the click of a 
button. 

2 .  E V O L U T I O N  

When I joined what has become LEX2000 Inc. ten years 
ago, I inherited a fairly large body of APL code (about 900 
functions) in six WSs with little documentation and few 
comments. This code was for an application with which I 
was not familiar. Its developer had recently died. To be able 
to both develop and maintain this code required extra assis- 
tance. A debugger from Uniware was helpful in showing 
some detail workings, but gave no special insight into the 
design. The need to develop some "insight tools" was the 
genesis of INFO. 

63 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F312627.312726&domain=pdf&date_stamp=1998-12-01


To determine the calling structure of  APL code, each name 
used in each function must  be found and the chain of  func- 
t ion dependencies forged from them. Doing that analysis on 
demand in a WS wastes much time and space. Quick, com- 
prehensive displays o f  such interrelationships can only be 
accomplished by a static preprocessing of  the information 
and storing the results in a data base. This is INFO' s  ap- 
proach. 

Three static analysis files characterize the information about 
a WS: 
I. definitions o f  functions and variables in the WS and 

related information about them; 
2. the names used in each function, where and how; 
3. the functions that use each name, where and how. 

These files give quick access to the information required for 
INFO' s  variety of  displays. They also require a lot o f  proc- 
essing to generate. 

2.1 Incrementa l  Updates  

As the LEX2000 code grew to double the original size and 
moved to new platforms (32-bit machines and then Win-  
dows), its complexity (and obscurity) also grew, and INFO 
had to grow with it to meet  new challenges. For  example, 
development  code is always changing; so then must  the 
contents of  the INFO static analysis data base. This created 
the need to frequently re-analyze everything to keep up to 
date. That  took too much time, so the data base was seldom 
c u r r e n t .  

The data base and processing were redesigned to allow in- 
cremental updat ing so that only objects that had changed 
were re-analyzed and their information updated. This saved 
a lot of  t ime in many  cases, but not  always. 

The original mult iple WS structure involved five separate 
WSs and one other (QPKFNS) for holding "packages" of  
shared and specialized objects that were copied by the others 
when needed. D4FO would document  a WS by copying all 
o f  these foreign objects from QPKFIqS and then determining 
which in this extended WS had changed for the incremental  
updates. Unfortunately,  the incremental updating still had 
some high overhead problems: 
• copying objects from the large QPK.FNS WS (and later 

from every other WS in LEX2000 for DOS); 
• comparison of  the 13 vz" o f  every funct ion to determine 

which had changed; 
• re-creation of  the function calling tree structure that is 

saved for each extended WS;  
• if  a QPKFNS common object (one used by all the other 

WSs) had been even trivially changed, then every WS 
would be re-evaluated and the changed object would be 
re-analyzed for every one -- a great waste of  processing. 

One speeiai feature of  the DOS version of  INFO was the 
incremental WSDOCs.  WS documentat ion was important in 

the early 1990's because so little could be seen in a computer 
screen's worth of  text. From its data base knowledge of  
which functions had changed, INTO could generate incre- 
mental  WSDOC change pages on demand, reducing the 
amount  of  paper used for WSDOCs while allowing frequent, 
t imely updates. 

2.2 Windows  

When APL+Win  became an effective development  system, 
the advantages of  Windows  for . rNFO control and presenta- 
t ion became more obvious. The generation of separate resiz- 
able display windows offered more flexible control and 
comparison of  various views. Better interactive displays 
were possible us ing color to identify text sesreh results. A 
Windows control form could be much more convenient  and 
capable than the set of  command words used in the DOS 
version. So a conversion to the CmTent Windows-based 
IIqFO began in 19977, still us ing command words at first but  
later being driven by  the more convenient  menus. 

A new approach was also taken to incremental  updating of  
the data bases. Update speed was increa.~d and automated 
b y :  

evaluating each WS separately ( including the 
QPKFNS),  then l inking the results o f  dependent WSs at 
the t ime that a ma in  WS is "opened" by the User; 
saving and comparing Hat .  (timestamp) results for 
functions, then comparing the Ova" of  only those func- 
tions that have changed timestarnps; 
using a modular  funct ion calling Ircc structure that can 
be incremental ly updated; 

:.......: .'...'.'..'. ~ : ,. ~ ~ ~ .~..". ~...'...-...'..'.": 

Figu re  1. The  LNFO C o n t r o l  F o r m  lu fo  Page  

6 4  



notification by display color that some WSs in a WS 
file group have been changed and that the data base 
files need updating. 

These and other changes have made the maintenance o f  
INTO data bases nearly automatic -- it is easy to keep them 
up to date. Because INFO makes on-demand documentation 
so easily available, the need for complete WSDOCs seems to 
have vanished. WSDOC generation is not currently imple- 
mented in INFO, but the original incremental code has been 
retained for possible inclusion in the future_ 

3. A U S E R ' S  T O U R  

The best way to see what INFO does is to take a walk around 
the main form. When INFO is opened and a WS file se- 
lected, the User is presented with something like what you 
see in Figure 1 above. 

3.1 Selections 

The first step to using this form is to select the File Group  
(if one has been defined) or the Info Path to a folder con- 
raining INFO static analysis data base files. A Browse  but- 
ton can be used to find the desired folder. In Figure 1, a File 
Group comprised o f  an alternative version o f  the three WSs 
that make up the INFO documentation system have already 
been selected. 

Once the file group has been chosen one must select the 
primary WS to be documented. INFOA in the WS list has 
been opened by double-clicking the primary ("left") mouse 
button on that line or selecting the INFOA row and either 
pressing the Enter key or clicking the O p e n  button. Related 
information from the other WSs was then automatically 
linked to the one chosen and names o f  all the functions in the 
extended WS have been displayed alphabetically in the 
Names listview. 

With this extended WS opened, we may notice several 
things: 
• a " w a "  letter and timestamp are associated with each 

name; 
• the selected name appears in an edit field immediately 

above the Names list; 
• a status line at the bottom shows how many names have 

been selected and how many there are in total; 
• a "Func t ions"  check box is checked, as are four others 

below it. 

The "ws"  letters show in which WS each of  the functions 
resides. They match the " w s "  identifier letters in the WSs 
list'view at the top o f  the form. 

The name in the edit field can be retyped by the User; as 
each letter is typed, the matching word is selected if there is 
an exact match, otherwise the alphabetically next word is 
selected. I f  a pattern match is required instead, the Match 

Pattem box can be checked and one or more patterns en- 
tered in the form used for the APL+ ].f's3~ user command. 
This typically results in several names being selected. The 
status bar message tells how many and the Selections to 
top  button wi l l  move all selections to the top of  the list for 
better observation. 

The four check boxes below the Functions box classify the 
functions by whether they call others and arc called by oth- 
ers: 

• Top call others but are not called; 
• Mid call others and arc called; 
• Bot (bottom) are called but call no others; and 
• Lone  arc neither called nor call others. 

Unchecking all but Lone wi l l  show all the orphans, then 
checking the --Top wi l l  together show all that arc not called 
by other functions. This kind o f  display may be helpful in 
showing functions that arc not used and may be unnecessary. 

I f  the Vanables box is also checked, then the names of  
global variables defined in the WSs wi l l  be added in their 
proper alphabetic locations. Instead of  timestamps, their 
,St:ats column values arc indications of type, depth and 
shape. I f  only the Var iables  box is checked, only variable 
names arc shown. 

I f  the Names box is checked, then all the Functions and 
_ _  m 

Variables  boxes arc disabled and all names used in any 
function in the extended WS will be displayed and can be 
selected as described above 

Name lists can be reordered by clicking on the column head- 
ers o f  the list box. The first click will reorder the rows to 
alphabetize the column clicked. An immediate second click 
reverses the ordering. Thus i f  a group of  names has been 
moved to the top of  the list by S e l e c t i o n s  to lop, the origi- 
nal order can be regained by clicking the " N a u n e "  column 
heading. 

3.2 Real  Informat ion  

Why do we need all these ways o f  selecting names? Bccanse 
we can display a great variety o f  information about the se- 
lected names when the secondary (right). mouse buttotl is 
clicked on the Names listvicw or when the F10 key is 
pressed. Either action presents a menu as shown in Figure 2. 
Most o f  the menu's selections open an information display 
window. 

6 5  



v f u n c t i o n  n a m e  
v l o c k e d  f u n c t i o n  
! r e c u r s i v e  f u n c t i o n  

o~ lef t  a r g u m e n t  
r ight  a r g u m e n t  

p resu l t  
; l o c a l  n a m e  

= r e f e r e n c e d  

~- a s s i g n e d  

] i n d e x e d  

i n d e x  a s s i g n e d  o r  s e l e c t i v e  a s s i g n e d  

s t r a n d  a s s i g n e d  

: l a b e l  
Figure 2. Right-Click Mouse Menu 

Tab le  1. Name Identification Symbols  

~ . . : . . . ` . . . . ~ . . . ~ ~ k ~ . : ~ ; : ~ 2 ~ . . . . . . . . : . . : : ~ 2 ~ . ; ~ ; i ~ ` . . . : . ~ . ~ ` ~ . : : . ~ 2 ~ `  • . . . . .  ~ ~'~:-:.:-. ~ . . . .  ~ , , . .  ~ . . . .  
v v - ~ a D a t ~ g F  v ; . B  

, F o z ~ ¢ s  t 2 - d L t g : E  t .Z, tm~$tmnip ~ y . F y y z a m c l k ~  
e .jpFeStlUmms v JLS a e J ~ e l t & c t e z -  v , ( ~ c ¢ o ~  o z  .iL,~.cl~?O,lt" 

I l i  
I = ]  

3 z  
4 ]  
$ ]  

71  
O !  
g !  
1 0 !  

: . t t "  & 2 g 0 c t r  v i ~ t m m b ~ r  
: , L f  O = v  ~ y , - 1 2 9 "  0 '  R s,;pecJ.a3 J f o r m m t  4£  Q 
: o , ~ 3 e  • ~ q r ' w  i e . L s e  J t~$g  g e l  c l ~ r  r ~  
: ez~,~..uf 

: e r x t t t "  
v . , - l = ~ v  0 F 1 1 3.. I 0 I I 0 1 1 0 0 1 1 ~ I 1 

v v,*aa,DasL~ry" v 
~'~ ,IB 0 ;  9~" t O q Q  

w _AaOe= ¢ . t r y  01, 
Oc / r  4 
: oJ~:se G 

. : a a d L t t  77 t 
• : . L f  4 5 

1 0 ' - "  

Figure 3. A "Both" display window 

Now, let us look at the items in each section o f  the menu. 

3 . 3  D e f i n i t i o n s  

The first section o f  this menu is concemed with "Objec t"  
(function or variable) definitions. The --Both Func t i on  def  
and  n a m e s  combines the next two entries for functions in a 
single d isp lay.  The O b j e c t  D e f i n i t i o n  l i s t ing  is a n o r m a l  
l is t ing f o r  a func t ion  o r  a va lue  d isp lay  fo r  a var iab le .  I f  the 
var iab le  is nested, the standard nested " D i s p l a y "  f o r m  is 
used. The F u n c t i o n  N a m e  u s e s  shows whcrm and h o w  
names are used in a function. 

Figure 3 shows a "'Both" display window for  a small INTO 
function named &_aDatify. T h e  top part is a normal func- 
tion listing and after that is the "funetio/t  name us©s" -- a 
compact  display o f  each name used in the function, alpha- 
betically ordered. 

To the left o f  the names is a digest o f  how the name is used 
in the function and to the right are the particulars in a com- 
pact form. Each use is identified by a single symbol;  multi-  
pie symbols after a line number show multiple uses for the 
name on that line. Note  that the symbols associated with a 
line arc in "chronological"  older. For  example,  the name w 
is first referenced, then assigned in the same statement on 
lines 5, 6, 9 and 10. Table 1 shows the complete  list o f  
name identification symbols 

6 6  



A "Statistics" display window shows information about the 
selected name or names, tel l ing in which WS they reside, 
their sizes and other specif ic  information such as number  o f  
lines and t imestamp for a function, type/shape/depth for a 
variable. Figure  4 shows statistics for a function and a vari- 
able. 

v v " ~ a O , ~ L t ~ p  w 

F i g u r e  4.  A Stat is t ics  Disp lay  W i n d o w  

3.4 Trees  

_ |il~. m---m --mmp----mi mmmll i ~ m i l l ,  -- ~,~, BI ~- 

~~-".":"..".."."...-.:"~.~;~'~ ~Z":..", . ~  . . . . . . .  :~ ' ~  - ' ~ . ~ : ~ ' ~ ~ : , ~ ;  ;~'~:.:~..,.~ :.~.~ ~ ~r ....~ : .. ~ . . . . . .  ~,~ ....... ,~:,..~@ ...... ~ ~. 

_~ Xz~AT 
_I . t 5 I~:CAE£ 

. 16 l R ea dJR~ 
_A . t O l SPLZT 
_Z . . [ 11 ] a~J4ATIOTA 

._Z . 110 15 2Ol~bld~T~OTA 
r~D¢~R,D.ER _A - I . ~0 ] /D~RDJ~R 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  r ' l ' l l  . . . . . . . . . . . .  

F i g u r e  ~. A F u n c t i o n  Cal l ing  T r e e  

The second section o f  the menu is concerned with the dis- 
play o f  function call ing trees. These  are currently imple- 
mented as text but may  use Widows  tree structures in the 
future. Figure 5 on the next  page shows the F u n c t i o n  cal l-  
ing T r e e  display for a function named IDP1AT. It calls four  
functions. The line numbers  o f  ZDNAT on which they are 
called precede the function names. Those  line numbers  are 
colored blue. 

The  letters preceded by underbars are W S  identifiers. The  
indented text shows the "who  calls w h o m "  relationships. 
Line numbers in brackets before  functions names mean that 
they belong to the call ing function, that they are the lines o f  
the calling function on which the named funct ion is called. 
Specifically Figure 5 shows that IDMAT calls _aACASE on 
line 5, R e a d N M S  on line 6, .~zMATIOTA on lines 10 18 20, 
and IDORDER on line 20. Also,  R e a d N M S  calls S P L I T  on 
its line 8 and A~MATIOTA on 11. 

, A  G, ET 
J . 

_ X  • 

f i x  , 

aafma l _ L o s d  I 15  ! 
. a af~_P&ge_Cllck [ 21 i 

aafa~eln WJa¢ [ 111 ! 
• a a t ' a d ~ _ ~ m ~ c e t  7 I 
,~lnA_Rr,  s k e i l ? 3  17~ 1 ~ 3 |  

F i g u r e  6.  A n  I n v e r s e  F u n c t i o n  Cal l ing  T r e e  

Note  that IDORDER is recursive, call ing i tself  on its lines 11 
28 31. Where  a function whose  subtre¢ expansion has al- 
ready been shown appears again lower  in the tree, its expan- 
sion is not  shown again. Instead, up arrows are displayed in 
the co lumn markers to show that the expansion appears 
above. The name o f  first-time expansions are also displayed 
on the far left  to make  the expansion easier to find. 

Figure  6 shows an I n v e r s e  f u n c t i o n  c a l l i n g  T r e e  tha t  illus- 
trates the " w h o  is called by w h o m "  relationships. Al though 
this looks very  much like the forward call ing tree, notice that 
the functions named in the tree have bracketed line numbers  
after the function names instead o f  before. It shows that the 
funct ion GET is called by _AA£mAI__Load on line 15 o f  that 
function. The  trail o f  calls continues to the top functions 
which are both Make  functions, def ining the Windows  forms 
that start the w h o l e  process.  

The name usage trees expand on the idea o f  function call ing 
trees to show how a selected name (typically a non-global  
variable) is used within a call ing tree structure. Figure  7 
demonstrates t he  loca l  N a m e  U s a g e  t r e e s  for  a variable 
named LocaINameFns. 

~ ~  i~ - L ~ 

._A ; " Z~XqA'T 0; 14-  1 ~  2'0 
/DiaRDER _A " "* |201Z, I~ .£~R - -  11~ 

_R , • • [09 11 28 3 1 J . . . D O k ~  - - -  1 B  

~ 0 R Z l E R  

_ A  ; -  ~ : -  o ;  1 5 -  
J I I  , t I : ~ I , , T ~ i ~ Z R  - -  l o  

• ~ I ~ I I / X l R . , g ,  ER  - -  1 ~  2 4  
, t ~ [ 0 ¢  L 2  2 9  321DOR,DIER - -  1 7  ~ 4  

_ .A  ; * ,  ~ - -  O ;  1 9 ~  2 8  
_ A  • ~ | ] ; 1 ~ 1 , . / I  - -  1 1  J 4  

F i g u r e  7. Loca l  N a m e  Usage  T ree s  

Some additions to the normal  function call ing Iree are: 
• There are mult iple trees; 
• The selected name is listed above  the trees; 
• N a m e  usage summaries  appear between the WS identi- 

t iers and the function names. These  summaries are es- 
pecial ly  useful in quickly spotting where  a value is 
assigned and reassigned; 

6 7  



Line numbers and specific uses fol low the function 
names showing exactly where changes and references 
are made. 

G l o b a l  N a m e  U s a g e  t r e e s  differ from their local versions 
only in that they do not start where a name is first localized, 
but always begin at a 'Sop" function. Figure 8 illustrates a 
global name usage tree for the same name as used before. 
They arc generally much larger, as this is. 

Finally, Add  n a m e s  to N o S h o w s  allows you to add the 
selected function names to a(n as yet  hidden) list o f  names 
no_.__t~ to include in a Tree display. This feature can be used to 
avoid the clutter o f  low-level  utility functions that don ' t  
really aid your  understanding o f  the function being ex- 
panded. We will say more about that when we examine the 
Manage T r e e  Displays . . .  dialog in Figure 12a.. 

3.5 Finding text strings 

The third section o f  the right-click mouse menu has entries 
called --Find .... Pr in t  t h e  cu r r en t  n a m e s  list and Print  t h e  
selected n a m e s .  The printing is just  what  you would ex- 
pect it to be and w o n ' t  be examined here. The  Find capa- 
bilities, however  deserve some special attention. 

F igu re  9. The  F i n d  Dia log  

When you open the Find dialog, you may notice first that the 
name selected in the INFO Control form names list appears 

in the edit conUrol near the bottom o f  the Find dialog and that 
it is enclosed in quotes. Check boxes for Ma tch  C a s e  and 
T o k e n s  tell how to search for the text string. The frame 

.......................................................................................... ~ f i / i ~  

£ ,oe '~ . l .~ -a ,MrFi l~  

, . Z  & .a . r ' a~ . t  s p . , J l ~ l  !~-~ 
_.Z -- l ~  I I  3 ~ . . ,  l&a ,  l l l ~ l i i l ~ _  _ h ,I,/'I~ID..Lc~J~_GB,I: 
._.1 / . -  - -  ") I g 3 9 1 ~ "  - "  | :  l t -  
_J I  • - - I ~ ' i  1 211~¢..~ER - -  1 ~  
_ ~  • t 4 4 4t IO'I~ t l l  ~-~ 3~i.I.~.~IR,,IISJI - -  l . ~  

• "r t 1 • Icra" 1 2  2 ~  3 I H D C M . , ~ . R  - - -  1.~' 2 t  

..~1, ; * *  - ~ l k 4 1  ~4;11~11~ - -  0: .  i . g a  ;;'IS 
_JII ; - =  . • - -  O ;  l t -  l q , -  2 Q  

[ : : O t J l ~ J ~  - - -  24,  
. . . .A t -  " , : 1 I $  , . I I ¢ ¢ q ' ~  - -  I ,  ~t.t 

~ !  ~db,~C~rxa_~ke 
~ l  t 1 6  1..~, 1 S  ,,.IIblAIlaI3.LIi~_GgI: 

Figure  8. A Global  n a m e  Usage  Tree  

Vqhere  to S e a r c h  contains six options, enabled or disabled 
according to the current situation. They are: 
• All  Funct ions 
• Funct ions Named  in Names  List 
• Functions Selected in Names  List 
• Functions Named  in Current Window 
• Funct ions Selected in Current Window 
• Tex t  in Current  Window 

I f  we simply cl ick the F ind  button or press Enter, the search 
begins. Because the All F u n c t i o n s  option is chosen, all 
functions in the extended WS will  be searched for this string 
and the results displayed as shown in Figure 10, 

Al though not shown in this publication except  by lighter 
print., every occurrence o f  the text  found is colored magenta_ 
The first occurrence is selected and pressing the F3 key will  
move  the selection to the next occurrence; Shifr+F3 will  
move  to the previous. It may be interesting to compare the 
results in this display window with those obtained from a 
Usage  Tree as shown in Figure 7. One difference is that 
Find displays each entire line containing the searched text, 
but the functional context is not  made obvious as it is in the 
Usage  Tree. Another  difference is that Find also displays 
matches in comments.  

6 8  



Besides  d isplaying a n a m e  selected in the names  list+ one  can  
type  a s tr ing in the  edit  control .  The  up  and  d o w n  arrows 
will  cycle  t h rough  the  set o f  s tr ings a l ready used, and there  is 
a lways  one  empty  str ing in the  list so you  can easi ly  start  
over.  These  s t r ings m ay  be arbi t rar i ly  com p l ex  pa t te rns  
t h rough  the  use  o f  f ive  "opera to r s"  (or  OPs):  AND, OR, 
T H E N ,  T O  and WO. They  m a y  be  used in upper  case or 
lower  case. Each  may  be used in a dyad ic  form (e.g., 
' g l o b a l '  a n d  ' F N S '  will  ma tch  the  two quoted  

s t r ings  only  where  they  bo th  appear  in the same  s ta tement  or  
comment ) .  The  a rguments  can  be arbi t rar i ly  com p lex  pat-  
terns.  The  o ther  form each OP can take is a pref ix  fo rm wi th  
any  n u m b e r  o f  s t r ings  or  o ther  pat terns  as r ight  a rguments  -- 
the  p rocess ing  is l ike an OP reduc t ion  o f  these  arguments .  I f  
several  names  are selected in the n a m e s  list w h e n  F ind  is 
se]ected or  Ctr l+F is pressed,  the  pa t te rn  
OR ' n a m e 1 '  ' n a m e 2 '  ' n a m e 3 '  . , .  w i l l  be placed 
in the F ind  dia log edit  control .  

The  mean ings  o f  the OPs are: 

Figure 11. The File M e n -  

• AND -- all a rguments  are ma tched  only  where  all the  
a rgumen t  pa t te rns  occur  in the  same s ta tement ;  

• OR -- any  a r g u m e n t  pa t tern  is matched  whe reve r  it is 
found;  

• T H E N - -  all a rguments  are ma tched  only  where  the  first  
pat tern  precedes  the  second  (and  the  second  precedes  
the  th i rd  ...) in a s ta tement ;  

• T O  -- all t ea t  is m a t c h e d  f rom the  first  pat tern to the  
second  (and  the  second  to the  th i rd  ...) in a s ta tement ;  

• WO - -  (mean ing  "wi thou t " )  the  first  pat tern  is ma tched  
on ly  i f  the  second  is no t  also found  in a s tatement .  I f  
there  are m o r e  than  two a rgumen t  patterns,  the  reduc-  
t ion  mode l  appl ies  as i f  it was  writ ten:  
'pattern1' wo 'pattern2' wo 'pa~tez-n 
3 ' . . .  and then eva lua ted  f rom r ight  to left. 

Thus,  pa t te rns  o f  some  complex i ty  may  be searched  and  one  
ma tch  may  va ry  qui te  a lot  f rom the  next.  Tha t  is why  color  
is used to mark  the  ma tches  and w h y  the  F i n d  N e x t  and 
F ind  P r e v i o u s  ( s h o w n  in F igure  15) h igh l igh t  matches  in  
sequence -- even  i f  the  ma tches  overlap.  

3 . 6  D r o p d o w n  M e n u s  

Before  l eav ing  the  I N F O  Cont ro l  form, let us  peruse  the 
D r o p d o w n  m e n u s  at the top o f  the form. They  offer  some 
addi t ional  capabi l i t ies  and  repeat  some others  already seen. 
The four  menus are : _File, --Edit, _Mew and V~/indow. As  y o u  
have  seen wi th  o ther  menus ,  these  all have  shor tcut  keys 
ass igned  so tha t  near ly  any  opera t ion can  be  done  wi th  or  
wi thou t  the  mouse .  E v e n  i f  some  m e n u s  are c lumsy  ways  to 

16 I m m Xs a fJo.QeJ = l ~ &  ~ "  .FJr~ l r- '~. t~D; £/ '~tl JOt;atl.,lZe .~lraJ~s 

I ; 4 1  ~ ~ - F I  ; ] ,  G1 o~+~.i:;ea~,,e+ • ~ ) P 7  f t  ~ , Z ~ . . t . ' e , , 2  :'t:,.1Lg~ 

r l ,Jgk~ t t ~ t e J l .  

U/Mrs +: 

I t l l  l ~ I g - -  " +4P.~.T,.~+J/,~.,~,.~+.,+++ + v l ~ + + r . a t * ' a . n l ; : l  - +.~,~lOl~P.'.OJ.~..P~PetJ 

~ + + =  ~~+ . ....+ + ........++++~ + -+ 

F i g u r e  10. T h e  Find Results D i s p l a y  

6 9  



perform an action, they are good reminders o f  shortcuts that 
may be more efficient. 

The Fi le Menu in Figure ! ! offers two capabilities. The 
second is Quit -- exiting from INFO, which can also be done 
by clicking the Close button or the Windows standard 
AIt+F4. 

The first, S a v e  seRings ,  saves the positions, option values, 
check values and other settings o f  the INFO Control form 
and any other form or dialog that INFO displays. These 
settings arc saved to a file named INFO.INI in the Windows 
folder. 

The INFO Control form is fully resizable and there is a hori- 
zontal "splitter" separating the Files l istview from the tabbed 
pages below it. The splitter can adjust the relative areas 
assigned to those two regions. As one uses marc features o f  
INFO (like the form size and splitter position) the Save set- 
tings will be used to record values and positions o f  these 
features. 
The Edi t  Menu has three capabilities. The first is -Find 
which we have already explored. The second Edit Menu 

Figure  12b. The  Character  Dia log  

enU'y is the .M_anage Tree  Displays dialog shown in Figure 
12a: 
The T r e e  P r o p e r t i e s  frame o f  this dialog provides spinners 
to establish the number  o f  character columns each tree level 
should be indented and how many levels should be dis- 
played, and a check box for whether  to use the NoShows  list 
to hide a specific set o f  function names when generating tree 
displays. This shows the otherwise hidden NoShows  list and 
gives tools to manage it. One may select function names 
from the current list o f  functions in the cxmnded WS and can 

Figure  12a. The  M e n a g e  Tree  Displays  Dia log  

type other names in the edit control over the NO Show 
Funct ions list. Names can be added to or deleted from the 
list; the changes made can be removed or can be permanently 
saved to the "'Save settings" file, INFG.IIqI. 

Note also that in the NoShow Managemen t  frarnc, a 
combo named NoShow list allows specification o f  and se- 
lection from a set o f  named NoShow lists. Each File Group 
that an Administrator may define identifies the NoShow list 
that it uses when the File Group is opened 

When a User  selects Add  n a m e s  to  N o S h o w s  as described 
earlier, the names are added to the cu , ' e~ t  list o f  N o S h o w  
h a i n e s .  

The third is a Cha rac t e r . . .  dialog which allows adjustments 
to the character sets used for INFO forms, for the Display 

Figure  12. The  Edi t  M e n u  

windows and for printing. The font, size and style can be 
specified for each as shown in Figure 12b: I like 

A P L P L U S I  9 pt Regular and will continue to use it for the 
remainder o f  the paper. 

The  View Menu is a strict subset o f  the right-click mouse 
menu discussed thoroughly above. 

Figure 13. The View Menu 

7 0  



The ~ J i n d o w  Menu controls the display windows generated 
by commands in the V i e w  Menu or the right-click mouse 
menu. The illustration in Figure 14 was captured when four  
display windows had been opened, and they are listed on the 
bot tom section o f  the menu. F F o u n d  is the result o f  a Find 
operation. The other three are various v iews o f  information 

• := . . . . . .  .o ~ . ~ . . . ~ =  .... + ~ . ~ : : ~ .  
• . ~  . - . . . . : .  . . . : : ~ . . ~ ~ .  ~. . . . . . .  

• . .  . ~  . .-, e . .  ~ . ~ .  ~ ,  ~ . . . , .  ~ <~..  ~ , ~  ..........;. :< . . . . . .  ~ ;~ .  ~ . . . . . ~ . , ,  ...~:... ...: . . . .  > . .  , : , ~  . 
....................] • :. . .  . .  : . ~ :  • . : . . . . : : : . . . . .~ . . . . . . . . . . " . .~  : . . .  ~.......:~ . . . . .  f ~ .  . ~ :  -:. j .: 

. : ..:...,:. ~ . ~  . .~, .  . ~ : . . . . ~ ' ~  - ,  • .....: :;. , . : ~ . . + : .  ~ . . ~ . . . .  :./..f...~.. :::.: : ~ . , . + ~  .~ ; : . . . . . . : . : . . ; .~ . . . : . . . . . . . , . .  

i • ';::::">-::::::"~,:::::.::.~.:.:~'a~:~:~-:;.--::~~ ':::::-::::' .::.:..-::..:.::,- <:;:::::::.::.+'-~ ~'~~+;~ :'".+~"] . / : : : ' + . . " ~ "  ~ .  . : . : . < ~ : : . . . o . . . . . . . ~ : f - , ~ : . : : . - : ~ . - : . . ~ ' . :  ~."...".."."....'......."."..-.~.~,;.:.... . ~ . . . f . : . . . " . = . . ~ . i ~~ . : . ~  . . . .  

Figure 16. The  W i n d o w  File Menu 

for the function I D M A T .  B_IDMAT is a "Both"  display, 
I_IDMAT is an inverse call ing tree and S IDMAT is a sta- 
tistics display. The windows are listed in alphabetical order 
by object name then by single letter prefix. The top window 
is checked. You  can get to any o f  these windows by clicking 
its menu entry; the top window can also be accessed by 
Ctrl+ I. 
The first section o f  the menu allows the User to make  the set 
o f  display windows more orderly by Cascading them. They 
can all be closed, iconized or  normalized (i.e., un-iconized).  

3.7 Display Window Features 

The Display windows arc not  only for display o f  information 
about APL objects and their  relationships, useful as that is. 
Like the Names list on the INFO Control form, their displays 
include the names o f  functions, global  variables and local 
names along with other information. Al though the display 
windows are read-only, their  text can be selected, and any 
name or set o f  names in a selection can be used to launch 
another display window. This flexibil i ty provides much o f  
I N F O ' s  p o w e r .  

A right-click mouse  menu much like that for the INFO Con- 
trol Names  list is available. I f  the name o f  a function is in- 
cluded in a selected area o f  a display window the menu looks 
like Figure  15. 

The first two sections o f  the menu are identical to that for the 
Names  list and work identically for names in the selected 
area. The third section has more features. C o p y  is available 
for copying the selected text to the clipboard. Two more 
F i n d - r e l a t e d  i t e m s ,  F i n d  n e x t  m a t c h  ( F 3 )  a n d  F i n d  p r e v i -  

o u s  m a t c h  ( S h i f t + F 3 )  a l s o  a p p e a r .  T h e s e  a l l o w  s t e p p i n g  

f i ' o m  o n e  m a t c h e d  p a t t e r n  t o  t h e  n e x t  ( o r  p r e v i o u s ) .  C l e a r l y ,  

the use o f  the F3 keys is more convenient  than using these 
menu entries. 

-.~:,.~:~..~_ ~-~ ]~ .~ . ,= .~ :  Z . ~ , - ~  ~ . : : . ~ :  _~.=~7:.~ i :~ .~+< : : : : : : : : : ~ !~  7 . ~ ~  ~ - ' - : .  : ET"::,'.-L.-:.+,. 

| '  z o c J  ~ . ~ . : : + ~  .. ,.-.......,.~i. -~ ~+~:,..:.~... ~.~j.,.:, .:~:~,:,,:,..:...."+:~.+.~.-,...:.--.~..~:+.~.. ~......i:~,: .:.:: ~.. ~ • ~:.'= "...~.. :j..:.=.""~.,.~:"...........>"~ ~!. ~ : ~ ' ~ : ~ : .  ~'~+ ,:~:...+.@.:;%~ :~ .~ ~/~+~++,~ ~--~: ~ .."l 
] .. + , - . . ~  ...... ~ :  ~. .~+ '  .~:~;.~ .- ~:~. • ...."--"......."i :. ~-~ ....-............."....."~ :" + ~,.. , : ~  ~!~T: ~;~...~...,..-....,.........,. ~- - ,~| 

~, ~", " " . . . . .  " ~. ': ..=."~ ~. " ~%;~:~ :~  .~:~:', .~:f4 ,.. ~...--7 ~ . " ~ .  ~.....~.~ ...............~.~'',;...::"......., .:...+. ~...,...-~ .~+~..~ 
• ......,. ~ . . . . .  .~., ..~ ~ ~÷,....=~............................ ~%.~:. 

.>'-'"+i; " ' " .,.:.#,~..f " .................: .r~, 
• ...........-~). . . . . . . . . ~ j . . - ;  .:~<......;..+ ~.-..,,......-...~:.. . ,  • ~......:.. 

Figure 17. The W i n d o w  Edit  Menu 

One additional note about the Find operation: it can find text 
patterns in the text o f  any display window -- even a Find 
Results window. These matches are displayed in red (in 
addition to the original magenta  matches o f  the Find Re-  
suits). 

The two Print entries will  print either the full text o f  the top 
window or its selected text. A feature o f  the printing is that 
it has some smarts. It  tries to break a line first at a comment  
or  statement separator, then at a delimiter. Also,  i f  page 
breaks are needed, it inserts them at pairs o f  newlines unless. 

Figure 14. The W i n d o w  Menu 

this would  increase the number  o f  pages printed. A header 
with the window caption, a timestarnp and "'Page n o f  N "  
number ing is printed at the top o f  the page in Roman bold• 

Figure 15. W i n d o w  Right-Click Mouse  Menu 

3.8 Window Dropdown Menus 

You may  have noticed that the display windows have drop- 
down menus  with  the same names as those on the INFO 
Control  form. There are some differences. 

The F i le  menu shown in Figure 16 duplicates the Print fea- 
tures in the r ight-cl ick mouse  menu,  and al low quitting 
(closing) the window. Note  that Esc will  close the window. 
It is different f rom the Ctrl+Q needed for the INFO Control  

71 



form so that one may repeatedly press the Esc key to indi- 
vidually close windows without accidentally closing the 
INTO form by going too far. 

4. A N  A D M I N I S T R A T O R ' S  T O U R  

If, when on the Info page (as we have been unti l  now), we 
observe that one or more of  the WS entries say "'Needs Up- 
date" instead of  the friendlier "OK" as shown in Figure 19, 
or notice that the background color of  the WS name list has 
changed from white to pink, it is an indication that some 
coding changes have been made that are not  yet  reflected in 
the static data base. 

, 

. . . . . . . : . ~ ~ . . .  .-+ ~>~ : i~ : ,~ ,~  l 

, , , ,  ,,,,>,,, 

;) ( ) .  l l i  ~ .- ~ ' - ~ , ~ : - ' i  ! l i'll, l i  . . . .  - 
F i g u r e  18.  T h e  W i n d o w  W i n d o w  M e n u  

Figure 20. The INFO Control  Form Update  Page 

The Edit menu shown in Figure 17 has the offerings of  the 
INF(.~ Control form with the addition of  the extra items in 
the Window right-click mouse menu. 

The V i e w  menu is identical to that on the INFO Control 
form, so it need not be re-displayed. 

The ~ / i n d c ~  menu in Figure 18 is completely different from 
its INFO Control form counterpart. All  o f  the shortcut keys 
listed are more useful than the menu itself, but this is a good 
way to remind Users that they are there. 

I f  several display windows are open, one can scroll through 
them in forward or reverse order. One can also scroll the 
text o f  a window up or down without the mouse (just as 
APL+Win  allows). Finally,  you  can always get back to the 
INFO Control form by using Ctrl+l -- the same shortcut 
used to get from the INFO form to the top display window; 
thus one may toggle back and forth between the two. 

That concludes the User ' s  Tour. I hope you got the impres- 
sion that this is a useful, integrated set of  capabilities that can 
quickly give new insight into the workings of  a large system 
of  APL code. 

During this tour you surely noticed that the static analysis 
data base was already in place and current and you may have 
wondered .just how that happened. Another  tour that aims to 
answer this question is about to launch. 

Figure 19. Change  Notice 

When the U p d a t e  tab is clicked, the Update (or Adminis -  
trator 's) page is presented. From this page one maintains the 
data base of  existing File Groups and adds new ones. L ~  us 
consider the maintenance first in Figure 20. 
Note that the button that said "'Q_pen" when we were on the 
Info page now says "U[)date ."  Clicking that but ton causes 
art incremental  update of  the changed functions and variables 
to be made. Figure 20a shows such an update caught in the 
act. An  Update Log window collects and displays the his- 
tory of  the update processing, capturing the status bar mes- 
sages from the bottom of the INFO form and other 
information about the update. Once the update is completed, 
a return to the Info page allows selection on the Update L-og 
of  those functions and variables that were added and 
changed for viewing their definitions and uses, jus t  as in any 
other display window. 

That ' s  d i  there is to updating the data base. You may notice 
in Figure 20 at the top of  the page, jus t  under  the U p d a t e  
tab, are the options U ~ d a t e  and Regllace.  As you  have 
already guessed, if  the R e B l a c e  option was selected instead, 
the but ton would say Rel~lace; clicking it would cause a 
complete replacement of  the data base files for the selected 

7 2  



WS(s) -- a full analysis o f  all functions and variables in each 
WS, just  as was done when the data base files were first 
created. 

4.1 First Steps 

So, how were they first created? Clearly, the Administrator 
had more to do than just  click a button. Our tour will dis- 
cover all the steps necessary for initially setting up the 1NFO 
static analysis data base for the INFO WS files themselves. 

As has often been seen, the files to be analyzed are named 
INFOA, I N F O A U X A  and INFODOCA.  They are slightly 
altered versions o f  the real group of  INFO WS files named 
INFO, INFOAUX and INFODOC for reasons to be ex- 
plained later. For  now, let us look at the Update page con- 
trois that determine what gets processed. Although it is not 
essential to do so, we can consider the controls in geographi- 
cal order. 

First is the File Group .  The text "Alternate Into" was typed 
in as the name that would identify the file group. As you 
see, the field is a combo control; it allows selection o f  exist- 
ing file groups as well as specification o f  a new one. 

Next, the S o u r c e  Pa th  was specified. In this case a library 
number was used, but a file path name is just  as acceptable 
and the Browse button can be used to find the path where the 
INTO WSs reside. A history o f  source paths is maintained 

The File Spec limits the names of files in the Source Path to 

be considered as members o f  the file group. In this case 
info*a indicates that only files with names beginning with 
" info" and ending with "a" are displayed in the WS list. The 
check boxes to the right further specify whether Windows 
and/or DOS WSs are included in the group. 

The INFO Path determines where the static analysis data 
base files will  be installed. 

The N o S h o w  List is a name of  a set o f  NoShow names -- 
functions that will  not be included in function calling tree 
expansions. Each file group can have its own NoShow list 
or one can be shared among several file groups. When a file 
group is selected on the Info page, the associated NoShow 
list is automatically loaded with the rest o f  the file group 
information. 

At  this point., the data base files can bc generated. Assuming 
they do not already exist, the UjJdate or ReBlace option 
selection is immaterial -- a complete analysis will be per- 
formed and a complete data base will be created. When 
done, the contents o f  each WS could be examined individu- 
ally, but the interrelationships among the WSs have not been 
established. This is the tricky part. 

4.2 Connections and the Donor Model 

INFO's  handling o f  multiple-WS connections is based on 
what I call the "Donor"  model  which is: 
• a "donor"  WS provides objects to other WSs either as 

its entire contents or in smaller groups called "compo-  

Figure 20a. Update in Action 

7 3  



nents;" 

i f  a donor WS provides components,  it identifies them 
to INFO in a resident variable or niladic function named 
A A C o m p o n e n t O b j e c t N a m e $  (its absence means 
the WS is only donated in its entirety) ; 
"Receiver"  WSs in some manner receive components  
from the donor  WSs, either by directly copying them or 
by reading a file component  from a "package"  file. 
Which components  are received f rom donors are identi- 
fied by component  numbers. 

Expanding, the value o f  _aAComponentObjectNames 
can be almost any organization o f  a set o f  groups o f  names: 
• a vector  o f  nested vectors o f  names; 
• a vector  o f  matrices o f  names; 
• a vector  o f  vectors o f  space-separated names; 
• a matrix with space-separated names on rows; 
• a newline-separated character vector  with space- 

separated names between the newlines. 

Each group in the set is identified by the index number  o f  its 
position in the list -- its row or element location. This posi- 
tion number is known as its "Component". With 
AAComponentObjectNames defined in each WS that 
acts as a donor (which could be any or all WSs  in the file 
group) and the knowledge  o f  which component  numbers  

- - -  De~'~tn£t1~D of trar~Lb2o ~OBJS --- 

T~ 'OB/ . ,  O O D  
tc~ 

iazv;~u. 
~J .aceBy  
UP~F 
~tERE~g 
~RIF 
ER~F~e~as 

[ 1 1  
V =r,._AiComl:~:3,~mr~Ob3ecLlqa~e,s 

F i g u r e  21. INFODOCA Component  def in i t ion  

f rom each donor  are received by the receiver,  the Adminis -  
trator can define the W S  connections.  

4.3 The Organization of INTO 

With that in mind, let us look at the three WSs  that comprise  
this mul t i -WS system called INFO. 
• INFO.W3 is the start-up WS that contains the always- 

resident functions. It  copies in all o f  I N F O A U X . W 3  
and a subset o f  the INFODOC.W3 objects when  they 
are needed, then discards them when they are not. 

INFO creates and handles all the Windows  GUI inter- 
actions -- forms, display windows and dialogs. 
I N F O A U X  specializes in generat ing the information 
shown in the Info page display windows.  This includes 
Find processing, Trees and Statistics displays. 
I N F O D O C  handles the analysis o f  functions and vari- 
ables in the Update  page processing. It also contains 
the old W S D O C  generation code although that is not 
currently used in INFO. 

Self-documentat ion o f  its own WSs  presents INFO with a 
dilemma. INFO gets the function and variable definitions by 
copying the WS to be documented into the INFO WS. Since 
namespaces are not (yet) implemented in APL+, the resident 
INFO functions and variables haw been given "funny" 
names beginning with the two characters 4A to avoid name 
conflicts with the objects copied in. Definitions of only the 
non-funny objects are then extracted and placed in the first 
data base file. Then those copied objects can be erased and 
the I N F O D O C  functions (which do not  have funny names)  
can be brought  in to process their definitions. 

But  when the WS to be documented is INFO itself, the funny 
names don ' t  prevent  name conflicts at all. There is a perfect 
match o f  every one, so no non-funny names are found and 
nothing gets documented.  

The  solution adopted here is to generate an Alternate I N F O  
WS set (the I N F O A  set) that has all occurrences o f  AA_ 
names replaced by names beginning with _AA and then 
document  the result ing WSs. In this way the al temam set 
has no confl ict  with the original and it can be complete ly  
documented.  A funct ion named A t  tee-gO3 is used to per- 
form the transformation on each o f  the three WSs and gener- 
ate or update the alternate WSs. In fact, A2 tee-W3 can be 
used to make  a complete ly  funct ional  new INFO processor  
with any desired " funny"  name prefix if  one finds that desir- 
able. 

To recap, we document an alternate version of the INFO 
WSs: INFOA, INFOAUXA and INFODOCA. INFOA uses 
all o f  its own objects (the default  connect ion o f  a WS to 
itself), connects to all o f  I N F O A U X A  and to one component  
o f  I N F O D O C A  identified as component  number  1. 

The description o f  the single component  definition in 
I N F O D O C A  is shown in Figure  21. 

First, the variable U P O B J S  is displayed. It is an l 1-row 
character matrix with one name per row. I N F O D A  copies in 
this set o f  names, then copies those named objects in prepa- 
ration for function and variable defini t ion processing. The  
definit ion o f  A A Component Obj ec tName s is a function 
that just returns the ravel of an enclosed UPOBJS -- a one- 
element nested vector of character matrices. That satisfies 
the requirements of INFO WS connection evaluation. 

7 4  



4.4 Getting Connected 

Thus, in our illustration, the three WSs with a file specifica- 
tion of info*a have been created, located, and had their data 
base files created. We only need to save the File Group in- 
formation, including WS connections, to enjoy complete 
multi-WS documentation. When the Save  button on the 
Update page is clicked, a dialog is presented for saving 
[changes to] the definitions of the File Group and editing the 
WS Connections. 

If a new File Group is being defined, the Create File Group 
Definition dialog in Figure 22 appears, telling the new 
name, allowing the definition of WS Connections and offer- 
ing to copy the contents of an existing NoShow names list 
into a new NoShow list. If OK is clicked here the new file 
group with all the definitions shown here and on the Update  
page will be saved to the INFO.INI file. If the Edit WS 
Connections box is checked, the Connections editor will 
appear. We will see this soon. 

If an existing File Group definition is being revised, the 
Change File Group Definition dialog (Figure 22a) asks 
whether to replace the existing definition with any changes 
in the Update page specifications and whether to Edit the 
WS Connections. In our case we will uncheck the Replace  
existing File Group box and will check the Edit box. 
Clicking OK opens the Workspace Connections dialog (Fig- 
ure 23). 
This Connections editor is basically a listview control. Use 
of a third-party grid may be more elegant but INFO wants to 
use only the facilities provided by APL+Win. 

Note that the three WS names in the system appear both 
down the left side and across the top of the listview. Ini- 
tially, the word ALL appears down the diagonal of the array, 
all other entries are blank and the WS id column (next to the 
Worgspaoe column) is blank. To specify the connections 
and the WS id letters the Administrator does the following: 
• Clicks a Workspace row of the listview (I chose 

INFOA). That WS name is then displayed at the first 
line of the dialog -- in this case Workspace  INFOA; 

• Enters or changes the WS id letter in the edit control 
labeled has  WS letter, and presses Enter; 

• Clicks the column header for a donor WS in preparation 
for identifying which components of this WS the re- 
ceiver WS will use (I chose INFODOCA). NoW that 
the WS name appears in the line that says and  uses  
these components of Workspsce INFODOCA; 

• Enters the connection component numbers in the long 
edit control just above the lisWiew and presses Enter. 
In this case the 1 indicates that INFOA uses component 
1 of INFODOCA; 

• In the same manner declares that INFOA connects to 
ALL of INFOAUX (by typing an A and pressing Enter) 
and gives appropriate WS identifier letters to the other 
WSs; then 

• Clicks the OK button to save all of  this information to a 
file named INFOGRP.SF in the static data base. 

Figure 22. Creating a New File Group 

With that, the setup of the File Group has been completed. 
Thereaf~r, any changes made to INFO code is reflected in 
the INFOA code by executing A]  t e r g 3  on the modified 
WS(s). Upon opening INFO and selecting the Alternate Info 
file group, the fact that changes have been made are an- 
nounced in black and pink. Moving to the Update page and 

Figure 22a. Changing an Existing File Group 

clicking the U[~date button makes the data base reflect the 
new changes. 

75  



5. PLANNED ENHANCEMENTS 
There is always room for improvement .  A number o f  
changes are required, anticipated or hoped for the future. 

A m o n g  them are: 
• true Windows tree controls  instead o f  indented text 
• improved handling o f  objects in different WSs  with 

identical names. 

ACKNOWLEDGEMENT 
I wish to thank David  E. Siegel  for his consistent support  
and encouragement  in making  this paper  possible  and for 
insightful suggestions that  have made INFO a much better 

tool.  

F i g u r e  23. W o r k s p a e e  Connec t ions  E d i t i n g  

7 6  




