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In order to test the performance and verify the correctness of Cyber-Physical Systems (CPS), the timing

constraints on the system behavior must be met. Signal Temporal Logic (STL) can efficiently and succinctly

capture the timing constraints of a given system model. However, many timing constraints on CPS are more

naturally expressed in terms of events on signals. While it is possible to specify event-based timing constraints

in STL, such statements can quickly become long and arcane in even simple systems. Timing constraints for

CPS, which can be large and complex systems, are often associated with tolerances, the expression of which

can make the timing constraints even more cumbersome using STL. This paper proposes a new logic, Times-

tamp Temporal Logic (TTL), to provide a definitional extension of STL that more intuitively expresses the

timing constraints of distributed CPS. TTL also allows for a more natural expression of timing tolerances.

Additionally, this paper outlines a methodology to automatically generate logic code and programs to moni-

tor the expressed timing constraints. Since our TTL monitoring logic evaluates the timing constraints using

only the timestamps of the required events on the signal, the TTL monitoring logic has significantly less

memory footprint when compared to traditional STL monitoring logic, which stores the signal value at the

required sampling frequency. The key contribution of this paper is a scalable approach for online monitoring

of the timing constraints. We demonstrate the capabilities of TTL and our methodology for online monitor-

ing of TTL constraints on two case studies: 1) Synchronization and phase control of two generators and, 2)

Simultaneous image capture using distributed cameras for 3D image reconstruction.
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1 INTRODUCTION

Cyber-Physical Systems (CPS) integrate physical and computational worlds to form smart, co-
ordinated, efficient and responsive infrastructures. Deploying CPS that increase the efficiency in
sectors of health, energy, aviation and freight rail by 1% will save $186 billion in the U.S. over a
15 year period [2].

Time is a fundamental concept in CPS which allows the integration of discrete (cyber) and con-
tinuous (physical) domains [20]. CPS use sensors whose data needs are often time-tagged for effi-
cient data fusion and knowledge of when the measurement was taken. Computing, communication
and control commands in dynamic real-time systems need to be executed within a specified la-
tency. Correct and robust orchestration of different tasks and/or distributed parts requires correct
temporal behavior within and among CPS components. Current and future CPS systems such as
health-care monitoring and active control devices, intelligent transportation, and electrical power
systems are a few safety-critical examples requiring synchronization and latency controls.

In order to be confident about the behavior of a built or designed CPS, its timing behavior must
be tested and verified. Prior to performing testing of temporal behavior, timing constraints must
be expressed in a formal language. That enables robust analysis of constraint satisfiability and
consistency. The formal expression enables the application developer to explicitly specify timing
requirements in the design phase and provide the basis to automate the generation of application
and associated test code to enable a more systematic, rigorous, and iterative verification process of
the SUT (System Under Test). Temporal logic provides the formalism to define time specifications,
where evaluation of constraint satisfiability is based on reasoning about the propositions. There
are several types of temporal logic which reason about variables on a discrete or continuous time
domain. LTL (Linear Temporal Logic) is defined for sequences of boolean predicates, MTL (Metric
Temporal Logic) is expressed on real-valued signals in discrete time and STL (Signal Temporal
Logic) is utilized for specifying timing constraints on real-valued signals over continuous time.
Event-based timing constraints can be expressed in STL by using the Rise and Fall operators [17].
However, the STL statements become quite complicated and difficult to understand. In particular,
using STL expressions to specify simple latency constraints among events become complicated, as
they must be expressed in a nested manner. Furthermore, expressing the acceptable tolerance of
the timing constraints make the constraint expressions more complicated. Since timing constraints
are specified and written manually by humans, they should be readable and intuitive, to bridge
specification at the programming language level with synthesis and validation during application
compilation and verification on hardware platforms.

In this paper, we introduce Timestamp Temporal Logic (TTL) – in order to more simply and
intuitively express the timing constraints of distributed CPS. TTL allows for the specification of
the acceptable tolerance of the timing constraints. Further, we also outline a systematic methodol-
ogy to generate the logic for real-time monitoring of TTL timing constraints. In our methodology,
a timing constraint is monitored by extracting timestamps of rising and falling edges of boolean
signals and is evaluated by working with timestamps only. In comparison, the monitoring logic
for STL constraints will have to store all signal values at the required sampling frequency in the
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time period of interest, which can require significant memory footprint. Reduced memory require-
ments of the TTL constraint monitoring logic, allow us to perform online analysis of the timing
constraints of a potentially large-scale distributed CPS. Online constraint monitoring can be used
at runtime to enhance safety by early termination, and also can be used to reduce the debugging
time during prototyping [6].

In order to illustrate the application and verification process of TTL, we developed two dis-
tributed CPS case studies: 1) Synchronization and phase control of two direct current (DC) motors
to simulate two generators connected to the same power grid and, 2) Simultaneous image capture
using distributed cameras for 3D image reconstruction. We expressed the timing constraints of
both these applications in TTL. We synthesized the TTL constraint monitoring logic on a Field
Programmable Gate Array (FPGA), and also developed a test application for online evaluation of
the TTL statements.

2 RELATED WORK

Temporal logic has been used to formally describe, reason and verify the temporal behaviors of
the system. Linear Temporal Logic (LTL) was introduced in 1996, to specify timing constraint
on sequences of boolean predicates [9]. Timed Linear Temporal Logic (TLTL) was introduced to
support real-time properties of the system [4]. Similarly, Metric Temporal Logic (MTL) and Metric
Interval Temporal Logic (MITL) are the extensions of LTL to express a real-time timing constraint
on boolean predicates [3, 14].

In 2004, Maler and Nickovic proposed Signal Temporal Logic (STL) to express dynamic tim-
ing constraints over real-valued signals [15]. STL is constructed based on MTL and is used to
reason about continuous signals. STL expresses temporal constraints over both finite and infi-
nite time horizons. However, reasoning about the future of a signal at the evaluation time is not
causal. Jakšić et al. solved the causality problem of the STL by introducing past STL [13]. In [8],
Donzé et al. extended STL by adding frequency constraints on real-valued signals. They proposed
Time-Frequency logic (TFL) which expresses the timing requirements based on Short-Time Fourier
Transform (STFT) of a signal [8].

Various monitoring tools have been proposed that observe the system behavior for specified
initial conditions and inputs [5, 10, 11]. In [7], Donzé et al. created a toolbox in Matlab (Breach)
that enables monitoring of STL constraints. AMT is a similar toolbox used for monitoring temporal
constraints expressed in Property Specification Language (PSL)/STL [19].

2.1 Limitations of STL-Based Timing Specification

Expressing level-based constraints on the real-valued signals is done using STL semantics [15].
Globally (�), Eventually (�), Until (U ) and Since (S) express different level-based constraints in
STL. Event-based constraints are expressed with Rise (↑) and Fall (↓) operators in STL which are
defined as follows [17]:

↑ ψ = (ψ ∧ (¬ψS�)) ∨ (¬ψ ∧ (ψU�))

↓ ψ = (¬ψ ∧ (ψS�)) ∨ (ψ ∧ (¬ψU�))

Although instantaneous events can be captured in STL using the Rise and Fall operators, they
often result in convoluted and esoteric specification. Specifically, expressing sequential constraints
in STL results in a nested expressions. For instance, consider the following constraint: “Whenever
signal x1 rises above 0.5, signal x2 should rise above 0.6 within 1 second and after that, signal x3

should fall below 0.4 within 5 seconds.”. This constraint can be expressed in STL using Rise (↑) and
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Fall (↓) operators as:

ψ = ���
(
↑ (x1 > 0.5)

)
⇒

(
�[0,1]

(
↑ (x2 > 0.6)

)
⇒

(
�[0,5]

(
↓ (x3 > 0.4)

)))��
By replacing Rise(↑) and Fall(↓) operators, we have:

ψ = ���
( [

(x1 > 0.5) ∧ (¬(x1 > 0.5)S�)
]
∨
[
¬(x1 > 0.5) ∧ ((x1 > 0.5)U�)

] )
⇒

(
�[0,1]

( [
(x2 > 0.6) ∧ (¬(x2 > 0.6)S�)

]
∨
[
¬(x2 > 0.6) ∧ ((x2 > 0.6)U�)

] )
⇒

(
�[0,5]

( [
¬(x3 > 0.4) ∧ ((x3 > 0.4)S�)

)]
∨
[(

(x3 > 0.4) ∧ (¬(x3 > 0.4)U�)
] )))��

Expressing this relatively simple and common constraint is complicated in STL.1

Since timing constraints are specified and written manually by humans, they should be as in-
tuitive as possible. Expressing timing constraints with sequential ordering causes nesting in STL
statements and makes the statements difficult to understand. In comparison, the augmented syn-
tax of Timestamp Temporal Logic (TTL) can more intuitively express the timing constraints of
distributed CPS. TTL also allows for a more natural expression of timing tolerances.

2.2 Limitations of STL-Based Monitoring

The main limitation of STL-based monitoring techniques is excessive memory consumption of
monitoring tools when they either store the signal for offline monitoring or evaluate the timing
constraints for online monitoring. In offline monitoring, the monitoring tool stores the entire signal
[19]. In online monitoring, a sufficient range of signals is stored to evaluate a constraint with future
operators[6]. In both cases, data acquisition rate is selected based on the desired time accuracy. For
example, if the desired time accuracy is 1 μs , the sampling should be at least 0.5 μs . This requires
storing 1 million floating point number (4 bytes) per second. In other words, monitoring a signal
for ten minutes requires 4.8 GB of memory.

In [13], Jakšić et al. presented a methodology for monitoring STL constraints using FPGAs. In
this work, both the SUT and the monitoring logic are implemented on the same FPGA and the
clock used for SUT is the same as the monitoring system. However, in a distributed CPS, having
access to SUT clock is not possible and even if it is, it may not be reliable. Local clock references
must be synchronized to a global reference in order to measure time intervals over distributed
systems where timestamps are captured with monitoring devices in different locations.

In contrast, the monitoring program to evaluate TTL constraints works only on timestamps of
the important events in the system, and therefore requires much less memory. Also, the times-
tamps are taken on the clock from the testbed, which is synchronized, more reliable, and under
our control.

1The same timing constraint is expressed in TTL simply as:

ψ =

[
L

(
〈x1, 0.5,↗〉, 〈x2, 0.6,↗〉

)
≤ 1

]
∧
[
L

(
〈x2, 0.6,↗〉, 〈x3, 0.4,↘〉

)
≤ 5

]
where the first sentence expresses that the latency (L) between the two events – one when signal x1 increases above 0.5

V, and the second, when signal x2 increases above 0.6 V – is less than 1s, and the second sentence defines the latency

constraint between the events on signals x2 and x3.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 169. Publication date: September 2017.



Timestamp Temporal Logic (TTL) for Testing the Timing of Cyber-Physical Systems 169:5

Fig. 1. Comparing two signals (s1 and s2) with their corresponding thresholds (th1 and th2) results in boolean

signals (a and b) and applying differentiator operator (��) on boolean signals results in instantaneous events

(c and d).

3 TIMESTAMP TEMPORAL LOGIC (TTL)

In this section, we present our proposed logic, Timestamp Temporal Logic (TTL) which is targeted
towards the description of timing constraints for CPS.

3.1 Event Representation

Typically, an event is represented by a single point in the time domain which can be represented
by a Kronecker delta function (δt ). Accordingly, a signal event is constructed from a real-valued
signal crossing a threshold value. We represent a signal by a triplet, 〈s, th,↗ or ↘〉, which is 1 at
the time when the signal, s , crosses a threshold, th (crossing the threshold from below↗ or from
above↘), and 0 everywhere else. A signal event can be singleton or repetitive. In a singleton signal
event, there is only one event (e1) which is represented by a single timestamp while in repetitive
signal events, a sequence of events {e1, e2, . . . , en }(n∈N) is represented by multiple timestamps. A
boolean signal can be divided into time intervals during which the value of the signal is true or
false, indicated by I+ and I− (Figure 1 signals a and b). The occurrence of an event corresponding
to a rising/falling edge is defined as the starting point of each positive interval (Ii ∈ I+).

Definition 1. Differentiate operator, s ′ =�� (s ) converts a boolean signal s ∈ B to a signal event
where the value of s ′ is 1 when s (t+) ⊕ s (t ) ∧ ¬s (t ) = �, and ⊥ otherwise. ⊕ is the XOR operator
and, t+ refers to the right neighborhood of signal at time t in continuous domain.

Extracting a signal event from a real-valued signal over the continuous time-domain is done
by comparing the values of the signal with a threshold, th, and then, passing the output through
the Differentiate Operator (��) in discrete time-domain. As depicted in Figure 1, signals s1 and
s2 are converted into signal events, c and d, after comparing with their corresponding thresholds
(th1,th2) and applying the differentiate operator, ��.

Definition 2. A projection function πp is a function that maps a proposition built upon real-
valued signals to a boolean-valued signal.

πp (s[t]) : D → B

where B is the boolean domain.

3.2 TTL Syntax

The TTL syntax is defined based on STL with extensions to enable distributed CPS with respect to
absolute time, improved clarity, and signal expression simplifications without substantial loss of
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Fig. 2. (a) The latency between events extracted from signal s1 crossing its threshold (th1) from below and

signal s2 crossing its thresholds (th2) from above is Δt = t2 − t1. (b) Three signals (s1, s2 and s3) cross their

corresponding thresholds (th1, th2, th3) from below simultaneously considering error tolerance, ϵ .

meaning. TTL operators are built based on high-level operators that specify timing requirements
on both the value of a formula and the occurrence time events. The output of TTL operators are
finally a boolean.

Definition 3. The comparison operator �, is a mapping function from a real-valued signal to a
boolean value, where � ∈ {>,==, <}.

Definition 4. The maximum tolerance ϵ , is defined as the tolerated level of accuracy needed to
monitor a temporal requirement where ϵ ∈ R+ and ϵ > 1

fs

. (fs is the digitizing sampling frequency)

The grammar of TTL is defined as follows:

ψ :=p |ϕ � c |¬ψ |ψ1 ∧ψ2 |L[a,b] (φ1,φ2) � c |S[a,b] (φ1,φ2, . . . ,φn , ϵ )

|C[a,b] (φ1,φ2, . . . ,φn ) |F[a,b] (φ) � c |P[a,b] (φ1,φ2) � c
|Sp[a,b] (φ,m) |B[a,b] (φ,N ,dk ,m)

where p is a boolean proposition in P = {p1, . . . ,pn }, {a,b, c,dk ,m} ∈ R+, N ∈ N+ , ϕ is a formula
representing real-valued signals,ψ is a formula constructed from boolean signals andφ is a formula
constructed from signal events. L,S,C,F ,P,Sp and B are latency, simultaneity, chronological,
frequency, phase, sporadic and burst operators. One can verify thatψ can be converted into φ:

φ =�� (ψ )

As depicted in Figure 1, signals c and d, the triplet 〈s, th,↗〉 is equivalent to �� (s > th) and
the triplet 〈s, th,↘〉 is equivalent to �� (s < th).

Latency, simultaneity and chronological constraints are expressed on singleton signal events
and frequency, sporadic, burst and phase constraints are expressed for repetitive signal events.

3.2.1 Latency [L[a,b] (φ1,φ2)]. A latency constraint monitors the time difference between the
occurrence of two signal events φ1 and φ2. For example, in a car, the actuation trigger of the airbag
system should be delivered within a known latency when the collision sensor detects an impact.
Latency constraints can be used to specify a condition on “maximum, minimum or exact” latency
between two signal events when used along with <, > or == operators, respectively. Figure 2(a)
shows two signal events having latency of Δt . Each signal event is specified by a real-valued signal,
a threshold th and a rising/falling edge (rising edge for s1 and falling edge for s2).
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Fig. 3. (a) The frequency of event sequences extracted from two signals (s1 and s2) crossing their correspond-

ing thresholds (th1 and th2) from below is 1
T1

and and 1
T2

respectively, and the phase difference between in

each period is Δt . (b) Burst constraint, whenever a signal (s1) crosses its threshold (th1) from below exactly

N times in a time interval with dk seconds width, it must not cross its threshold from below again for m

seconds.

3.2.2 Simultaneity [S[a,b] (φ1,φ2, . . . ,φn , ϵ )]. The simultaneity concept for two or more events
refers to satisfaction of two or more conditions at the same time. Many applications require si-
multaneous sensing or actuating. For instance, when multiple cameras take the photo of an object
with a fast motion from different angles for 3D view reconstruction, all capture actions should
be done at the same time in order to perform a successful reconstruction. Usually, a tolerance (ϵ)
is set to indicate the maximum acceptable time difference between the occurred events, i.e., the
precision. Figure 2(b) depicts a simultaneity constraint for three events. Each event is specified by
a real-valued signal, a threshold th and a rising/falling edge.

3.2.3 Chronological [C[a,b] (φ1,φ2, . . . ,φn )]. A chronological constraint is specified when the
occurrence order of events matters. For example, in a car accident, the airbag must actuate after
the time the collision sensor detects the impact and the seat belt must be retracted after the time
the airbag actuates. Strict adherence to the chronological ordering is necessary to avoid any harm
to the passengers.

3.2.4 Frequency [F[a,b] (φ)]. A frequency constraint expresses the time interval between every
two consecutive events extracted from a repetitive signal event. The time interval should equal the
specified period. Conventionally, frequency is defined as the number of occurrences per second.
Here, we express the frequency constraint as f = 1

T
whereT is the measured period between each

pair of consecutive events. For instance, the frequency of power lines in North America is 60 Hz.
If we pass the power line signal into a zero cross detector, it should yield a sequence of events with
half of the period of the sinusoidal signal, i.e.T = 1

2×60 s . Figure 3(a) shows a frequency constraint
with period T on two repetitive signal events compared with their corresponding thresholds th1

and th2.

3.2.5 Phase [P[a,b] (φ1,φ2)]. A phase constraint specifies a desired latency between two repet-
itive signal events with the same frequency (i.e. F[a,b] (φ1) = F[a,b] (φ2)). For example, in power
systems, having a specific phase between two sinusoidal signals at different locations is critical
in maintaining the system stability. Figure 3(a) shows the phase constraint between two signal
events with the same frequency, 1

T1
= 1

T2
, and the phase between two signal events constructed

from signals s1 and s2 when they cross their corresponding thresholds is Δt .
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Fig. 4. (a) Latency constraint between two events extracted from two signals (a.1) and its output (a.2). The

output is NaN before observing the second event. (b) sporadic constraint on a sequence of events (b.1) and

its output (b.2).

3.2.6 Sporadic [Sp[a,b] (φ,m)]. Some events in CPS are not strictly periodic but the time inter-
val between occurrences is bounded by a minimum time or possibly a maximum time. For example,
the appearance of cars at an intersection or highway entrance can be expressed as a sporadic con-
straint. As Figure 4(b) (part b.1) shows, after observing event e1, e2 should not occur form seconds
and after the occurrence time of e2, e3 should not occur form seconds again.

3.2.7 Burst [B[a,b] (φ,N ,dk ,m)]. A burst constraint describes a sequence of repeated non-
periodic occurrences of a condition or event in a specified time interval. A burst constraint can
be used to specify a minimum inter-occurrence recovery period necessary between consecutive
event occurrences. For instance, whenever a condition is met 30 times in a 10ms interval, the next
occurrence should happen 10 s after the occurrence of the last one so that the system can recover.
In Figure 3(b), the occurrence time interval is dk , the occurrences limit is N and the recovery time
ism.

3.3 TTL Semantics

TTL timing constraints can be combined with STL in order to express different kinds of timing
constraints specified for CPS. The definition of Globally (�), Eventually (�), Until (U ) and Impli-
cation (⇒) operators are the same as expressed in STL [16] (Table 2), and they are expressed on a
specific time interval in the future.

Combining TTL and STL does not always yield a meaningful statement. For example, to express
a condition like “Globally signal s1 crosses its threshold (3 V )” (Zeno behavior) but, we can express
a constraint as “Signal s should be greater than 3 Until latency of two signal event is 3 ms” or we
may have �[0,10] (F (〈s1, 2.5,↗〉) > 5), which means in the next 10 s, the frequency of the events
extracted from signal s1 crossing 2.5 V from below should be greater than 5Hz.

In Table 1, the satisfaction relation (s, t ) |= ψ means signal s satisfies ψ starting from time t . A
formula, ϕ, is evaluated by comparing a signal with a number, c (>, <,==).

The latency constraint is met if the difference between the time that the conditions φ1 and φ2

are satisfied is greater than, less than or equal to c which represents an at least, at most or exact
latency constraint respectively (Table 1.5). Similarly, the frequency constraint is met if the time
difference between every two consecutive instances that the condition φ is satisfied is greater
than, less than or equal to 1

c
which represents an at least, at most or exact frequency constraint

(Table 1.7). A phase constraint is met when the frequencies of satisfying conditions φ1 and φ2 are
the same (F (φ1) = F (φ2) = d) and the time difference between the instances within the period ( 1

d
)

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 169. Publication date: September 2017.



Timestamp Temporal Logic (TTL) for Testing the Timing of Cyber-Physical Systems 169:9

Table 1. Satisfaction Relations and Language Semantics, L: Latency, F : Frequency, P: Phase,

S: Simultaneity, C: Chronological, Sp: Sporadic and B: Burst Constraints

1 (s, t ) |= p iff πp (s )[t] = True

2 (s, t ) |= ¬ψ iff (s, t ) � |= ψ
3 (s, t ) |= ϕ � c iff ϕ[t] � c
4 (s, t ) |= ψ1 ∧ψ2 iff (s, t ) |= ψ1 ∧ (s, t ) |= ψ2

5 (s, t ) |= L[a,b] (φ1,φ2) � c iff ∃t ′ ∈ [t + a, t + b] s.t. (s, t ′) |= φ1 and ∃t ′′ > t ′ s.t. (s, t ′′) |=
φ2 ∧ (t ′′ − t ′) � c .

6 (s, t ) |= S[a,b] (φ1, . . . ,φn , ϵ ) iff ∀ti ∈ [t + a, t + b], i = {1, . . . ,n} s.t. (s, ti ) |= φi , max{ti } −
min{ti } ≤ ϵ

7 (s, t ) |= F[a,b] (φ) � c iff ∀ti ∈ [t + a, t + b], i = {1, . . . ,n} s.t. (s, ti ) |= φ, (ti+1 − ti ) �
1
c

8 (s, t ) |= P[a,b] (φ1,φ2) � c iff F[a,b] (φ1) == F[a,b] (φ2) == d,∀t ′, t ′′ ∈ [t + a, t + b] s.t.

(s, t ′) |= φ1, (s, t
′′) |= φ2,mod ( |t ′′ − t ′ |, 1

d
) � c

9 (s, t ) |= C[a,b] (φ1, . . . ,φn ) iff ∀ti ∈ [t + a, t + b], i = {1, . . . ,n} s.t. (s, ti ) |= φi , ti < ti+1

10 (s, t ) |= Sp[a,b] (φ,m) iff ∀ti ∈ [t + a, t + b], i = {1, . . . ,n} s.t.(s, ti ) |= φ, (ti+1 − ti ) ≥
m

11 (s, t ) |= B[a,b] (φ,N ,dk ,m) iff ∀ti ∈ [t + a, t + b], i = {1, . . . ,n} s.t. (s, ti ) |= φ, (i == N ),
(ti − t1) ≤ dk , ti+1 − ti ≥ m

Table 2. Semantics for level based constraints

(s, t ) |= ψ1U[a,b] ψ2 iff ∃t ′ ∈ [t + a, t + b](s, t ′) |= ψ2 ∧ ∀t ′′ ∈ [t , t ′], (s, t ′′) |= ψ1

�[a,b]ψ � U[a,b]ψ
�[a,b]ψ ¬�[a,b]¬ψ
p ⇒ q ¬p ∨ (p ∧ q)

that the conditions φ1 and φ2 are satisfied is greater than, less than or equal to c which represents
an at least, at most or exact phase constraint, respectively (Table 1.8). As defined in Table 1.9, a
chronological constraint is satisfied when an increasing chronological ordering among the signal
events φ1, . . . ,φn is met. In other words, the time that the first condition is met is earlier than
the time that the second condition is met and the time that the second condition is met is earlier
than the time that the third condition is met and so on i.e. t1 < t2 < · · · < tn . For simultaneity
constraint, the constraint is met if the conditions φ1, . . . ,φn are satisfied at the same time within a
small tolerance window, t ± ϵ . In other words, if the set T = {t1, t2, . . . , tn } contains the instances
that each condition is met, the difference between the latest instance (max (T )) and the earliest
instance (min(T )) should be smaller than ϵ . A sporadic constraint is met if the minimum time
interval between two consecutive instances that a condition φ is satisfied be at least m seconds
(Table 1.10). The main difference between the “at least” latency constraint and sporadic constraint
is the type of signal event the conditionφ is specified on. A latency constraint can only be specified
on a singleton signal event while a sporadic constraint is specified on a repetitive signal event
(Table 1). In order to evaluate a burst constraint as described in Table 1.11, whenever a condition,
φ, is satisfied N times in the specified time interval, dk , it shouldn’t meet the condition, φ, again
for a specified time interval,m.
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When expressing a timing constraint specified on two or more signal events, there are some
time intervals that do not contain any events. For instance, assume a latency constraint specified
on two signal events s1 and s2. After observing e1 on s1, the value of latency is unknown until e2 is
observed on s2. In order to solve this problem, the output is represented as NaN , Not a Number,
until the second event is observed (Figure 4).

Definition 5. NaN: Not a Number, a numeric data type that represents an undefined or unrep-
resentable value, described as ∀c ∈ R, NaN � c = ⊥ where � ∈ {>, <,==}.

Based on the definition, the comparison between NaN and the other values is always false.
For instance, in Figure 4, part a.2, before observing the second event, the output of the latency

constraint is NaN and after observing the event on s2, the value of latency is equal to Δt .

3.4 TTL Capabilities

In this subsection, we outline TTL capabilities in capturing both event-based and value-based
timing constraint in a simplified manner.

3.4.1 Nested Constraints. Constraints can be expressed in a nested form as illustrated in the
following example.(

�[0,100] (C ((L (〈s1, 2.5,↗〉, 〈s2, 3,↗〉) == 10), 〈s3, 3.5,↘〉))
)

This statement specifies a constraint as: ”Eventually, within the time interval ([t , t + 100]) there
should be a chronological ordering between the time that the latency between two signal events
exceed their corresponding threshold is equal to 10s and, the time the signal s3 falls below its
threshold. Note that, similar to STL, time intervals are relative (not absolute).

One concern in the nested TTL constraints is the range in which the statement is evaluated. In
nesting statements, the time interval range of the inner constraint is extended based on the time
interval range of the outer constraint. For instance, assume the following timing constraint:

�[a,b] (S[c,d] (e1, e2, . . . , en )).

It means the constraint is met at time “t“ if “always in the future time interval [t + a, t + b],
events e1, e2, . . . occur at the same time in the relative future time interval [t ′ + c, t ′ + d] where
t + a < t ′ < t + b“.

3.4.2 Combined Constraints. The following expression shows a combinatorial example con-
taining combined constraints represented in TTL: “Whenever the value of s1 is greater than 3V for
5 s and the value of s2 drops below 5V in the next 5 s , then, within 5 s , the frequency of s5 crossing 0V
from below to above should be greater than 10 Hz for 2 s and s3 should go above 1 V simultaneously
when s4 goes below 2 V ”. The corresponding TTL constraint is given as:(

((�[0,5] (s1 > 3)) ∧ (�[0,5] (�� (s2 < 5))) ⇒

�[0,5]

(
�[0,2] (F (〈s5, 0,↗〉) > 10)

)
∧ (S (〈s3, 1,↗〉, 〈s4, 2,↘〉)))

)

In this example, the monitoring is done based on the value of a signal (e.g. s1 > 3), the
time an event occurred (e.g. 〈s2, 5,↘〉 =�� (s2 < 5)) and TTL constraints (e.g. frequency and
simultaneity).

Since the outputs of constraints are boolean signals, when they are used in a nested constraint,
the time at which the output value becomes true is taken at the time of event occurrence.
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3.4.3 Absolute Time. TTL has the capability to specify a constraint on the absolute occurrence
time of an event. A signal event is generated at the desired timestamp (DT ). For example, “signal
s1 should cross 3 V from below at 2017-04-06T19:46:54+00:00 as a UTC time format”. In order to
express an absolute time constraint, we have a signal called Absolute Time Signal(AT ) that keeps the
absolute time. The timestamp is a 64-bit unsigned number, typically comprised of a 32-bit seconds
field from a defined epoch and 32-bit fractional second field. In order to evaluate a constraint, it is
enough to compare AT with the desired timestamp (DT ) and create a signal event and then, use it
in a Simultaneity constraint. The aforementioned example can be represented in TTL as:

S (〈AT , 2017 − 04 − 06T 19 : 46 : 54 + 00 : 00UTC,↗〉, 〈s1, 3,↗〉)

3.4.4 Exclusive Constraint. Another advantage of TTL is the capability of expressing a timing
constraint with a specific profile like Burst with minimal syntax. For instance, the burst timing
constraint used to avoid overheating issues can be specified using three parameters.

3.5 Tolerance Specification

When expressing a requirement on latency, frequency and phase constraints (including absolute
time), the desired level of uncertainty tolerance is given by c as c = c ± ϵ . For example, assume an
exact latency constraint on the occurrence of two events as L (φe1 ,φe2 ) == c and the user-defined
level of uncertainty tolerance as ϵ , then, this constraint can be written as:

(L (φe1 ,φe2 ) > c − ϵ ) ∧ (L (φe1 ,φe2 ) < c + ϵ )

Similarly, when defining a timing constraint with “<” or “>” operators, one can account for
user-defined tolerance by defining c ′ to be:

L (φe1 ,φe2 ) < c ′ = c + ϵ

or

L (φe1 ,φe2 ) > c ′ = c − ϵ
respectively. The user may specify the desired tolerance for meeting the constraints by replacing
the comparison value, c and cover the delay, jitter, timing error and other timing anomalies.

4 TIME TESTING METHODOLOGY

In this section, a methodology is presented to automate the testing process of timing constraint
that can be implemented on commercially available platforms. In this process, there are three
entities: 1. CPS (system under test), 2. TTL statements that specify the timing requirements, and
3. a measurement system that monitors the timing constraints.

4.1 Methodology Steps

Our proposed methodology has five steps to perform the testing on a CPS as follows:

4.1.1 Making TTL Parse Tree. In order to produce the parse tree from the TTL statement, all
constraints should be written as a string, and all operators should be separated by parentheses.
Then, the expression string is converted into a list of tokens. In each step, one token is taken
from the array in order, then the rules are applied until all tokens are applied on the tree (a non-
binary tree). After taking the last token, the parse tree is created. In parsing a TTL statement, there
are three different types of tokens:

(1) Operators
• Temporal operators (U , �, �, L, S, C, F , P , Sp, B and ��)
• Boolean operators (¬, ∧ and⇒)
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Table 3. The rules to create a parse tree from a TTL statement

Current Token Next Token IsEmpty(G) IsNotEmpty(G)

“(” or “〈” X Create a new node Create a right child
Operands X Create a right node and assign the operand to it

All operators ex-

cept “↗” and “↘”

X Assign the operator to

the current node

Travel upward until reach an empty node and assign the

operator to it. If no empty node is found, create a parent

node for the root, assign the operator to it and goto the

new root
“,” is not “〈” goto the parent node
“,” is “〈” goto the parent node and create an empty right child node for it.
“)” X goto the parent node
“〉” X goto the parent node and assign “�” to it

“↗” X assign “>” to the current node
“↘” X assign “<” to the current node

Fig. 5. Generated parse tree for a TTL statement.

• Comparison operators (>, <, ==,↗ and↘)
(2) Operands
• Signals
• Real numbers

(3) Separators
• “(”, “)”, “〈” and “〉”

We use right child and left child notations to show the ordering between the children of a node.
We define the rules to parse a TTL statement in Table 3. In Figure 5, the TTL statement is converted
into its corresponding parse tree by the algorithm.

4.1.2 Creating the Block Diagram. Each node in the parse tree corresponds to a computing block
in the block diagram except for leaves which are monitored signals and thresholds (Figure 6).

The proposed methodology is implemented on National Instruments (NI) equipments using Lab-
VIEW software which has the entire driver for monitoring.

Each block produces the output for its parent based on the inputs it receives. Chronological,
simultaneity, sporadic and burst constraint blocks produce a boolean output signal to show the
exact time at which signals meet their constraints. For example, in Figure 4(b), there are three
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Fig. 6. TTL computing blocks according to the parse tree (Figure 5). Data acquisition and converting signals

to timestamps are done on FPGA. The analyzer receives the timestamps, rebuilds the boolean signals and

analyzes them.

events on s1 and because the second event, e2, appears after the first one, e1, (later than minimum
time interval x ≥ m), the output is “1” and because the third event, e3, occurred less than the
minimum time (y < m) after e2, the output is “0”. It is clear that before observing e2, the output
value cannot be computed so it will be NaN .

The outputs of latency, frequency and phase constraint blocks are real-valued signals and after
comparing with a threshold and applying the differentiate operator they are converted into signal
events.

4.1.3 Creating the Physical Connection. After determining the list of monitored signals, we use
an appropriately isolated data acquisition device to measure the signals without changing the
functionality of the CPS. For instance, the input impedance of the acquisition device should be
high enough so that the system does not experience any voltage drop [21]. Appropriately shielded
cables should be used in order to avoid interference between signals, especially in high-frequency
applications. Similarly, we need to use interface circuits like optocouplers to improve the isolation
when isolation of the acquisition device is not high enough.

4.1.4 Signal Monitoring. In order to deal with timing constraints in TTL, real-valued signals
should be represented as signal events based on the edge type (rising, falling). Then, using a reliable
clock, signal events are converted to timestamps and stored in a database for offline analysis or
sent to an online testing application.

Similar to STL, TTL semantics in Table 1 are expressed for continuous signals, where each signal
event represents a single point in time. However, implementation on hardware platforms requires
discretization of the continuous signal. We assume that all signals are well-behaved such that there
are no undetectable transient events between contiguous pairs of samples. This can be achieved
by using appropriate Data Acquisition (DAQ) devices that have high sampling rates.

Time synchronization, absolution or relative, is necessary in measuring temporal properties of
a distributed SUT. A distributed test device must be synchronized to ensure accurate, reproducible
and repeatable measurement of the SUT based upon the temporal constraints evaluated. Providing
timestamps based on a global time is an option in a system in which the occurrence of an event
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in absolute time matters. Otherwise, measuring the relative time between events is sufficient, and
time testing can be implemented by the methodology regardless of accuracy to global time.

4.1.5 Constraint Evaluation. The result of a TTL statement is evaluated from the right-most
block of the analyzer (Figure 6). Past operators are used to specify a timing constraint over past
time intervals as defined in [13, 17] since they should wait for future time to evaluate. For evaluat-
ing future operators, �[a,b] and �[a,b], the analyzer waits for b seconds and then starts evaluating
the constraint. Therefore, the response at each instance (t ) actually is corresponding to t − b. Ob-
viously, online monitoring of a constraint that contains future operators with infinite time interval
is impossible (e.g. �(x > 3)). In order to solve this issue, the compiler modifies the operator to one
with time interval, [ts , tf ] where ts and tf are start and finish time of the testing. In our method-
ology, we use timestamps to represent a signal event. A boolean signal can be captured by two
sequences of timestamps (rising and falling edges).

4.2 Methodology Capabilities

Since our methodology works based on the timestamps of events, it requires less memory for
monitoring and is suitable for implementing future operators in online testing. In STL, an event-
based constraint is evaluated for every instance of time while in TTL, an event-based constraint
is evaluated by observing the timestamp of events only. For example, a latency constraint as:

L (〈s1, 0.5,↗〉, 〈s2, 0.6,↗〉) ≤ 1

is evaluated by comparing only the subtraction of two timestamps extracted from the rising
edges of signals s1 and s2 crossing their corresponding thresholds (i.e. the result is true if t2 − t1 ≤
1 where t1 and t2 are extracted timestamps corresponding to rising edges of signals s1 and s2

thresholds 0.5 and 0.6, respectively). For evaluating frequency, latency and phase constraints, their
outputs (a real-valued number) are compared with another number and provides a True/False
signal. This True/False signal is represented by a set of rising and falling timestamps. For instance,
as Figure 6 shows, once the frequency of the signal s5 is greater than 10Hz, the output will be true.
This boolean signal is represented as two sets of timestamps containing rising and falling edge.
Then, the output timestamps are passed to the globally operator(�). The globally operator subtracts
2 s from every signal’s falling edge timestamp. If the result is less than the previous signal’s rising
edge timestamp, the timestamp is fully removed. Moreover, our methodology has the capability to
be implemented on FPGA boards which are fast, reliable and low-cost. The acquired timestamps
can be analyzed on the FPGA itself, transfered to a machine with a higher performance to process,
or stored in a database when the CPS is distributed for offline analysis.

5 TESTBED IMPLEMENTATION AND CASE STUDIES

We implemented two case studies and defined their timing constraints in TTL. Then, upon the
TTL statements, the testbed application is prepared in LabVIEW 2015. Validation of the results
from the testbed application is compared with measured signal events on an oscilloscope.

5.1 Power Grid Synchronization

In order to reconnect a generator to the power grid for distribution of Alternating Current (AC)
power, the generator should be synchronized to the system parameters to ensure voltage and fre-
quency stability. When power components providers are connecting to the AC grid, their voltage
(amplitude), frequency and phase must match. The frequency must be within ±0.067 Hz in 60 Hz
and the maximum phase deviation allowed is ±10 degrees [1]. Since frequency and phase param-
eters are time sensitive, we can specify timing constraints on these. We modeled a power grid
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Fig. 7. Two motors are controlled by two Arduino Mega 2560 boards synchronized by wireless modules

(NRF24L01). The phase of motors are monitored by two cRIO platforms.

Fig. 8. The left motor is the master and the right one is the slave. The frequency of both motors should be

60 Hz and their phase difference should be less than 4ms .

synchronization using two DC motors where the first one (master motor) represents the grid ref-
erence for frequency and phase, and the second one (slave motor) demonstrates the generator
which should be controlled by the master motor. Figure 7 shows the schematic of controlling two
DC motors.

Two dials labeled from 0 to 360 degrees are installed on the motors’ shafts to illustrate two si-
nusoidal signals. The angular speed of reference motor is set to 60 revolutions per second which
indicates the power grid frequency (60 Hz). A small hole is drilled on both dials at zero degrees
in order to detect a revolution using photomicrosensor. The goal is to synchronize the speed (fre-
quency) and phase of the slave motor with the master after an activation event rises. The setup
for our two DC motors is depicted in Figure 8. In this setup, an Arduino Mega 2560 board is used
for each motor, and they are implemented as a distributed synchronization system. Two Arduino
boards are connected by two wireless modules (NRF24L01+, 2.4 GHz) by which the master mo-
tor controller sends required data to the slave controller. Moreover, the master controller has an
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Fig. 9. Results from the power systems case study. The blue and red signals are acquired from optical sensors

on master and slave motors, respectively. The transparent red area shows the time interval that the constraint

is not met (phase is not less than 4ms).

additional role for the slave and the slave uses it as the reference for clock synchronization by NTP
[18]. Using NTP, the two devices can be synchronized to a precision of about 2 ms through the
exchange of NTP messages.

Since the CPS implementation is in a distributed manner, the testbed should be distributed as
well (Testbed part 1 and 2 in Figure 7). One cRIO controller is dedicated for each Arduino board
to monitor the sensors’ signals. In a distributed system, having a common understanding of time
is a critical feature of the testbed. In order to achieve this capability, cRIO controllers use the
NI-TimeSync plug-in that utilizes the IEEE 1588 Precision Time Protocol (PTP)[12] as the syn-
chronization protocol with 100 ns precision utilizing a Local Area Network (LAN).

In order to monitor the device timing, an NI-9381 module is used on each cRIO 9067 which
contains 37 pins including eight analog input/output and four digital input/output pins. We use
two analog input pins on NI-9381 and connect them to the sensor output pins on each motor. Two
installed sensors, Omron EESX970C1, have 5 V as their output when they detect the hole. Once
the sensor output crosses 2.5 V from below, a hole is detected (the threshold is 2.5 V ).

The cRIO controller is managed by the LabVIEW tool containing a front panel interface. The
front panel is the user interface, which includes controls and indicators to send commands and
monitor the parameters. In the testbed implementation, using the LabVIEW front panel shows the
result of meeting the time constraint of the motor synchronization scenario online. Moreover, in
order to verify the phase constraint, it is also validated using an oscilloscope (Figure 9). The testing
methodology has the capability to test the constraints by logging signal timestamps then applying
the testing approach in an offline manner, but here we implemented the testbed online.

According to the testing framework, sensors on both motors are monitored, and event times-
tamps are sent to the LabVIEW 2015 application. The application is executed on a 64-bit Windows
7 with Intel(R) Core TM i7 2.93 GHz and 8 GB of RAM.

In order to test the timing of this application, its timing specifications should be defined clearly
according to the timing constraints listed in section 3. Then, they can be represented by TTL
statements and ready to be tested by the testing methodology. We defined the timing constraint
for this case study as “The frequency of the rising edges of two signals s1 and s2 from the master and
the slave sensors crossing threshold, 2.5 V , must be 60 Hz and the time at which two sensors detect
the drilled hole should be exactly the same in each period with at most 4ms error”.

In this case study, timing constraints are considered as: 1) the frequency of both motors should
be the same at 60 Hz and, 2) the phase between the motors should be less than 4 ms . So, the TTL
statement for the master controller is:

F (〈< s1, 2.5,↗〉) == 60 Hz
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Fig. 10. Two ArduCAM boards taking simultaneous images from a rolling ball. The cRIO 9067 platform is

used to monitor the trigger signals on both cameras.

Similarly, we can write the TTL statement for the slave controller as:

F (〈s2, 2.5,↗〉) == 60 Hz

and

P (〈s1, 2.5,↗〉, 〈s2, 2.5,↗〉) < 0.004 s

We rewrite these three TTL expressions with a single TTL statement separated with logic
AND(∧). Our monitoring program evaluates results online. Figure 13 shows two snapshots of the
analyzer evaluating the timing constraint of the case studies.

In this case study, two 1024 data size Direct Memory Access (DMA) First-In-First Out (FIFO)
data transfer with 64-bit quad signed integer are used with time measurement precision on the
order of 25 ns . This is because the cRIO NI-9067 works with a 40 MHz clock. The FPGA synthesis
report indicated the Total Used Slices as: 16.9 % (2,257 out of 13,300). Here, we allocated a large
size buffer for the DMA FIFO on the FPGA in order to reduce the communication and processing
on the desktop computer because smaller buffer sizes can cause loss of data. The TTL analysis is
done on a desktop computer by gathering all timestamps from the cRIO devices.

5.2 Simultaneous Image Capturing for 3D Reconstruction

For the second case study, we implemented a distributed system with two cameras. Each cam-
era takes a picture of a rolling ball from different angles. We used two ArduCAM UNO boards
whose ESP8266 wireless modules are used for communication and 2 MP Complementary Metal-
Oxide-Semiconductor (CMOS) cameras to take images and save on SD cards. Figure 10 depicts the
experiment testbed as well as the monitoring platform.

As Figure 11 shows, there is a server (a desktop computer or a laptop) with a wireless commu-
nication device to send the command to camera boards. Once each camera receives the message
from the server, it should take a picture after no more than 0.2 s and send it back to the server.
Then, these images can be used for 3D image reconstruction. In order to avoid blurring, all images
should be taken simultaneously. ArduCAM1 (the bottom camera in Figure 11) raises a flag on its
digital pin #2 once it receives the command. This pin is connected to the testbed as signal s1. Each
ArduCAM board is set to raise a flag on one of digital pin #3 when they take the photo. The pin #3
of each camera is connected to the corresponding cRIO device as signals s2 and s3. Applying the
configuration from the first case study, each camera is attached to one of the cRIO devices. Since
we defined that the cameras must take the pictures synchronously, the events detected on s2 and
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Fig. 11. Two ArduCAM UNO camera boards are connected to a server by wireless ESP8266 wireless modules.

The server sends the command to take a picture simultaneously.

Fig. 12. Results from distributed camera case study. a) Images are taken simultaneously. b) The delay be-

tween the time that the images are taken is less than 0.2 s .

s3 should occur simultaneously within 0.2 s after they receive the command message. Thus, the
time interval between the event detected on signals s1 and s2 should be less than 0.2 s .

In specifying the timing constraints, we can define the requirement as a latency constraint less
than a specified value and a simultaneity constraint within a time error tolerance. For this appli-
cation, we defined the timing constraints as: The signal s2 should go above 2.5 V at the same time
with signal s3 when it goes above 2.5 V with 0.01 s tolerance and the latency between the time that
the activation signal, s1, goes above 2.5 V and the time that the capture signal, s2, goes above 2.5 V
should be less than 0.2 s .

In TTL, we can write these timing constraints as:

(S (〈s2, 2.5,↗〉, 〈s3, 2.5,↗〉, 0.01) ∧ (L (〈s1, 2.5,↗〉, 〈s2, 2.5,↗〉) < 0.2))

The automated monitoring of the TTL constraints showed that the latency difference in the actu-
ation times of cameras was 0.01 s , as well as the data monitored on the oscilloscope (Figure 12(a)).
Similarly, the interval between s1 and s2 is less than 0.2 s that is validated by the oscilloscope
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Fig. 13. Snapshots of our analyzer written in LabVIEW for case studies. Timing constraints are not met for

power grid simulation (a) and met for simultaneous image capturing (b)

results depicted in Figure 12(b). Therefore the constraint is met on the deployed platforms and the
boolean indicator shows the constraint has been satisfied. (Figure 13(b)).

In this case study, three DMA FIFO memory buffers are used on FPGA for processing and Total
Slices: 28.9% (3849 out of 13300) of cRIO-9067 FPGA was used. Figure 12 shows the two trigger
signals monitored on the oscilloscope.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we augmented a framework to express temporal constraints based on the physical
and application requirements of CPS. A systematic methodology for automatic test generation and
timing constraints monitoring based on global time is proposed. The feasibility of our approach
is demonstrated on experiments using two case studies of voltage stability in the power grid as a
measurement and control application as well as a 3D image reconstruction application related to
synchronous actuating.

As future work, we will use TTL and our testing methodology on a system with distributed
measuring devices in order to extend our work to large-scale systems.
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