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Heterogeneous multi-processors are designed to bridge the gap between performance and energy e�ciency
in modern embedded systems. �is is achieved by pairing Out-of-Order (OoO) cores, yielding performance
through aggressive speculation and latency masking, with In-Order (InO) cores, that preserve energy through
simpler design. By leveraging migrations between them, workloads can therefore select the best se�ing for any
given energy/delay envelope. However, migrations introduce execution overheads that can hurt performance
if they happen too frequently. Finding the optimal migration frequency is critical to maximize energy savings
while maintaining acceptable performance. We develop a simulation methodology that can 1) isolate the
hardware e�ects of migrations from the so�ware, 2) directly compare the performance of di�erent core types,
3) quantify the performance degradation and 4) calculate the cost of migrations for each case. To showcase
our methodology we run mibench, a microbenchmark suite, and show that migrations can happen as fast
as every 100k instructions with li�le performance loss. We also show that, contrary to numerous recent
studies, hypothetical designs do not need to share all of their internal components to be able to migrate at that
frequency. Instead, we propose a feasible system that shares level 2 caches and a translation lookaside bu�er
that matches performance and e�ciency. Our results show that there are phases comprising up to 10% that a
migration to the OoO core leads to performance bene�ts without any additional energy cost when running on
the InO core, and up to 6% of phases where a migration to the InO core can save energy without a�ecting
performance. When considering a policy that focuses on improving the energy-delay product, results show
that on average 66% of the phases can be migrated to deliver equal or be�er system operation without having
to aggressively share the entire memory system or to revert to migration periods �ner than 100k instructions.
CCS Concepts: •Computer systems organization →Heterogeneous (hybrid) systems; Embedded sys-
tems; •Computing methodologies →Simulation evaluation;

Additional Key Words and Phrases: HMP, Out-of-Order, gem5, migration, heterogeneous multiprocessing,
simulation methodology, embedded systems
ACM Reference format:
Ilias Vougioukas, Andreas Sandberg, Stephan Diestelhorst, Bashir M. Al-Hashimi, and Geo� V. Merre�. 2017.
Nucleus: Finding the sharing limit of heterogeneous cores. ACM Trans. Embedd. Comput. Syst. 1, 1,
Article 1 (October 2017), 16 pages.
DOI: 0000001.0000001

�is work was supported in part by the Engineering and Physical Research Council (EPSRC) under grant number
EP/K034448/1
Authors’ addresses: Ilias Vougioukas, Andreas Sandberg and Stephan Diestelhorst, ARM Ltd., CPC1, Capital Park, Fulbourn
Road, Cambridge, CB21 5XE, UK; Bashir M. Al-Hashimi and Geo� V. Merre�, Electronic and So�ware Systems Group,
School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1539-9087/2017/10-ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: October 2017.



1:2 I. Vougioukas et al.

3.830 3.835 3.840 3.845

0.5

1.0

1.5

2.0
Sampling every 1 million instructions

3.830 3.835 3.840 3.845

Billions of instructions

0.5

1.0

1.5

2.0
Sampling every 100 thousand instructions

big
LITTLE

In
st

ru
ct

io
ns

pe
r

cy
cl

e

Fig. 1. An excerpt of execution of dijkstra running on two di�erent core types. Sampling at a higher resolution
reveals phases that can potentially be exploited to increase e�iciency.

1 INTRODUCTION
In today’s embedded devices, performance is always tied to power constraints and energy e�ciency.
�is happens because, while process technology scaling is enabling larger transistor densities,
power per area has shown to increase beyond a certain threshold in transistor size. �is la�er e�ect
is commonly referred to as the breakdown of Dennard’s scaling, which forces designs to operate
only a fraction of the whole system, leaving the remaining design in a dark silicon state [8, 10]. To
address this, heterogeneous multiprocessors (HMPs) have emerged over other designs, especially in
mobile devices [17, 33], where keeping within a strict energy envelope while still being able to
deliver performance on demand is crucial.

To be able to deliver high performance through Memory Level Parallelism (MLP) and instruction
level parallelism (ILP), an Out-of-Order (OoO) core is commonly used that has large caches, does
aggressive speculation (branch predictors, prefetchers) and masks memory latency at the cost
of signi�cantly increased design complexity, area and power requirements. On the other hand,
In-Order (InO) cores aim at conserving energy through a simpler and smaller design, at the expense
of performance and lower operating frequency. A characteristic implementation of an HMP
architecture is, for example, ARM’s big.LITTLE [1], which uses two types of cores that share the
same instruction set.

Workloads can be broken down into phases, some of which show high ILP potential and can
therefore yield high performance while others heavily access memory and therefore deliver lower
instructions per cycle (IPC). Choosing the most suitable core leads to an optimal performance and
energy pro�le, while making a wrong decision can lead to unnecessary slowdown or energy waste.

Recent studies claim that micro-phases in the order of thousands of instructions exist [12, 30],
as seen in Figure 1, and can be exploited to reduce energy consumption and boost performance
through �ne-grained migrations. In theory, perfect core matching should lead to optimal behaviour,
however every time a migration is performed the working state needs to be transferred to the
operating core, adding both a so�ware and hardware execution overhead.
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From the so�ware side the operating system (OS) handles the scheduling to the appropriate core
and sends the required signals to perform the migration. �e complexity of the scheduler and the
so�ware context switch signi�cantly a�ects the amount of overhead added to a system, which is
on the order of ten million instructions [7, 19, 32, 35].

From a hardware perspective, the overheads depend on how much of the state needs to be
transferred and how much is shared between the two migrating cores. �e more state shared and
preserved, the less warm-up time required, which is the period necessary to achieve maximum
performance. Unlike so�ware, hardware overheads can be signi�cantly smaller, as low as thousands
of instructions, depending on the amount of resources shared.

To reduce overall system slowdown when migrating, several studies propose the implementation
of dedicated hardware to e�ciently handle the transfer without any so�ware intervention [12, 13,
18, 21, 26] and also fusing cores to share the front-end [20, 22, 24]. However, as hybrid designs
are too complex to implement, it is worth investigating a simpler approach determining which
components contribute most to the bene�ts and sharing only those.

�e questions we aim to answer therefore are:
• Which core is more suitable for the current workload phase?
• Which components should be shared to improve migrations?
• How o�en can we switch before overheads suppress the bene�ts?

For the scope of this study we choose to focus only on the hardware migration overheads for
various cache and TLB sharing con�gurations, as only through hardware acceleration it makes sense
to explore �ne-grained migrations. Our motivation is based on understanding migrations from an
architectural standpoint and �nding out how to improve future designs. Our contributions are:

• An architecture for HMPs which shares only the TLB and the last level cache. �is e�ectively
achieves the same performance as systems with merged cores [13, 18, 20–22, 24, 26], but is
signi�cantly simpler to design.
• Nucleus: A novel simulation methodology that allows the direct comparison of the be-

haviour of the exact same task on di�erent cores, which is impossible on hardware platforms.
• �antify the migration overheads for the OoO and InO core types under various degrees

of sharing and �nd the migration period limit is roughly 100k instructions. Results show
that full sharing does not realistically improve performance or reduce the overheads.

�e rest of this paper is organised as follows: Section 2 describes the background theory behind
resource sharing and migrations. In Section 3 we present the details of our simulation methodol-
ogy. In Section 4 we perform a limit study stressing the capabilities of our methodology, which
quanti�es switching overheads and cases where migrations are bene�cial. Section 5 puts our work
in perspective with respect to related work in the �eld. Section 6 contains concluding remarks,
describing the current limitations and our plans to extend the methodology and conclude the paper.

2 RESOURCE SHARING
2.1 Heterogeneous multiprocessor organization
�e level of sharing in a system signi�cantly impacts the ability to perform a context switch
between cores without signi�cant performance degradation. Even though this can notably reduce
costs when migrating, it adds complexity, area and latency that can hurt the performance of the
cores.

Based on this, conventional design mandates that heterogeneous cores usually share at best the
Last Level Cache (LLC) or the main memory. To achieve high frequency switching, recent academic
trends propose extreme a�empts to bring cores closer together, usually by sharing instruction Level
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Fig. 2. Di�erent types of sharing schemes examined for HMP systems

1 (IL1), data Level 1 (DL1) and Level 2 (L2) caches and in some cases even some internal components
[13, 18, 20–22, 24, 26]. �e feasibility of such designs however still remains questionable as some
parts cannot be shared between drastically di�erent designs, while others (IL1, DL1 caches) cannot
be shared without lowering performance. A more realistic approach, instead of opting for full or
no sharing, is to target the features cores can easily share to increase performance when migrating.
With this in mind, we evaluate four di�erent sharing schemes.

No sharing. �e �rst case worth analysing is when cores have private caches and share no
components except the main memory (Figure 2a). �is sharing scheme is a common setup in chip
multiprocessors and HMPs, with numerous industrial and academic examples[1, 6, 16]. Here every
migration causes the system to transfer it’s register �le from the retiring to the incoming core
before resuming normal operation. In addition the system also has to warm-up the empty or “cold”
caches of the new core before it can achieve its maximum performance. �e overheads for the no
sharing (Tpr ivate ) case can be broken down as:

Tpr ivate = Tpip +TBP +Tr eд︸                ︷︷                ︸
non-shareable

+

tied to core︷      ︸︸      ︷
TT LB +T$1 +T$2 (1)

Where Tpip and TBP are the pipeline and branch predictor warm-up phases respectively, Tr eд is the
overhead to transfer the register �le, TT LB is the extra cost of warming up the TLB and T$1 and T$2
are the penalties induced when starting with cold L1 and L2 caches respectively.

Share caches. �e next level of sharing we consider is one where the two cores partly or fully
share the caches (Figure 2b). We consider this setup as an in between state, that can provide
insight into system performance with and without sharing the TLB. �is can potentially reduce the
warm-up time a�er a switch. However, when workloads have a very small memory footprint, or
thrash though data in the cache, the bene�ts of sharing are limited.

Another potential problem with this sharing scheme is that, even if caches contain useful data
post-migration, empty TLBs can penalize the system signi�cantly. �is happens when, despite
the fact that the desired data is still maintained in the cache, the virtual-to-physical translation is
not in a TLB. TLB misses are slow, as they need to access main memory, to the point that a miss
is much more expensive than an IL1 or DL1 miss, as the system ends up performing a page walk,
requiring several memory accesses.

Share caches and TLB. �e full sharing scheme (Figure 2c) assumes that both caches and TLBs
are shared amongst heterogeneous cores, but still needs to warm-up the pipeline, branch predictors
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and the register �le. Sharing the register �le is too complex design-wise, while its relatively small
size permits ignoring the penalty, especially when compared to warming the branch predictors.
�e pipeline and branch predictors cannot be shared between di�erent core types as they are
functionally very di�erent components. For example the state of the speculative, reordering, 4-wide
and deeper pipeline in the OoO cannot be transferred to a 2-wide InO pipeline with half the depth
in a conventional way. �is design archetype has been a popular academic trend recently, with
some studies claiming that even the branch predictor and pipeline can be re-purposed and shared
to an extent [12, 13, 20–22, 24, 26].

Our Proposal: Share L2 and TLB. �e issue with full system sharing is that while the total
slowdown of a system is reduced a�er a migration, sharing the level 1 caches and the TLBs between
the cores adds extra latency that can dramatically reduce the overall performance. �is is because
components, like the IL1 cache, are very sensitive to latency (∼4 cycles per hit) and even a single
extra cycle of latency can lead to 25% performance decrease as it is constantly being accessed.
Sharing the L1 has this e�ect as in order to connect two cores to the same cache extra capacitance
from wires is introduced and a switching signal is added (e.g. a multiplexer), which add latency. For
this reason we propose an alternate architecture (Figure 2d) that shares the L2 cache and the TLB.

2.2 Internal core components
While the sharing scheme plays a large part in determining system performance and energy
e�ciency, the di�erent functionality of cores in heterogeneous systems also a�ects system behaviour.
�is is because, despite the inherent penalty to switching, migrating to a more suitable core can
amortise the cost and boost performance compared to remaining on the less compatible core. For
this reason, it is important for heterogeneous systems to be comprised of cores that cover a wide
range of applications across a variety of energy/performance points.

For the OoO core, the deeper and wider the pipeline, the more cycles needed to warm it up.
Furthermore, in order to approach steady state performance, the OoO core also needs to �ll the
re-order bu�er and the branch predictor. Both these structures are vital for Out-of-Order execution
and, perhaps more importantly, can signi�cantly hinder performance when they are not warmed-up.
�e simpler branch predictor and the lack of a reorder bu�er of the InO core, while limiting the
ability to parallelise instructions and mask memory requests, make it much faster to assume steady
performance. Additionally, the simplicity in functionality allows the core’s design to be much
smaller and consume less energy.

Overall comparisons between the two cores show that the li�le core is 3x more power e�cient
when clocked at the same frequency [21]. In our limit study, presented in Section 3, we will adhere
to this power ratio to compare the big and li�le cores.

3 METHODOLOGY
In this section we describe a gem5 based [4] simulation methodology used to explore the cost of
migrations. To allow for direct comparisons, we gather samples, where we compare the IPC of
two simulations, one executing on a system that runs uninterrupted and and one on a system that
commences a�er the migration is triggered for the exact same phases. Based on our methodology
we devise two techniques, one to calculate the overheads for each core type for the sharing schemes
in Section 2.1 and one to �nd potential phases where it makes sense to migrate to a di�erent core.

To be able to measure the impact of switching cost in a system, it is necessary to directly
compare execution with and without performing migrations. To achieve this, we propose Nucleus,
a methodology where we fork the simulator creating two identical simulations, the main or parent
simulation and the forked or child simulation. A�er the simulator splits, the main simulation
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continues unperturbed, while the fork performs a migration. Switching the core in the forked
simulation can be achieved by signalling the operating system (OS) in the child to issue a migration.
�e OS can either trigger the migration itself, or the forked simulation cause a hardware interrupt
to signal that a migration must be performed. Both of these methods however would add the OS
migration overhead which, as described in the previous section, is undesirable as it will obfuscate
the hardware e�ects.

Instead, we propose to simulate a single core system, where the forked simulations ”hot-swap”
the core leaving the caches and memory una�ected. To share the TLB, which for our simulator is
tied to the core design, we just rewire the TLB to be connected to both cores, e�ectively detaching
them from a speci�c core. When a hot-swap is performed, the system drains in-�ight messages,
�ushes the operating core and a�erwards swaps it with the inactive one.

One limitation from this approach is that the core operation is mutually exclusive. However, this
is deliberate for our limit study as we are interested in single thread behaviour and it resembles
the operation of the �rst commercial HMP systems [6] and merged cores that share the front end
[20, 22, 24]. �e infrastructure can easily be extended to accommodate beyond for more than one
pair of coupled cores, however the decision tree of migration combinations is signi�cantly more
complex and is beyond the scope of this paper.

A�er the fork swaps the core designs, depending on the level of sharing explored, a writeback
and invalidate is triggered for the components considered as private. �e newly active core resumes
operation with those structures empty and proceeds to warm them up before assuming steady state
performance, which emulates the e�ects of a hardware migration.

On the so�ware level, the system seamlessly continues to operate completely agnostic of the
swap. �is can be accomplished because the gem5 simulator can switch the micro-architecture
of components in the system, such as the core design, without altering the system architecture
state, such as the register values. �is is exploited to single out the speci�c hardware component
overheads during migrations. A graphical representation of the methodology infrastructure can be
seen in Figure 3, where CPU slot is the placeholder for the desired CPU model, while the rest of the
components remain unchanged.
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3.1 Nucleus
One important detail to note is that, irrespective of the sharing scheme, the register �le is always
considered to be shared as the simulator does not account for the cost of transferring it. Several
hybrid core proposals claim that the state transfer is possible with negligible overhead [13, 21, 26].
While we do not consider this realistic for actual contemporary hardware, it helps to draw two
useful conclusions from our study. First, it helps us assess a best-case scenario for each sharing
scheme, and compare our results to many studies supporting �ne grain migrations and merged
designs [12, 13, 20–22, 24, 26]. Secondly, it allows a cleaner observation by singling out of the
e�ects of speci�c components, and provides insight that could otherwise be masked.

Our methodology allows for certain experiments to be conducted which were not previously
feasible. For instance, it is possible to compare the exact same phases in systems with di�erent
characteristics. Figure 1 shows how an excerpt of dijkstra is perfectly aligned. To contrast, as forked
execution is not possible in hardware, two separate executions need to be triggered in parallel.
However, as the executions are not fully deterministic, deviations between them will cause them to
diverge and therefore the phases will end up misaligned. �is is especially severe in the case of
�ne grain investigation as even a small skew can lead to wrong results. By forking from the same
starting point Nucleus solves this problem as every sample is aligned, even at the �nest granularity.

3.2 Comparing parallel simulations
To explore migrations, a main simulation is created that runs on the same core from beginning
to end without performing any migrations. A�er a warm-up interval the main simulation starts
spawning forks periodically until the workload terminates. �e main simulation and forks are
symbolised with M and m respectively in Figure 4. �e period for each sample is measured in
instructions instead of time. Using time to determine the sample period can cause the parallel
simulations to diverge when there is a di�erence in performance, as the simulation with the higher
IPC will execute more instructions in the allo�ed time. Sampling with instructions solves this as,
irrespective to the performance or time they take, both runs will end up executing the same code.
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�e forked simulations examine �rst-order migrations, which e�ectively run only for a single
period and then terminate. �is way, for every period running on the main simulation, there is an
equivalent simulation that examines how a system would be a�ected by a migration at that speci�c
phase. �e termination of the forked simulations a�er one period restricts our methodology to
only one migration however, expanding to the more migrations would cause the state space to
become too large to compute.

We devise two separate experiments with our methodology that answer two separate questions:
• Migration Cost: Taking into consideration the di�erent sharing schemes, what are the

warm up costs for each core?
• E�cient Migrations: What is the best setup (sharing scheme, switching frequency) for

HMPs?
Answering the former question, we perform our methodology migrating always to the same

core type, from OoO to OoO and likewise from InO to InO, for all the sharing schemes described in
section 2.1. �e migration frequency limitations for each core can be calculated by normalizing
the performance of the migrations with the corresponding main simulations, averaged over all
samples:

Relative Performance =

∑ IPCmiд .
IPCmain

N
(2)

where N is the number of samples.
To determine what the optimal setup is for HMPs we devise another experiment, that switches

the core type, from OoO to InO and vice versa, in the migratory simulations. �e IPC comparison
for this experiment reveals the performance disparity between the two cores in each phase. We
explore two migration policies that determine bene�cial switches, the no trade-o� policy and the
energy delay product (EDP) policy. �e �rst is when migrating to the opposite core reduces power
or execution delay without sacri�cing performance or energy respectively, which can be useful
in high response situations or when energy is a constrained resource. For the second policy we
examine switches that lead to equal or be�er EDP. We quantify this by calculating the percentage
of workload that a migration is bene�cial:

Bene�cial Migrations =

∑ [ IPCmiд .
IPCmain

≥ θ ]
N

(3)

Bene�cial Migrations refer to the amount of cases where switching from one core type to the
opposite leads to an improvement. For instance, if the indicator is 0.6, this means that a system
with an InO core as the main core could bene�t from running on the OoO core for 60% of the
workload. �e [...] are the Iverson brackets [14]. [P] is de�ned to be 1 if P is true, and 0 if it is
false. �e formula only counts the migrations that are be�er than the main run, using θ , which
is the threshold we set to determine a bene�cial migration. Depending on the policy desired the
threshold θ is adjusted, for instance to �nd cases that lead to be�er EDP or to �nd the migrations
that save energy without performance loss.

4 RESULTS
In this section we present our setup for both experiments, described in Section 3, and their results.
We compare the sharing schemes from Section 2.1 to determine whether sharing the caches and
TLB is worth the added complexity. We also present our experiments on e�cient migrations and
provide some insights into the results.
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OoO Core In-Order Core
Pipeline Width 3-wide 2-wide
Pipeline Depth 15 8
Branch Predictor Two-Level Tournament
Operating Frequency 1GHz 1GHz

Shared Resources Value
L1D Size 32KB
L1I Size 32KB
L2 Size 1MB
L2 Associativity 16-way
L2 Prefetcher Stride

Table 1. The specifications of the system used in our experiments.

4.1 Experimental Setup
To evaluate Nucleus, we use the gem5 simulator [4] in full system mode and modify the forking
mechanism [28] to be able to fork with instructions and switch the cores. �e experimental setup
simulates a heterogeneous system using big OoO and li�le InO publicly available ARMv8 models
[27, 31], both operating at the same frequency using the classic memory subsystem. �e simulated
system uses the same cache sizes for both the OoO and the InO cores, so that a fair comparison
between private and shared caches is drawn. �e simulator is restored from a previous checkpoint
that bypasses the boot-up and each benchmark is let to run until no warm-up transient e�ects
occur. A detailed description of the system con�guration is shown in Table 1.

�e sharing architecture simpli�cations we have made and the set of benchmarks have been
selected to represent the best possible case for �ne-grain migrations. While most sharing schemes
are not feasible with today’s implementation techniques, the hypothetical set-ups aim to answer
whether it makes sense to pursue �ne-grain migrations in HMP systems, regardless of current
physical limitations.

4.2 Migration Cost
For the �rst set of experiments, the simulated system runs the mibench benchmark suite [15]
using a minimal build of Linux Ubuntu 14.04.5 (kernel version 3.14.0) as the operating system. �is
features microbenchmarks that have very di�erent characteristics and demonstrate high variation
in branch, memory, and integer ALU operations. At the same time, the used datasets can �t in
caches most of the time, which should work further in favour of the sharing architectures. �e
relatively small size of the workloads also helps with the computationally expensive process of
forking the simulator.

4.2.1 No sharing. In Figures 5a and 5b the performance of the migrating runs is presented, for
the InO and OoO cores respectively, normalised to the main simulation’s performance for every
sample. A relative performance of 100% means that switches at that frequency would not cause
a performance hit, whereas relative performance of 50% means that on average migrating with
that frequency halves the IPC. �is e�ectively allows for a fair comparison between a system
performing a migration and one that does not. �e performance drop at �ne granularity suggests
that with private caches fast switching is not feasible, as the overheads dominate. �is represents
fairly accurately conventional architectures we use today, and shows why migrations fall into the
category of millions of instructions, even without considering the considerable so�ware overhead.

4.2.2 Share caches. When sharing all the caches but not the TLB, performance of the migratory
samples visibly increases. One thing to note in Figures 5c and 5d is that the performance improve-
ment of the InO core is slightly larger than that of the OoO one at 1k instructions migration period.
�e deeper pipeline and larger mis-speculation penalties seem to be causing a greater negative
e�ect on the OoO core. Overall, the performance does not justify this complex design, especially
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(b) OoO performance with no sharing.
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(c) InO performance sharing the caches.
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(d) OoO performance sharing the caches.
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(e) InO performance sharing the L2 and the TLB.
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(f) OoO performance sharing the L2 and the TLB.
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(g) InO performance sharing caches and the TLB.

0%
20%
40%
60%
80%

100%

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

1k 10k 100k 1M 10M Instructions

(h) OoO performance sharing caches and the TLB.

Fig. 5. Relative performance degradation in mibench for di�erent sharing schemes.

for �ne-grain switching. �is is due to the fact that even though the caches are shared, the TLB
misses cause the system to potentially access to main memory which adds huge penalties.

4.2.3 Share caches and TLB. When the system shares all memory components (caches and TLB)
another interesting result is revealed. While the InO core eliminates almost all of the overhead even
at the �nest migration frequency, the OoO design still exhibits signi�cant performance losses. �is
exposes the inability of the OoO core to achieve its maximum potential, due to the deeper pipelines
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(a) Performance degradation for the InO core.
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(b) Performance degradation for the OoO core.

Fig. 6. The average performance degradation for the two core type as a function of migration frequency.

and the re-order bu�er that need to be �lled, as well as the fact that OoO execution heavily relies
on speculation and branch prediction to achieve high IPC.

4.2.4 Our Proposal: Share the L2 and TLB. When sharing the L2 and the TLB but keeping the
L1 caches private to each core, the results of the InO core show a notable improvement over the
previous sharing scheme. Our proposal shows a marginal decrease in performance for the OoO
core, when performing �ne grain migrations, but a signi�cant improvement for the InO core. More
importantly, sharing an extra TLB between the cores shows that even though the L1 caches are not
shared, the overall system improves in performance over current architectures and performs on
par with solutions that try to share all the resources. �e improvement, as stated above, is due to
the TLB sharing that helps to avoid accessing main memory to fetch data, taking care of the worst
case when no pages are stored in the L2 cache. In the event where a TLB miss has occurred in the
recent past, the page already exists in the L2 in which case the page walk for this system will be
similar to the system that only shares caches.

Figure 6 summarises the averages presented in Figure 5, which stresses the point that our
proposal can achieve similar performance without resorting to sharing all resources. We see
that the performance gap between our proposed method, depicted as the red do�ed line with
triangles, and the full sharing scheme is 17% for the OoO and 30% for the InO core. However,
the design complexity of routing both cores to all the caches and the TLB is prohibitive. More
importantly though, we observe that the migration frequency of the OoO core does not have
signi�cant slowdown above 100k instructions. At this granularity though, our proposal performs
equally well without the added complexity. For HMP systems pairing OoO and InO, it makes more
sense to have a simpler design sharing just the L2 and a TLB. Sharing the L1 caches adds more
complexity, but does not allow the system to migrate any faster than 100K instructions, as the OoO
overheads diminish any bene�ts beyond that point.

4.3 E�icient Migrations
As introduced in Section 3.2, the critical question for HMP systems is whether migrating from one
core to another yields any bene�ts. Based on equation 3, we �nd how much of each workload can
be migrated to the opposite core, using the two policies mentioned in 3.2 to adjust the threshold
value θ . We base our analysis on the fact that the InO core is 3x more energy e�cient, an estimate
in line with current HMP systems [21].
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(a) Beneficial migrations from the InO to the OoO
core with the No trade-o� policy.
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(b) Beneficial migrations from the OoO to the InO
core with the No trade-o� policy.
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(c) Beneficial migrations from the InO to the OoO
core with equal or be�er EDP policy.
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(d) Beneficial migrations from the OoO to the InO
core with equal or be�er EDP policy.

Fig. 7. Percentage of beneficial migrations when being energy and EDP constrained.

We present in Figure 7 the two extreme cases of sharing for the no trade-o� and EDP policies
mentioned in Section 3. �e percentage in these plots signi�es how much of the workload leads to
a more desirable state. �e solid coloured bars depict the bene�ts averaged across all workloads,
while the shaded ones show the workload with the maximum bene�t.

When using the no trade-o� policy, a system on the InO core will migrate only when executing
the same phase on the OoO core costs equal or less energy. For this to happen the big core must
perform 3x be�er than the li�le one, so the threshold is adjusted to θ = 3. In Figure 7a we see that,
irrespective of how much hardware the cores share, the cases where this is bene�cial are less than
1% on average and at most 10% of the total execution, for speci�c workloads.

When considering the switch from OoO to InO with the no trade-o� policy, the samples are
considered bene�cial when the InO core performs equally as good or be�er than the OoO core
(θ = 1). �is results in the same overall performance for only a third of the power. �is case can
happen when the OoO core cannot exploit any ILP or MLP and it is reduced to InO performance.
Figure 7b shows that similarly to the previous result, the bene�cial cases are at most 1% on average
and 6% of the total execution for a few benchmarks.

While these cases are few, the no trade-o� policy reveals that the bene�ts can only be exploited
mostly at the migration periods of 10k and 100k instructions. �is reveals that micro-phases most
probably exist. However these remain latent at any granularity coarser than 100k instructions, as
the phases average out, while migrating every 1k instructions yields no bene�ts as the overheads
mask micro-phases.

For equal or be�er EDP our metric values performance more as EDP = Power × Delay2. �e
amount of bene�cial switches when migrating from the InO to the OoO core for this policy is
calculated using a threshold value of θ =

√
3. �e results show that the potential for switching

and maintaining equal or be�er EDP in this case range between 48% and 66% when migrating
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every 100K, 1M and 10M instructions. When performing the opposite switch with the EDP policy
(θ = 1√

3
), the results show that when aiming for the best EDP the OoO core is more suitable as the

bene�cial cases on average for all the workloads does not exceed 31% of the execution.
For both EDP experiments, migration periods larger 100K instructions are less desirable, as the

gains are signi�cantly smaller. Additionally, we observe that in most cases, sharing the caches and
the TLB is not necessary as both sharing schemes show similar potential for useful migrations.
Furthermore, in terms of the maximum of the bene�cial migrations, we notice that for periods
larger than 1M instructions both the InO and OoO core show that some workloads are be�er o�
running at the opposite core.

5 RELATEDWORK
While the problem of maximizing e�ciency in HMPs through core migrations has been researched
in the past, the e�ect of migrations in the system is, to the best of our knowledge, still misunderstood
especially in the realm of �ne-grained migrations.

Some studies have explored the notion of migrating execution amongst heterogeneous cores that
takes into account the e�ect of the memory system [9] [16]. Improvement is limited to relatively
coarse-grained switching frequencies and modi�cations are required for the system to achieve
them.

Other e�orts aim at redesigning accelerator cores that can adapt be�er to the applications[23].
�ese accelerator type cores are determined through a performance study conducted at coarse
instruction granularity. Furthermore, the redesigned cores also operate on coarse application
phases rather than periodically deciding when to switch.

A similar approach [18] has been explored where a the core can morph to exploit MLP and ILP
in the workloads. Furthermore, this HMP architecture has the potential for �ne-grained migrations
although this has not been fully explored, to the best of our knowledge. Other works [30] have
recently examined this approach.

Prior work on the existence of phases at �ne granularity and their potential micromanagement
has shown that it is possible to exploit their bene�ts through a heterogeneous system with di�erent
back-ends sharing the same front end [12, 20–22]. Despite the claim, no experimental data is
provided that reveals the actual existence of application phases that appear at a �ne granularity
nor are the circumstances under which they can be exploited explained.

In [13, 26], the authors have implemented a HMP system sharing the memory system and the
register �les amongst the heterogeneous cores, claiming under 100 cycle migration latency in
actual hardware. �ey propose three dimensional stacked cores to deal with the wiring and routing
problem. One interesting claim made is that the register �le can be transferred with a very small
overhead (one cycle), which points towards plausible future designs with high sharing. However,
the system they propose has certain assumptions that we consider problematic. Firstly, the cores
used for sharing are two OoO designs of di�erent width, but using up roughly the same area. In
their proposed system the similarity of the two cores make migrations pointless both in terms of
energy e�ciency and performance.

Additionally, no direct information is given about the operating frequency of the system however,
the reported cycle time is 5.5ns which implies a frequency of 181MHz which would undeniably
drastically degrade performance. We believe this is indicative of the performance degradation
incurred when sharing sensitive components as like the register �le, the L1 caches and the TLB as
such approaches either add extra processing cycles or clock the system at extremely low frequencies
to deal with the extra combinational logic and routing overheads.
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In terms of HMP scheduling investigation, several studies examine whether it is possible to
augment the architecture and make it more aware of the heterogeneity to exploit the bene�ts of
fast and low overhead migrations [24, 29].

In the past, studies similar to those of �ne-grained thread migrations focused primarily on
levering homogeneous cores that operate at di�erent energy and performance points by changing
the voltage and frequency domains [5]. Signi�cant evidence shows that �ne-grained Dynamic
Voltage and Frequency Scaling (DVFS) has received mixed results in terms of energy savings
with some claiming notable gains in memory intensive phases [20, 25], while others refute this
noting that, at �ne-grain DVFS, the switching latency reduces performance and increases energy
consumption [11, 34].

6 CONCLUSIONS
In this work we have proposed Nucleus, a full system simulation methodology using gem5, to study
the e�ects of migrations in heterogeneous systems. Our methodology accomplishes this by forking
the simulation, comparing a system that migrates with one that does not. We show that Nucleus
can be used in various ways, exploring di�erent aspects of migrations. For instance, it can be used
to measure the performance degradation across di�erent migration frequencies. Alternately, we
propose using it to calculate how much of each workload can be migrated to a di�erent core to
gain in energy or performance.

We use our methodology to focus on identifying how much sharing of internal components (e.g.
caches, TLB, register �le) is most desirable for migrations as �ne as 1k instructions. We show that
our methodology is well suited to measure the hardware overheads, as it isolates them from the
so�ware overheads. Our results show that the two cores have asymmetric warm-up times and
behaviour, where the OoO core needs larger instruction windows to amortize the cost of migration
than the InO core. Overall this prohibits the bene�cial use of migration frequencies �ner than
100k instructions. Furthermore, we propose an architecture sharing only the L2 and the TLB to
enable more e�cient migrations. Compared to other sharing schemes, we �nd that our design
performs equally as good as designs that share all the caches and the TLBs, but can be physically
much simpler to implement.

To demonstrate the capabilities of Nucleus, we perform a case study running mibench, a suite of
diverse embedded benchmarks, on a heterogeneous system. �e results show that, even when the
overheads are not prohibitive, migrating to save energy without sacri�cing performance or vice
versa is limited to at most 10% of the execution. Relaxing the policy to �nd equal or be�er EDP
points of operation shows that migrations can be bene�cial on average for 66% of the workload
execution.

Currently our methodology is limited to exploring only �rst-order migrations. �is prohibits us
from performing studies using asymmetrical switching, where the li�le cores can migrate at higher
frequencies than the big cores, as our study suggests. Our aim is to address this in future research,
where some of the state can be retained on the big core while it is switched o�. Additionally, we
plan to expand to higher-order migrations which will enable our methodology to explore more
of the state space for pa�erns in execution that, when identi�ed, can lead to be�er scheduling of
heterogeneous systems.

Finally, as the results of our proposed architecture show promise, we believe that it is worth
investigating HMPs with hierarchical TLBs. Such systems can be more bene�cial in terms of latency
restrictions as the level 1 TLB can be private and the level 2 TLB be shared. Similar approaches
have been mentioned in the past for homogeneous multiprocessors [2, 3], but need additional
investigation in solving coherency issues in TLBs.
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