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GPU Performance Estimation using Software Rasterization
and Machine Learning

KENNETH O’NEAL and PHILIP BRISK, University of California, Riverside

AHMED ABOUSAMRA, ZACK WATERS, and EMILY SHRIVER, Intel Corporation

This paper introduces a predictive modeling framework to estimate the performance of GPUs during pre-
silicon design. Early-stage performance prediction is useful when simulation times impede development by
rendering driver performance validation, API conformance testing and design space explorations infeasible.
Our approach builds a Random Forest regression model to analyze DirectX 3D workload behavior when
executed by a software rasterizer, which we have extended with a workload characterizer to collect further
performance information via program counters. In addition to regression models, this work produces detailed
feature rankings which can provide valuable architectural insight, and accurate performance estimates for an
Intel integrated Skylake generation GPU. Our models achieve reasonable out-of-sample-error rates of 14%,
with an average simulation speedup of 327x.
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1 INTRODUCTION

GPU performance depends primarily on architectural innovations and advances in process
technology, both of which increase complexity and cost. This necessitates hardware-software
co-design, co-development, and co-validation prior to manufacturing. During the design and de-
velopment stages, GPU architects use pre-silicon detailed cycle-accurate performance simulators
to explore the architectural design space. Industrial cycle accurate simulators, which are used both
for performance characterization and post-silicon validation, require much higher accuracy than
their academic counterparts, necessitating longer simulation times. Functional simulators, which
are faster, can aid development but cannot provide detailed timing information and cannot char-
acterize application performance. To reduce simulation times and the time required to perform
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early-stage architectural design space exploration for GPUs, this paper presents a modeling
framework that predicts the performance of a pre- silicon cycle-accurate GPU simulator using a
functional

GPU simulator. GPU architects can use these predictions to explore the architectural design
space while rapidly characterizing the performance of far more workloads than would be possible
using cycle-accurate simulation alone.

This work focuses on Intel integrated GPUs, which are customized to accelerate graphics and
gaming workloads. The performance overhead of Intel’s proprietary simulator is prohibitive for
pre-silicon design space exploration, software performance validation, and analysis of architec-
tural optimizations. Hence, Intel’s GPU architects require a faster alternative, or must otherwise
forego traditional early-stage (pre-silicon) design space exploration that accounts for hardware
enhancements in conjunction with software evolution. Our proposed solution to this conundrum
is a framework that trains predictive regression models using a functional simulator that we mod-
ified to execute DirectX 3D rendering workloads, and extend with a workload characterization
framework to produce model features. The models are trained to predict the performance of the
cycle-accurate GPU simulator that architects would prefer to use during pre-silicon design. Using
a predictive model is several orders of magnitude faster than cycle-accurate simulation, while in-
curring an acceptable loss of accuracy. This increases the rate at which automated design tools can
evaluate new points in the GPU architectural design space, and increases the number of workloads
that can tractably be used during for evaluation.

In addition to pre-silicon design space exploration, GPU hardware-software co-design tasks in-
clude: pre-silicon driver conformance and performance validation, evaluation of new microarchi-
tectural units designed to accelerate latest generation API features, and performance evaluation of
system level integration of the GPUs. The predictive modeling framework introduced in this paper
can accelerate performance evaluation of many of these tasks as well. We further utilize the trained
models to rank the metrics produced by the functional simulation to determine their relative im-
pact on GPU performance, providing designers with intuition as to which micro-architectural sub-
systems are likely performance bottlenecks. These counters provide architectural information in
the form of malleable and generic execution counts of API supported rendering tasks. This infor-
mation is quite different than what can be obtained from program counters in commercial-grade
post-silicon GPUs.

We evaluate the models’ accuracy using a representative workload sample consisting of 369
frames collected from 24 DirectX 11 games and GPU benchmarking tools. Once a regression model
has been trained, it can be more generally applied to a larger set of workloads used for design
space exploration. Our best performing model, random forest regression, achieves a respectable
14.34% average out-of-sample-error, while running a minimum 40.7x, maximum 1197.7x and aver-
age 327.8x faster than the pre-silicon cycle-accurate simulator.

2 FRAMEWORK IMPLEMENTATION

Figure 1 depicts our pre-silicon predictive modeling framework; our evaluation focuses on Intel
GPU architectures (specifically, the Skylake generation) using 3D DirectX 11 rendering workloads.
The software rasterizer (RastSim) is a functional simulator configured to model the Skylake gen-
eration GPU architecture, to execute the workloads and is augmented to provide program counter
measurements. These measurements are input into a model that predicts the performance that
would be reported if we executed the workload on a cycle-accurate and internally validated GPU
simulator (GPUSim) configured to model the same architecture.

Both RastSim and GPUSim use vendor drivers to execute the rendering workloads. A new model
is trained for each point in the GPU architectural design space. GPUSim is only used to collect the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 1. Modeling framework: a functional simulator executes 3D DirectX11 workloads. Performance counter

measurements obtained from the simulator are used by predictive models to predict the performance of the

cycle-accurate GPU simulator.

golden reference performance, which is used to train the model. Once the model has been trained,
the design point can be characterized on a much larger set of evaluation workloads. Each evalua-
tion workload executes on the functional simulator to collect performance counter measurements,
which are then input to the model, which predicts the execution time of the workload at the cur-
rent design point. Our results show that this is much faster than cycle accurate simulation, and
provides performance estimates that the functional simulator cannot provide on its own.

Figure 2 shows that GPU performance ultimately depends on co-optimized hardware and soft-
ware. Predictive modeling enables designers to perform co-optimization in earlier stages of the
design process, allowing many more design points to be explored.

2.1 The Graphics Workload Library (GWL)

The Graphics Workload Library (GWL) contains 369 frames collected from 24 DirectX 11 games
and GPU benchmarking tools, as listed in Table 1. Although we collect multiple frames from each
application, we treat each frame as a single workload due to long per-frame cycle-accurate simu-
lation times. The GWL applications are input to the model training and validation process, which
uses 10-fold cross-validation as discussed in Section 4.3.

2.2 Model Training and Validation Flow

Figure 3 illustrates our model training and prediction flow using GWL workloads. A proprietary
tool (GfxCapture) collects single-frame traces in two formats: (1) SWTraces, which consist of Di-
rectX API commands collected pre-driver, which execute on RastSim; and (2) HWTraces, which
consist of native GPU commands collected post-driver to execute on GPUSim. A subsequent pro-
prietary application, GfxPlayer, streams the traces to RastSim, which collects and provides a set of
performance counter measurements.

Figure 4 illustrates the modeling training and deployment (prediction) phases of Figure 3. GWL
applications are assembled to form a training set. Performance counter measurements provided
by RastSim are used for model training. GPUSim executes the training workloads to provide per-
formance measurements in terms of cycles per frame (CPF); these golden reference values are
used to train the model. We use 10-fold cross-validation [14] to estimate in-sample error (Ein) and

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 2. GPU Hardware and software co-optimization process being targeted for rapid performance estima-

tion. Hardware and software are co-optimized in lock-step fashion, requiring repeated simulation in a tradi-

tional design environment.

out-of-sample-error (Eout) to validate the model. The model is used to predict the CPF of previously
unseen workloads.

2.3 RastSim

RastSim is a proprietary extension to the OpenSWR [15] rasterizer, which is fully integrated into
the Mesa 3D Graphics Library [23] and normally targets the OpenGL API. As shown in Figure 5,
RastSim consists of two primary subsystems: (1) the RastSim Command Interface and state tracker;
and (2) the Rasterization Core. The Command Interface and state tracker are modified to ensure In-
tel GPU and DirectX API conformance, and are implemented as the external interface and internal
control of the Rasterization Core, which executes functional simulation. The wrapper intercepts
and issues commands from the API and drivers, providing the same interface to the software ex-
ecution stack as the GPU hardware it replaces. It also maintains the necessary data structures to
track render pipeline activity between architectural units, and maintains GPU state during work-
load execution.

RastSim has been extended with a Workload Characterization Framework (WCF) that has been in-
tegrated into Mesa3D [23] as “archrast,” which instruments the Rasterization Core and Command
Interface to track render pipeline behavior, instruction counts, and workload execution state.

2.4 GPUSim

GPUSim is a proprietary cycle-accurate simulator used for pre-silicon design studies. GPUSim
models the GPU microarchitecture, memory subsystems, and DRAM, and has been validated
internally when configured to model post-silicon GPUs. We use GPUSim to produce golden

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.



GPU Performance Estimation using Software Rasterization and Machine Learning 148:5

Table 1. 3D DirectX 11 Workloads, and Their Frame Counts

Fig. 3. Framework overview. Model training and validation require workload execution on both RastSim and

GPUSim.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 4. Model training (top) and prediction flow (bottom).

Fig. 5. RastSim utilizes GPU drivers, GfxPlayer and the DirectX API to provide a behavioral simulation of

the Intel GPU DirectX pipeline to produce performance counters.

reference performance estimates for model training. To avoid disclosure of propriety information,
CPF estimates produced by GPUSim are reported in normalized form.

3 RASTSIM GPU MODEL

We configured RastSim and GPUSim to model a 2-slice Intel Skylake GPU (Figure 6). While Skylake
GT3 GPUs are commercially available, we do not predict the performance of the post-silicon de-
vice, because our objective is to mimic the GPU design process. Employing commercially available
silicon mitigates confidentiality concerns, as pre-silicon GPUs may include features that cannot
be disclosed publicly. Validated Skylake GT3 architectural models are available, which eliminates
the need to tune the functional simulator and WCF to match an ever-evolving in-flight design.

3.1 Unslice Architecture

The Unslice is the GPU front-end, consisting of Global Asset (GA) and dedicated render (Geom/FF)
units. The GA units contain the GT Interface (GTI), which performs I/O, and the State Variable
Manager (SVM), which holds execution state variables. RastSim does not simulate the GA units,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 6. Intel Skylake GT3 GPU architecture [17].

replacing them with the Command Interface and State Tracker, which also provide a JIT-compiled
Blitter (BLT) for speed, and Graphics Arbiter (GAM) model. The Command Interface and State
Tracking Layer provide 8 counters, which measure draw, synchronization, and vertex count met-
rics. RastSim natively produces 77 3D state tracking counters (SVM) and 27 pipeline control-related
counters (GAM).

The Geom/FF units accelerate DirectX features and programmable shader requirements. The
FF units interface with the Slice, utilizing caches and EU clusters to accelerate programmable fea-
tures and to create and dispatch threads. RastSim models only those units that directly execute on
geometry: the Input Assembler (IA), the Compute Shader (CS), the Vertex Fetch (VF) and Vertex
Shading (VS) units. It also models the three stages of DirectX 11 tessellation: the Hull Shader (HS),
Tesselator (TE), and Domain Shader (DS) units, along with the Geometry Shader (GS), Clipper
(CL) and the Stream Output Logic (SOL). The WCF provides 15 counters to track these Unslice
behaviors, as shown in Figure 7.

3.2 Slice Architecture

Each slice is decomposed into three subgroups: (1) the Slice Common (Figure 8) which pro-
vides additional fixed function architectural units; (2) the Sub-Slice (Figure 9) which contains 24

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 7. Unslice units modeled in RastSim.

Fig. 8. Slice Common units modeled by RastSim. RastSim does not model caches, thread dispatch logic, or

dedicated media units.

Execution Units (EUs) and supporting execution hardware; and (3) an L3 cache. RastSim models
only the portions of the Slice Common and Sub-Slice that are needed to provide functionally cor-
rect rendering. We target a 2-slice Skylake GT3 GPU.

3.2.1 Slice Common and L3 Cache. The Slice Common fixed function units support the front-
end and Sub-Slice units; these include the Windower (WM) which performs rasterization, the Hi-
erarchical Z (HiZ), and Intermediate-Z (IZ) units, which perform Depth (Z) and stencil testing, and
a host of caches used for differing portions of the pipeline. As shown in Figure 8, RastSim models

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 9. Sub-slice units modeled by the software Rasterizer.

only those components necessary to provide functional equivalence at render output, omitting
detailed modeling of the caches and HiZ and IZ units. The WCF produces 28 counters that capture
metrics relating to Alpha, Early-Z, and Early Stencil tests.

3.2.2 Sub-slice and EU Clusters. The Sub-Slice and render pipeline back-end consist of an EU
array, and supporting fixed and shared function units, such as the sampler, EU Instruction Cache
(IC), Local EU thread dispatcher (TDL), Data Cluster (HDC), render cache (DAPRC) a Pixel Shader
dispatcher (PSD), and a Barycentric Calculator (BC). As shown in Figure 9, RastSim models pro-
grammable units such as the Pixel Shader Dispatch (PSD), Pixel Shader (PS), and the BC, along
with late-stage Z- and stencil testing, blend shading, output results merging, and writes to the
GPU render target (Viewport); RastSim does not simulate thread dispatching and EU execution,
nor model the IC, TDL, HDC, or DAPRC. The WCF provides 18 counters to track PS behavior,
depth/stencil tests, and render target write metrics.

4 REGRESSION MODELING FRAMEWORK

We employ a non-linear Random Forest (RF) regression model [7] to estimate pre-silicon GPU per-
formance. Our model building procedure also produces and evaluates 14 linear regression models,
which are used as a baseline for comparison. The choice to train an ensemble of models is mo-
tivated by the fact that both the correlation between CPF and model features and the degree of
linearity between program counters and target CPF are unknown in advance; moreover, it was not
initially clear that RF would emerge as the most accurate model. Figure 10 depicts the ensemble
of models that were trained; readers unfamiliar with the underlying statistical concepts described
are encouraged to consult Ref. [14].

The input to each model is a set of program counters (a feature vector) collected from RastSim,
X = [x1, x2, . . . , xN]. We produce M feature vectors, from M workloads. Each model produces a set
of M outputs, the responses, in the form of cycles-per-frame (CPF), one for each workload. Each

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 10. Models produced and evaluated via our model framework.

of the models’ input data sets, consists of the same 369 workloads, containing 105 independent
variables provided by RastSim natively, and an additional 69 program counters delivered by the
RastSim workload characterizer.

4.1 Linear Regression and Regularization Models

We generate 14 linear regression models, and one non-linear model that are placed into 5 modeling
categories: Category 1, Ordinary Least Squares (OLS), and Category 2, Non-Negative Least Squares

(NNLS) contain 10 models, 5 from each category. Category 1 includes the full regression OLS
and category 2 the full NNLS model. The remaining 8 models perform feature selection utilizing
forward (Fwd) and backward (Bwd) stepwise selection. We apply the Akaike Information Criterion

(AIC) [1] and the Bayesian Information Criterion (BIC) [26] to the stepwise methods, yielding 4
models: {Fwd, BWD} × {AIC, BIC}, which are applied to OLS and NNLS.

Category 3, Regularization and Category 4, Regularization-NNLS each contain 2 models. Cat-
egory 3 contains the Lasso [29] and Elastic-Net [36], which perform feature selection during model
building. Category 4 augments the Lasso and Elastic-net models with the NNLS requirement.

Category 5 contains our one non-linear model, RF [7], which turned out to be the most accurate
model that we generated. For this reason, the discussion that follows emphasizes RF.

4.2 Random Forest Regression Model

Random Forest (RF) is an ensemble method, which aggregates the predictions of a collection of
regression trees [6]. RF is based on the observation that regression trees exhibit high-variance
and low bias when grown sufficiently deep. Prior work has shown that bootstrap sampling [14]
of training data can effectively minimize correlation between the regression trees comprising the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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forest; averaging the predicted CPF produced by the trees further reduces variance while main-
taining low bias.

An RF model is created by creating n trees, each of which is grown on a bootstrap sampled
data set D. Tree growth is achieved by a recursive process which randomly selects M variables
from the original set of features, with replacement. Sampling with replacement is the process of
replacing the originally sampled variables with the new variables chosen in subsequent sampling
steps. This means that variables are not held out of subsequent rounds, ensuring that: (1) each
variable is equally likely to be chosen during each round; and (2) the covariance between sets
of sampled variables is 0, i.e. each sample is independent of the others. Utilizing the M variables
chosen by sampling with replacement as candidates, we select the prime candidate to perform a
split.

A split is performed by observing each variable mi ∈M, and determining the range of observable
values in D. For each variable and range, we then choose the best value within that range and treat
it as a binary splitting point S, which is represented by a node in a tree. After selecting S, two
daughter nodes (left, right) are created and assigned the parent node S, whereby each data point in
D that has value ≤ S is assigned to the left sub-tree, Dleft, and the remaining assigned to the right,
subtree, Dright. The value S chosen as the split point is chosen by computing the Residual Sum of

Squares (RSS) Error for all response variables at all split values considered. The value chosen for
splitting is the one that minimizes RSS error. For RF regression, RSS is computed as follows [10]:

RSS (Split ) =

|Dle f t |∑

i=0

(yi − yL)2 +

|Dr iдht |∑

i=0

(yi − yR)2 (1)

where yi is the current CPF prediction of workload i ∈ Dleft/right, yL is the average true CPF value
for all workloads i ∈ Dleft, and yR is the average true CPF value for all workloads i ∈ Dright

After growing all n trees we form an ensemble RF = ∪n
j=1Tj . The CPF prediction of workload mi

can then be computed by computing the mean of each tree’s CPF prediction for mi as follows:

RF (mi ) =
1

n

n∑

j=1

Tj (mi ) , (2)

where Tj(mi) is the predicted CPF of Tj when applied to the RastSim performance counters obtained
from simulation of workload mi.

4.3 Model Evaluation

We use 10-fold cross-validation (CV) [14] to estimate model generalizability, i.e., its predictive capa-
bility when applied to unseen data. 10-fold CV randomly partitions the training data (size M) into
10 sets of size M/10. One partition is retained as a validation set; the remaining 9 train the model.
This process repeats 10 times, with each partition used once as the validation set. We compute
the Mean Absolute Percentage Error (MAPE) for each CV fold, and take the average to produce the
out-of-sample error (Eout) [19]:

Let f̂ be the fitted module under evaluation. We define a function k : {1, . . . ,M } → {1, . . . ,K },
K = 10, to associate the index of feature Xi with its cross-validation fold. We then define f̂ −k (i ) to
be the fitted function computed with the kth cross-validation fold removed. Eout is then computed
as follows:

Eout

(
f̂
)
=

100

M

M∑

i=1

�
�
�
�
�
�

yi − f̂ −k (i ) (Xi )

yi

�
�
�
�
�
�

. (3)
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Fig. 11. Quantifying the impact of the number of trees in the RF model on Eout; lower values are better.

The Absolute Relative Percentage Error (APE) of a feature vector (trace) Xi is

APE (Xi ) = 100
�
�
�
�
�

yi − f (Xi )

yi

�
�
�
�
�

. (4)

Given a percentage threshold T, a trace Xi is called an inlier if APE(Xi) ≤ T, and an outlier otherwise.
Given T, the inlier ratio (IR) is the percentage of traces that are inliers, i.e.:

IR ( f ,T ) =
100

M
|{Xi |APE (Xi ) ≤ T , 1 ≤ i ≤ M }| . (5)

Intuitively, the inlier ratio can be interpreted as a measure of variance in the model error. At a
given threshold, a model with a higher inlier ratio would seem less likely to produce an anomalous
prediction (outlier) on a new trace than a model with a lower inlier ratio, even if the latter model
has a lower out-of-sample error.

4.4 RF Parameter Optimization

RF has several parameters that must be chosen to reduce prediction error. Typically, RF works well
with relatively little tuning. We utilize the RandomForest package from CRAN [21], and the default
parameter settings, excluding the number of trees (n). We repeatedly fit RF models with n = 2i,

1 ≤ i ≤ 10, trees, and select the value of n that minimizes Eout.
Figures 11 and 12 respectively depict the Eout value and inlier ratios at varying thresholds for RF

models, where the number of trees varies from n = 2i, 1 < i < 10. Based on these results, we selected
an RF model with n = 128 trees, which minimized Eout and demonstrated good inlier performance.

5 RASTERIZATION MODEL RESULTS

We configured RastSim and GPUSim to model a Skylake GT3 GPU operating at 1155 MHz
(GPUSim). Performance counter readings for the GWL workloads (Table 1) produced by RastSim
were used to train and validate the 15 regression models, as discussed in the preceding section.
We produce two sets of results:

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 12. Quantifying the impact of the number of trees in the RF model on IR at varying thresholds; higher

values are better.

Table 2. Comparison of the Best Model Category Errors Using the RastSim

Workload Characterization Extensions

• The 5 best performing models obtained using the performance counters that we added to
RastSim through the WCF (Table 2), including the inlier ratios (IR) at various thresholds
(Figure 13).

• The 5 performing models trained exclusively using performance counters originally avail-
able in RastSim (Table 3), including the inlier ratios (IR) at various thresholds (Figure 14).

5.1 Predictive Model Results

Table 2 clearly indicates that RF is the best performing model, achieving an out-of-sample er-
ror of 14.34%, a 5.75% improvement over the second-best model, the Elastic-net; this error rate is
sufficiently low for use in early-stage design space exploration; GPUSim is still required for de-
tailed performance characterization and post-silicon performance validation.

Figure 13 reports the inlier ratios at 8 different threshold values T ∈ {50%, 40%, 30%, 20%, 15%,
10%, 5%, 1%}. RF and Elastic-net achieve the highest inlier ratios at each data point, with RF re-
taining a minor advantage at all threshold values other than 20%, where Elastic-net is 0.58% higher.
These results indicate that RF is without question the best performing model.

5.2 WCF Impact in RastSim

Table 3 and Figure 14 report the results of a similar experiment performed using only the per-
formance counters available natively in RastSim, prior to the introduction of the WCF which
introduced many additional counter. The best performing model, once again, is RF, although its

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 13. Skylake Inlier rates at various error thresholds using the RastSim workload characterization

extensions.

Table 3. Comparison of the Best Model Category Errors Without the RastSim

Workload Characterization Extensions

Fig. 14. Skylake Inlier rates at various error thresholds using the RastSim workload characterization

extensions.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 15. Predicted and observed CPF and APE for each GWL workload using the RF model (Table 2). Data

points are sorted in non-decreasing order of observed CPF.

out-of-sample error jumps to 52.34% (Table 3); this justifies the introduction of the WCF and its
additional performance counters for this RastSim use case.

Figure 14 reports the inlier ratios at the same threshold values as Figure 13. Once again, RF
and Elastic-net achieve the highest inlier ratios, although they are much lower than the results
reported in Figure 13. For example, RF achieves a 29.03% inlier ratio at the 20% threshold, and a
15.47% inlier ratio at the 10% threshold, which once again testifies to the inaccuracy of our model
without the additional performance counters provided by the WCF. This level of degradation in
model accuracy indicates that the native RastSim counters do not correlate with GPU performance
(CPF).

5.3 Relative Accuracy Preservation

Figure 15 reports the predicted and observed CPF (both normalized) for each trace, along with its
APE, for the RF model built using WCF performance counters (Table 2). The observed CPF was
obtained by cycle-accurate simulation (GPUSim), as was used as the golden reference model for
predictive model training. With the data points reported in increasing order of observed CPF, we
observe that the predicted CPF ordering is similar for most traces, with a handful of exceptions as
observed CPF grows large.

These disparities indicate that RastSim and WCF performance counters lack some key features
that strongly correlate to CPF. A significant percentage of GPU execution time is spent on pro-
grammable shaders and threads in the Sub-Slice EU clusters: GPUSim reported high EU active and
stall times. These performance counter values were much higher for the workloads that exhibited
large disparities between predicted and observed CPF.

To capture this information, it is possible to extend RastSim to model thread dispatching and
EU activity; however, this would introduce cycle-accurate simulation to RastSim, slowing it down
significantly. It is clear talking to other internal RastSim users that increased execution time would
degrade its other pre-silicon use cases. RastSim with the WCF, as presently constituted, strikes a
good balance between preserving applicability to other uses cases and achieving accurate perfor-
mance prediction.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 148. Publication date: September 2017.
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Fig. 16. Normalized RastSim and GPUSim execution time and speedup for each GWL workload. Data points

are ordered in non-decreasing order of GPUSim execution time.

5.4 Predictive Model Speedup

The motivation for predictive modeling is to obtain workload performance estimates faster than
cycle-accurate simulation. Figure 16 reports the speedup of RastSim functional simulation (includ-
ing WCF overhead) and predictive model deployment compared to GPUSim cycle-accurate simu-
lation for each workload; these results do not account for model training time, which is performed
offline.

Observed speedups ranged from 40.7x to 1197.7x, with an average of 327.8x and a standard
deviation of 196.62. These speedups are sufficient to enable internal usage of RastSim for early-
stage GPU architectural design space exploration. It is also worth noting that the WCF causes an
average slowdown of 3x compared to native RastSim execution; the speedups included in Figure 16
include the WCH overhead.

5.5 RF Feature Ranking

The relative importance of counters in an RF regression model can be obtained by measuring the
impact of each feature on the model’s predictive capability. The impact is measured by summing
each variable’s RSS error, computed in Equation (1), when it is used as a split point, for all trees in
the forest for which it was selected [34]. Table 4 reports the 20 program counters ranked as being
most important to the RF model using this approach; 18 of the counters are part of the WCF, while
the remaining 2 are native to RastSim.

The 3 highest-ranked counters track the number of times pixels are written to the render target,
each indicating a different method of pixel grouping. The most important measure was the total
pixel write count, whose lower bound (for one frame) is the monitor resolution. In contrast, the
number of pixels written to the render target also includes pixel writes which are later overwritten
by objects that share the same space; the final viewable object is determined by depth and stencil
testing.

The next 5 highest-ranked performance counters relate to depth and stencil tests performed
on vertices in the GPU front-end. They closely track the number of vertices that are tested and
passed, which approximates the number of vertices that survive the HiZ and IZ tests and are then
rasterized by the WM.
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Table 4. The 20 Highest Ranked Performance Counters in the

RF Model Based on RSS Ranking

The top-8 ranked counters suggest that performance is dominated by the GPU compute activity
that determines the final number of pixels, including identification of the number vertices that
pass early Z and stencil tests, and are subsequently converted to pixel space via rasterization in
the WM, and ultimately pass the late depth and stencil tests.

The 9th most important performance counter also tracks depth tests, this time the number of
pixels tested in the RastSim back-end. Six of the remaining counters (Sub-Span Z Tests, Passing
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Sub-Spans, Passed Early Z Single Sample, Tested Early Z Single Sample, Tested Early Stencil Single
Sample, and Passed Early Stencil Single Sample) track additional depth and stencil tests. Each
of these counters indicates a different number of vertices tested, as indicated by the grouping
into single-samples, sub-samples, and sub-spans. Only the 17th ranked feature in Table 4 (Samples
Killed) is indicative of work avoided in late pipeline stages.

Two front end fixed function unit counters (Stream Out Invocations and Vertex Fetch Instanc-
ing), ranked 18th and 20th, track the number of times the stream out fixed function unit is used.
Stream Out Invocations tracks the last stage in the Geom/FF units in the GPU unsliced pipeline,
while Vertex Fetch Instancing refers to the first stage in the render pipeline during instancing
mode. Rasterizer Counter, ranked 19th, counts the number of times vertices were converted from
vector graphics to raster/pixel format by the WM, tracking the work flowing from the GPU front-
to back-end.

In summary, Table 4 indicates that the most important performance counters for CPF prediction
were chosen from all portions of the render pipeline, and many of them measure the number of
vertices that were tested and passed front-end depth and stencil tests. This indicates that these
subsystems have the greatest impact on GPU performance, and should be slated for further study
and optimization by architects.

6 RELATED WORK

Functional simulators lack timing information [12], while cycle-accurate simulators provide de-
tailed timing simulation in addition to the functional simulation. The speed of cycle accurate ar-
chitectural simulation is cost prohibitive, typically executing between 1 thousand instructions per
second (KIPS) and 1 million instructions per second (MIPS) [25].

Cycle-accurate GPU architectural simulators (e.g., GPGPU-Sim [4], Multi2Sim [30], and Atilla
[5]) run orders of magnitude slower than their functional counterparts. The importance of de-
tailed architectural simulation is well-established, and simulators are often used for design space
exploration (DSE), performance evaluation of workloads given a design, assessing architectural
innovations, and for performance tuning of software [13]. The feasibility of these tasks is often
improved by reducing cycle accurate simulation time in a variety of ways.

Techniques to reduce simulation time include raising the level of abstraction (lowering the level
of detail), as employed RastSim here for GPUs and Sniper for CPUs [11], parallelization [25],
FPGA acceleration [9], synthetic benchmark reduction [33], and representative statistical sampling
[27, 32].

In principle, the predictive modeling techniques advocated in this paper should be viewed as
being complementary to cycle-accurate simulation. In particular, feature ranking can indicate ar-
chitectural performance bottlenecks, which can then be studied in far greater detail using cycle-
accurate simulation.

6.1 Predictive Models for CPUs

Features that effectively predict CPU performance are not the same as than those that predict
GPU performance, due to architectural differences. Linear regression models [18, 35], and artificial
neural networks (ANNs) [20] have been applied to produce performance and power estimates
for CPUs. Similar to our work, these models are built using performance and program counter
readings.

Ma et al. [22] report that models trained using detailed simulators can be more accurate that
models based on performance counters obtained from direct execution on hardware; the reason
is that simulators can be configured to collect performance metrics on architectural subsystems
for which post-silicon performance counters are not available. Although we do not compare with
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models obtained from direct execution on post-silicon GPU hardware, we exploited this observa-
tion to construct the WCF.

6.2 Predictive Models for GPUs

Predictive models for GPUs have also been created using linear regression [3], decision trees [22],
random forests [8] and ANNs [28]. To the best of our knowledge, no prior work has evaluated
predictive models for pre-silicon GPU performance evaluation based on features obtained by func-
tional simulation.

Wu et al. [31] introduce predictive models for post-silicon GPU performance to assist expert
programmers with architecture-aware application tuning; their design space is limited to three
degrees of freedom. XAPP [2] takes a similar approach, but uses performance counter measure-
ments obtained from CPU execution to predict the performance of application kernels that could
be mapped to a GPU. Similar to our work, their models are built using performance counter read-
ings, they do not cross abstraction layers, as the host and target devices in both cases are both
post-silicon.

Gerum et al. [12] predict the performance of a GTX480 GPU, simulated using GPGPUSim, using
a combination of source-level simulation, static analysis, and direct execution of instrumented
source code. Performance counter measurements obtained from the hardware execution are input
to an analytical model, which predicts performance at native execution speeds. The analytical
models require a-priori knowledge of performance indicators as a precursor to model construction.
Predictive models, in contrast, do not require this information, although do require the usage of a
cycle-accurate GPU simulator to provide golden reference values during training.

Zhang et al. [34] create a modeling framework to predict the performance of existing ATI GPUs
to understand the relationship between program behavior, GPU performance and power consump-
tion to leverage these insights to provide instructive programming principles that can improve
software design practices. Our interest, in contrast, is to build a predictive regression model that
extends functional simulation to provide pre-silicon GPU architectural performance estimates.
The key similarity between our works and Zhang et al.’s is that we both employ random forest
regression and RSS-based feature ranking.

7 CONCLUSIONS AND FUTURE WORK

This paper has demonstrated that functional GPU simulation can accurately predict GPU perfor-
mance, and that this approach can be applied during pre-silicon design space exploration. Our
experiments, which focus on an Intel Skylake GT3 GPU, achieve an out-of-sample-error rate of
14.3% while running three to four orders of magnitude faster than cycle-accurate simulation. In
addition to moving co-optimization of GPU hardware and software to earlier design stages, this
approach could provide additional benefits, such as early-stage driver conformance testing [24].
It may also be possible to distribute the framework, and a trained model, as a pre-silicon evalua-
tion platform for 3rd party vendors to assess workload performance when integrated into a larger
system. Feature ranking can help GPU architects to identify performance bottlenecks on repre-
sentative workloads as early as possible.

These models can be generally applied to any GPU that supports hardware acceleration for 3D
DirectX rendering workloads, as the bulk of our counters specifically address actions that must be
performed and supported to render these applications at a function level. For separate workloads,
that do not exercise units intended to support the DirectX pipeline, such as media workloads like
video streaming, or video codec processing, or GPGPU tasks we do not believe our models are
generally applicable. It is also very common for these alternative workloads to exercise differ-
ent hardware units, following a largely different execution pipeline in the GPU. Our training set
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reflects this assumption. We sincerely hope that our modifications have clarified the application
space of our models.

Predictive modeling and feature ranking are not oracles, and relevant open questions remain.
For example: (1) Can these models also accurately predict power/energy consumption? (2) Can
these models generalize to rendering workloads that utilize different APIs, such as OpenGL? (3)
Can these models generalize to GPGPU workloads written in languages such as CUDA or OpenCL?
(4) Can these models generalize to FPGA workloads written in Vivado HLS-compatible C, or other
domain-specific languages? (5) Can these models generalize to compute-intensive CPU workloads?
And (6) Can these models generalize to different Skylake GPUs, and newer Intel GPU architec-
tures? Future work will attempt to provide definitive answers to these questions.
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