
COSMOS: Coordination of High-Level Synthesis

and Memory Optimization for Hardware Accelerators

LUCA PICCOLBONI, Columbia University

PAOLO MANTOVANI, Columbia University

GIUSEPPE DI GUGLIELMO, Columbia University

LUCA P. CARLONI, Columbia University

Hardware accelerators are key to the e�ciency and performance of system-on-chip (SoC) architectures. With high-level synthesis
(HLS), designers can easily obtain several performance-cost trade-o� implementations for each component of a complex hardware
accelerator. However, navigating this design space in search of the Pareto-optimal implementations at the system level is a hard
optimization task. We present COSMOS, an automatic methodology for the design-space exploration (DSE) of complex accelerators,
that coordinates both HLS and memory optimization tools in a compositional way. First, thanks to the co-design of datapath and
memory, COSMOS produces a large set of Pareto-optimal implementations for each component of the accelerator. Then, COSMOS
leverages compositional design techniques to quickly converge to the desired trade-o� point between cost and performance at the
system level. When applied to the system-level design (SLD) of an accelerator for wide-area motion imagery (WAMI), COSMOS
explores the design space as completely as an exhaustive search, but it reduces the number of invocations to the HLS tool by up to 14.6×.

CCS Concepts: • Hardware → High-level and register-transfer level synthesis; Methodologies for EDA; • Computer systems
organization → Architectures; Embedded systems;

ACM Reference format:
Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. 2017. COSMOS: Coordination of High-Level Synthesis
and Memory Optimization for Hardware Accelerators. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (December 2017), 22 pages.
DOI: 0000001.0000001

1 INTRODUCTION

High-performance systems-on-chip (SoCs) are increasingly based on heterogeneous architectures that combine general-
purpose processor cores and specialized hardware accelerators [4, 8, 22]. Accelerators are hardware devices designed
to perform speci�c functions. Accelerators are become popular because they guarantee considerable gains in both
performance and energy e�ciency with respect to the corresponding software executions [9–11, 20, 23, 29, 41, 48].
However, the integration of several specialized hardware blocks into a complex accelerator is a di�cult design and
veri�cation task. In response to this challenge, we advocate the application of two key principles. First, to cope with

The authors are within the Department of Computer Science, Columbia University, New York, NY, USA (Luca Piccolboni: piccolboni@cs.columbia.edu,
Paolo Mantovani: paolo@cs.columbia.edu, Giuseppe Di Guglielmo: giuseppe@cs.columbia.edu, and Luca P. Carloni: luca@cs.columbia.edu).
This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS) 2017 and appears as
part of the ESWEEK-TECS special issue.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. Manuscript submitted to ACM

Manuscript submitted to ACM 1

ar
X

iv
:1

91
2.

10
82

3v
1

 [
cs

.D
C

]
 1

8
D

ec
 2

01
9

2 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

the increasing complexity of SoCs and accelerators, most of the design e�ort should move away from the familiar
register-transfer level (RTL) by embracing system-level design (SLD) [18, 42] with high-level synthesis (HLS) [32, 39].
Second, it is necessary to create reusable and �exible components, also known as intellectual property (IP) blocks, which
can be easily (re)used across a variety of architectures with di�erent targets for performance and metrics for cost.

1.1 System-Level Design

SLD has been proposed as a viable approach to cope with the increasing complexity of today architectures [18, 42]. The
SoC complexity is growing as a result of integrating a larger number of heterogeneous accelerators on the same chip.
Further, accelerators are themselves becoming more complex to meet the high-performance and low-power requirements
of emerging applications, e.g, deep-learning applications [10, 23, 41, 48]. To address the complexity of systems and
accelerators, SLD aims at raising the level of abstraction of hardware design by replacing cycle-accurate low-level
speci�cations (i.e., RTL Verilog or VHDL code) with untimed or transaction-based high-level speci�cations (i.e., C, C++ or
SystemC code) [39]. This allows designers to focus on the relations between the data structures and computational kernels
that characterize the accelerators, quickly evaluate di�erent alternative implementations of the accelerators, and perform
more complex and meaningful full-system simulations of the entire SoC. Indeed, designers can ignore low-level logic
and circuit details that burden the design process. This improves the productivity and reduces the chances of errors [8].

Unfortunately, current HLS tools are not ready yet to handle the complexity of today accelerators. Many accelerators
are too complex to be synthesized by state-of-the-art HLS tools without being partitioned �rst. Accelerators must be
decomposed into several computational blocks, or components, to be synthesized and explored e�ciently. Decomposing
an accelerator also helps improve the quality of results. Indeed, the choice of a particular RTL implementation for
a component must be made in the context of the choices for all the other accelerator components. A particular set
of choices leads to one point in the multi-objective design space of the accelerator. Thus, the process of deriving the
diagram of Pareto-optimal points repeats itself hierarchically from the single component to the entire accelerator. This
complexity is not handled by current HLS tools that optimize the single components independently from the others.

1.2 Intellectual Property Reuse

HLS supports IP block reuse and exchange. For instance, a team of computer-vision experts can devise an innovative
algorithm for object recognition, design a specialized accelerator for this algorithm with a high-level language (C, C++,
SystemC), and license it as a synthesizable IP block to di�erent system architects; the architects can then exploit HLS tools
to derive automatically the particular implementation that provides the best trade-o� point (e.g., higher performance or
lower area/power) for their particular system. The main idea of HLS is to raise the abstraction level of the design process
to allow designers to generate multiple RTL implementations that can be reused across many di�erent architectures.
To obtain such a variety of implementations, the designers can change high-level con�guration options, known as
knobs, so that HLS can transform automatically the high-level speci�cation of the accelerator and obtain several RTL
implementations with di�erent performance �gures and implementation costs. For example, loop unrolling is a knob
that allows designers to replicate parts of the logic to distribute computation in space (resource replication), rather than
in time. The application of this knob generally leads to a faster, but larger, implementation of the initial speci�cation.

Despite the advantages of HLS, performing this design-space exploration (DSE) is still a complicated task, especially
for complex hardware accelerators. First, the support for memory generation and optimization is limited in current
HLS tools. Some HLS tools still require third-party generators to provide a description of the memory organization
Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 3

Component Characterization

HLS-ready
SystemC code!

of the Accelerator!

Memory
Optimization Regions with Pareto

Implementations of
the Components!

Eff. Latency!

A
re

a!

Design-Space Exploration

High-Level
Synthesis

identify the Pareto-optimal !
regions for each component!

Step 1 Step 2

Synthesis
Planning

Synthesis
Mapping

(1) obtain the Pareto-
opt. solutions of the
entire accelerator!

(2) map the solutions
to the single comp. !
of the accelerator!

Pareto Curve of
the Accelerator!

 Eff. #roughput!

A
re

a!

TMG of the
Accelerator!

Fig. 1. COSMOS: a methodology to coordinate HLS and memory optimization for the DSE of hardware accelerators.

and automatize the DSE process [36, 37]. Several studies, however, highlight the importance of private memories

to sustain the parallel datapath of accelerators: on a typical accelerator design, memory takes from 40% to 90% of
the area [16, 30]; hence, its optimization cannot be an independent task. Second, HLS tools are based on heuristics,
whose behavior is not robust and often hard to predict [24]. Small changes to the knobs, e.g., changing the number
of iterations unrolled in a loop, can cause signi�cant and unexpected modi�cations at the implementation level. This
increases the DSE e�ort because small changes to the knobs can take the exploration far from the Pareto-optimality.

1.3 Contributions

To address these limitations, we present COSMOS1: an automatic methodology for the DSE of complex hardware
accelerators, which are composed of several components. COSMOS is based on a compositional approach that coordinates
both HLS tools and memory generators. First, thanks to the datapath and memory co-design, COSMOS produces a large set
of Pareto-optimal implementations for each component, thus increasing both performance and cost spans. These spans
are de�ned as the ratios between the maximum value and the minimum value for performance and cost, respectively.
Second, COSMOS leverages compositional design techniques to signi�cantly reduce the number of invocations to the
HLS tool and the memory generator. In this way, COSMOS focuses on the most critical components of the accelerator and
quickly converges to the desired trade-o� point between cost and performance for the entire accelerator. The COSMOS
methodology consists of two main steps (Figure 1). First, COSMOS uses an algorithm to characterize each component of
the accelerator individually by e�ciently coordinating multiple runs of the HLS and memory generator tools. This
algorithm �nds the regions in the design space of the components that include the Pareto-optimal implementations
(Component Characterization in Figure 1). Second, COSMOS performs a DSE to identify the Pareto-optimal solutions
for the entire accelerator by e�ciently solving a linear programming (LP) problem instance (Design-Space Exploration).

We evaluate the e�ectiveness and e�ciency of the COSMOS methodology on a complex accelerator for wide-area
motion imagery (WAMI) [3, 38], which consists of approximately 7000 lines of SystemC code. While exploring the
design space of WAMI, COSMOS returns an average performance span of 4.1× and an average area span of 2.6×, as
opposed to 1.7× and 1.2× when memory optimization is not considered and only standard dual-port memories are used.
Further, COSMOS achieves the target data-processing throughput for the WAMI accelerator while reducing the number
of invocations to the HLS tool per component by up to 14.6×, with respect to an exhaustive exploration approach.

1COSMOS stands for “COordination of high-level Synthesis and Memory Optimization for hardware acceleratorS”. We also adopt the name COSMOS for our
methodology since it is the opposite of CHAOS (in the Greek creation myths). In our analogy, CHAOS corresponds to the complexity of the DSE process.

Manuscript submitted to ACM

4 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

 bank! bank! bank! bank!

Private Local Memory (PLM)
 bank! bank! bank! bank!

Component Logic

O
n-C

hip
Interconnects

Component Interface

Component #1

Component #2

Accelerator

Component #K

Loop #1! Loop #N!

Component Datapath
…

…

Fig. 2. Architecture of a loosely-coupled accelerator.

1.4 Organization

The paper is organized as follows. Section 2 provides the necessary background for the rest of the paper. Section 3
describes few examples to show the e�ort required in the DSE process. Section 4 gives an overview of the COSMOS
methodology, which is then detailed in Sections 5 (Component Characterization) and 6 (Design-Space Exploration).
Section 7 presents the experimental results. Section 8 discusses the related work. Finally, Section 9 concludes the paper.

2 PRELIMINARIES

This section provides the necessary background concepts. We �rst describe the main characteristics of the accelerators
targeted by COSMOS in Section 2.1. Then, we present the computational model we adopt for the DSE in Section 2.2.

2.1 Hardware Accelerators

Several accelerator designs have been proposed in the literature to realize hardware implementations that execute
important computational kernels more e�ciently than corresponding software executions [9, 10, 23, 29, 41, 48]. The
accelerators can be located either inside (tightly-coupled) or outside (loosely-coupled) the processing cores [16]. The
former class of accelerators is more suitable for �ne-grain computations on small data sets, while the latter is better
for coarse-grain computations on large data sets. We focus on loosely-coupled accelerators in this paper because the
complexity of their design requires a compositional approach. WAMI is representative of a set of classes of applications
that can be bene�t from the adoption of the loosely-coupled accelerator model and a compositional design approach.

Architecture. We design our accelerators in SystemC. Figure 2 illustrates their typical architecture. They are made
of multiple components that are designed individually to cope with the current limitations of HLS tools in opti-
mizing complex components. Partitioning the accelerators into multiple components allows HLS tools to handle
them separately, thus reducing the synthesis time and improving the quality of results. Each component is speci-
�ed as a separated SystemC module and represents a computational block within the accelerator. The components
communicate by exchanging the data through an on-chip interconnect network that implements transaction-level
modeling (TLM) [19] channels. These channels synchronize the components by absorbing the potential di�erences
Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 5

Component #K

…	
Component #2

Component #1
Dependency

Load!

Compute!

Store!

Execution time divided !
in different phases!

Total execution time !
of the component!

Potential!
Concurrency!

Fig. 3. Execution of a loosely-coupled accelerator.

in their computational latencies with a latency-insensitive communication protocol [7]. This ensures that the com-
ponents of an accelerator can always be replaced with di�erent Pareto-optimal implementations without a�ect-
ing the correctness of the accelerator implementation. COSMOS employs channels with a �xed bitwidth (256 bits)
and does not explore di�erent design alternatives to implement the communication among the components. It can
be extended, however, to support this type of DSE by using, for example, the XKnobs [35] or bu�er-restructuring
techniques [13]. Each component includes a datapath, which is organized in a set of loops, to read and store in-
put and output data and to compute the required functionality. There are also private local memories (PLMs), or
scratchpads, where data resides during the computation. PLMs are multi-bank memory architectures that provide
multiple read and write ports to allow accelerators to perform parallel accesses. We generate optimized memories
for our accelerators by using the Mnemosyne memory generator [37]. Several analyses highlight the importance
of the PLMs in sustaining the parallel datapath of accelerators [16, 30]. PLMs play a key role on the performance of
accelerators [25], and they occupy from 40% to 90% of the entire area of the components of a given accelerator [30].

Execution. Figure 3 reports an example of execution of an accelerator made of multiple components. The execution
of each component of the accelerator is divided in three phases (showed on the top of the �gure for Component
#1). In the load phase the components communicate with the on-chip interconnect network to read the input data
and store it in the PLMs. In the compute phase the components execute the given functions on the data currently
stored in the PLMs. In the store phase the components communicate with the on-chip interconnect network to store
the output data available in the PLMs. These three phases can be pipelined by using techniques such as ping-pong
or circular bu�ers [16], as shown on the top of the �gure. After having identi�ed the minimum block of data that
is su�cient to realize the required function in each component, e.g., a frame, the execution of the components
can be: (i) completely overlapped when there are no dependencies (e.g., Component #1 and #K), or (ii) serialized
when a component needs input data from another component to start its computation (e.g., Component #1 and #2).

2.2 Computational Model

To formally model the loosely-coupled accelerators we use timed marked graphs (TMGs), a subclass of Petri nets
(PNs) [34]. TMGs are commonly used to perform compositional performance analysis of discrete-event systems [6].
While TMGs do not allow to capture data-dependent behaviors, they are a practical model to analyze stream processing
accelerators for many classes of applications, e.g., image and signal processing applications. A PN is a bipartite graph

Manuscript submitted to ACM

6 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

de�ned as a tuple (P ,T , F ,w,M0), where P is a set ofm places, T is a set of n transitions, F : (P ×T) ∪ (T × P) is a set of
arcs, w : F → N+ is an arc weighting function, and M0 ∈ Nm is the initial marking, i.e. the number of tokens at each
p ∈ P . A PN is strongly-connected if for every pairs of places pi and pj there exists a sequence of transitions and places
such that pi and pj are mutually reachable in the net. A PN can be organized in a set of strongly-connect components,
i.e., the maximal sets of places that are strongly-connected. A TMG is a PN such that (i) each place has exactly one
input and one output transition, and (ii) w : F → 1, i.e., every arc has a weight equal to 1. To measure performance,
TMGs are extended with a transition �ring-delay vector τ ∈ Rn , which represents the duration of each particular �ring.

The minimum cycle time of a strongly-connected TMG is de�ned as:max {Dk/Nk | k ∈ K}, where K is the set of
cycles of the TMG, Dk is the sum of the transition �ring delays in cycle k , and Nk is the number of tokens in cycle
k [40]. In this paper, we use the TMG model to formally describe the accelerators. We use the term system to indicate a
complex accelerator that is made of multiple components. Each component of the system is represented with a transition
in the TMG whose �ring delay is equal to its e�ective latency. The e�ective latency λ of a component is de�ned as
the product of its clock cycle count and target clock period. The maximum sustainable e�ective throughput θ of the
system is then the reciprocal of the minimum cycle time of its TMG, if the TMG is strongly connected. Otherwise, it
is the minimum θ among its strongly-connected components. We use λ and θ as performance �gures for the single
components and the system, respectively. We use the area α as the cost metric for both the components and the system.

3 MOTIVATIONAL EXAMPLES

Performing an accurate and as exhaustive as possible DSE for a complex hardware accelerator is a di�cult task for
three main reasons: (i) HLS tools do not always support PLM generation and optimization (Section 3.1), (ii) HLS tools
are based on heuristics that make it di�cult to con�gure the knobs (Section 3.2), and (iii) HLS tools do not handle the
simultaneous optimization of multiple components (Section 3.3). Next, we detail these issues with some examples.

3.1 Memories

The joint optimization of the accelerator datapath and PLM architecture is critical for an e�ective DSE. Figure 4 depicts
the design space of Gradient, a component we designed for WAMI. The graph reports di�erent design points, each
characterized in terms of area (mm2) and e�ective latency (milliseconds), synthesized for an industrial 32nm ASIC
technology library. The points with the same color (shape) are obtained by partially unrolling the loops for di�erent
numbers of iterations. The di�erent colors (shapes) indicate di�erent numbers of ports for the PLM2. By increasing the
number of ports, we notice a signi�cant impact on both latency and area. In fact, multiple ports allow the component
to read and write more data in the same clock cycle, thus increasing the hardware parallelism. Multi-port memories,
however, require much more area since more banks may be used depending on the given memory-access pattern. Note
that ignoring the role of the PLM limits considerably the design space. By changing the number of ports of the PLM, we
obtain a latency span of 7.9× and an area span of 3.7×. By using standard dual-port memories, we have only a latency
span of 1.4× and an area span of 1.2×. This motivates the need of considering the optimization of PLMs in the DSE
process. COSMOS takes into consideration the PLMs by generating optimized memories with Mnemosyne [37].

2Here and in the rest of the paper, the number of ports indicates the number of read ports to the memories containing the input data of the component
and the number of write ports containing the output data of the component, i.e., the ports that allow parallelism in the compute phase of the component.

Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 7

0.5

1.0

1.5

2.0

2.5

3.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port 2 ports 4 ports 8 ports

1.00

1.04

1.08

1.12

1.16

1.20

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48

2u
3u4u

5u6u
7u8u
9u10u

14u

Fig. 4. Example of application of two HLS knobs (number of ports, number of unrolls) to Gradient, a component of WAMI. The

nested graph magnifies the design points with 2 read and 2 write ports. The numbers indicate the numbers of iterations unrolled.

3.2 HLS Unpredictability

Dealing with the unpredictability of the HLS tool outcomes is necessary to remain in the Pareto-optimal regions of
the design space [24]. This is highlighted by the magni�ed graph in Figure 4 that reports the number of iterations
unrolled for each design point of Gradient. By increasing the number of iterations unrolled in a loop for a particular
con�guration of the PLM ports we expect to obtain design points that have more area and less latency. In fact, unrolling a
loop increases the number of hardware resources to allow more parallel operations. However, an e�ective parallelization
is not always guaranteed. Some combinations of loop unrolling have a negative e�ect on both latency and area due to
the applications of HLS heuristics (e.g., points 7u, 8u and 9u in Figure 4). In fact, HLS tools need to insert additional
clock cycles in the body of a loop when (i) operation dependencies are present or (ii) the area is growing too much with
respect to the scheduling metrics they adopt (HLS tools often perform latency-constrained optimizations to minimize the
area). This motivates the need of dealing with the HLS unpredictability in the DSE process. COSMOS applies synthesis
constraints to account for the high variability and partial unpredictability of the HLS tools.

3.3 Compositionality

Complex accelerators need to be partitioned into multiple components to be e�ciently synthesized by current HLS
tools. This reduces the synthesis time and improves the quality of results, but signi�cantly increases the DSE e�ort.
Figure 5 reports a simple example to illustrate this problem. On the top, the �gure reports two graphs representing
a small subset of Pareto-optimal points for Gradient and Grayscale, two components of WAMI. Assuming that they
are executed sequentially in a loop, their aggregate throughput is the reciprocal of the sum of their latencies. On the
bottom, the �gure reports all the possible combinations of the design points of the two components, di�erentiating
the Pareto-optimal combinations from the Pareto-dominated combinations. These design points are characterized in
terms of area (mm2) and e�ective throughput (1/milliseconds). In order to �nd the Pareto-optimal combinations at the
system level, an exhaustive search method would apply the following steps: (i) synthesize di�erent points for each
component by varying the settings of the knobs, (ii) �nd the Pareto-optimal points for each component, and (iii) �nd
the Pareto-optimal combinations of the components at the system level. This approach is impractical for complex

Manuscript submitted to ACM

8 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

1.00
1.04
1.08
1.12
1.16
1.20

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46

Gradient

A
re

a
 (

m
m

2
)

Effective Latency (ms)

0.59

0.60

0.61

0.62

0.63

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

Grayscale

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1.60

1.64

1.68

1.72

1.76

1.80

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

Composition

A
re

a
 (

m
m

2
)

Effective Throughput (1/ms)

Pareto
Dominated

Fig. 5. Example of composition for Gradient and Grayscale, two components of WAMI. The graphs on the top report some Pareto-

optimal points for the two components. The graph on the bo�om shows all the possible combinations of these components, assuming

they are executed sequentially in a loop. In the graph of the composition, the e�ective throughput is used as the performance metric.

accelerators. First, step (i) requires to try all the combinations of the knob settings (e.g., di�erent number of ports and
number of unrolls). Second, step (iii) requires to evaluate an exponential number of combinations at the system level to
�nd those that are Pareto-optimal. In fact, if we have n components with k Pareto-optimal points each, then the number
of combinations to check is O(kn). This example motivates the need of a smart compositional method that identi�es the
most critical components of an accelerator and minimizes the invocations to the HLS tool. In order to do that, COSMOS
reduces the number of combinations of knob settings that are used for synthesis and prioritizes the synthesis of the
components depending on their level of contribution to the e�ective throughput of the entire accelerator.

4 THE COSMOS METHODOLOGY

As shown in Figure 1, COSMOS consists of the following steps:

(1) Component Characterization (Section 5): in this step COSMOS analyzes each component of the system individually;
for each component it identi�es the boundaries of the regions that include the Pareto-optimal designs; starting
from the HLS-ready implementation of each component (in SystemC), COSMOS applies an algorithm that generates
knob and memory con�gurations to automatically coordinate the HLS and memory generator tools; the algorithm
takes into account the memories of the accelerators and tries to deal with the unpredictability of HLS tools;

(2) Design-Space Exploration (Section 6): in this step COSMOS analyzes the design space of the entire system; the
system is modeled with a TMG to �nd the most critical components for the system throughput; then, COSMOS:
• formulates a LP problem instance to identify the latency requirements of each component that ensure the

speci�ed system throughput and minimize the system cost; this step is called Synthesis Planning (Section 6.1);
• maps the solutions of the LP problem to the knob-setting space of each component and runs additional

synthesis to get the RTL implementations of the components; this step is called Synthesis Mapping (Section 6.2).
Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 9

Algorithm 1: Component Characterization
Input: clock ,max_ports ,max_unrolls
Output: set of regions (λmax ,αmin , λmin ,αmax)

1 for ports = 1 up tomax_ports do
22 // Identification of max-λ min-α point

3 (λmax ,αmin) = hls_tool(ports, ports, clock);
44 // Identification of min-λ max-α point

5 for unrolls =max_unrolls down to ports + 1 do
6 (λmin ,αmax) = hls_tool(unrolls, ports, clock);
7 if λ_constraintports(unrolls) is sat then break;
88 // Generation of the PLM of the component

9 αplm = memory_generator(ports);
10 αmin += αplm ; αmax += αplm ;
1111 // Save the region of the design space

12 save(ports,unrolls, λmax ,αmin , λmin ,αmax);

tool parameters: hls_tool(unrolls, ports, clock);
tool parameters: memory_generator(ports);

5 COMPONENT CHARACTERIZATION

Algorithm 1 reports the pseudocode used for the component characterization. The designer provides the clock period,
the maximum number of ports for the PLMs (mainly constrained by the target technology and the memory generator)
and the maximum number of loop unrolls. In order to keep the delay of the logic for selecting the memory banks
negligible, the number of ports should be a power of two. Note that this constraint can be partially relaxed without
requiring Euclidean division for the selection logic [46]. The number of unrolls depends on the loop complexity. Loops
with few iterations can be completely unrolled, while more complex loops can be only partially unrolled. In fact,
unrolling loops replicates the hardware resources, thus making the scheduling more complex for the HLS tool. The
algorithm identi�es regions in the design space of the component. A region includes design points that have the same
number of ports. They are bounded by an upper-left (λmin ,αmax) and a lower-right (λmax ,αmin) point. These regions
represent the design space of the component that will be used for the DSE at the system level, as explained in Section 6.

Algorithm 1 starts by identifying the lower-right point of the region. To identify this design point, it sets the number
of unrolls equal to the current number of ports (line 3). This ensures that all the ports of the PLM are exploited and
the obtained point is not redundant. In fact, this point cannot be obtained by using a lower number of ports. On the
other hand, �nding the upper-left point is more challenging. A complete unroll (which could lead to the point with the
minimum latency) is unfeasible in case of complex loops. Indeed, it is not always guaranteed that, by increasing the
number of unrolls, the HLS tool returns an implementation of the component that gives lower latency in exchange for
higher area occupation. To overcome these problems, Algorithm 1 introduces a constraint, λ − constraint for the rest of
the paper, that de�nes the maximum number of states that the HLS tool can insert in the body of a loop. This helps in
constraining the behavior of the HLS tool to be more deterministic and in removing some of the Pareto-dominated
points. Thus, Algorithm 1 uses the following function to estimate the number of states that should be su�cient to

Manuscript submitted to ACM

10 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

 for k = 0 up to N
 read from memory A0 [k]
 read from memory A1 [k]
 // do some operations
 write to memory B0 [k]

operat. write B0 read A1

read A0

operat.

read A1

read A0

read A1

read A0

operat.

un
ro
ll	
=	
2	

un
ro
ll	
=	
1	

clock cycles per iteration of the loop

1	 2	 3	 4	

scheduling	with	1	port		

write B0

write	B0	

h1(unroll) = unroll + 2

constraint	is	sat	

constraint	is	sat	

λ-constraint:	cycles		<=	

clock cycles for each iteration of the loop

scheduling with 2 ports

h2 (unrolls) = unrolls / 2⎡⎢ ⎤⎥+ 2

operat. read A1

read A0

operat. read A1

read A0

read A1

read A0

operat. read A1

read A0

read A1

read A0

operat.

un
ro

lls
 =

 2

un
ro

lls
 =

 3

1 2 3 4

write B0 write B0 write B0

write B0

operat.

constraint is sat

constraint is not sat

5

λ-constraint: cycles <=

write B0

read Ai

operat.

write Bi

read from PLM Ai

1-cycle operation

write to PLM Bi

Fig. 6. Example of application of the λ-constraint.

schedule one iteration of the loop that includes read and write operations:

hpor ts (unrolls) =
⌈
γr ∗ unrolls

ports

⌉
+

⌈
γw
ports

⌉
+ η (1)

where γr is the maximum number of read accesses to the same array per loop iteration, γw is the maximum number of
write accesses to the same array per loop iteration and, η accounts for the latency required to perform the operations
that do not access the PLM. These parameters are inferred by traversing the control data �ow graph (CDFG) created by
the HLS tool for scheduling the lower-right point. This function is used as an upper bound of the number of states
that the HLS tool can insert. If this upper bound is not su�cient, then the synthesis fails and the point is discarded. A
synthesis run with a lower number of unrolls is performed to �nd another point to be used as the upper-left extreme
(lines 5-7).

Example 1. Figure 6 shows an example of using the λ-constraint. The loop (reported on the left) contains two read

operations to two distinct arrays, i.e., γr = 1, and one write operation, i.e., γw = 1. We assume that all the operations that

are neither read nor write operations can be performed in one clock cycle, i.e., η = 1. The two diagrams (on the right) show

the results of the scheduling by using two ports for the PLM and by unrolling two or three times the loop, respectively. In the

�rst case (unrolls = 2), the HLS tool can schedule all the operations in a maximum of h2(2) = 3 clock cycles. Thus, this point
would be chosen by Algorithm 1 to be used as upper-left extreme. In the second case (unrolls = 3), the HLS tool is not able to

complete the schedule within h2(3) = 4 clock cycles (it needs at least 5 clock cycles). Thus, this point is discarded.

Note that the λ-constraint is not guaranteed to obtain a Pareto-optimal point due to the intrinsic variability of
the HLS results. Still, this point can serve as an upper bound of the region in the design space. Note also that the
λ−constraint cannot be applied to loops that (i) require data from sub-components through blocking interfaces or (ii) do
not present memory accesses to the PLM. In these cases, in fact, it is necessary to extend the de�nition of the estimation
function given in Equation (1) to handle such situations. Alternatively, COSMOS can optionally run some synthesis in
the neighbourhood of the maximum number of unrolls and use a local Pareto-optimal point as the upper-left extreme.
Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 11

5.1 Memory Generation

After the two extreme points of a region have been determined, the algorithm instructs the memory generator to
create the PLM architecture (line 9). COSMOS uses Mnemosyne [37] to generate optimized PLMs for the components.
Mnemosyne has been integrated with the commercial HLS tool we use for the experimental results (Section 7). The
CDFG, created by the HLS tool, is analyzed to �nd the arrays speci�ed in the code and their access patterns. Then, a
memory is generated according to these speci�cations and the area required for the PLM is added to the logic area
reported by the HLS tool (line 10). The memory architecture is tailored to the component needs and is optimized with
respect to the required number of ports and access patterns. In particular, given a certain number of ports, Mnemosyne
combines several SRAMs, or BRAMSs in case of FPGA devices, into a multi-bank architecture (Figure 2). Each SRAM
(BRAM) provides 2 read/write ports, thus by combining them in a multi-bank architecture Mnemosyne allows the
component to perform multiple accesses in parallel [2].

6 DESIGN-SPACE EXPLORATION

After the characterization of the single components of a given accelerator, COSMOS uses a LP formulation to �nd the
Pareto-optimal design points at the system level. The DSE problem at the system level can be formulated as follows:

Problem 1. Given a TMG model of the system where each component has been characterized, a HLS tool, and a target
granularity δ > 0, �nd a Pareto curve α versus θ of the system, such that:

(i) given two consecutive points d , d ′ on the Pareto curve, they have to satisfy:max {d ′α /dα − 1,d ′θ /dθ − 1} < δ ; this
ensures a maximum distance between two design points on the curve;

(ii) the HLS tool must be invoked as few times as possible.

This formulation is borrowed from [28], where the authors propose a solution that requires the manual e�ort of
the designers to characterize the components. In contrast, COSMOS solves this problem by leveraging the automatic
characterization method in Section 5 and by dividing it into two steps: Synthesis Planning and Synthesis Mapping.

6.1 Synthesis Planning

Given a strongly-connected system TMG, COSMOS uses the following θ -constrained cost-minimization LP formulation:

min
∑n
i=1 fi (τi)

s.t. Aσ +M0/θ ≥ τ−

τ−min ≤ τ
− ≤ τ−max

(2)

where the function fi returns the implementation cost (α) of the i-th component given the �ring-delay τi of transition
ti , σ ∈ Rn is the transition-�ring initiation-time vector, M0 ∈ Nm is the initial marking, τ− ∈ Rm is the input-transition
�ring-delay vector, i.e., τ−i is the �ring-delay of the transition tk entering in placepi (note that τ−min and τ−max correspond
to the extreme λmin and λmax of the components), and A is them × n incidence matrix de�ned as:

A[i, j] =

+1 if tj is an output transition of pi ,
−1 if tj is an input transition of pi ,
0 otherwise.

(3)

The objective function minimizes the implementation costs of the components, while satisfying the system throughput
requirements. Given the component extreme latencies λmin and λmax , it is possible to determine the values of θmin and

Manuscript submitted to ACM

12 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

θmax by labeling the transitions of the TMG of the system with such latencies. By iterating fromθmin toθmax with a ratio
of (1+δ), we can then �nd the optimal values of λ for the components that solve Problem 1. This formulation guarantees
that the components that are not critical for the system throughput are selected to minimize their cost. The cost functions
fi in Equation (2) are unknown a-priori, but they can be approximated with convex piecewise-linear functions. This LP
formulation can be solved in polynomial time [5], and it can be extended to the case of non-strongly-connected TMGs.

6.2 Synthesis Mapping

Given the optimal values of λ of each component that solve Problem 1, it is necessary to determine the knob settings that
provide the component implementations meeting such requirements. In other words, we need an inverse function ϕ that
maps the optimal solutions λ to the corresponding values in the knob-setting space of each component. The solutions of
Equation (2) can require values of λ for a component falling inside a certain region. Since we have only the component
implementations for the extreme points of the region (synthesized with Algorithm 1), we need to �nd the knob settings
that return also the intermediate points. Given the λtarдet requirement of a component (from Equation (2)), COSMOS
�rst �nds the region (returned by Algorithm 1) in which λtarдet falls, i.e., λtarдet ∈ [λmin , λmax]. Then, since every
region includes design points that have the same number of ports, COSMOS needs only to estimate the number of unrolls
to generate a proper knob setting. To do that, COSMOS uses the following modi�ed version of Amdahl’s Law [1]:

λtarдet

λmax
=

1
(1 − µtarдet−µmin

µmax−µmin
) + µtarдet−µmin

µmax−µmin
∗ λmax
λmin

(4)

where µtarдet is the estimated number of unrolls, while µmin , µmax are the numbers of unrolls which correspond to
λmax and λmin , respectively. The only unknown term in this equation is µtarдet , i.e., the number of unrolls that can be
used to satisfy the λtarдet requirement. Thus, COSMOS uses the following mapping function to map the λ requirements
to the e�ective number of unrolls:

µtarдet = ϕ(λtarдet , λmin , λmax , µmin , µmax) =

=

(λminλmax µmax + λtarдetλmax µmin) −
(λminλmax µmin + λtarдetλminµmax)

λtarдet (λmax − λmin)

(5)

This function is derived from Equation (4), and thus it models the law of diminishing returns. This provides a good
approximation of the number of unrolls because, typically, the relative gains in latency keep decreasing as we increase
the number of unrolls (Section 7). After generating the knob settings by using the mapping function, COSMOS runs the
corresponding synthesis to get (i) the actual values for λ and α and (ii) the RTL implementation of the component.

Example 2. Figure 7 shows an example of a mapping function. The lower-right point of the corresponding region has a

latency of 40 s, while the upper-left point has a latency of 10 s, i.e. λmax = 40 s, λmin = 10 s. The lower-right point does not

unroll the loops, while the other one unrolls the loops for 30 iterations, i.e., µmin = 1, µmax = 30. By using these parameters

the graph plots the mapping function that returns the number of unrolls that should be applied, given a speci�c value for

the latency (we apply the ceiling function to get an integer value). For instance, if a point with latency of 20 s is required, the

mapping function returns 11 as the number of unrolls. Note that by specifying the maximum latency, the function returns

the minimum number of unrolls, while by specifying the minimum latency, it returns the maximum number of unrolls.

It is possible that the mapping may fail by choosing a value for µtarдet that does not satisfy the λ-constraint (Section
5). In this case, COSMOS tries to increase the number of unrolls to preserve the throughput. Further, if λtarдet is not
Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 13

 0

 5

 10

 15

 20

 25

 30

 35

 10 15 20 25 30 35 40 45

latency = 40
unrolls = 1

latency = 30
unrolls = 4

latency = 20
unrolls = 11

latency = 10
unrolls = 30

N
u

m
b

e
r

o
f

U
n

ro
lls

Effective Latency (s)

Fig. 7. Example of application of the mapping function ϕ .

included in any region, COSMOS uses the slowest point of the next region that has a larger number of ports. This does
not require a synthesis run (because that point has been synthesized during the characterization), and it is a conservative
solution because, as in the case of failure of the λ-constraint, we are willing to trade area to preserve the throughput.

7 EXPERIMENTAL RESULTS

We implement the COSMOS methodology with a set of tools and scripts to automatize the DSE. Speci�cally, COSMOS
includes: (i) Mnemosyne [37] to generate multi-bank memory architectures as described in Section 5, (ii) a tool to
extract the information required by Mnemosyne from the database of the HLS tool, (iii) a script to run the synthesis and
the memory generator according to Algorithm 1, (iv) a program that creates and solves the LP model by using the GLPK
Library3 (Section 6.1), and (v) a tool that maps the LP solutions to the HLS knobs and runs the synthesis (Section 6.2).

We evaluate the e�ectiveness and e�ciency of COSMOS by considering the WAMI application [38] as a case study.
The original speci�cation of the WAMI application is available in C in the PERFECT Benchmark Suite [3]. Starting
from this speci�cation, we design a SystemC accelerator to be synthesized with a commercial HLS tool, i.e., Cadence
C-to-Silicon. We use an industrial 32nm ASIC technology as target library4. We choose the WAMI application as our
case study due to (i) the di�erent types of computational blocks it includes and (ii) its complexity. The heterogeneity of
its computational blocks allows us to develop di�erent components for each block and show the vast applicability of
COSMOS. The C speci�cation is roughly 1000 lines of code. The speci�cation of our accelerator design is roughly 7000
lines of SystemC code.

7.1 Computational Model

We model the WAMI application as a loosely-coupled accelerator. Figure 8 illustrates the resulting TMG model of the
accelerator. The WAMI speci�cation includes four main components: (i) Debayer for image �ltering, (ii) Grayscale for
RGB-to-Grayscale color conversion, (iii) Lucas-Kanade for the image alignment, and (iv) the Change-Detection classi�er.
We partition Lucas-Kanade into many sub-components to further increase the hardware parallelism. Matrix-Inv is
3 GLPK (GNU Linear Programming Kit): https://www.gnu.org/software/glpk/
4 Note that COSMOS can be used for FPGA-based designs as well. It is su�cient to (i) modify the target library used by the HLS tool and (ii) instructs the
memory generator to generate memories by using the BRAM blocks available in FPGA devices (instead of the SRAM blocks of ASIC technologies).

Manuscript submitted to ACM

https://www.gnu.org/software/glpk/

14 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

Debayer

Grayscale

Gradient

Warp-DX Warp-DY

Steep.-Descent

Hessian

Matrix-Inv

Warp-Gray

Matrix-Sub

SD-Update

Matrix-Mul

Matrix-Resh

Matrix-Add

Warp-IWXP Change-Det.

Lucas-Kanade

Fig. 8. TMG modeling the WAMI application.

executed in software to preserve the �oating-point precision. Therefore, it is modeled with a �xed e�ective latency
during the DSE process.

7.2 Component Characterization

COSMOS applies Algorithm 1 (Section 5) to characterize the components of the system. Table 1 reports the results of the
characterization for the WAMI accelerator: the algorithm used by COSMOS (COSMOS) is compared with the case in which
memory is not considered in the characterization (No Memory). In the latter case, we assume to have only standard
dual-port memories. For each component, the table reports the latency span (λspan), i.e., the ratio between the maximum
latency and the minimum latency, the area span (αspan), i.e., the ratio between the maximum area and the minimum
area. For COSMOS, the table shows also the total number of regions identi�ed by the algorithm (reд). For Algorithm 1 we
use a number of ports in the interval [1, 16] and a maximum number of unrolls in the interval [8, 32], depending on the
components. COSMOS guarantees overall a richer DSE, as evidenced by the average results. For some components the
algorithm extracts only one region because multiple ports can incur in additional area for no latency gains. This happens
when (i) the algorithm cannot exploit multiple accesses in memory, or (ii) the data is cached into local registers which
can be accessed in parallel in the same clock cycle, e.g., for Change-Detection. On the other hand, in most cases COSMOS
provides signi�cant gains in terms of area and latency spans compared to a DSE that does not consider the memories.

Figure 9 shows the design space of four representative components of WAMI. The rectangles in the �gures are
the regions found by Algorithm 1. For completeness, in addition to the design points corresponding to the extreme
Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 15

COSMOS No Memory

Component r eд λspan αspan λspan αspan

Debayer 3 2.89× 1.99× 1.04× 1.36×
Grayscale 4 6.91× 3.41× 2.75× 1.14×
Gradient 4 7.89× 3.65× 1.39× 1.22×
Hessian 4 7.70× 7.30× 1.44× 1.30×

SD-Update 4 9.87× 2.01× 2.78× 1.79×
Matrix-Sub 4 2.75× 3.98× 1.88× 1.05×
Matrix-Add 3 1.53× 1.01× 1.26× 1.01×
Matrix-Mul 3 2.88× 3.05× 1.92× 1.14×
Matrix-Resh 1 1.02× 1.04× 1.02× 1.04×

Steep.-Descent 1 1.95× 1.46× 1.95× 1.46×
Change-Det. 1 2.21× 1.04× 2.21× 1.04×

Warp 1 1.09× 1.03× 1.09× 1.03×
Average - 4.06× 2.58× 1.73× 1.22×

Table 1. Characterization of the components for WAMI. The table reports the di�erences in latency (λ) and area (α) span when

memory is considered (COSMOS) or not (NoMemory). For COSMOS, r eд indicates the number of regions found with Algorithm 1.

points of the regions, the graphs show also the intermediate points that could be selected by the mapping function.
The small graphs on the right magnify the corresponding regions reported on the left. As in the examples discussed
in Section 3, increasing the number of ports has a signi�cant impact on the DSE, while loop unrolling has a local
e�ect within each region. Another aspect that is common among many components is that the regions become smaller
as we keep increasing the number of ports. For example, for Grayscale in Figure 9 (c), we note that by increasing
the number of ports, we reach a point where the gain in latency is not signi�cative. This e�ect, called diminishing
returns [1], is the same e�ect that can be observed in the parallelization of software algorithms. In some cases, changing
the ports increases only the area with no latency gains as discussed in the previous paragraph. This is highlighted in
Figure 9 (d), where for Change-Detection we report two additional regions with respect to those speci�ed in Table 1.
The diminishing-return e�ect can also be observed by increasing the number of unrolls inside a region, e.g., Figure 9 (b).
This is why COSMOS exploits Amdahl’s Law (Section 6.2). On the other hand, we notice some discontinuities of the
Pareto-optimal points within some regions, e.g., the region in the bottom-right corner of Figure 9 (a). Even by applying
the λ − constraints (Section 5) it is not possible to completely discard the Pareto-dominated implementations. In fact,
by further restricting the imposed constraints, i.e., by reducing the number of states that the HLS tool can insert in each
loop, we observe that also the Pareto-optimal implementations are discarded. Thus, it is not always possible to obtain a
curve composed only of Pareto-optimal points within a certain region. Finally, the Pareto-optimal points outside the
regions are not discarded by COSMOS. They can be chosen when it is necessary to perform the mapping (Section 6.2).

7.3 Design-Space Exploration

After the characterization of the single components, COSMOS applies the DSE approach explained in Section 6. It �rst
�nds the optimal solutions at the system level by using Equation (2) (Section 6.1). It then applies the mapping function
to determine the knob settings of the single components and runs the necessary synthesis (Section 6.2). Figure 10 shows
the resulting Pareto curve that includes the planned points (from Equation (2)) and the mapped points (returned by the
mapping function). These design points are characterized in terms of e�ective throughput (frame/s) and area (mm2). To

Manuscript submitted to ACM

16 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

2 ports

4 ports

0.44

0.48

0.52

0.56

0.60

0.64

2.8 2.9 3.0 3.1 3.2

1 port

0.56

0.60

0.64

0.68

0.72

1.5 1.6 1.7 1.8

2 ports

0.85

0.87

0.89

0.90

0.92

0.93

0.96 1.00 1.04 1.08 1.12

4 ports

(a) Debayer

0.00

1.60

3.20

4.80

6.40

8.00

9.60

0.0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2

A
re

a
 (

m
m

2
)

Effective Latency (ms)

2 ports

4 ports

8 ports

16 ports

1.05

1.15

1.25

1.35

1.45

1.55

4.7 5.2 5.7 6.2 6.8 7.3

2 ports

2.00

2.10

2.20

2.30

2.40

2.50

2.4 2.7 3.0 3.3 3.6 3.9

4 ports

4.00

4.10

4.20

4.30

4.40

1.2 1.4 1.6 1.8 2.0 2.2

8 ports

7.95

8.00

8.05

8.10

8.15

0.8 0.9 1.0 1.1 1.2

16 ports

(b) Hessian

0.40

0.80

1.20

1.60

2.00

2.40

2.80

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

2 ports

4 ports

8 ports

0.54

0.57

0.60

0.63

0.66

0.12 0.18 0.24 0.30 0.36 0.42

1 port

0.57

0.60

0.63

0.66

0.69

 0.06 0.12 0.18 0.24

2 ports

0.92

0.96

1.00

1.04

0.05 0.06 0.07 0.08 0.09 0.10 0.11

4 ports

1.84

1.86

1.88

1.90

1.92

0.055 0.060 0.065

8 ports

(c) Grayscale

2.50

3.00

3.50

4.00

4.50

5.00

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

2 ports

4 ports

2.70

2.76

2.82

2.88

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

1 port

4.64

4.68

4.72

4.76

4.80

2.4 2.8 3.2 3.6 4.0 4.4

2 ports

4.70

4.72

4.74

4.76

4.78

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5

4 ports

(d) Change-Det

Fig. 9. Characterization of four representative components of the WAMI accelerator.

Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 17

11.0

12.0

13.0

14.0

15.0

16.0

17.0

40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0

percentage of mismatch in area

A
re

a
 (

m
m

2
)

Throughput (frames/s)

Planned design point (theoretical)

Mapped design point (algorithm)

2.5%

11.9%

13.0%

1.5%
2.5%

0.1%

2.1%1.8%

1.6%

1.8%

Fig. 10. Results of the compositional DSE for WAMI.

quantify the mismatch between the planned points and the mapped points we calculate the following ratio:

σ (dp ,dm) =
| dm − dp |

dp

where dp is the area of a planned point p, while dm is the area of the corresponding mapped point m. Each planned
point in Figure 10 is labeled with its corresponding σ% value. Note that the curve obtained with LP is a theoretical curve
because the points found at the system level do not guarantee the existence of a corresponding set of implementations
for the components. The error is mainly due to the impact of the memory, which determines a signi�cant distance
between two consecutive regions (e.g., the points with more than 10% of mismatch in Figure 10). In fact, if a point is
mapped between two regions it must be approximated with the lower-right point of the next region with lower e�ective
latency. This choice permits to satisfy the throughput requirements almost always, but at the expense of additional area.
In fact, even if Equation (2) is constrained by the system throughput, it is not always guaranteed to obtain the same
throughput because it is not always the case that there exists a mapped point that has exactly the same latency of a
planned point. To solve this issue, one could try to reduce the clock period and satisfy the throughput requirements.

Finally, to demonstrate the e�ciency of COSMOS, Figure 11 shows the number of invocations to the HLS tool. For
each component of WAMI, the right bars report the breakdown of the synthesis calls performed in each phase of
the algorithm. At least two invocations are necessary for each region to characterize a component. Then, we have
to consider the invocations that fail due to the λ − constraints , and �nally, the invocations required at system level
on the most critical components (mapping). Some components do non play any role in the e�ciency of the system.
For example, for Matrix-Mul, there are no invocations after the characterization because only the slowest version has
been requested by Equation (2) (to save area). This component is not important to guarantee a high throughput for
the entire system. Moreover, some synthesized points belong to multiple solutions of the LP problem, as in the case of
Debayer. Therefore, COSMOS avoids performing an invocation of the HLS with the same knobs more than once. On
the other hand, the left bars in Figure 11 report the number of invocations required for a exhaustive exploration. Such
exploration requires to (i) synthesize all the possible con�gurations of unrolls and memory ports for each component,

Manuscript submitted to ACM

18 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

debayer

grayscale

gradient

matrix-sub

warp
matrix-add

matrix-mul

matrix-resh

hessian
steep-descent

sd-update

change-det

10

20

30

40

50

60

70

80

90

100

110

120

Exhaustive Exploration
Characterization (Section 5)
Failed λ-constraints (Section 5)
Design Space Explor. (Section 6)

Fig. 11. Number of invocations of the HLS tool for an exhaustive exploration (bars on the le�) and COSMOS (on the right).

(ii) �nd the Pareto-optimal design points for each component, and (iii) compose all the Pareto-optimal designs to �nd
the Pareto curve at the system level (Section 3). The left bars in Figure 11 show the number of invocations to the HLS
tool required in step (i). COSMOS reduces the total number of invocations for WAMI by 6.7× on average and up to 14.6×
for the single components, compared to the exhaustive exploration. Further, while COSMOS returns the Pareto-optimal
implementations at the system level, to �nd the combinations of the components that are Pareto optimal with an
exhaustive search method, one has to combine the huge number of solutions for the single components. In the case of
WAMI, the number of combinations, i.e., the product of the number of Pareto-optimal points of each component, is greater
than 9∗1012. This motivates the need of using a compositional method like COSMOS for the DSE of complex accelerators.

7.4 Summary

We report a brief summary of the achieved results:

• COSMOS guarantees a richer DSE with respect to the approaches that do not consider the memory as integral
part of the DSE: for WAMI, COSMOS guarantees an average performance span of 4.06× and an average area
span of 2.58× as opposed to 1.73× and 1.22×, respectively, when only standard dual-port memories are used;
COSMOS obtains a richer set of Pareto-optimal implementations thanks to memory generation and optimization;

• COSMOS guarantees a faster DSE compared to exhaustive search methods: for WAMI, COSMOS reduces the
number of invocations to the HLS tool by 6.7× on average and by up to 14.6× for the single components;
COSMOS is able to reduce the number of invocations thanks the compositional approach discussed in Section 6;

Manuscript submitted to ACM

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 19

• COSMOS is an automatic and scalable methodology for DSE: the approach is intrinsically compositional, and
thus with larger designs the performance gains are expected to be as good as smaller ones, if not better. While
an exhaustive method has to explore all the alternatives, COSMOS focuses on the most critical components.

8 RELATEDWORK

This section describes the most-closely related methods to perform DSE. We distinguish the methods that explore
single-component designs (reported in Section 8.1) from those that are compositional like COSMOS (in Section 8.2).

8.1 Component DSE

Several methods have been proposed to drive HLS tools for DSE. There exist probabilistic approaches [43], search
algorithms based on heuristics, such as simulated annealing [44], iterative methodologies that exploit particle-swarm
optimization [33], as well as genetic algorithms [17], and machine-learning-based exploration methodologies [26, 31, 45].
All these methods try to quickly predict the relevance of the knobs and determine the Pareto curves of the scheduled
RTL implementations in a multi-objective design space. None of these methods, however, consider the generation
of optimized memory subsystems for hardware accelerators. Conversely, other methods focus on creating e�cient
memory subsystems, but without exploring the other HLS knobs. For instance, Pilato et al. [36] propose a methodology
to create optimized memory architectures, partially addressing the limitations of current HLS tools in handling memory
subsystems. This enables a DSE that takes into account also the memory of accelerators. However, that work focuses
on optimizing the memory architectures and not in proposing e�cient DSE methods. Similarly, Cong et al. [12] explore
memory reuse and non-uniform partitioning for minimizing the number of banks in multi-bank memory architectures
for stencil computations. Di�erently from these works, COSMOS coordinates both memory generators, like the one
proposed in [37], and HLS tools to �nd several Pareto-optimal implementations of accelerators. Other methodologies
apply both loop manipulations and memory optimizations. For instance, Cong et al. [14, 15] adopt polyhedral-based
analysis to apply loop transformations with the aim of optimizing memory reuse or partitioning. Di�erently from
these works, COSMOS focuses on con�guring the knobs provided by HLS, after applying such loop transformations.
Indeed, COSMOS realizes a compositional-based methodology, and thus it �nds Pareto-optimal implementations of the
entire system, and not only of the single components. The �rst step of COSMOS consists in the characterization of
components to identify regions of the multi-objective design space where feasible RTL implementations exist. This
step di�ers from previous works [27, 28, 43] for two main aspects. First, COSMOS includes memory generation and
optimization in the DSE process. Second, COSMOS applies synthesis constraints to account for the high variability and
partial unpredictability of the HLS tools. Such constraints consider both the dependency graph of the speci�cation
and the memory references in each loop. Thus, COSMOS identi�es larger regions of Pareto-optimal implementations.

Other methods, such as Aladdin [47], perform a DSE without using HLS tools and without generating the RTL
implementations, estimating the performance and costs of high-level speci�cations (C code for Aladdin). COSMOS di�ers
from these methods because it aims at generating e�cient RTL implementations by using HLS and memory generator
tools. Indeed, such methods can be used before applying COSMOS to pre-characterize the di�erent components of an
accelerator that is not ready to be synthesized with HLS tools. Since the design of HLS-ready speci�cations requires
signi�cant e�orts [39], this can help the designers to focus only on the most critical components, i.e., those that are
expected to return good performance gains over software executions. After this pre-characterization, COSMOS can be
used to perform a DSE of such components and obtain the Pareto-optimal combinations of their RTL implementations.

Manuscript submitted to ACM

20 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

8.2 System DSE

While the previous approaches obtain Pareto curves for single components, only few methodologies adopt compositional
design methods for the synthesis of complex accelerators. The approach used by COSMOS predicts the Pareto curve
at the system level, similarly to those proposed by Liu et al. [28] and Haubelt and Teich [21]. Di�erently from these
works, COSMOS correlates also the planned design points, which are simply theoretical (the LP solutions), with feasible
high-level knob settings and memory con�guration parameters. Further, COSMOS focuses on optimizing the HLS knobs,
e.g., loop manipulations, and memory subsystems, rather than tuning low-level knobs, e.g., the target clock period.

9 CONCLUDING REMARKS

We presented COSMOS, an automatic methodology for compositional DSE that coordinates both HLS and memory
generator tools. COSMOS takes into account the unpredictability of the current HLS tools and considers the PLMs of
the components as an essential part of the DSE. The methodology of COSMOS is intrinsically compositional. First, it
characterizes the components to de�ne the regions of the design space that contain Pareto-optimal implementations.
Then, it exploits a LP formulation to �nd the Pareto-optimal solutions at the system level. Finally, it identi�es the knobs
for each component that can be used to obtain the corresponding implementations at RTL. We showed the e�ectiveness
and e�ciency of COSMOS by considering the WAMI accelerator as a case study. Compared to methods that do not
consider the PLMs, COSMOS �nds a larger set of Pareto-optimal implementations. Additionally, compared to exhaustive
search methods, COSMOS reduces the number of invocations to the HLS tool by up to one order of magnitude.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and helpful suggestions that
help us improve the paper considerably. This work was supported in part by DARPA PERFECT (C#: R0011-13-C-0003),
the National Science Foundation (A#: 1527821), and C-FAR (C#: 2013-MA-2384), one of the six centers of STARnet, a
Semiconductor Research Corporation program sponsored by MARCO and DARPA.

REFERENCES
[1] M. Amdahl. 1967. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In Proc. of the ACM Spring Joint

Computer Conference (AFIPS).
[2] N. Baradaran and P. C. Diniz. 2008. A Compiler Approach to Managing Storage and Memory Bandwidth in Con�gurable Architectures. ACM

Transaction on Design Automation of Electronic Systems (2008).
[3] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie, D. Kerbyson, J. Manzano, A. Marquez, L. Song, N. Tallent, and A. Tumeo. 2013.

PERFECT (Power E�ciency Revolution For Embedded Computing Technologies) Benchmark Suite Manual. Paci�c Northwest National Laboratory and
Georgia Tech Research Institute. http://hpc.pnl.gov/PERFECT/.

[4] S. Borkar and A. Chien. 2011. The Future of Microprocessors. Communication of the ACM (2011).
[5] S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
[6] J. Campos, G. Chiola, J. M. Colom, and M. Silva. 1992. Properties and Performance Bounds for Timed Marked Graphs. IEEE Transactions on Circuits

and Systems I: Fundamental Theory and Applications (1992).
[7] L. P. Carloni. 2015. From Latency-Insensitive Design to Communication-Based System-Level Design. Proc. of the IEEE (2015).
[8] L. P. Carloni. 2016. The Case for Embedded Scalable Platforms. In Proc. of the ACM/IEEE Design Automation Conference (DAC). (Invited).
[9] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam. 2014. DaDianNao: A Machine-Learning Supercomputer.

In Proc. of the Annual ACM/IEEE International Symposium on Microarchitecture (MICRO).
[10] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-E�cient Recon�gurable Accelerator for Deep Convolutional Neural Networks.

IEEE Journal of Solid-State Circuits (2017).
[11] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Reinman. 2014. Accelerator-Rich Architectures: Opportunities and Progresses. In

Proc. of the ACM/IEEE Design Automation Conference (DAC).

Manuscript submitted to ACM

http://hpc.pnl.gov/PERFECT/

COSMOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Accelerators 21

[12] J. Cong, P. Li, B. Xiao, and P. Zhang. 2016. An Optimal Microarchitecture for Stencil Computation Acceleration Based on Nonuniform Partitioning
of Data Reuse Bu�ers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2016).

[13] J. Cong, P. Wei, C. H. Yu, and P. Zhou. 2017. Bandwidth Optimization Through On-Chip Memory Restructuring for HLS. In Proc. of the Annual
Design Automation Conference (DAC).

[14] J. Cong, P. Zhang, and Y. Zou. 2011. Combined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization. In Proc. of the ACM/IEEE
International Conference on Computer-Aided Design (ICCAD).

[15] J. Cong, P. Zhang, and Y. Zou. 2012. Optimizing Memory Hierarchy Allocation with Loop Transformations for High-Level Synthesis. In Proc. of the
ACM/IEEE Design Automation Conference (DAC).

[16] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. 2015. An Analysis of Accelerator Coupling in Heterogeneous Architectures. In Proc. of
the ACM/IEEE Design Automation Conference (DAC).

[17] F. Ferrandi, P. L. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto. 2008. A Multi-objective Genetic Algorithm for Design Space Exploration in High-Level
Synthesis. In Proc. of the IEEE Computer Society Annual Symposium on VLSI.

[18] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and J. Teich. 2009. Electronic System-level Synthesis Methodologies. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2009).

[19] F. Ghenassia. 2006. Transaction-Level Modeling with SystemC. Springer-Verlag.
[20] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. 2016. Graphicionado: A High-Performance and Energy-E�cient Accelerator for Graph

Analytics. In Proc. of the Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[21] C. Haubelt and J. Teich. 2003. Accelerating Design Space Exploration Using Pareto-Front Arithmetics [SoC design]. In Proc. of the ACM/IEEE Asia

and South Paci�c Design Automation Conference (ASP-DAC).
[22] M. Horowitz. 2014. Computing’s energy problem (and what we can do about it). In Proc. of the IEEE International Solid-State Circuits Conference

(ISSCC).
[23] L. W. Kim. 2017. DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Arti�cial Neural Networks. IEEE Transactions on Neural

Networks and Learning Systems (2017).
[24] S. Kurra, N. K. Singh, and P. R. Panda. 2007. The Impact of Loop Unrolling on Controller Delay in High Level Synthesis. In Proc. of the ACM/IEEE

Conference on Design, Automation and Test in Europe (DATE).
[25] B. Li, Z. Fang, and R. Iyer. 2011. Template-based Memory Access Engine for Accelerators in SoCs. In Proc. of the ACM/IEEE Asia and South Paci�c

Design Automation Conference (ASP-DAC).
[26] H. Y. Liu and L. P. Carloni. 2013. On Learning-Based Methods for Design-Space Exploration with High-Level Synthesis. In Proc. of the ACM/IEEE

Design Automation Conference (DAC).
[27] H. Y. Liu, I. Diakonikolas, M. Petracca, and L. P. Carloni. 2011. Supervised Design Space Exploration by Compositional Approximation of Pareto

Sets. In Proc. of the ACM/IEEE Design Automation Conference (DAC).
[28] H. Y. Liu, M. Petracca, and L. P. Carloni. 2012. Compositional System-Level Design Exploration with Planning of High-Level Synthesis. In Proc. of

the AMC/IEEE Conference on Design, Automation, and Test in Europe (DATE).
[29] X. Liu, Y. Chen, T. Nguyen, S. Gurumani, K. Rupnow, and D. Chen. 2016. High Level Synthesis of Complex Applications: An H.264 Video Decoder.

In Proc. of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).
[30] M. J. Lyons, M. Hempstead, G. Y. Wei, and D. Brooks. 2012. The Accelerator Store: A Shared Memory Framework for Accelerator-based Systems.

ACM Transactions on Architecture and Code Optimization (2012).
[31] A. Mahapatra and B. Carrion Schafer. 2014. Machine-learning based Simulated Annealer Method for High Level Synthesis Design Space Exploration.

In Proc. of the Electronic System Level Synthesis Conference (ESLsyn).
[32] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt. 2012. An Overview of Today’s High-Level Synthesis Tools. Design Automation for

Embedded Systems (2012).
[33] V. K. Mishra and A. Sengupta. 2014. PSDSE: Particle Swarm Driven Design Space Exploration of Architecture and Unrolling Factors for Nested

Loops in High Level Synthesis. In Proc. of the IEEE International Symposium on Electronic System Design (ISED).
[34] T. Murata. 1989. Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE (1989).
[35] L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. 2017. Broadening the Exploration of the Accelerator Design Space in Embedded

Scalable Platforms. In Proc. of the IEEE High Performance Extreme Computing Conference (HPEC).
[36] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. 2014. System-level Memory Optimization for High-level Synthesis of Component-based

SoCs. In Proc. of the ACM/IEEE International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
[37] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. 2017. System-Level Optimization of Accelerator Local Memory for Heterogeneous

Systems-on-Chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2017).
[38] R. Porter, A. M. Fraser, and D. Hush. 2010. Wide-Area Motion Imagery. IEEE Signal Processing Magazine (2010).
[39] A. Qamar, F. B. Muslim, F. Gregoretti, L. Lavagno, and M. T. Lazarescu. 2017. High-Level Synthesis for Semi-Global Matching: Is the Juice Worth the

Squeeze? IEEE Access (2017).
[40] C. V. Ramamoorthy and G. S. Ho. 1980. Performance Evaluation of Asynchronous Concurrent Systems Using Petri Nets. IEEE Transaction on

Software Engineering (1980).

Manuscript submitted to ACM

22 Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

[41] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. HernÃąndez-Lobato, G. Y. Wei, and D. Brooks. 2016. Minerva: Enabling
Low-Power, Highly-Accurate Deep Neural Network Accelerators. In Proc. of the ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA).

[42] A. Sangiovanni-Vincentelli. 2007. Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design. Proc. of the IEEE (2007).
[43] B. Carrion Schafer. 2016. Probabilistic Multiknob High-Level Synthesis Design Space Exploration Acceleration. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (2016).
[44] B. Carrion Schafer, T. Takenaka, and K. Wakabayashi. 2009. Adaptive Simulated Annealer for High Level Synthesis Design Space Exploration. In

Proc. of the IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT).
[45] B. Carrion Schafer and K. Wakabayashi. 2012. Machine Learning Predictive Modelling High-Level Synthesis Design Space Exploration. IET

Computers Digital Techniques (2012).
[46] A. Seznec. 2015. Bank-interleaved Cache or Memory Indexing Does Not Require Euclidean Division. In Proc. of the Annual Workshop on Duplicating,

Deconstructing, and Debunking (WDDD).
[47] Y. S. Shao, B. Reagen, G. Y. Wei, and D. Brooks. 2014. Aladdin: A Pre-RTL, Power-performance Accelerator Simulator Enabling Large Design Space

Exploration of Customized Architectures. In Proc. of the ACM/IEEE Annual International Symposium on Computer Architecture (ISCA).
[48] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. 2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks.

In Proc. of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).

Received April 2017; revised May 2017; accepted June 2017

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 System-Level Design
	1.2 Intellectual Property Reuse
	1.3 Contributions
	1.4 Organization

	2 Preliminaries
	2.1 Hardware Accelerators
	2.2 Computational Model

	3 Motivational Examples
	3.1 Memories
	3.2 HLS Unpredictability
	3.3 Compositionality

	4 The COSMOS Methodology
	5 Component Characterization
	5.1 Memory Generation

	6 Design-Space Exploration
	6.1 Synthesis Planning
	6.2 Synthesis Mapping

	7 Experimental Results
	7.1 Computational Model
	7.2 Component Characterization
	7.3 Design-Space Exploration
	7.4 Summary

	8 Related Work
	8.1 Component DSE
	8.2 System DSE

	9 Concluding Remarks
	Acknowledgments
	References

