
SLO-aware Colocation of Data Center Tasks Based on
Instantaneous Processor Requirements
Pawel Janus

Institute of Informatics, University of Warsaw
Warsaw, Poland

pj320664@students.mimuw.edu.pl

Krzysztof Rzadca
Institute of Informatics, University of Warsaw

Warsaw, Poland
krz@mimuw.edu.pl

ABSTRACT
In a cloud data center, a single physical machine simultaneously
executes dozens of highly heterogeneous tasks. Such colocation
results in more efficient utilization of machines, but, when tasks’
requirements exceed available resources, some of the tasks might
be throttled down or preempted. We analyze version 2.1 of the
Google cluster trace that shows short-term (1 second) task CPU
usage. Contrary to the assumptions taken by many theoretical
studies, we demonstrate that the empirical distributions do not
follow any single distribution. However, high percentiles of the total
processor usage (summed over at least 10 tasks) can be reasonably
estimated by the Gaussian distribution. We use this result for a
probabilistic fit test, called the Gaussian Percentile Approximation
(GPA), for standard bin-packing algorithms. To check whether a
new task will fit into a machine, GPA checks whether the resulting
distribution’s percentile corresponding to the requested service
level objective, SLO is still below the machine’s capacity. In our
simulation experiments, GPA resulted in colocations exceeding the
machines’ capacity with a frequency similar to the requested SLO.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering→ Process management; •Computing
methodologies→ Planning and scheduling;

KEYWORDS
scheduling, resource management, stochastic bin packing

ACM Reference Format:
Pawel Janus and Krzysztof Rzadca. 2017. SLO-aware Colocation of Data Cen-
ter Tasks Based on Instantaneous Processor Requirements. In Proceedings
of SoCC ’17, Santa Clara, CA, USA, September 24–27, 2017, 13 pages.
https://doi.org/10.1145/3127479.3132244

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3132244

1 INTRODUCTION
Quantity or quality? When a cloud provider colocates more tasks
on a machine, the infrastructure is used more efficiently. In the
short term, the throughput increases. In the longer term, packing
more densely reduces future investments in new data centers. How-
ever, if the tasks’ requirements exceed available resources, some
of the tasks might be throttled down or preempted, affecting their
execution time or performance.

A standard solution to the quantity-quality dilemma is the Ser-
vice Level Agreement (SLA): the provider guarantees a certain
quality level, quantified by the Service Level Objective (SLO, e.g., a
VM with an efficiency of one x86 core of 2Ghz) and then maximizes
the quantity. However, rarely is the customer workload using the
whole capacity the whole time. The provider has thus a strong
incentive to oversubscribe (e.g., to rent 11 single-core virtual ma-
chines all colocated on a single 10-core physical CPU), and thus
to change the quality contract to a probabilistic one (a VM with a
certain efficiency at least 99% of the time).

In this paper, we show how to maintain a probabilistic SLO based
on instantaneous CPU requirements of tasks from a Google clus-
ter [23]. Previous approaches packed tasks based on the maximum
or the average CPU requirements. The maximum corresponds to no
oversubscription, while the average can severely overestimate the
quality of service (QoS). Consider the following example with two
machines with CPU capacity of 1.0 each and three tasks t1, t2, t3.
Tasks t1 and t2 are stable with constant CPU usage of 0.5. In con-
trast, task t3’s CPU usage varies: assume that it is drawn from a
uniform distribution over [0, 1]. If the resource manager allocates
tasks based only on their average CPU usage, t3, having mean 0.5,
can end up packed to a machine shared with either t1 or t2; thus,
this machine will be overloaded half of the time. An alternative al-
location, in which t1 and t2 share a machine, and t3 has a dedicated
machine, uses the same number of machines, and has no capacity
violations.

To the best of our knowledge, until recently, all publicly available
data on tasks’ CPU usage in large systems had a very low time
resolution. The Standard Workload Format [6] averages CPU usage
over the job’s entire runtime. The Google cluster trace [23, 31] in
versions 1.0 and 2.0 reports CPU usage for tasks (Linux containers)
averaged over 5-minute intervals (the mean CPU usage rate
field). Relying on this field, as our toy example shows, can result in
underestimation of the likelihood of overload.

The Google Cluster Trace in version 2.1 extended the resource
usage table with a new column, the sampled CPU usage. The
resource usage table contains a single record for each 5 minutes

Author’s version of a paper published in ACM SoCC ’17. The Definitive Version of
Record is available at ACM Digital Library at https://doi.org/10.1145/3127479.3132244

ar
X

iv
:1

70
9.

01
38

4v
1

 [
cs

.D
C

]
 5

 S
ep

 2
01

7

https://doi.org/10.1145/3127479.3132244
https://doi.org/10.1145/3127479.3132244
https://doi.org/10.1145/3127479.3132244

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Pawel Janus and Krzysztof Rzadca

runtime of each task. The sampled CPU usage field specifies the
CPU usage of a task averaged over a single second randomly chosen
from these 5 minutes. Different tasks on the same machine are not
guaranteed to be sampled at the same moment; and, for a task, the
sampling moment is not the same in different 5-minute reporting
periods. In contrast, another field, the mean CPU usage rate,
shows the CPU usage averaged over the whole 5 minutes. Later
on, to avoid confusion, we refer to sampled CPU usage as the
instantaneous (inst) CPU usage, and to mean CPU usage rate as
the (5-minute) average (avg) CPU usage.

As we show in this paper, the data on instantaneous CPU usage
brings a new perspective on colocation of tasks. First, it shows how
variable cloud computing tasks are in shorter time spans. Second, it
is one of the few publicly available, realistic data sets for evaluating
stochastic bin packing algorithms. The contributions of this paper
are as follows:
• The instantaneous usage has a significantly higher variability
than the previously used 5-minute averages (Section 3). For
longer running tasks, we are able to reconstruct the complete
distribution of the requested CPU.We show that tasks’ usage
do not fit any single distribution. However, we demonstrate
that we are able to estimate high percentiles of the total CPU
demand when 10 or more tasks are colocated on a single
machine.
• We use this observation for a test, called the Gaussian Per-
centile Approximation (GPA), that checks whether a task will
fit into a machine on which other tasks are already allocated
(Section 4). Our test uses the central limit theorem to esti-
mate parameters of a Gaussian distribution from means and
standard deviations of the instantaneous CPU usage of colo-
cated tasks. Then it compares the machine capacity with a
percentile of this distribution corresponding to the requested
SLO. According to our simulations (Section 5), colocations
produced by GPA have QoS similar to the requested SLO.

The paper is organized as follows. To guide the discussion, we
present the assumptions commonly taken by the stochastic bin
packing approaches and their relation to data center resource man-
agement in Section 2. Section 3 analyzes the new data on the instan-
taneous CPU usage. Section 4 proposes GPA, a simple bin packing
algorithm stemming from this analysis. Section 5 validates GPA by
simulation. Section 6 presents related work.

2 PROBLEM DEFINITION
Rather than trying to mimic the complex mix of policies, algorithms
and heuristics used by real-world data center resourcemanagers [24,
29], we focus on a minimal algorithmic problem that, in our opinion,
models the core goal of a data center resource manager: collocation,
or VM consolidation i.e. which tasks should be colocated on a single
physical machine and how many physical machines to use. Our
model focuses on the crucial quantity/quality dilemma faced by
the operator of a datacenter: increased oversubscription results in
more efficient utilization of machines, but decreases the quality of
service, as it is more probable that machine’s resources will turn out
to be insufficient. We model this problem as stochastic bin packing
i.e., bin packing with stochastically-sized items [13, 18]. We first
present the problem as it is defined in [13, 18], then we discuss

how appropriate are the typical assumptions taken by theoretical
approaches for the data center resource management.

In stochastic bin packing, we are given a set S of n items (tasks)
{X1, . . . ,Xn }. Xi is a random variable describing task i’s resource
requirement. We also are given a threshold c on the amount of
resources available in each node (the capacity of the bin); and a
maximum admissible overflow probability ϱ, corresponding to a
Service Level Objective (SLO). The goal is to partition S into a mini-
mal numberm of subsets S1, . . . , Sm , where a subset Sj corresponds
to tasks placed on a (physical) machine j . The constraint is that, for
each machine, the probability of exceeding its capacity is smaller
than the SLO ϱ, i.e., Pr [∑i :Xi ∈Sj Xi > c] < ϱ.

Stochastic bin packing assumes that there is no notion of time:
all tasks are known and ready to be started, thus all tasks should be
placed in bins.While resource management in a datacenter typically
combines bin packing and scheduling [24, 27, 29], we assume that
the schedule is driven by higher-level policy decisions and thus
beyond the optimization model. Moreover, even if the schedule can
be optimized, eventually the tasks have to be placed on machines
using a bin-packing-like approach, so a better bin-packing method
would lead to a better overall algorithm.

Stochastic bin packing assumes that the items to pack are one-
dimensional. Resource usage of tasks in a data center can be charac-
terized by at least four measures [22, 26]: CPU, memory, disk and
network bandwidth. One-dimensional packing algorithms can be ex-
tended to multiple dimensions by vector packing methods [19, 26].

Stochastic bin packing assumes that tasks’ resource requirements
are stochastic (random) variables, thus they are time-invariant (in
constrast to stochastic processes). The analysis of the previous ver-
sion of the trace [22] concludes that for most of the tasks the hour to
hour ratio of the average CPU usage does not change significantly.
This observation corresponds to an intuition that datacenter tasks
execute similar workload over longer time periods. Moreover, as
the instantaneous usage is just a single 1-second sample from a 5-
minute interval, any short term variability cannot be reconstructed
from the data. For instance, consider a task with an oscillating CPU
usage rising as a linear function from 0 to 1 and then falling with
the same slope back to 0. If the period is smaller than the reporting
period (5 minutes), the “sampled CPU usage” would show values
between 0 and 1, but without any order; thus, such a task would be
indistinguishable from a task that draws its CPU requirement from
a uniform distribution over [0, 1]. We validate the time-invariance
assumption in Section 3.4.

To pack tasks, we need information about their sizes. Theoretical
approaches commonly assume clairvoyance, i.e., perfect informa-
tion [7, 13, 26, 30]. In clairvoyant stochastic bin packing, while the
exact sizes—realizations—are unknown, the distributions Xi are
known. We test how sensitive the proposed method is to avail-
able information in Section 5.5, where we provide only a limited
fraction of measurements to the algorithms. Clearly, a data center
resource manager is usually unable to test a task’s usage by run-
ning it for some time before allocating it. However, a task’s usage
can be predicted by comparing the task to previously submitted
tasks belonging to the same or similar jobs (similarity can be in-
ferred from, e.g., user’s and job’s name). Our limited clairvoyance
simulates varying quality of such predictions. Such prediction is

SLO-aware Colocation of Data Center Tasks Based on Inst. Proc. Requirements SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

orthogonal to the main results of this paper. We do not rely on
user supplied information, such as the declared maximum resource
usage, as these are rarely achieved [22]. In contrast to standard
stochastic bin packing, our solution does not use the distributions
Xi of items’ sizes; it only requires two statistics, the mean µi (Xi)
and the standard deviation σi (Xi).

Algorithms for stochastic bin packing typically assume that the
items’ distributions {Xi } are independent. In a data center, a job
can be composed of many individual tasks; if these tasks are, e.g.,
instances of a large-scale web application, their resource require-
ments can be correlated (because they all follow the same external
signal such as the popularity of the website). If correlated tasks are
placed on a single machine, estimations of, for instance, the mean
usage as the sum of the task’s means are inexact. However, in a large
system serving many jobs, the probability that a machine executes
many tasks from a single job is relatively small (with the exception
for data dependency issues [8]). Thus, a simple way to extend an
algorithm to handle correlated tasks is not to place them on the
same machine (CBP, [28]). While we acknowledge that taking into
account correlations is an important direction of future work, the
first step is to characterize how frequent they are; and analyses of
the version 2.0 of the trace [11, 22] did not consider this topic.

While a typical data center executes tasks of different impor-
tance (from critical production jobs to best-effort experiments),
stochastic bin packing assumes that all tasks have the same pri-
ority/importance. Different priorities can be modeled as different
requested SLOs; simultaneously guaranteeing various SLOs for var-
ious groups of colocated tasks is an interesting direction of future
work.

We also assume that all machines have equal capacities (although
we test the impact of different capacities in Section 5.4).

Finally, we assume that exceeding the machine’s capacity is
undesirable, but not catastrophic. Resources we consider are rate-
limited, such as CPU, or disk/network bandwidth, rather than value-
limited (such as RAM). If there is insufficient CPU, some tasks slow
down; on the other hand, insufficient RAM may lead to immediate
preemption or even termination of some tasks.

3 CHARACTERIZATION OF
INSTANTANEOUS CPU USAGE

In this section we analyze sampled CPU usage, which we call
the instantaneous (inst) CPU usage, introduced in version 2.1 of
the Google trace [23]. We refer to [11, 22] for the analysis of the
previous version of the dataset.

We use the following notation. We denote by Ti the number
of records about task i in the resource usage table (thus, effec-
tively, task’s i duration as counted by 5-minute intervals). We de-
note the t-th value of task i instantaneous (inst) usage as xi (t);
and the t-th value of task i 5-minute average usage as yi (t). We
reserve the term mean for a value of a statistic x̄i computed from
a (sub)sample, e.g., for the whole duration (xi (1), . . . ,xi (Ti)), x̄i =
1
Ti

∑Ti
t=1 xi (t). We denote byXi the empirical distribution generated

from (xi (1), . . . ,xi (Ti)).

3.1 Data preprocessing
We first discard all failing tasks as our goal is to characterize a task’s
resource requirements during its complete execution (in our future
work we plan to take into account also the resource requirements
of these failing tasks). We define task as failing if it contains at
least one of EVICT(2), FAIL(3), KILL(5), LOST(6) events in the
events table. We then discard 209 940 tasks (1.2% of all tasks in the
trace) that show zero instantaneous usage for their entire duration:
these tasks correspond to measurement errors, or truly non-CPU
dependent tasks, which have thus no impact on the CPU packing
we want to study.

We replace 13 records of average CPU usage higher than 1 by
the corresponding instantaneous usage (no instantaneous usage
records were higher than 1). The trace normalizes both values to 1
(the highest total node CPU capacity in the cluster). Thus, values
higher than 1 correspond to measurement errors (note that these
13 records represent a marginal portion of the dataset).

Task lengths differ: 16 055 428 (95% of all) tasks are shorter than 2
hours and thus have less than 24 CPU measurements. We partition
the tasks into two subsets, the long tasks (2 hours or longer) and
the remaining short tasks. We analyze only the long tasks. We do
not consider the short tasks, as, first, they account for less than
10% of the overall utilization of the cluster [22], and, second, the
shorter the task, the less measurements we have and thus the less
reliable is the empirical distribution of the instantaneous usage (see
Section 3.2).

Finally, some of our results (normality tests, percentile predic-
tions, experiments in Section 5) rely on repeated sampling of in-
stantaneous and average CPU usage of tasks. For such experiments,
we generate a random sample of N = 100 000 long tasks. For
each task from the sample, we generate and store R = 10 000
realizations of both instantaneous and average CPU usage. The
instantaneous realizations are generated as follows (averages are
generated analogously). From (xi (1), . . . ,xi (Ti)), we create an em-
pirical distribution (following our assumption of time invariance).
We then generate R realizations of a random variable from this
distribution. Such representation allows us to have CPU usage sam-
ples of equal length independent of the actual duration Ti of the
task. Moreover, computing statistics of the total CPU usage with
such long samples is straightforward: e.g., to get samples of the
total CPU usage for 3 tasks colocated on a single node, it is suf-
ficient to add these tasks’ sampled instantaneous CPU usage, i.e.,
to add 3 vectors, each of 10 000 elements. Our data is available at
http://mimuw.edu.pl/~krzadca/sla-colocation/.

3.2 Validation of Instantaneous Sampling
We start by evaluating whether tasks’ instantaneous samples are
representative of their true usage, i.e., whether the method used to
produce instantaneous data was unbiased. While we don’t know
the true usage, we have an independent measure, the 5-minute aver-
ages. Our hypothesis is that the mean of the instantaneous samples
should converge to the mean of the 5-minute average samples. Fig-
ure 1 shows the distribution of the relative difference of means as
a function of the number of samples. For a task i we compute the
mean of the average CPU usage ȳi = 1

Ti
∑
t yi (t) (taking into ac-

count all measurementsyi (t) during the whole duration of the task).

http://mimuw.edu.pl/~krzadca/sla-colocation/

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Pawel Janus and Krzysztof Rzadca

1 2 5 10 15 20 25 50 100 200 500 1000

number of inst observations

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

re
la

ti
ve

d
iff

er
en

ce

Figure 1: Distributions of the relative differences ((ȳi −
x̄i
(k))/ȳi) between the means computed from 5-minute av-

erage yi and instantaneous xi CPU usage as a function of
the number of instantaneous samples k for all tasks at least
2 hours long. Here, and in the remaining boxplots, the line
inside the box denotes the median; the box spans between
the first and the third quartile (the interquartile range, IQR);
and the whiskers extend to the most extreme data point
within 1.5 × IQR.

We then compute the mean of a given number k of instantaneous
CPU usage x̄i (k) = 1

k
∑
t ∈Sk xi (t) (k ∈ {1, 2, 5, . . . , 500, 1 000}, Sk

is a randomly chosen subset of {1, . . . ,Ti } of size k). For each k
independently, we compute the statistics over all tasks having at
least k records: thus k = 1 shows a statistics over all long tasks, and
k = 1 000 over tasks longer than 83 hours.

The figure shows that, in general, the method used to obtain the
instantaneous data is unbiased. From approx. 15 samples onwards,
the interquartile range, IQR, is symmetric around 0. The more
samples, the smaller is the variability of the relative difference, thus,
the closer are means computed from the instantaneous and the
average data.

3.3 Variability of instantaneous and of average
usage

Next, we characterize the variability of the instantaneous usage as
characterized by standard deviations of instantaneous σinst (i) and
average σavд(i) usage. Figure 2 shows the CDFs of the standard
deviations across all long tasks from the trace. Instantaneous usage
is more variable than 5-minute averages. Furthermore, as Figure 3
shows, standard deviations depend on the mean CPU usage: the
higher task’s mean CPU usage, the higher its standard deviation:
compared to the avg trend line (linear regression) the inst trend line
has both steeper slope (0.36 vs. 0.31) and higher intercept (0.015 vs.
0.010).

3.4 Time invariance
We now test our assumption that the instantaneous loads are drawn
from a random distribution that does not depend on time. For each

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0

0
.2

2

standard deviation of CPU usage

0.0

0.2

0.4

0.6

0.8

1.0

inst

avg

Figure 2: CDF of the distribution of standard deviations of
CPU usage for all tasks at least 2 hours long.

of the long tasks, we divide observations into windows of consec-
utive ∆ = 12 records (a window corresponds to 1 hour): a single
window is thus (xi (k∆ + 1),xi (k∆ + 2), . . . ,xi (k∆ + ∆ − 1)) (where
k is a non-negative integer). We then compare the distributions
of two windows picked randomly (for two different k values, k1
and k2; k1 and k2 differ between tasks). Our null hypothesis is that
these samples are generated by the same distribution. In contrast,
if there is a stochastic process generating the data (corresponding
to, e.g., daily or weekly usage patterns), with high probability the
two distributions would differ (for a daily usage pattern, assuming
a long-running task, the probability of picking two hours 24-hours
apart is 1/24).

To validate the hypothesis, we perform a Kolmogorov-Smirnov
test. For roughly 30% of tasks the test rejects our hypothesis at
the significance level of 5% (the results for ∆ = 24 and ∆ = 36
are similar). Thus for roughly 30% of tasks the characteristics of
the instantaneous CPU usage changes in time. On the other hand,
the analysis of the average CPU usage [22] shows that the hour-
to-hour variability of individual tasks is small (for roughly 60% of
tasks weighted by their duration, the CPU utilization changes by
less than 15%). We will further investigate these changing tasks in
future work.

3.5 Variability of individual tasks
Many theoretical approaches (e.g., [13, 30, 33]) assume that items’
sizes all follow a specific, single distribution (Gaussian, exponential,
etc.). In contrast, we discovered that the distributions of instanta-
neous loads in the Google trace vary significantly among tasks.

To characterize the common types of distributions of roughly
800 000 long tasks, we clustered tasks’ empirical distributions. Our
method is the following. First, we generate histograms representing
the distributions.We set the granularity of the histogram to 0.01. Let
hi be the histogram of task i , a 100-dimensional vector. hi [k] (with
0 ≤ k ≤ 99) is the likelihood that an instantaneous usage sample
falls between k/100 and (k + 1)/100, hi [k] = |{xi (t) : k/100 ≤
xi (t) < (k + 1)/100}|/Ti .

SLO-aware Colocation of Data Center Tasks Based on Inst. Proc. Requirements SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

0.00 0.05 0.10 0.15 0.20 0.25 0.30

mean

0.00

0.05

0.10

0.15

0.20

0.25

st
an

d
ar

d
d

ev
ia

ti
on

inst trend

avg trend

000000000 100 101 102 103 104 105

(a) inst

0.00 0.05 0.10 0.15 0.20 0.25 0.30

mean

0.00

0.05

0.10

0.15

0.20

0.25

st
an

d
ar

d
d

ev
ia

ti
on

inst trend

avg trend

000000000 100 101 102 103 104 105

(b) avg

0.00 0.05 0.10 0.15 0.20 0.25 0.30

mean

0.00

0.05

0.10

0.15

0.20

0.25

inst trend

avg trend

−104−103−102−101−100 000000000 100 101 102 103 104

(c) inst-avg

Figure 3: Heatmaps showing standard deviations of CPU usage as a function of means for long tasks. Figure (c) highlights the
differences between (a) and (b): blue areas correspond to (mean × std) parameters matching more inst than avg samples.

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.3

0.6

(a) (1.42%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.3

0.6

(b) (5.47%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.5

1.0

(c) (17.62%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.00

0.25

0.50

(d) (3.11%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.00

0.15

0.30

(e) (4.27%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.00

0.35

0.70

(f) (13.70%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.1

0.2

(g) (3.77%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.1

0.2

(h) (2.27%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.00

0.15

0.30

(i) (2.93%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.1

0.2

(j) (3.48%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.4

0.8

(k) (15.22%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.00

0.15

0.30

(l) (4.38%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.0

0.2

0.4

(m) (6.96%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.00

0.25

0.50

(n) (5.77%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.00

0.25

0.50

(o) (6.54%)

0.
0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5
0.0

0.2

0.4

(p) (3.09%)

Figure 4: Typical distributions of task’s instantaneous CPU usage. Each sub-figure corresponds to a center of one of the 16
clusters produced by the k-means clustering algorithm. X—instantaneous usage (cut to [0, 0.50]); Y—% share of occurrences
(ranges differ between plots).

Then, we use the k-means algorithm [15] with the Euclidean
distance metric on the set of histograms {hi }. The clustering algo-
rithm treats each task as a 100-dimensional vector. To compute how
different tasks i and j are, the algorithm computes the Euclidean
distance between hi and hj . Typically k-means is not considered
an algorithm robust enough for handling high-dimensional data.
However, a great majority of our histograms are 0 beyond 0.30, thus

the data has effectively roughly 30 significant dimensions. After
a number of initial experiments, we set k = 16 clusters, as larger
k produced centroids similar to each other, while smaller k mixed
classes that are distinct for k = 16. Figure 4 shows clusters’ cen-
troids, i.e., the average distribution from all the tasks assigned to a
single cluster by the k-means algorithm.

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Pawel Janus and Krzysztof Rzadca

0.0 0.2 0.4 0.6

total CPU usage

0

1

2

3

4

d
en

si
ty

(a) N = 10

0.5 1.0 1.5 2.0

total CPU usage

0.0

0.5

1.0

1.5

(b) N = 50

11 12 13 14 15

total CPU usage

0.0

0.2

0.4

0.6

(c) N = 500

Figure 5: Example empirical distributions of the total instan-
taneous CPUusage summed over randomly-chosen samples
of N = 10, N = 50 and N = 500 tasks. The black line denotes
a fitted Gaussian distribution. Note the different ranges of X
and Y axes.

First, although number of tasks in a cluster varies considerably
(from 1.4% to 17.6% of all long tasks), no cluster strictly dominates
the data, as the largest cluster groups less than 1/5th of all the tasks.
Second, the centroids vary significantly. Some of the centroids
correspond to simple distributions, e.g., tasks that almost always
have 0 CPU usage (c), (f), (k); or exponential-like distributions
(b) and (p); while others correspond to mixed distributions (h),
(j), (m). Both observations demonstrate that no single probability
distribution can describe all tasks in the trace. Consequently, this
data set does not satisfy the assumption that tasks follow a single
distribution.

3.6 Characterizing the total usage
The previous section demonstrated that individual tasks’ usage
distributions are varied. However, the scheduler is more concerned
with the total CPU demand of the tasks colocated on a single phys-
ical machine. The central limit theorem states that the sum of
random variables tends towards the Gaussian distribution (under
some conditions on the variables, such as Lyapunov’s condition).
The question is whether the tasks in the Google trace are small
enough so that, once the Gaussian approximation becomes valid,
their total usage is still below the capacity of the machine.

To test this hypothesis, from our set of 100 000 tasks (Section 3.1),
we take random samples Sj of N = {10, 20, . . . , 500} tasks (repeat-
ing the sampling 10 000 times for each size). For each sample, we
calculate the resulting empirical distribution based on 10 000 re-
alizations of the instantaneous CPU usage. Additionally, for each
sample Sj , we fit a Gaussian distribution N (µ j ,σj). We use standard
statistics over the tasks i ∈ Sj to estimate parameters: µ j =

∑
i ∈Sj µi

and σj = (
∑
i ∈Sj σ

2
i)

1
2 , where µi is the mean usage of task i , µi = x̄i ,

and σi its standard deviation. Figure 5 shows empirical distribu-
tion for three randomly-chosen samples and the fitted Gaussian
distributions.

As the empirical distributions resemble the Gaussian distribu-
tion, we used the Anderson-Darling (A-D) test to check whether
the resulting cumulative distribution is not Gaussian (the A-D test
assumes as the null hypothesis that the data is normally distributed
with unknown mean and standard deviation). Table 1 shows aggre-
gated results, i.e., fraction of samples of a given size N for which
the A-D test rejects the null hypothesis at significance level of 5%.
A-D rejection rates for smaller samples (10-100 tasks) are high,

N 10 20 30 50 100 250 500
AD 0.991 0.965 0.923 0.784 0.493 0.183 0.087
µ̄ j 0.27 0.55 0.82 1.37 2.74 6.85 13.69

Table 1: H0 rejection rates (middle row) for the normality of
the total instantaneous CPU usage by the number of tasks
in a sample. Anderson-Darling test at significance level of
5%. The bottom row shows mean (over all samples) µ j , the
estimated mean of the CPU usage for the given number of
tasks.

0.9 0.95 0.99 0.999

percentile

−0.4

−0.2

0.0

0.2

0.4

(a) 10 tasks in a bin

0.9 0.95 0.99 0.999

percentile

−0.4

−0.2

0.0

0.2

0.4

(b) 20 tasks in a bin

0.9 0.95 0.99 0.999

percentile

−0.4

−0.2

0.0

0.2

0.4

(c) 30 tasks in a bin

0.9 0.95 0.99 0.999

percentile

−0.4

−0.2

0.0

0.2

0.4

(d) 50 tasks in a bin

Figure 6: Relative differences (F−1
µ j ,σj (k) −Pk)/Pk between the

k=95th, k=99th and the k=99.9th percentiles of the inverse
CDF F−1 of the normal distribution and the correspond-
ing values of the empirical distribution Pk . Violin plots
with outlines showing a (slightly smoothed) histogram and
whiskers—the distributions of the differences. Each violin
shows a statistics over 10 000 independent samples.

thus the distributions are not Gaussian. For instance assume that
N = 50 tasks are collocated on a single machine; if they are chosen
randomly, in 78% of cases the resulting distributions of total instan-
taneous CPU usage is not Gaussian according to the A-D test. On
the other hand, for 500 tasks, although A-D rejection rate is roughly
9%, the mean cumulative usage is 13.5, i.e., 13.5 times larger than
the capacity of the largest machine in the cluster from which the
trace was gathered.

However, to solve the packing problem, we need a weaker hy-
pothesis. Rather than trying to predict the whole distribution, we
only need the probability ϱ of exceeding the machine capacity c;
this probability corresponds to the value of the survival function
(1−CDF) in a specific point c . As our main positive result we show
that it is possible to predict the value of the empirical survival
function with a Gaussian usage estimation. The following analysis
does not yet take into account the machine capacity c ; here we are
generating a random sample Sj of 10 to 50 tasks and analyze their

SLO-aware Colocation of Data Center Tasks Based on Inst. Proc. Requirements SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

total usage. In the next section we show an algorithm that takes
into account the capacity.

As ϱ corresponds to the requested SLO, typically its values are
small, e.g., 0.1, 0.01 or 0.001; these values correspond to the k = 90th,
k = 99th or k = 99.9th percentiles of the distribution. The question
is thus how robust is the prediction of such a high percentile.

To measure the robustness, we compute the estimated usage at
the kth percentile as the value of the inverse distribution function
F−1
µ j ,σj of the fitted Gaussian distribution N (µ j ,σj) at the requested

percentile k . We compare F−1
µ j ,σj (k) with Pk , the k-th percentile

of the empirical distribution. Figure 6 shows (F−1
µ j ,σj (k) − Pk)/Pk ,

i.e., the relative difference between the Gaussian-based estimation
and the empirical percentile. We see that, first, medians are close
to 0, which means that the Gaussian-based estimation of the total
usage is generally accurate. Second, the Gaussian-based estimation
underestimates rare events, i.e., it underestimates the usage for
high percentiles. Third, if there are more tasks, the variance of the
difference is smaller.

4 STOCHASTIC BIN PACKINGWITH
GAUSSIAN PERCENTILE APPROXIMATION
(GPA)

Themain positive result from the previous section is that a Gaussian
estimation estimates values of high percentiles of the total instan-
taneous CPU usage. In this section, we formalize this observation
into GPA, a fit test that uses the central limit theorem to drive a
stochastic bin packing algorithm. GPA stems from statistical multi-
plexing, a widely-used approach in telecommunications, in which
individual transmissions, each with varying bandwidth require-
ments, are to be packed onto a communication channel of a fixed
capacity (although our models, following [13, 18], do not consider
packet buffering, making the models considerably easier to tackle).
A related test, although assuming that the packed items all have
Gaussian distributions, was proposed in [30] for multiplexing VM
bandwidth demands.

A standard bin-packing algorithm (such as First Fit, Best Fit, etc.)
packs items {xi } to bins Sj sequentially. For instance, the First Fit
algorithm, for each item xk , finds the minimal bin index j , such that
xk fits in the bin Sj . The fitting criterion is simply that the sum of
the sizes of items Sj already packed in j and the current item xk is
smaller than the bin capacity c , xk +

∑
xi ∈Sj xi ≤ c .

Our method, the Gaussian Percentile Approximation (GPA, 1)
replaces the fitting criterion with an analysis of the estimated Gauss-
ian distribution. For each open (i.e., with at least one task) machine
j, we store the current estimation of the mean µ j and of the stan-
dard deviation σj . We use standard statistics over the tasks i ∈ Sj to
estimate these values: µ j =

∑
i ∈Sj µi and σj = (

∑
i ∈Sj σ

2
i)

1
2 . When

deciding whether to add a task k to a machine j, we recompute
the statistics taking into account task k’s mean µk and standard
deviation σk : µ ′j = µ j + µk ; σ ′j = (σ

2
k +

∑
i ∈Sj σ

2
i)

1
2 . The task k

fits in the machine j if and only if the probability that the total
usage exceeds c is smaller than ϱ. We use the CDF of the Normal
distribution Fµ′j ,σ

′
j
to estimate this probability, i.e., a task fits in the

bin if and only if Fµ′j ,σ ′j (c) ≥ 1 − ϱ.

Algorithm 1: GPA algorithm: find the first machine j to which
task t fits.
Notation:
F(x |µ, σ 2)—the value of the CDF of the Gaussian distribution N(µ, σ 2) in a
point x

1 FitBin(k , j , ρ)
2 µ′j = µk +

∑
i∈Sj µi ;

3 σ ′j = (σ 2
k +

∑
i∈Sj σ

2
i)

1
2 ;

4 return ρ −
(
1 − F(c |µ′j , (σ ′j)2)

)
;

5 FindBin(k , ρ)
6 for j in 1..m do
7 if FitBin(k , j , ρ) ≥ 0 then
8 return j ;
9 m ←m + 1;

10 returnm;

Algorithm 1 shows First Fit with GPA. Best Fit can be extended
analogously: instead of returning the first bin for which FitBin
≥ 0, Best Fit chooses a bin that results in minimal among positive
FitBin results.

As both First Fit and Best Fit are greedy, usually the last open
machine ends up being underutilized. Thus, after the packing algo-
rithm finishes, to decrease the probability of overload in the other
bins, we rebalance the loads of the machines by a simple heuristics.
Following the round robin strategy, we choose a machine from
{1, . . . ,m − 1}, i.e., all but the last machine. Then we try to migrate
its first task to the last machinem: such migration fails if the task
does not fit intom. The algorithm continues untilmax_f ailures
failed attempts (we usedmax_f ailures = 5 in our experiments).
Note that many more advanced strategies are possible. Any such
rebalancing makes the algorithm not on-line as it reconsiders the
previously taken decisions (in contrast to First Fit or Best Fit, which
are fully on-line).

5 VALIDATION OF GPA THROUGH
SIMULATION EXPERIMENTS

The goal of our experiments is to check whether GPA provides
empirical QoS similar to the requested SLO while using a small
number of machines.

5.1 Method
Our evaluation relies on Monte Carlo methods. As input data, we
used our random sample of N = 100 000 tasks, each having R =
10 000 realizations of the instantaneous and the 5-minute average
loads generated from empirical distributions (see Section 3.1). To
observe algorithms’ average case behavior we further sub-sample
these N = 100 000 tasks into 50 instances each of N ′ = 1 000 tasks.
A single instance can be thus compactly described by two matrices
x[i][t] and y[i][t], where x denotes the instantaneous and y the
5-minute average usage; i ∈ {1, . . . ,N ′} is the index of the task
and t ∈ {1, . . . ,R} is the index of the realization.

Many existing theoretical approaches to bin-packing implicitly
assume clairvoyance, i.e., the sizes of the items are known in ad-
vance. We test the impact of this assumption by partitioning the ma-
trices’ columns into the observation and the evaluation sets. The bin-
packing decision is based only on the data from the observation set

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Pawel Janus and Krzysztof Rzadca

O , while to evaluate the quality of the packing we use the data from
the evaluation set E (O and E partition R, i.e.,O∩E = ∅ except in the
fully clairvoyant scenario, in which O = E = R). For instance, we
might assume we are able to observe each tasks’ 100 instantaneous
usage samples before deciding where to pack it: this corresponds
to the observation set O = {1, . . . , 100}, i.e., x[i][1 . . . 100], and the
evaluation E = {101 . . . 10 000}, set of x[i][101 . . . 10 000]. In this
case our algorithms will compute statistics based on x[i][1 . . . 100]
(e.g., the Gaussian Percentile Approximation will compute the mean
µi as µi = 1

100
∑100
t=1 x[i][t]). As we argued in Section 2, scenarios

with limited clairvoyance simulate varying quality of prediction of
the resource manager. An observation set equal to the evaluation
set corresponds to clairvoyance, or the perfect estimations of the
usage; smaller observation sets correspond to worse estimations.

We execute GPA with four different target SLO levels, ϱ = 0.10
corresponding to the SLO of 90%; ϱ = 0.05 (SLO of 95%); ϱ = 0.01
(SLO 99%); and ϱ = 0.001 (SLO 99.9%).

We compare GPA with the following estimation methods:

• Cantelli (proposed for the data center resource management
in [16]): items with sizes equal to the mean increased by b
times the standard deviation. According to Cantelli’s inequal-
ity, for any distribution Pr [X > µ+bσ] < 1

1+b2 . Thusb = 4.4
ensures SLO of 95%. If X has a Normal distribution (which is
not the case for this data, Figure 4), the multiplier can be de-
creased to b = 1.7 with keeping SLOs at the same level [16].
In initial experiments, we found those values to be too con-
servative and decided to also consider an arbitrary multiplier
b = 1.0.

• av : Items with sizes proportional to the mean µi from the
observation period. The mean is multiplied by a factor f ∈
{1.0, 1.25, 2.0}. Factors larger than 1.0 leave some margin
when items’ realized size is larger than its mean.

• perc : Items with sizes equal to a certain percentile from
the observation period. We use the {50, 70, 90, 95, 99, 100}th
percentile. Themaximum (100th percentile) corresponds to a
conservative policy that packs items by their truemaximums—
this policy in fully clairvoyant scenario is essentially packing
tasks by their observed maximal CPU consumption. Lower
percentiles correspond to increasingly aggressive policies.

All these methods use either First Fit or Best Fit as the bin pack-
ing algorithm. We analyze the differences between the two in Sec-
tion 5.2. All use rebalancing; we analyze its impact in Section 5.6.

We use two metrics to evaluate the quality of the algorithm.
The first metric is the number of used machines (opened bins).
This metric directly corresponds to the resource owner’s goal—
using as few resources as possible. Different instances might have
vastly different usage, resulting in different number of required
machines. Thus, for a meaningful comparison, for each instance
we report a normalized number of machinesm. We computem as
m = mabs/mnorm, i.e.,mabs, the number of machines used by the
packing algorithm, divided by a normalization valuemnorm. The
normalization value computes the total average CPU requirements
in the instance, and then divides it by machine capacity,mnorm =
⌈ 1
c
∑
i x̄i ⌉.

The second metric is the measured frequency q of exceeding the
machine capacity c : the higher the q, the more often the machine is

1.0 1.25
av

2.0 1.0 1.7
cantelli

4.4 0.001 0.01
GPA

0.05 0.1 50 70 90
maxperc

95 99 100
max

1

2

3

4

5

n
u

m
b

er
of

m
ac

h
in

es
(n

or
m

al
iz

ed
)

Figure 7: Number of machines (normalized to the lower
bound) by different estimation algorithms. Clairvoyance,
c = 1. Here and in the remaining boxplots, the statistics for
each box are computed over 50 instances.

overloaded. (1−q) corresponds to the observed (empirical) QoS. We
compute q by counting q(j): independently for each machine j , how
many of E realizations of the total instantaneous usage resulted in
total machine usage higher than c: q(j) = ∑

t ∈E ⟨(
∑
i ∈Sj x[i][t]) >

c⟩, where ⟨pred⟩ returns 1 if the predicate pred is true. We then av-
erage these values over allm machines and the complete evaluation
period E, q = 1

m |E |
∑m
j=1 q(j).

The base case for the experiments is the full clairvoyance (i.e.,
observation set equal to the evaluation set, O = E = R); machine
capacity c = 1; estimation based on instantaneous (inst) data. The
following sections test the impact of these assumptions.

5.2 Comparison between algorithms
Both FirstFit and the BestFit algorithms lead to similar outcomes.
The number of machines usedmabs differed by at most 1. The mean
values for q differed by less than 1%. Consequently, to improve
presentation, we report data just for BestFit.

The tasks in the trace have small CPU requirements, as already
shown in Figure 5, which reported for 500 tasks the mean total
requirement of 13.5. av 1, packing tasks by their mean require-
ments, confirms this result, packing 1000-task instances into, on
the average, m̄abs = 28.0 machines.

The Cantelli estimation is very conservative (for b = 1.0, mean
q̄ = 3 × 10−4; for b = 1.7, mean q̄ = 2 × 10−6). The max estimation
never exceeds capacity; and perc with high percentiles is similarly
conservative: 99th percentile leads to q̄ = 2 × 10−8; the 95th to
q̄ = 5×10−6; and the 90th to q̄ = 7×10−5. The resulting packings use
significantly more machines than av andGPA estimations (Figure 7).

Figure 8 shows the normalized number of machinesm and the
empirical capacity violations q for the remaining algorithms (GPA,
av and perc). No estimation Pareto-dominates others—different
methods result in different machine-QoS trade-offs. The resulting
(m,q) can be roughly placed on a line, showing that q decreases
exponentially with an increase in the number of machines,m. perc
70, av 1.25 and GPA 0.1 result in comparablem-q; and, to somewhat
smaller degree, perc 90, av 2.0 andGPA 0.001. Such similarities might
suggest that to achieve a desired q, it is sufficient to use av with an
appropriate value of the multiplier. We test this claim in Section 5.4.

SLO-aware Colocation of Data Center Tasks Based on Inst. Proc. Requirements SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

1.0 1.2 1.5 2.0

number of machines (normalized)

0.5

0.1

0.01

0.001

0.0001

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

av 1.0

av 1.25
GPA 0.1

GPA 0.05

GPA 0.01

GPA 0.001

av 2.0

perc 70

perc 90

Figure 8: Comparison of the number of used machines (X
axis, normalized to the lower bound) and the empirical fre-
quency of capacity violations q (Y axis) between GPA, av
and perc. Each dot represents a single instance. Clairvoyance,
c = 1

GPA 0.001 GPA 0.01 GPA 0.05 GPA 0.1

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

er
ro

r
of

q
co

m
p

ar
ed

to
ta

rg
et
%

,
(q
−
%
)/
%

Figure 9: Relative error (q−ϱ)/ϱ ofGPA for various requested
SLO ϱ values. Clairvoyance, c = 1.

Figure 9 analyses for GPA the relative error between the mea-
sured frequency of capacity violations q and the requested SLO ϱ,
i.e.: (q − ϱ)/ϱ. The largest relative error is for the smallest target
ϱ = 10−3: GPA produces packings with the measured frequency
of capacity violations of q = 1.6 × 10−3, an increase of 60%. This
result follows from the results on random samples (Figure 6): esti-
mating the sum from the Gaussian distribution underestimates rare
events. As a consequence, for SLOs of 99th or 99.9th percentile, the
ϱ parameter of GPA should be adjusted to a smaller value.

5.3 Observation of the 5-minute average usage
In this series of experiments we show that if algorithms use statistics
over 5-minute averages (the low-frequency data), the resulting
packing has more capacity violations. Estimations that use statistics

avg inst
0.0000

0.0002

0.0004

0.0006

q,
fr

eq
.

of
ca

p
ac

it
y

vi
ol

.

(a) av 2

avg inst
0.000

0.025

0.050

0.075

0.100

(b) av 1.25,

avg inst
0.000

0.001

0.002

0.003

(c) Cantelli, 1.0

avg inst
0.00000

0.00002

0.00004

0.00006

(d) Cantelli, 1.7

avg inst
0.0000

0.0025

0.0050

0.0075

0.0100

q,
fr

eq
.

of
ca

p
ac

it
y

vi
ol

.

(e) GPA 0.001

avg inst
0.00

0.01

0.02

0.03

0.04

(f) GPA 0.01

avg inst
0.000

0.025

0.050

0.075

0.100

(g) GPA 0.05

avg inst
0.00

0.05

0.10

0.15

(h) GPA 0.10

Figure 10: Comparison of the measured frequency of ca-
pacity violations q when each algorithm uses either the 5-
minute averages (avg), or 1-second instantaneous (inst) data.
Clairvoyance, c = 1. For GPA, the target SLO is marked by a
thicker line. Note that Y scales differ (see the discussion in
Section 5.2 for comparison between these algorithms).

of tasks’ variability (such as the standard deviation in GPA and
Cantelli) are more sensitive to less accurate avg data. This is not
a surprise: as we demonstrated in Section 3, the averages report
smaller variability than instantaneous usage.

Figure 10 summarizes q for various estimation methods. The
figure does not show Cantelli with b = 4.4, as on both datasets
the mean q̄ is 0. Similarly, for max (perc 100) estimation, the mean
q̄ using 5-minute averages (avg) is very small (albeit non-zero, in
contrast to inst): 3 × 10−7 for e = 0.8 and 5 × 10−5 for bin size mul-
tiplier e = 1.0. High frequency inst data significantly reduces the
number of capacity violations for estimations that use the standard
deviation. For Cantelli, the improvement is roughly 10 times; for
GPA roughly 2-3 times. In contrast, as expected, av estimation has
similar q for both instantaneous and 5-minute average observations.

5.4 Smaller and larger machines’ capacities
By varying the bin capacity c , we are able to simulate different ratios
of job requirements to machine capacity. (Note that for c < 1, some
of the tasks might not fit into any available machine having, e.g.,
the mean usage greater than c; however, as large tasks are rare, it
was not the case for the 50 instances considered in the experiments).
As both the number of machines used and q are normalized, we
expect these values to be independent of c . Figure 11 compares av
2 to GPA 0.001; and av 1.25 to GPA 0.1 as for capacity c = 1 these
pairs resulted in similar (q,m) combinations (see Figure 8).

Overall, GPA results in similar q for different machine capacities.
The differences in GPA results can be explained by two effects.
When capacities are smaller, the effects of underestimating q (ob-
served in Figure 9) are more significant. When capacities are larger,

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Pawel Janus and Krzysztof Rzadca

0.5 0.8 1.0
av 2.0

2.0 3.0 5.0 0.5 0.8 1.0 2.0
GPA 0.001

3.0 5.0

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

c, machine capacity c, machine capacity

(a) av 2, GPA 0.001, rebalancing

0.5 0.8 1.0
av 2.0

2.0 3.0 5.0 0.5 0.8 1.0 2.0
GPA 0.001

3.0 5.0

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

c, machine capacity c, machine capacity

(b) av 2, GPA 0.001, no rebalancing

0.5 0.8 1.0
av 1.25

2.0 3.0 5.0 0.5 0.8 1.0 2.0
GPA 0.01

3.0 5.0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

c, machine capacity c, machine capacity

(c) av 1.25, GPA 0.1, rebalancing

0.5 0.8 1.0
av 1.25

2.0 3.0 5.0 0.5 0.8 1.0 2.0
GPA 0.01

3.0 5.0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

c, machine capacity c, machine capacity

(d) av 1.25, GPA 0.1,no rebalancing

Figure 11: q for av and GPA by different machine capacities
c ∈ {0.5, 0.8, 1.0, 2.0, 5.0}.

GPA results in less capacity violations than the requested thresh-
olds. This is the impact of the last-opened bin which, with high
probability, is underloaded; for larger capacities this last bin is able
to absorb more tasks during the rebalancing phase. Figures 11 (b)
and (d), where we measure q for algorithms without rebalancing,
confirms this explanation.

In contrast, for av, q differs significantly when capacities change.
This result demonstrates that using fixed thresholds for av estima-
tion on heterogeneous resources results in unpredictable frequency
of capacity violations: thresholds have to be calibrated by trial and
error, and a threshold achieving a certain QoS for a certain machine
capacity results in a different QoS for a different machine capacity.

5.5 Clairvoyance
Next, we analyze how the algorithms are affected by reduced qual-
ity of input data. We vary the clairvoyance level, i.e., the fraction of
samples belonging to the observation set, in {0.001, 0.01, 0.1, 0.3,
0.5, 0.8, 1.0}. For instance, for clairvoyance level 0.001, the estima-
tors have 0.001·10 000, or just 10 inst observations to build the tasks’
statistical model; to compute the empirical QoS q, the produced
packing is then evaluated on the remaining 9 990 observations (the
only difference is clairvoyance 1.0, for which the estimation and the
evaluation sets both consisted of all R = 10 000 samples). Figure 12
summarizes the results for av (which we treat as a baseline) and
GPA estimators. We omit results for other av; we also omit results
for GPA with other thresholds ϱ, as they were similar to ϱ = 0.01.

0.001 0.01 0.1 1.0

0.010

0.015

0.020

0.025

0.030

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

(a) GPA 0.01

0.001 0.01 0.1 1.0

0.07

0.08

0.09

0.10

0.11

0.12

0.13

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

(b) av 1.25

0.001 0.01 0.1 1.0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

(c) GPA 0.001

0.001 0.01 0.1 1.0
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

q,
m

ea
su

re
d

fr
eq

u
en

cy
of

ca
p

ac
it

y
vi

ol
at

io
n

s

(d) av 2.0

Figure 12: q for GPA and av as a function of different clair-
voyance levels.1 is full clairvoyance; 0.001 corresponds to 10
observations; 0.01 to 100, etc. c = 1.

Figures for GPA and av have different Y scales: our goal is to com-
pare the relative differences between algorithms, rather than the
absolute values (which we do in Section 5.2).

Just 100 observations are sufficient to achieve a similar empirical
QoS level q as the fully-clairvoyant variant for both GPA and av.
although, comparing results for levels 0.01 and 0.1, GPA has a
slightly higher mean than av. As we demonstrated in Section 5.2,
GPA underestimates rare events; hiding data only magnifies this
effect. Furthermore, as the model build by GPA is more complex (it
estimates both the average and the standard deviation), for smaller
clairvoyance levels, we expected GPA to have relatively worse q.
However, with the exception of the smallest threshold ϱ = 0.001,
the relative degeneration of GPA and of av is similar.

5.6 Impact of Rebalancing on Frequency of
Capacity Violations

Finally, we measure how much the rebalancing reduces the fre-
quency of capacity violations, compared to the results of the on-line
bin packing algorithm. Figure 13 shows the relative gains achieved
by rebalancing (normalized by q of the base algorithm; we omit
perc and algorithms for which the base algorithm had zero q). Re-
balancing uses the unused capacity of the last-opened machine,
which is usually severely underloaded, to move some of the tasks
from other machines; thus leading to less capacity violations. The
mean relative decrease in capacity violations for both av and GPA

SLO-aware Colocation of Data Center Tasks Based on Inst. Proc. Requirements SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

1.0 1.25
av

2.0 1.0
cantelli

0.001 0.01
GPA

0.05 0.1
−0.1

0.0

0.1

0.2

0.3

re
la

ti
ve

d
iff

er
en

ce
,

(q
o
ff
−
q o

n
)/
q o

ff

Figure 13: Relative decrease in the measured frequency of
capacity violations from rebalancing. qon denotes q with re-
balancing; while qoff without.

is around 7%, which shows that rebalancing modestly improves
QoS. The median absolute number of machinesmabs used by GPA
is between 35 (GPA 0.1) and 47 (GPA 0.001). Thus, the last machine
represents at most roughly 2%-3% of the overall capacity (in case the
machine is almost empty). As shown in Figure 8, the relationship
between the capacity and the frequency of capacity violations q is
exponential: small capacity increases result in larger decreases of
capacity violations.

6 RELATEDWORK
This paper has two principal contributions: the analysis of a new
data set of the instantaneous CPU usage; and GPA, a new method
of allocating tasks onto machines.

In our data analysis of the Google cluster trace [23, 31] (Section 3)
we focused on the new information, the instantaneous CPU usage.
[11, 22] analyze the rest of the trace; and [5] analyzes a related trace
(longer and covering more clusters).

Data center and cloud resource management is an active research
area in both systems and theory. A recent survey concentrating
on virtual machine placement and on theoretical/simulation ap-
proaches is [21]. Our paper modeled a problem stemming from
placement decisions of a data center scheduler, such as Borg [29];
we did not consider many elements, including handling IO [8, 14] or
optimization towards specific workloads, such as data-parallel/map-
reduce computations [2, 10].

We concentrated on bin packing, as our goal was to study how
to maintain an SLO when tasks’ resource requirements change. If
some tasks can be deferred, there is also a scheduling problem; if
the tasks arrive and depart over time, but cannot be deferred, the
resulting problem is dynamic load balancing [9, 20]. We considered
simple bin packing as the core sub-problem of these more complex
models, as one eventually has to solve packing as a sub-problem.
Moreover, scheduling decisions in particular are based on complex
policies which are not reflected in the trace and thus hard to model
accurately.

Our method, GPA, uses a standard bin packing algorithm, but
changes the fitting criterion. Bin packing and its variants have been
extensively used as a model of data center resource allocation. For
instance, [27] uses a dynamic bin packing model (items have arrival

and departure times) with items having known sizes. [25] studies re-
laxed, on-line bin packing: they permit migrations of items between
bins when bins become overloaded. Our focus was to model uncer-
tainty of tasks’ resource requirements through stochastic bin pack-
ing. Theoretical approaches to stochastic bin packing usually solve
the problem for jobs having certain distribution. [3, 30] consider bin
packing with Gaussian items; [33] additionally takes into account
bandwidth allocation. [13] considers load balancing, knapsack and
bin packing with Poisson, exponential and Bernoulli items. [18]
for bin packing shows an approximation algorithm for Bernoulli
items. [7] solves the general problem by deterministic bin packing
of items; item’s size is derived from the item’s stochastic distribu-
tion (essentially, the machine capacity is divided by the number
of items having this distribution that fit according to a given SLO)
and correlation with other items. According to their experimental
evaluation (on a different, not publicly-available trace, and using
15-minute usage averages), this method overestimates the QoS (for
target ρ = 0.05, they achieve q = 0.02); they report the number of
machines 10% smaller than perc 95 (although the later result is in
on-line setting: usage is estimated from the previous period).

GPA estimates machine’s CPU usage by a Gaussian distribution
following the central limit theorem (CLT), perhaps the simplest
possible probabilistic model. The CLT has been applied to related
problems, including estimation of the completion time of jobs com-
posed of many tasks executed across several virtual machines [32].
The stochastic bin packing algorithms that assume Gaussian items
proposed for bandwidth consolidation [3, 30] can be also interpreted
as a variant of CLT if we drop the Gaussian assumption.

[16] addresses stochastic bin packing assuming items’ means and
standard deviations are known. It essentially proposes to rescale
each item’s size according to Cantelli inequality (item’s mean plus
4.4 or 1.7 times the standard deviation, see Section 5.1). Our experi-
mental analysis in Section 5.2 shows that such rescaling overesti-
mates the necessary resources, resulting in allocations using 2.5-5
times more machines than the lower bound. Consequently, for the
target 95% SLO, Cantelli produces QoS of 99.9998%.

To model resource heterogeneity, bin packing is extended to
vector packing: an item’s size is a vector with dimensions corre-
sponding to requirements on individual resources (CPU, memory,
disk or network bandwidth) [19, 26]. Our method can be naturally
extended to multiple resource type: for each type, we construct a
separate GPA; and a task fits into a machine only if it fits in all
resource types. This baseline scenario should be extended to balanc-
ing the usage of different kinds of resources [19], so that tasks with
complementary requirements are allocated to a single machine.

Our method estimates tasks’ mean and standard deviation from
tasks’ observed instantaneous usage. [17] combines scheduling and
two dimensional bin packing to optimize tasks’ cumulative waiting
time and machines’ utilization. The method uses machine learn-
ing to predict tasks’ peak CPU and memory consumption based
on observing first 24 hours of task’s resource usage. If machine’s
capacity is exceeded, a task is evicted and rescheduled. While our
results are not directly comparable to theirs (as we do not consider
scheduling, and thus evictions), we are able to get sufficiently ac-
curate estimates using simpler methods and by observing just 100
samples (Section 5.5). While to gather these 100 samples we need
roughly 42 trace hours, a monitoring system should be able to take

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Pawel Janus and Krzysztof Rzadca

a sufficient number of samples in just a few initial minutes. [4] uses
an artificial neural network (ANN) in a combined scheduling and
bin packing problem. The network is trained on 695 hours of the
Google trace to predict machines’ performance in the subsequent
hour. Compared to ANN, our model is much simpler, and therefore
easier to interpret; we also need less data for training. [12] analyzes
resource sharing for streams of tasks to be processed by virtual
machines. Sequential and parallel task streams are considered in
two scenarios. When there are sufficient resources to run all tasks,
optimality conditions are formulated. When the resources are insuf-
ficient, fair scheduling policies are proposed. [1] uses statistics of
the past CPU demand of tasks (CDF, autocorrelation, periodograms)
to predict the demand in the next period; then they use bin packing
to minimize the number of used bins subject to a constraint on the
probability of overloading servers. Our result is that a normal dis-
tribution is sufficient for an accurate prediction of a high percentile
of the total CPU usage of a group of tasks (in contrast to individual
task’s).

7 CONCLUSIONS
We analyze a new version of the Google cluster trace that samples
tasks’ instantaneous CPU requirements in addition to 5-minute
averages reported in the previous versions. We demonstrate that
changes in tasks’ CPU requirements are significantly higher than
the changes reported by 5-minute averages. Moreover, the distri-
butions of CPU requirements vary significantly across tasks. Yet,
if ten or more tasks are colocated on a machine, high percentiles
of their total CPU requirements can be approximated reasonably
well by a Gaussian distribution derived from the tasks’ means and
standard deviations. However, 99th and 99.9th percentiles tend
to be underestimated by this method. We use this observation to
construct the Gaussian Percentile Approximation estimator for
stochastic bin packing. In simulations, GPA constructed coloca-
tions with the observed frequency of machines’ capacity violations
similar to the requested SLO. Nevertheless, because of using the
Gaussian model, GPA underestimates rare events: e.g., for a SLO
of 0.0010, GPA achieves frequency of 0.0016. Thus, for such SLOs,
GPA should be invoked with lower goal tresholds. Compared to
a recently-proposed method based on Cantelli inequality [16], for
95% SLO, GPA reduces the number of machines between 1.9 (when
Cantelli assumes Gaussian items) and 3.7 (for general items) times.
GPA also turned out to work well with machines with different
capacities. Moreover, as input data it requires only the mean and
the standard deviation of each task’s CPU requirement — in con-
trast to the complete distribution. We also demonstrated that these
parameters can be adequately estimated from just 100 observations.
Apart from the rebalancing step, our algorithms are on-line: once a
task is placed on a machine, it is not moved. Thus, the algorithms
can be applied to add a single new task to an existing load (if all
tasks are released at the same time).

Using theGaussian distribution is a remarkably simple approach—
we achieve satisfying QoS without relying on machine learning [17]
or artificial neural networks [4]. We claim that this proves how
important high-frequency data is for allocation algorithms.

Our analysis can be expanded in a few directions. We deliber-
ately focused on a minimal algorithmic problem with a significant

research interest in the theoretical field — stochastic bin packing
— but using realistic data. We plan to extend our experiments to
stochastic processes (raw data from the trace, rather than stationary
distributions generated from them) to validate whether the algo-
rithms still work as expected. We also plan to drop assumptions we
used in this early work: to extend packing algorithms to multiple
dimensions; to measure and then cope with correlations between
tasks; or to pack pools of machines with different capacities. An or-
thogonal research direction is a requirement estimator more robust
than GPA, as GPA systematically underestimates rare events (small
machines or SLOs of 99th or 99.9th percentile).

ACKNOWLEDGMENTS
We thank Jarek Kuśmierek and Krzysztof Grygiel from Google for
helpful discussions; Krzysztof Pszeniczny for his help on statistical
tests; and anonymous reviewers and our shepherd, John Wilkes,
for their helpful feedback. We used computers provided by ICM,
the Interdisciplinary Center for Mathematical and Computational
Modeling, University of Warsaw. The work is supported by Google
under Grant No.: 2014-R2-722 (PI: Krzysztof Rzadca).

REFERENCES
[1] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. 2007. Dynamic placement of

virtual machines for managing SLA violations. In IM. IEEE.
[2] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,

Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling
for Cloud-Scale Computing. In OSDI. USENNIX.

[3] David Breitgand and Amir Epstein. 2012. Improving consolidation of virtual
machines with risk-aware bandwidth oversubscription in compute clouds. In
INFOCOM. IEEE.

[4] Faruk Caglar and Aniruddha Gokhale. 2014. iOverbook: intelligent resource-
overbooking to support soft real-time applications in the cloud. In IEEE Cloud.

[5] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John Wilkes. 2014.
Long-term SLOs for reclaimed cloud computing resources. In SoCC. ACM.

[6] Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T.
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby. 1999. Bench-
marks and standards for the evaluation of parallel job schedulers. In JSSPP.
Springer.

[7] Ming Chen, Hui Zhang, Ya-Yunn Su, Xiaorui Wang, Guofei Jiang, and Kenji
Yoshihira. 2011. Effective VM sizing in virtualized data centers. In IM. IEEE.

[8] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient coflow scheduling without
prior knowledge. In SIGCOMM. ACM.

[9] Edward G. Coffman, Michael R. Garey, and David S. Johnson. 1983. Dynamic bin
packing. SIAM J. Comput. 12, 2 (1983).

[10] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. 2016. Job-
aware scheduling in Eagle: Divide and stick to your probes. In SoCC. ACM.

[11] Sheng Di, Derrick Kondo, and Cappello Franck. 2013. Characterizing cloud
applications on a Google data center. In ICPP. IEEE.

[12] Sheng Di, Derrick Kondo, and Cho-Li Wang. 2015. Optimization of Composite
Cloud Service Processing with Virtual Machines. IEEE Trans. on Computers
(2015).

[13] Ashish Goel and Piotr Indyk. 1999. Stochastic load balancing and related problems.
In FOCS, Procs. IEEE.

[14] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and Steven
Hand. 2016. Firmament: fast, centralized cluster scheduling at scale. In OSDI.
USENIX.

[15] John A Hartigan. 1975. Clustering algorithms. Wiley.
[16] Inkwon Hwang andMassoud Pedram. 2016. Hierarchical, Portfolio Theory-Based

Virtual Machine Consolidation in a Compute Cloud. IEEE Trans. on Services
Computing PP, 99 (2016).

[17] Jesus Omana Iglesias, Liam Murphy Lero, Milan De Cauwer, Deepak Mehta, and
Barry O’Sullivan. 2014. A methodology for online consolidation of tasks through
more accurate resource estimations. In IEEE/ACM UCC.

[18] Jon Kleinberg, Yuval Rabani, and Éva Tardos. 2000. Allocating bandwidth for
bursty connections. SIAM J. Comput. 30, 1 (2000), 191–217.

[19] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Ramasubrama-
nian, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. 2011. Validating heuristics
for virtual machines consolidation. Technical Report.

SLO-aware Colocation of Data Center Tasks Based on Inst. Proc. Requirements SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

[20] Yusen Li, Xueyan Tang, and Wentong Cai. 2014. On dynamic bin packing for
resource allocation in the cloud. In SPAA. ACM.

[21] Ilia Pietri and Rizos Sakellariou. 2016. Mapping virtual machines onto physical
machines in cloud computing: A survey. ACM Computing Surveys (CSUR) 49, 3
(2016), 49.

[22] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.
Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In ACM SoCC.

[23] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage
traces: format + schema. Technical Report. Google Inc., Mountain View, CA,
USA. Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/
cluster-data.

[24] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: flexible, scalable schedulers for large compute clusters. In EuroSyS.
ACM.

[25] Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. 2014. Adaptive resource
provisioning for the cloud using online bin packing. IEEE Trans. on Computers
63, 11 (2014).

[26] M. Stillwell, F. Vivien, and H. Casanova. 2012. Virtual Machine Resource Alloca-
tion for Service Hosting on Heterogeneous Distributed Platforms. In IPDPS Procs.
IEEE.

[27] Xueyan Tang, Yusen Li, Runtian Ren, and Wentong Cai. 2016. On First Fit Bin
Packing for Online Cloud Server Allocation. In IPDPS.

[28] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi
Kothari. 2009. Server workload analysis for power minimization using consolida-
tion. In USENIX.

[29] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In EuroSys. ACM.

[30] MengWang, Xiaoqiao Meng, and Li Zhang. 2011. Consolidating virtual machines
with dynamic bandwidth demand in data centers. In InfoCom. IEEE.

[31] John Wilkes. 2011. More Google cluster data. Google research blog. (Nov. 2011).
Posted at http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.
html.

[32] Sungkap Yeo and Hsien-Hsin Lee. 2011. Using mathematical modeling in pro-
visioning a heterogeneous cloud computing environment. IEEE Computer 44, 8
(2011), 55–62.

[33] J. Zhang, Z. He, H. Huang, X. Wang, C. Gu, and L. Zhang. 2014. SLA aware cost
efficient virtual machines placement in cloud computing. In IPCCC.

https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	Abstract
	1 Introduction
	2 Problem Definition
	3 Characterization of instantaneous CPU usage
	3.1 Data preprocessing
	3.2 Validation of Instantaneous Sampling
	3.3 Variability of instantaneous and of average usage
	3.4 Time invariance
	3.5 Variability of individual tasks
	3.6 Characterizing the total usage

	4 Stochastic Bin Packing with Gaussian Percentile Approximation (GPA)
	5 Validation of GPA through Simulation Experiments
	5.1 Method
	5.2 Comparison between algorithms
	5.3 Observation of the 5-minute average usage
	5.4 Smaller and larger machines' capacities
	5.5 Clairvoyance
	5.6 Impact of Rebalancing on Frequency of Capacity Violations

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

