
Polynomial Time Corresponds to Solutions of
Polynomial Ordinary Differential Equations of
Polynomial Length.
The General Purpose Analog Computer and Computable Analysis are two efficiently

equivalent models of computations∗

Olivier Bournez1, Daniel S. Graça,2,3, and Amaury Pouly1,2

1 Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France
2 CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro,

Portugal
3 SQIG/Instituto de Telecomunicações, Lisbon, Portugal

Abstract
The outcomes of this paper are twofold.

Implicit complexity. We provide an implicit characterization of polynomial time computation
in terms of ordinary differential equations: we characterize the class P of languages computable
in polynomial time in terms of differential equations with polynomial right-hand side.

This result gives a purely continuous (time and space) elegant and simple characterization of
P. We believe it is the first time such classes are characterized using only ordinary differential
equations. Our characterization extends to functions computable in polynomial time over the
reals in the sense of computable analysis.

Our results may provide a new perspective on classical complexity, by giving a way to define
complexity classes, like P, in a very simple way, without any reference to a notion of (discrete)
machine. This may also provide ways to state classical questions about computational complexity
via ordinary differential equations.

Continuous-Time Models of Computation. Our results can also be interpreted in terms
of analog computers or analog model of computation: As a side effect, we get that the 1941
General Purpose Analog Computer (GPAC) of Claude Shannon is provably equivalent to Turing
machines both at the computability and complexity level, a fact that has never been established
before. This result provides arguments in favour of a generalised form of the Church-Turing
Hypothesis, which states that any physically realistic (macroscopic) computer is equivalent to
Turing machines both at a computability and at a computational complexity level.

1998 ACM Subject Classification F.1.1 Models of Computation. F.1.3 Complexity Measures
and Classes. G.1.7 Ordinary Differential Equations

Keywords and phrases Analog Models of Computation, Continuous-Time Models of Computa-
tion, Computable Analysis, Implicit Complexity, Computational Complexity, Ordinary Differen-
tial Equations

Digital Object Identifier 10.4230/LIPIcs...

∗ Daniel Graça was partially supported by Fundação para a Ciência e a Tecnologia and EU
FEDER POCTI/POCI via SQIG - Instituto de Telecomunicações through the FCT project
UID/EEA/50008/2013.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
1.

05
36

0v
2

 [
cs

.C
C

]
 3

 M
ay

 2
01

6

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

1 Introduction

The outcomes of this paper are twofold, and are concerning a priori not closely related topics.
Implicit Complexity: Since the introduction of the P and NP complexity classes, much
work has been done to build a well-developed complexity theory based on Turing Machines.
In particular, classical computational complexity theory is based on limiting resources used by
Turing machines, like time and space. Another approach is implicit computational complexity.
The term “implicit” in “implicit computational complexity” can sometimes be understood in
various ways, but a common point of these characterizations is that they provide (Turing or
equivalent) machine-independent alternative definitions of classical complexity.

Implicit characterization theory has gained enormous interest in the last decade. This
has led to many alternative characterizations of complexity classes using recursive functions,
function algebras, rewriting systems, neural networks, lambda calculus and so on.

However, most of — if not all — these models or characterizations are essentially discrete:
in particular they are based on underlying discrete time models working on objects which
are essentially discrete such as words, terms, etc. that can be considered as being defined in
a discrete space.

Models of computation working on a continuous space have also been considered: they
include Blum Shub Smale machines [4], and in some sense Computable Analysis [40], or
quantum computers [17] which usually feature discrete-time and continuous-space. Machine-
independent characterizations of the corresponding complexity classes have also been devised:
see e.g. [10, 24]. However, the resulting characterizations are still essentially discrete, since
time is still considered to be discrete.

In this paper, we provide a purely analog machine-independent characterization of the P
class. Our characterization relies only on a simple and natural class of ordinary differential
equations: P is characterized using ordinary differential equations (ODEs) with polynomial
right-hand side. This shows first that (classical) complexity theory can be presented in terms
of ordinary differential equations problems. This opens the way to state classical questions,
such as P vs NP, as questions about ordinary differential equations.
Analog Computers: Our results can also be interpreted in the context of analog models of
computation and actually originate as a side effect from an attempt to understand continuous-
time analog models of computation, and if they could solve some problem more efficiently
than classical models. Refer to [39] for a very instructive historical account of the history of
Analog computers. See also [29, 9] for other discussions.

Indeed, in 1941, Claude Shannon introduced in [38] the General Purpose Analog Computer
(GPAC) model as a model for the Differential Analyzer [11], a mechanical programmable
machine, on which he worked as an operator. The GPAC model was later refined in [35],
[23]. Originally it was presented as a model based on circuits (see Figure 1), where several
units performing basic operations (e.g. sums, integration) are interconnected (see Figure 2).

However, Shannon himself realized that functions computed by a GPAC are nothing more
than solutions of a special class of polynomial differential equations. In particular it can be
shown that a function is computed by Shannon’s model if and only if it is a (component of
the) solution of an ordinary differential equations (ODEs) with polynomial right-hand side
[38], [23]. In this paper, we consider the refined version presented in [23].

We note that the original model of the GPAC presented in [38], [23] is not equivalent to
Turing machine based models. However, the original GPAC model performs computations
in real-time: at time t the output is f(t), which different from the notion used by Turing
machines. In [19] a new notion of computation for the GPAC, which uses “converging

Olivier Bournez, Daniel S. Graça, and Amaury Pouly XX:3

k k

A constant unit

+ u+ v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫
w =

∫
u dv

An integrator unit

u
v

Figure 1 Circuit presentation of the GPAC: a circuit built from basic units

−1 ×
∫ ∫

sin(t)


y′(t)= z(t)
z′(t)= −y(t)
y(0)= 0
z(0)= 1

⇒
{
y(t)= sin(t)
z(t)= cos(t)

t

Figure 2 Example of GPAC circuit: computing sine and cosine with two variables

computations” as done by Turing machines was introduced and it was shown in [5],[6] that
using this new notion of computation, the GPAC and computable analysis are two equivalent
models of computation at a computability level.

In that sense, our paper extends this latter result and proves that the GPAC and
computable analysis are two equivalent models of computation, both at the computability
and at the complexity level. We also provide as a side effect a robust way to measure time in
the GPAC, or more generally in computations performed by ordinary differential equations:
basically, by considering the length of the curve.

This paper is organized as follows. Section 2 gives our main definitions and results.
Section 3 discusses the related work and consequences of our results. Section 4 gives a very
high-level overview of the proof. It also contains more definitions and results so that the
reader can understand the big steps of the proof.

2 Our Results

We consider the following class of differential equations:

y(0) = y0 y′(t) = p(y(t)) (1)

where y : I → Rd for some interval I ⊂ R and where p is a vector of polynomials. Such
systems are sometimes called PIVP, for polynomial initial value problems [21]. Observe that
there is always a unique solution to the PIVP, which is analytic, defined on a maximum
interval of life I containing y0, which we refer to as “the solution”.

Our crucial and key idea is that, when using PIVPs to compute a function f , the
complexity should be measured as the length of the solution curve of the PIVP computing
the function f . We recall that the length of a curve y ∈ C1(I,Rn) defined over some interval
I = [a, b] is given by leny(a, b) =

∫
I
‖y′(t)‖ dt, where ‖y‖ refers to the infinite norm of y.

XX:4 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

We assume the reader familiar with the notion of polynomial time computable function
f : [a, b]→ R (see [40] for an introduction to computable analysis). We take R+ = [0,+∞[
and denote by RP the set of polynomial time computable reals. For any vector y, yi...j refers
to the vector (yi, yi+1, . . . , yj). For any sets X and Z, f :⊆ X → Z refers to any function
f : Y → Z where Y ⊆ X and dom f refers to the domain of definition of f .

I Remark (The space K of the coefficients). In this paper, the coefficients of all considered
polynomials will belong to K. Formally, K needs to a be generable field, as introduced in
[33]. However, without a significant loss of generality, the reader can consider that K = RP
which is the set of polynomial time computable real numbers. All the reader needs to know
about K is that it is a field and it is stable by generable functions (introduced in Section 4.2),
meaning that if α ∈ K and f is generable then f(α) ∈ K. It is shown in [33] that there
exists a small generable field RG lying somewhere between Q and RP , with expected strict
inequality on both sides.

Our main results (the class AP is defined in Definition 3, and the notion of language
recognized by a continuous system is given in Definition 4) are the following. Let us recall
that P(R) is the class of polynomial time computable real functions, as defined in [27].

I Theorem 1 (An implicit characterization of P(R)). Let a, b ∈ RP . A function f : [a, b]→ R
is computable in polynomial time iff its belongs to the class AP.

I Theorem 2 (An implicit characterization of P). A decision problem (language) L belongs to
class P if and only if it is analog-recognizable.

I Definition 3 (Complexity Class AP). We say that f :⊆ Rn → Rm is in AP if and only if
there exists a vector p of polynomials with d > m variables and a vector q of polynomials
with n variables, both with coefficients in K, and a bivariate polynomial Ω such that for any
x ∈ dom f , there exists (a unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x) and y′(t) = p(y(t)) I y satisfies a PIVP
for all µ ∈ R+, if leny(0, t) > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m converges

to f(x)
leny(0, t) > t I technical condition: the length grows at least linearly with time1

Intuitively, a function f belongs to AP if there is a PIVP that approximates f with a
polynomial length to reach a given level of approximation.

In definition 3, the PIVP was given its input x as part of the initial condition: this is
very natural because x was a real number. In the following, we will characterize languages
with differential equations. Since a language is made up of words, we need to discuss how to
represent (encode) a word with a real number. We fix a finite alphabet Γ = {0, .., k − 2} and
define the encoding2 ψ(w) =

(∑|w|
i=1 wik

−i, |w|
)
for a word w = w1w2 . . . w|w|.

I Definition 4 (Analog recognizability). A language L ⊆ Γ∗ is called analog-recognizable if
there exists a vector q of bivariate polynomials and a vector p of polynomials with d variables,

1 This is a technical condition required for the proof. This can be weakened, for example to
∥∥y′(t)∥∥ =

‖p(y(t))‖ > 1
poly(t) . The technical issue is that if the speed of the system becomes extremely small, it

might take an exponential time to reach a polynomial length, and we want to avoid such “unatural”
cases. This is satisfied by all examples of computations we know [39].

2 Other encodings may be used, however, two crucial properties are necessary: (i) ψ(w) must provide a
way to recover the length of the word, (ii) ‖ψ(w)‖ ≈ poly(|w|) in other words, the norm of the encoding
is roughly the size of the word.

Olivier Bournez, Daniel S. Graça, and Amaury Pouly XX:5

both with coefficients in K, and a polynomial Ω : R+ → R+, such that for all w ∈ Γ∗ there is
a (unique) y : R+ → Rd such that for all t ∈ R+:

y(0) = q(ψ(w)) and y′(t) = p(y(t)) I y satisfies a differential equation
if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I the decision is stable
if w ∈ L (resp. /∈ L) and leny(0, t) > Ω(|w|) then y1(t) > 1 (resp. 6 −1) I decision
leny(0, t) > t I technical condition

Intuitively this definition says that a language is analog-recognizable if there is a PIVP
such that, if the initial condition is set to be (the encoding of) some word w ∈ Γ∗, then by
using a portion of polynomial length of the curve, we are able to tell if this word should be
accepted or rejected, by watching to which region of the space the trajectory will go: the
value of y1 determines if the word has been accepted or not, or if the computation is still in
progress.

3 Discussion

Extensions: Our characterizations of the polynomial time can easily be extended to
characterizations of deterministic complexity classes above polynomial time. For example,
EXPTIME can be shown to correspond to the case where polynomial Ω is replaced by some
exponential function(see Appendix C.1).

I Theorem 5. Let a and b in RP . A function f : [a, b] → R is computable in exponential
time iff its belongs to the class f ∈ AEXP.

I Definition 6 (Definition of the complexity class AEXP for continuous systems). We say that
f :⊆ Rn → Rm is in AEXP if and only if there exists a vector p of polynomial functions
with d variables, a vector q of polynomial with n variables, both with coefficients in K, an
exponential function Ω : R2

+ → R+ such that for any x ∈ dom f , there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x) and y′(t) = p(y(t)) for all t > 0 I y satisfies a PIVP
for any µ ∈ R+, if leny(0, t) > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µI y1..m converges
‖y′(t)‖ > 1 I technical condition: The length grows at least linearly with time3

Applications to computational complexity: We believe these characterizations to really
open a new perspective on classical complexity, as we indeed provide a natural definition
(through previous definitions) of P for decision problems and of polynomial time for functions
over the reals using analysis only i.e. ordinary differential equations and polynomials, no
need to talk about any (discrete) machinery like Turing machines. This may open ways to
characterize other complexity classes like NP or PSPACE. In the current settings of course
NP can be viewed as an existential quantification over our definition(see Appendix C.2),
but we are obviously talking about “natural” characterizations, not involving unnatural
quantifiers (for e.g. a concept of analysis like ordinary differential inclusions).

As a side effect, we also establish that solving ordinary differential equations with
polynomial right-hand side leads to P- (or EXPTIME-)complete problems, when the length
of the solution curve is taken into account. In an less formal way, this is stating that ordinary
differential equations can be solved by following the solution curve (as most numerical analysis

3 This is a technical condition required for the proof. This can be weakened, for example to ‖p(y(t))‖ >
1

poly(t) . The technical issue is that the speed of the system becomes extremely small, it might take an
exponential time to reach a polynomial length, and we want to avoid such “unatural” cases.

XX:6 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

method do), but that for general (and even right-hand side polynomial) ODEs, no better
method can work, unless some famous complexity questions do not hold. Note that our
results only deal with ODEs with a polynomial right-hand side and that we do not know
what happens for ODEs with analytic right-hand sides over unbounded domains. There are
some results (see e.g. [31]) which show that ODEs with analytic right-hand sides can be
computed locally in polynomial time. However these results do not apply to our setting since
we need to compute the solution of ODEs over arbitrary large domains, and not only locally.
Applications to continuous-time analog models: PIVPs are known to correspond to
functions that can be generated by the GPAC of Claude Shannon [38].

Defining a robust (time) complexity notion for continuous time systems is a well known
open problem [9] with no generic solution provided to this day. In short, the difficulty is
that the naive idea of using the time variable of the ODE as measure of “time complexity”
is problematic, since time can be arbitrarily contracted in a continuous system due to the
“Zeno phenomena” (e.g. by using functions like arctan which contract the whole real line
into a bounded set). It follows that all computable languages can then be computed by a
continuous system in time O(1) (see e.g. [36], [37], [30], [7], [8], [1], [12], [15], [13], [14]).

With that respect, we solve this open problem by stating that the “time complexity”
should be measured by the length of the solution curve of the ODE. Doing so, we get a
robust notion of time complexity for PIVP systems. Indeed, the length is a geometric
property of the curve and is thus “invariant” by rescaling. Notice that this is not sufficient
to get robustness: the fact that we restrict to PIVP systems is crucial because more general
ODEs are usually hard to simulate (e.g. see [26]). This explains why all previous attempts
of a general complexity for general sytems failed in some sense [9]. Super-Turing “Zeno
phenomena” can still happen with general ODEs, but not with PIVPs.
Applications to algorithms: We also believe that transferring the notion of time com-
plexity to a simple consideration about length of curves allows for very elegant and nice
proofs of polynomiality of many methods for solving continuous but also discrete problems.
For example, the zero of a function f can easily be computed by considering the solution of
y′ = −f(y) under reasonable hypotheses on f . More interestingly, this may also covers many
interior-point methods or barrier methods where the problem can be transformed into the
optimization of some continuous function (see e.g. [25, 16, 3, 28]).
Related work is mainly discussed section by section, with sometimes more details provided
in Appendix B. We believe no purely continuous-time definition of P has ever been stated
before. One direction of our characterization is based on a polynomial time algorithm (in the
length of the curve) to solve PIVPs over unbounded time domains, such a result strengthens
all existings results on the complexity of solving ODEs over unbounded time domains. In the
converse direction, our proof requires a way to simulate a Turing machine using PIVP systems
with a polynomial length, a task whose difficulty is discussed below, and still something that
has never been done up to date.

Attempts to derive a complexity theory for continous-time systems include [18]. However,
the theory developped there is not intended to cover generic dynamical systems but only
specific systems that are related to Lyapunov theory for dynamical systems. The global
minimizers of particular energy functions are supposed to give solutions of the problem. The
structure of such energy functions leads to the introduction of problem classes U and NU ,
with the existence of complete problems for theses classes.

Another attempt is [2], also focussed on a very specific type of systems: dissipative flow
models. The proposed theory is nice but non-generic. This theory has been used in several
papers from the same authors to study a particular class of flow dynamics [3] for solving

Olivier Bournez, Daniel S. Graça, and Amaury Pouly XX:7

linear programming problems.
Both approaches are not at all intended to cover generic ODEs, and none of them is able

to relate the obtained classes to classical classes from computational complexity.
Up to our knowledge, the most up to date survey about continuous time computation are

[9, 29].
Relating computational complexity problems (like the P vs NP question) to problems of

analysis has already been the motivation of series of works. In particular, Félix Costa and
Jerzy Mycka have a series of work (see e.g. [32]) relating the P vs NP question to questions
in the context of real and complex analysis. Their approach is very different: they do so
at the price of a whole hierarchy of functions and operators over functions. In particular,
they can use multiple times an operator which solves ordinary differential equations before
defining an element of DAnalog e NAnalog (the counterparts of P and NP introduced in
their paper), while in our case we do not need the multiple application of this kind of operator:
we only need to use one application of such operator (i.e. we only need to solve one ordinary
differential equations with polynomial right-hand side).

We also mention that Friedman and Ko (see [27]) proved that polynomial time computable
functions are closed under maximization and integration if and only if some open problems
of computational complexity (like P = NP for the maximization case) hold (see also the
Appendix B for related work). The complexity of solving Lipschitz continuous ordinary
differential equation has been proved to be polynomial-space complete by Kawamura [26].

All the results of this paper are fully developped in the PhD thesis of Amaury Pouly
[33]. For self-completeness, most proofs are in appendix. Please refer to [33] for missing
details. Results mentioned in this paper have not yet been published, and are currently not
submitted4, with the exception of results on ODE solving (results of section 4.1) but in a
slightly different and extended framework), which were very recently accepted [34].

4 Overview of the proof

To show our main results (Theorem 1 and Theorem 2), we need to show two implications:
(i) if a function f : [a, b]→ R (resp. a language L) is polynomial time computable, then it
belongs to AP (resp. it is analog-recognizable) and (ii) if a function f : [a, b]→ R belongs to
AP (resp. a language L is analog-recognizable) then it is polynomial time computable (resp.
belongs to P).

The second implication (ii) is proved by computing the solution of a PIVP system using
some numerical algorithm. If a function f : [a, b]→ R in AP can be computed (up to some
given accuracy) by following the solution curve of its associated ODE up to a reasonable
(polynomial) amount of the length of the curve, the numerical simulation of its associated
ODE will use a reasonable (polynomial) amount of resources to simulate this bounded portion
of the solution curve. Hence the function f will be computed (up to some given accuracy, as
usual in Computable Analysis) by a Turing machine in polynomial time. A similar idea can
be used for showing the implication (ii) for P and analog-recognizable languages.

The idea sketched above gives the intuition of the proof but the usual ODE solving
algorithms cannot be used here since (1) they are only guaranteed to compute the solution of
an ODE with a given accuracy over a bounded time domain, but here we need to compute

4 Preliminary results were submitted in the past but not with the strength of the current statements.

XX:8 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

this solution over an unbounded time domain5 which introduce further complications and (2)
we need polynomial complexity in the length of the curve, which is not a classical measure of
complexity.

The first implication (i) is proved by simulating Turing machines with PIVPs and by
showing that these simulations can be performed by using a reasonable (polynomial) amount
of resources (length of the solution curve) if the Turing machine runs in polynomial time.

Some simulation of Turing machines with PIVPs was already performed e.g. in [6], [22].
Basically one has to simulate the behavior of a Turing machine with a continuous system.
This is problematic since Turing machines behave discretely (e.g. “if x happens then do
A, otherwise do B”) and one only has access to continuous (analytic) functions. This can
be solved by approximating discontinuous functions with continuous functions to obtain an
approximation of the transition function of the Turing machine. Then, by using special
techniques, one can iterate the new (now continuous) transition function to simulate the step-
by-step evolution of the Turing machine. Here we have one new difficult problem to tackle
(not covered in previous papers like [6] and [22]) because we must ensure that everything can
be done using only a reasonable (polynomial) amount of the length of the solution curve of
the PIVP. In particular, this constraint rules out particularly simple techniques like integer
encodings of the tape and error correction, as used in the previously mentioned papers.

At a high level, our proof relies on considerations about (polynomial length) ODE
programming: we prove that it is possible to “program” with polynomial length ODE systems
that keep some variable fixed, do assignement, iterate some functions, compute limits, etc.
We use those basic operations and basic functions with PIVPs (e.g. min,max, continuous
approximation of rounding, etc.) to create more complex functions and operations that
simulate the transition function of a given Turing machine and its iterations. To be sure that
the more complex functions still satisfy all the properties we want (e.g. that they belong to
AP), we prove several closure properties: in particular, we prove very strong and elegant
equivalent definitions of class AP.

For reasons of lack of space, we do not detail all these operators and functions, but
we sketch the proof of a few properties and some key ideas of our techniques. We use the
following notation: when p is a polynomial, Σp is the sum of the absolute values of its
coefficients and deg(p) its degree. If p is a vector of polynomials, we extend those notions by
taking the maximum for each component.

4.1 Polytime analog computability implies polytime computability
We start by sketching the proof of the “only if” direction of Theorem 2, and then of Theorem 1.
Recall that a real function is polynomial time computable if given arbitrary approximations
of the input, we can produce arbitrary approximations of the output in polynomial time. As
it is customary, we proceed in two steps. We first show that the function has a polynomial
modulus of continuity. This allows us to restrict the problem to rational inputs of controlled
size.

I Theorem 7 (Modulus of continuity, Appendix E.2). If f ∈ AP, then f admits a polynomial
modulus of continuity: there exists a polynomial f : R2

+ → R+ such that for all x, y ∈ dom f

and µ ∈ R+:

‖x− y‖ 6 e−f(‖x‖,µ) ⇒ ‖f(x)− f(y)‖ 6 e−µ.

5 Note that while f has domain of definition [a, b], from Definition 3 f is approximated by a PIVP whose
solution is defined over the unbounded time domain R

Olivier Bournez, Daniel S. Graça, and Amaury Pouly XX:9

We then show that the solution of a such a PIVP can be approximated in polynomial
time. For this, will need the following theorem to get the complexity of numerically solving
this PIVP. The idea of the proof is detailled below.

I Theorem 8 (Complexity of Solving PIVP[34]). If 6 y : R→ Rd satisfies for all t > 0.

y(0) = y0 y′(t) = p(y(t)). (2)

Then y(t) can be computed with precision 2−µ in time bounded by

poly(deg(p), leny(0, t), log ‖y0‖ , log Σp, µ)d. (3)

More precisely, there exists a Turing machineM such that for any oracle O representing7
(y0, p, t) and any µ ∈ N,

∥∥MO(µ)− PIVP(y0, p, t)
∥∥ 6 2−µ if y(t) exists, and the number of

steps of the machine is bounded by (3) for all such oracles.

General Idea: Assume that L is analog-recognizable in the sense of Definition 4, using
corresponding notations d, q, p,Ω. Let w ∈ Γ∗ and consider the following system: y(0) =
q(ψ(w)), y′(t) = p(y(t)). We show that we can decide in time polynomial in |w| whether
w ∈ L or not. Theorem 8 can be used to conclude that we can compute y(t)± e−µ in time
polynomial in log ‖q(ψ(w))‖ , µ and leny(0, t). Recall that ‖ψ(w)‖ = |w| and that the system
is guaranteed to give an answer as soon as leny(0, t) > Ω(|w|). This means that it is enough
to compute y(t∗), where t∗ satisfies leny(0, t∗) > Ω(|w|), with precision 1/2 to distinguish
between y1(t) > 1 and y1(t) 6 −1. Since leny(0, t) > t, thanks to the technical condition of
the definition, we know that we can find a t∗ 6 Ω(|w|). Note that leny(0,Ω(|w|)) might not
be polynomial in |w| so we cannot simply compute y(Ω(|w|)).

Fortunately, the proof of Theorem 8 provides us with an algorithm that solves the PIVP
by making small time steps, and at each step the length cannot increase by more than a
constant. This means that we can run algorithm to compute y(Ω(|w|)) and stop it as soon as
the length is greater than Ω(|w|). Let t∗ be the time at which the algorithm stops. Then the
running time of the algorithm will be polynomial in t∗, µ and leny(0, t∗) 6 Ω(|w|) +O (1).
Finally, thanks to the technical condition, t∗ 6 leny(0, t∗), this algorithm has running time
polynomial in |w|.

The proof of Theorem 1 (Appendix E.1) is established using the same principle based
on Theorem 8, observing in addition that functions in AP can easily be approximated by
considering only their value on rationals, since they have a polynomial modulus of continuity,
as shown by the following theorem.

It thus appears that the true remaining difficulty lies in proving Theorem 8. An important
point is that none of the classical methods for solving ordinary differential equations are
polynomial time over unbounded time domains. Indeed, no method of fixed order r is
polynomial in variable t over the whole domain R.8 For more information, we refer the reader
to [34].
I Remark. Observe that the solution of the following PIVP y′1 = y1, y

′
2 = y1y2, y

′
3 =

y2y3, . . . , y
′
n = yn−1yn is a tower of n exponentials. Its solution can be computed in

polynomial time over any fixed compact [a, b] [31]. However, the solution cannot be computed

6 The existence of a solution y up to a given time is undecidable [20] so we have to assume existence.
7 See [27] for more details. In short, the machine can ask arbitrary approximation of y0, p and t to the

oracle. The polynomial is represented by the finite list of coefficients.
8 This is why most studies restricts to a compact domain.

XX:10 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

in polynomial time over R, as just writing this value in binary cannot ever been done in
polynomial time. Hence, the solution of a PIVP cannot be computed in polynomial time,
over R, in the general case. A key feature of our method is that we are searching methods
polynomial in the length of the curve, which is not a classical framework.

4.2 Polytime computability implies polytime analog computability
The idea of the proof of the “if” directions is to simulate a Turing machine using a PIVP.
But this is far from trivial since we need to do it with a polynomial length.
About generable functions: The following concept can be attributed to [38]: a function
f : R → R is said to be a PIVP function if there exists a system of the form (1) with
f(t) = y1(t) for all t, where y1 denotes first component of the vector y defined in Rd. We
need in our proof to extend the concept to talk about (i) multivariable functions and (ii)
the growth of these functions. The following class and closure properties can be seen as
extensions of results from [21].

I Definition 9 (Polynomially bounded generable function). Let d, e ∈ N, I be an open and
connected subset of Rd and f : I → Re. We say that f ∈ GPVAL if and only if there exists a
polynomial sp : R→ R+, n > e, a n× d matrix p consisting of polynomials with coefficients
in K, x0 ∈ Kd, y0 ∈ Kn and y : I → Rn satisfying for all x ∈ I:

y(x0) = y0 and Jy(x) = p(y(x)) I y satisfies a differential equation9
f(x) = y1..e(x) I f is a component of y
‖y(x)‖ 6 sp(‖x‖) I y is polynomially bounded

I Lemma 10 (Closure properties of GPVAL, Appendix F.1). Let f :⊆ Rd → Rn ∈ GPVAL
and g :⊆ Re → Rm ∈ GPVAL. Then f + g, f − g, fg and f ◦ g are in GPVAL.

I Lemma 11 (Generable functions are closed under ODE, Appendix F.2). Let d ∈ N, J ⊆ R an
interval, f :⊆ Rd → Rd in GPVAL, t0 ∈ K ∩ J and y0 ∈ Kd ∩ dom f . Assume there exists
y : J → dom f , and a polynomial sp : R+ → R+ satisfying for all t ∈ J :

y(t0) = y0 y′(t) = f(y(t)) ‖y(t)‖ 6 sp(t)

Then y ∈ GPVAL and it is unique.

It follows that many polynomially bounded usual analytic10 functions are in the class
GPVAL. The inclusion GPVAL ⊂ AP holds for functions whose domain is simple enough11
(Appendix F.3). However, the inclusion GPVAL ⊂ AP is strict12, since functions like
the inverse of the Gamma function Γ(x) =

∫∞
0 tx−1e−tdt or Riemann’s Zeta function

ζ(x) =
∑∞
k=0

1
kx are not differentially algebraic [38] but belong to AP.

Robustness of AP: A very strong key argument of our proof is that the notion of comput-
ability given by Definition 3 is actually very robust and can be stated in many equivalent
ways. A key point is that the definition can be weakened and strengthened. The following
theorem shows that we weaken the definition without changing the class. Since it might not
be obvious to the reader, we emphasize that this notion is a priori weaker (thus AP is a
priori larger than AWP). Indeed, (i) the system accepts errors in the input (ii) the system

9 Jy denotes the Jacobian matrix of y.
10Functions from GPVAL are necessarily analytic, as solutions of an analytic ODE are analytic.
11For example star domains with a rational vantage point.
12Even with functions with star domains with a vantage point.

Olivier Bournez, Daniel S. Graça, and Amaury Pouly XX:11

does not even converge, but merely approximates the output, doing the best it can given the
input error.

I Theorem 12 (Weak Computability). AP = AWP where AWP corresponds to the class
of functions f :⊆ Rn → Rm such that there are some polynomials Ω : R2

+ → R+ and
Υ : R3

+ → R+, d ∈ N, p, q ∈ GPVAL, such that for any x ∈ dom f and µ ∈ R+, there exists
(a unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x, µ) and y′(t) = p(y(t)) I y satisfies a PIVP
if t > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m approximates f(x) within e−µ
‖y(t)‖ 6 Υ(‖x‖ , µ, t) I y(t) is polynomially bounded

The proof of Theorem 12, however, is quite involved: first p and q can be equivalently
assumed to be polynomials instead of functions in GPVAL above, from Lemma 11. Then
AP ⊂ AWP, follows from the fact that this is possible to rescale the system using the length
of the curve as a new variable to make sure it does not grow faster than a polynomial
time, we get what is needed (Appendix F.4). The other direction (AWP ⊂ AP) is really
harder: the first step is to transform a computation into a computation that tolerates small
perturbations of the dynamics (AWP ⊂ ARP, Appendix F.5). The second problem is to
avoid that the system explodes for inputs not in the domain of the function, or for too big
perturbation of the dynamics perturbations on inputs (ARP ⊂ ASP, Appendix F.6). As a
third step, we allow the system to have its inputs (input and precision) changed during the
computation and the system has a maximum delay to react to these changes (ASP ⊂ AXP,
Appendix F.7). Finally, as a fourth step, we add a mechanism that feeds the system with the
input and some precision. By continuously increasing the precision with time, we ensure that
the system will converge when the input is stable. The result of these 4 steps is the following
lemma, yielding a nice notion of online-computation (AXP ⊂ AOP, Appendix F.8). Equality
AP = AWP = AOP follows because time and length are related for polynomially bounded
systems. The notion of online computability is an example of a priori strengthening of our
notion of computation; yet it still corresponds to the same class of function. Intuitively,
a function is online computable if, on any (long enough) time interval where the input is
almost constant, the system converges (after some delay) the output of the function. Of
course, the output will have some error that is related to the input error (due to the input
not being exactly constant).

I Lemma 13 (Online computability). AWP ⊂ AOP, where AOP corresponds to the class of
functions f :⊆ Rn → Rm such that for polynomials Υ,Ω,Λ : R2

+ → R+, there exists δ > 0,
d ∈ N and p ∈ Kd[Rd × Rn] and y0 ∈ Kd such that for any x ∈ C0(R+,Rn), there exists (a
unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = y0 and y′(t) = p(y(t), x(t))
‖y(t)‖ 6 Υ

(
supu∈[t−δ,t] ‖x(u)‖ , t

)
For any I = [a, b], if there exists x̄ ∈ dom f and µ̄ > 0 such that for all t ∈ I, ‖x(t)− x̄‖ 6
e−Λ(‖x̄‖,µ̄) then ‖y1..m(u)− f(x̄)‖ 6 e−µ̄ whenever a+ Ω(‖x̄‖ , µ̄) 6 u 6 b.

ODE Programming: With the closure properties of AP, programming with (polynomial
length) ODE becomes a rather pleasant exercise, once the logic is understood. For ex-
ample, simulating the assignement y := g∞ corresponds to dynamics y(0) = y0, y′(t) =
reach(φ(t), y(t), g(t)) + E(t), for a fixed function reach ∈ GPVAL, tolerating bounded error
E(t) on dynamics, and g fluctuating around g∞ (Lemma 46, Appendix F.8). Other example:
from a AP system computing f , just adding the corresponding AOP-equations for g, yields a
PIVP computing g ◦f(Lemma 55, Appendix F.9), by feeding output of the system computing
f to the (online) input of g.

XX:12 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

Turing machines: Consider a Turing machineM = (Q,Σ, b, δ, q0, q∞). A (instantaneous)
configuration of M can be seen as a tuple c = (x, σ, y, q) where x ∈ Σ∗ is the part of the
tape at left of the head, y ∈ Σ∗ is the part at the right, σ ∈ Σ is the symbol under the head
and q ∈ Q the current state. Let CM be the set of configurations ofM, andM denotes the
function mapping a configuration to its next configuration. In order to simulate a machine,
we encode configurations with real numbers as follows. Recall that Γ = {0, 1, . . . , k − 2} and
let 〈c〉 = (0.x, σ, 0.y, q) ∈ Q× Σ×Q×Q where 0.x = x1k

−1 + x2k
−2 + · · ·+ x|x|k

−|x| ∈ Q
with x = x1x2 . . . x|x|.

I Theorem 14 (Robust Real Step, Appendix F.9). For any machineM, there is some function
〈M〉 ∈ AP such that for all c ∈ CM, µ ∈ R+ and c̄ ∈ R4, if ‖〈c〉 − c̄‖ 6 1

2k2 − e−µ then
‖〈M〉 (c̄, µ)− 〈M(c)〉‖ 6 k ‖〈c〉 − c̄‖.

The difficulty of the proof is that one step of Turing machine with our encoding naturally
involves computing the integer and fractional parts of a number. These operations are
discontinuous and thus cannot be done in AP in full generality. This is solved by proving
that a continuous and good enough “fractional part” like-function is in AP (and avoids
constructions from [21]).
Iterating Functions: A key point for proving the main result is to show that it is possible
to iterate a function using a PIVP under some specific hypotheses. The proof consists in
building by ODE programming an ordinary differential equation using three variables y, z
and w updating in a cycle to be repeated n times. At all time, y is an online component of
the system computing f(w). During the first stage of the cycle, w stays still and y converges
to f(w). During the second stage of the cycle, z copies y while w stays still. During the
last stage, w copies z thus effectively computing one iterate. This computes all the iterates
f(x), f [2](x), The crucial point of this process is the error estimation, to guarantee that
the system does not diverge, while keeping polynomial length. One of the key assumption
to ensure this is for f to admit a specific kind of modulus of continuity. The other key
assumption is an effective “openness” of the iteration domain.

I Theorem 15 (Closure by iteration, Appendix F.10). Let I ⊆ Rm, (f : I → Rm) ∈ AP,
η ∈ [0, 1/2[and assume that there exists a family of subsets In ⊆ I, for all n ∈ N and
polynomials f : R+ → R+ and Π : R2

+ → R+ such that:
for all n ∈ N, In+1 ⊆ In and f(In+1) ⊆ In
for all x ∈ In,

∥∥f [n](x)
∥∥ 6 Π(‖x‖ , n)

for all x ∈ In, y ∈ Rm, µ ∈ R+, if ‖x− y‖ 6 e−f(‖x‖)−µ then y ∈ I and ‖f(x)− f(y)‖ 6
e−µ.

Define f∗η (x, u) = f [n](x) for x ∈ In, u ∈ [n− η, n+ η] and n ∈ N. Then f∗η ∈ AP.

The iteration of the (transition) functions given by Theorem 14 leads to a way to emulate
any function computable in polynomial time.

At a high level, the “if” direction of Theorem 2 then follows. Indeed (Appendix F.11),
decidability can be seen as the computability of some particular function with boolean
output.

For the “if” direction of Theorem 1 (Appendix F.10), there are further nontrivial obstacles
to overcome. Given x ∈ [a, b] and µ ∈ N, we want to compute an approximation of f(x)±2−µ
and take the limit when µ→∞. To compute f , we will use a polynomial time computable
function g that computes f over rationals, and m a modulus of continuity. All we have
to do is simulate g with input x̃ and µ, where x̃ = x ± 2−m(µ) because we can only feed
the machine with a finite input of course. The remaining nontrivial part of the proof is

Olivier Bournez, Daniel S. Graça, and Amaury Pouly XX:13

how to obtain the encoding of x̃ from x and µ. Indeed, the encoding is a discrete quantity
whereas x is real number, so by a simple continuity argument, one can see that no such
function can exist. The trick is the following: from x and µ, we can compute two encodings
ψ1 and ψ2 such that at least one of them is valid, and we know which one it is. So we are
going to simulate g on both inputs and then select the result. Again, the select operation
cannot be done continuously unless we agree to “mix” both results, i.e. we will compute
αg(ψ1) + (1 − α)g(ψ2). The trick is to ensure that α = 1 or 0 when only one encoding is
valid, α ∈]0, 1[when both are valid (by “when” we mean with respect to x). This way, a
mixing of both will ensure continuity but in fact when both encodings are valid, the outputs
are nearly the same so we are still computing f . Obtaining such encodings ψ1 and ψ2 is also
nontrivial and requires more uses of the closure by iteration property.

References
1 Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Mike Paterson,

editor, Automata, Languages and Programming, 17th International Colloquium, ICALP90,
Warwick University, England, July 16-20, 1990, Proceedings, volume 443 of Lecture Notes
in Computer Science, pages 322–335. Springer, 1990.

2 A. Ben-Hur, H. T. Siegelmann, and S. Fishman. A theory of complexity for continuous
time systems. J. Complexity, 18(1):51–86, 2002.

3 Asa Ben-Hur, Joshua Feinberg, Shmuel Fishman, and Hava T. Siegelmann. Probabilistic
analysis of a differential equation for linear programming. Journal of Complexity, 19(4):474–
510, 2003.

4 L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer,
1998.

5 O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. The General Purpose Analog
Computer and Computable Analysis are two equivalent paradigms of analog computation.
In J.-Y. Cai, S. B. Cooper, and A. Li, editors, Theory and Applications of Models of
Computation TAMC’06, LNCS 3959, pages 631–643. Springer-Verlag, 2006.

6 O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. Polynomial differential
equations compute all real computable functions on computable compact intervals. J.
Complexity, 23(3):317–335, 2007.

7 Olivier Bournez. Some bounds on the computational power of piecewise constant derivative
systems (extended abstract). In ICALP, pages 143–153, 1997.

8 Olivier Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy.
Theoret. Comput. Sci., 210(1):21–71, 1999.

9 Olivier Bournez and Manuel L. Campagnolo. New Computational Paradigms. Changing
Conceptions of What is Computable, chapter A Survey on Continuous Time Computations,
pages 383–423. Springer-Verlag, New York, 2008.

10 Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves Marion. Implicit
complexity over an arbitrary structure: Sequential and parallel polynomial time. Journal
of Logic and Computation, 15(1):41–58, 2005.

11 V. Bush. The differential analyzer. A new machine for solving differential equations. J.
Franklin Inst., 212:447–488, 1931.

12 C. S. Calude and B. Pavlov. Coins, quantum measurements, and Turing’s barrier. Quantum
Information Processing, 1(1-2):107–127, April 2002.

13 B. Jack Copeland. Even Turing machines can compute uncomputable functions. In C.S.
Calude, J. Casti, and M.J. Dinneen, editors, Unconventional Models of Computations.
Springer-Verlag, 1998.

14 B. Jack Copeland. Accelerating Turing machines. Minds and Machines, 12:281–301, 2002.

XX:14 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

15 E. B. Davies. Building infinite machines. The British Journal for the Philosophy of Science,
52:671–682, 2001.

16 Leonid Faybusovich. Dynamical systems which solve optimization problems with linear
constraints. IMA Journal of Mathematical Control and Information, 8:135–149, 1991.

17 R. P. Feynman. Simulating physics with computers. Internat. J. Theoret. Phys.,
21(6/7):467–488, 1982.

18 Marco Gori and Klaus Meer. A step towards a complexity theory for analog systems.
Mathematical Logic Quarterly, 48(Suppl. 1):45–58, 2002.

19 D. S. Graça. Some recent developments on Shannon’s General Purpose Analog Computer.
Math. Log. Quart., 50(4-5):473–485, 2004.

20 D. S. Graça, J. Buescu, and M. L. Campagnolo. Boundedness of the domain of definition
is undecidable for polynomial ODEs. In R. Dillhage, T. Grubba, A. Sorbi, K. Weihrauch,
and N. Zhong, editors, 4th International Conference on Computability and Complexity in
Analysis (CCA 2007), volume 202 of Electron. Notes Theor. Comput. Sci., pages 49–57.
Elsevier, 2007.

21 D. S. Graça, J. Buescu, and M. L. Campagnolo. Computational bounds on polynomial
differential equations. Appl. Math. Comput., 215(4):1375–1385, 2009.

22 D. S. Graça, M. L. Campagnolo, and J. Buescu. Computability with polynomial differential
equations. Adv. Appl. Math., 40(3):330–349, 2008.

23 Daniel S. Graça and José Félix Costa. Analog computers and recursive functions over the
reals. Journal of Complexity, 19(5):644–664, 2003.

24 Erich Grädel and Klaus Meer. Descriptive complexity theory over the real numbers. In
Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing,
pages 315–324, Las Vegas, Nevada, 29May–1June 1995. ACM Press.

25 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311.
ACM, 1984.

26 A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space
complete. Computational Complexity, 19(2):305–332, 2010.

27 Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhaüser, Boston, 1991.

28 Masakazu Kojima, Nimrod Megiddo, Toshihito Noma, and Akiko Yoshise. A unified
approach to interior point algorithms for linear complementarity problems, volume 538.
Springer Science & Business Media, 1991.

29 Bruce J MacLennan. Analog computation. In Encyclopedia of complexity and systems
science, pages 271–294. Springer, 2009.

30 Cristopher Moore. Recursion theory on the reals and continuous-time computation. The-
oretical Computer Science, 162(1):23–44, 5 August 1996.

31 N. Müller and B. Moiske. Solving initial value problems in polynomial time. In Proc. 22
JAIIO - PANEL ’93, Part 2, pages 283–293, 1993.

32 J. Mycka and J. F. Costa. The p 6= np conjecture in the context of real and complex
analysis. J. Complexity, 22(2):287–303, 2006.

33 Amaury Pouly. Continuous models of computation: from computability to complexity. PhD
thesis, Ecole Polytechnique and Unidersidade Do Algarve, Defended on July 6, 2015. 2015.
https://pastel.archives-ouvertes.fr/tel-01223284.

34 Amaury Pouly and Daniel S. Graça. Computational complexity of solving polynomial
differential equations over unbounded domains. Theor. Comput. Sci., 626:67–82, 2016.

35 M. B. Pour-El. Abstract computability and its relations to the general purpose analog
computer. Trans. Amer. Math. Soc., 199:1–28, 1974.

Olivier Bournez, Daniel S. Graça, and Amaury Pouly XX:15

36 Keijo Ruohonen. Undecidability of event detection for ODEs. Journal of Information
Processing and Cybernetics, 29:101–113, 1993.

37 Keijo Ruohonen. Event detection for ODEs and nonrecursive hierarchies. In Proceedings
of the Colloquium in Honor of Arto Salomaa. Results and Trends in Theoretical Computer
Science (Graz, Austria, June 10-11, 1994), volume 812 of Lecture Notes in Computer
Science, pages 358–371. Springer-Verlag, Berlin, 1994.

38 C. E. Shannon. Mathematical theory of the differential analyser. Journal of Mathematics
and Physics MIT, 20:337–354, 1941.

39 Bernd Ulmann. Analog computing. Walter de Gruyter, 2013.
40 K. Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

XX:16 CONTENTS

A Table of Contents

Contents

1 Introduction 2

2 Our Results 3

3 Discussion 5

4 Overview of the proof 7
4.1 Polytime analog computability implies polytime computability 8
4.2 Polytime computability implies polytime analog computability 10

A Table of Contents 16

B Complements on Related Works 18

C Some Formal Statements About Facts Mentioned in the Discussion 18
C.1 A Characterization of EXPTIME . 18
C.2 A (Too simple) Characterization of NP . 19

D Notations 19

E Polytime analog computability implies polytime computability 23
E.1 Proof of Theorem 1 (AP implies P) . 23
E.2 Proof of Theorem 7 . 24

F Polytime computability implies polytime analog computability 24
F.1 Proof of Lemma 10 . 24
F.2 Proof of Lemma 11 . 25
F.3 Proof of GPVAL ⊂ AP under conditions on the domain 26
F.4 Proof that AP implies AWP . 27
F.5 Proof that AWP implies ARP . 28
F.6 Proof that ARP implies ASP . 30
F.7 Proof that ASP implies AXP . 34
F.8 Proof that AXP implies AOP . 38
F.9 Proof of Theorem 14 . 40

F.9.1 More on Turing Machines . 40
F.9.2 Polynomial interpolation . 40
F.9.3 Specific Functions and Operations . 41
F.9.4 On Encoding and Ideal Step Function 43
F.9.5 Proof of Theorem 14 . 43

F.10 Proof of Theorem 15 . 44
F.10.1 Some facts . 44
F.10.2 Computing limits . 45
F.10.3 Proof of Theorem 15 . 46

F.11 Proof of Theorem 2 . 49
F.11.1 FP iff emulable . 49
F.11.2 Proof of Theorem 2 . 51

F.12 Proof of Theorem 1 . 52

CONTENTS XX:17

F.12.1 FP iff emulable: extension to multiple inputs/outputs 52
F.12.2 Some facts . 54
F.12.3 Proof of Theorem 1 . 55

XX:18 CONTENTS

B Complements on Related Works

Attempts to derive a complexity theory for continous-time systems include [18]: However,
the theory developped there is not intended to cover generic dynamical systems but only
specific systems that are related to Lyapunov theory for dynamical systems: The global
minimizers of particular energy functions are supposed to give solutions of the problem. The
structure of such energy functions leads to the introduction of problem classes U and NU ,
with the existence of complete problems for theses classes.

Another attempt is [2], also focussed on a very specific type of systems: dissipative flow
models. The proposed theory is nice but non-generic. This theory has been used in several
papers from same authors to study a particular class of flow dynamics [3] for solving linear
programming problems.

Both approaches are not at all intended to cover generic ODEs, and none of them is able
to relate the obtained classes to classical classes from computational complexity.

Up to our knowledge, the most up to date survey about continuous time computation is
[9].

Relating computational complexity problems (like the P vs NP question) to problems of
analysis has already been the motivation of series of works: In particular, Felix Costa and
Jerzy Mycka have a series of work (see e.g. [32]) relating the P vs NP question to questions
in the context of real and complex analysis.

We give some arguments here, in case this is needed, to state that their approach is
very different: they do so at the price of a whole hierarchy of functions and operators over
functions. In particular, they can use multiple times an operator which solves ordinary
differential equations before defining an element of DAnalog e NAnalog (the counterparts
of P and NP introduced in their paper), while in our case we do not need the multiple
application of this kind of operator: we only need to use one application of such operator
(i.e. we only need to solve one ordinary differential equations with polynomial right-hand
side).

It its true that one can sometimes convert the multiple use of operators solving ordinary
differential equations into a single application [23], but this happens only in very specific
cases, which do not seem to include the classes DAnalog e NAnalog. In particular, the
application of nested continuous recursion (i.e. nested use of solving ordinary differential
equations) may be needed using their constructions, whereas we define P using only a simple
notion of acceptance and only one system of ordinary differential equations.

C Some Formal Statements About Facts Mentioned in the
Discussion

C.1 A Characterization of EXPTIME
I Theorem 16. Let a and b in RP . A function f : [a, b]→ R is computable in exponential
time iff its belongs to the class f ∈ AEXP.

I Theorem 17 (An implicit characterization of P). Let L be any decision problem (language).
L ∈ P if and only if L is exponential-length analog-recognizable.

I Definition 18 (Definition of the complexity class AEXP for continuous systems). We say
that f :⊆ Rn → Rm is in AEXP if and only if there exists a vector p of polynomial functions
with d variables, a vector q of polynomial with n variables, both with coefficients in K, an

CONTENTS XX:19

exponential function Ω : R2
+ → R+ such that for any x ∈ dom f , there exists (a unique)

y : R+ → Rd satisfying for all t ∈ R+:
y(0) = q(x) and y′(t) = p(y(t)) for all t > 0 I y satisfies a PIVP
for any µ ∈ R+, if leny(0, t) > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µI y1..m converges
‖y′(t)‖ > 1 I technical condition: The length grows at least linearly with time13

I Definition 19 (Discrete recognizability). A language L ⊆ Γ∗ is called exponential-length
analog-recognizable if there exists a vector q of polynomials with two variables, a vector p
of polynomials with d variables, both with coefficients in RP , and an exponential function
Ω : R+ → R+, such that for all w ∈ Γ∗ there is a (unique) y : R+ → Rd such that for all
t ∈ R+:

y(0) = q(ψ(w)) and y′(t) = p(y(t)) I y satisfies a differential equation
if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I the decision is stable
if w ∈ L (resp. /∈ L) and leny(0, t) > Ω(|w|) then y1(t) > 1 (resp. 6 −1) I decision
leny(0, t) > t I technical condition14

C.2 A (Too simple) Characterization of NP
Following the discussion page 5, here is a trivial way to get a characterization of NP.

I Definition 20 (Discrete NP-recognizability). A language L ⊆ Γ∗ is called NP-analog-
recognizable if there exists a vector q of polynomials in with two variables, a vector p of
polynomials with d variables, both with coefficients in RP , and a polynomial Ω : R+ → R+,
such that for all w ∈ Γ∗, for some s ∈ Γ∗ of size polynomial in |w|, there is a (unique)
y : R+ → Rd such that for all t ∈ R+,

y(0) = q(ψ(< w, s >)) and y′(t) = p(y(t)) I y satisfies a differential equation
if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I the decision is stable
if w ∈ L (resp. /∈ L) and leny(0, t) > Ω(|w|) then y1(t) > 1 (resp. 6 −1) I decision
leny(0, t) > t I technical condition15

I Theorem 21 (An implicit characterization of NP). Let L be any decision problem (language).
L ∈ NP if and only if L is NP-analog-recognizable.

Following the discussion page 5, the purpose would be to get something more “natural”,
not involving logic like quantifiers (for e.g. a concept of analysis like ordinary differential
inclusions instead of ordinary differential equations).

D Notations

Notations for sets
Concept Notation Comment

Real interval [a, b] {x ∈ R| a 6 x 6 b}

[a, b[{x ∈ R| a 6 x < b}

13This is a technical condition required for the proof. This can be weakened, for example to ‖p(y(t))‖ >
1

poly(t) . The technical issue is that the speed of the system becomes extremely small, it might take an
exponential time to reach a polynomial length, and we want to avoid such “unatural” cases.

14 Same remarks as above.
15 Same remarks as above.

XX:20 CONTENTS

Notations for sets
Concept Notation Comment

]a, b] {x ∈ R| a < x 6 b}

]a, b[{x ∈ R| a < x < b}

Line segment [x, y] {(1− α)x+ αy, α ∈ [0, 1]}

[x, y[{(1− α)x+ αy, α ∈ [0, 1[}

]x, y] {(1− α)x+ αy, α ∈]0, 1]}

]x, y[{(1− α)x+ αy, α ∈]0, 1[}

Integer interval Ja, bK {a, a+ 1, . . . , b}

Natural numbers N {0, 1, 2, . . .}

N∗ N \ {0}

Integers Z {. . . ,−2,−1, 0, 1, 2, . . .}

Rational numbers Q

Real numbers R

Non-negative numbers R+ R+ = [0,+∞[

Non-zero numbers R∗ R∗ = R \ {0}

Positive numbers R∗+ R∗+ =]0,+∞[

Set shifting x+ Y {x+ y, y ∈ Y }

Set addition X + Y {x+ y, x ∈ X, y ∈ Y }

Matrices Mn,m (K) Set of n×m matrices over field K

Mn (K) Shorthand for Mn,n (K)

Mn,m Set of n×m matrices over a field is deduced from the context

Polynomials K[X1, . . . , Xn] Ring of polynomials with variables X1, . . . , Xn and coefficients
in K

K[An] Polynomial functions with n variables, coefficients in K and
domain of definition An

Fractions K(X) Field of rational fractions with coefficients in K

Power set P(X) The set of all subsets of X

Domain of definition dom f If f : I → J then dom f = I

Cardinal #X Number of elements

Polynomial vector Kn[Ad] Polynomial in d variables with coefficients in Kn

K[Ad]n Isomorphic Kn[Ad]

Polynomial matrix Mn,m (K) [An] Polynomial in n variables with matrix coefficients

Mn,m (K[An]) Isomorphic Mn,m (K) [An]

Smooth functions Ck Partial derivatives of order k exist and are continuous

C∞ Partial derivatives exist at all orders

Complexity classes
Concept Notation Comment

Polynomial Time P Class of decidable languages

CONTENTS XX:21

Complexity classes
Concept Notation Comment

FP Class of computable functions

Polynomial time computable num-
bers

RP

Polynomial time computable real
functions

P (R)

Metric spaces and topology
Concept Notation Comment

p-norm ‖x‖p

(
n∑
i=1

|xi|p
) 1
p

Infinity norm ‖x‖ max(|x1|, . . . , |xn|)

Notations for polynomials
Concept Notation Comment

Univariate polynomial
d∑
i=0

aiX
i

Multi-index α (α1, . . . , αk) ∈ Nk

|α| α1 + · · ·+ αk

α! α1!α2! · · ·αk!

Multivariate polynomial
∑
|α|6d

aαX
α where Xα = Xα1

1 · · ·X
αk
k

Degree deg(P) Maximum degree of a monomial, Xα is of degree |α|, convention-
ally deg(0) = −∞

deg(P) max(deg(Pi)) if P = (P1, . . . , Pn)

deg(P) max(deg(Pij)) if P = (Pij)i∈J1,nK,j∈J1,mK

Sum of coefficients ΣP ΣP =
∑

α
|aα|

ΣP max(ΣP1, . . . ,ΣPn) if P = (P1, . . . , Pn)

ΣP max(ΣPij) if P = (Pij)i∈J1,nK,j∈J1,mK

A polynomial poly An unspecified polynomial

Miscellaneous functions
Concept Notation Comment

Sign function sgn(x) Conventionally sgn(0) = 0

Ceiling function dxe min{n ∈ Z |x 6 n}

Rounding function bxe argminn∈Z |n− x|, undefined for x = n+ 1
2

Integer part function int(x) max(0, bxc)

intn(x) min(n, int(x))

XX:22 CONTENTS

Miscellaneous functions
Concept Notation Comment

Fractional part function frac(x) x− intx

fracn(x) x− intn(x)

Composition operator f ◦ g (f ◦ g)(x) = f(g(x))

Identity function id id(x) = x

Indicator function 1X 1X(x) = 1 if x ∈ X and 1X(x) = 0 otherwise

nth iterate f [n] f [0] = id and f [n+1] = f [n] ◦ f

Calculus
Concept Notation Comment

Derivative f ′

nth derivative f (n) f (0) = f and f (n+1) = f (n)′

Partial derivative ∂if,
∂f
∂xi

with respect to the ith variable

Scalar product x · y
∑n

i=1 xiyi in Rn

Gradient ∇f(x) (∂1f(x), . . . , ∂nf(x))

Jacobian matrix Jf (x) (∂jfi(x))i∈J1,nK,j∈J1,mK

Taylor approximation Tna f(t)
n−1∑
k=0

f (k)(a)
k! (t− a)k

Big O notation f(x) = O (g(x)) ∃M,x0 ∈ R, |f(x)| 6M |g(x)| for all x > x0

Soft O notation f(x) = Õ (g(x)) Means f(x) = O
(
g(x) logk g(x)

)
for some k

Subvector xi..j (xi, xi+1, . . . , xj)

Matrix transpose MT

Past supremum supδf(t) supu∈[t,t−δ]∩R+ f(t)

Partial function f :⊆ X → Y dom f ⊆ X

Restriction f �I f �I (x) = f(x) for all x ∈ dom f ∩ I

Words
Concept Notation Comment

Alphabet Σ,Γ A finite set

Words Σ∗
⋃
n>0 Σn

Empty word λ

Letter wi ith letter, starting from one

Subword wi..j wiwi+1 · · ·wj
Length |w|

Repetition wk ww · · ·w︸ ︷︷ ︸
k times

CONTENTS XX:23

E Polytime analog computability implies polytime computability

E.1 Proof of Theorem 1 (AP implies P)
Let us introduce the following definition.

I Definition 22 (Analog computability). Let n,m ∈ N, f :⊆ Rn → Rm and Υ,Ω : R2
+ → R+.

We say that f is (Υ,Ω)-computable if and only if there exists d ∈ N, and p ∈ Kd[Rd], q ∈
Kd[Rn] such that for any x ∈ dom f , there exists (a unique) y : R+ → Rd satisfying

y(0) = q(x) and y′(t) = p(y(t)) for all t > 0 I y satisfies a PIVP
for all µ ∈ R+, if t > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m converges to f(x)
‖y(t)‖ 6 Υ(‖x‖ , t), for all t > 0 I y(t) is bounded

We denote by AC(Υ,Ω) the set of (Υ,Ω)-computable functions.

A function f ∈ AP must belong to AC(Υ,Ω) where Υ,Ω are polynomials which we can
assume to be increasing function. This follows from the fact that any system can be rescaled
using the length of the curve to make sure it does not grow faster than a polynomial. A
formal proof of this fact can be found in Appendix F.4 (the proof that AP implies AWP
implies exactly that).

Apply Definition 22 to get d, p and q. Apply Theorem 7 to f to get f and define:

m(n) = 1
ln 2f(max(|a|, |b]), n ln 2)

It follows from the definition that m is a modulus of continuity of f since for any n ∈ N and
x, y ∈ [a, b] such that |x− y| 6 2−m(n) we have:

|x− y| 6 2− 1
ln 2f(max(|a|,|b|),n ln 2) = e−f(max(|a|,|b|),n ln 2) 6 e−f(|x|,n ln 2)

Thus |f(x)− f(y)| 6 e−n ln 2 = 2−n. We will now see how to approximate f in polynomial
time. Let r ∈ Q and n ∈ N, we would like to compute f(r)± 2−n. By definition of f , there
exists a unique y : R+ → Rd such that for all t ∈ R+:

y(0) = q(r) y′(t) = p(y(t)

Furthermore, |y1(Ω(|r|, µ))−f(r)| 6 e−µ for any µ ∈ R+ and ‖y(t)‖ 6 Υ(|r|, t) for all t ∈ R+.
Note that the coefficients of p and q belongs to RP . One can compute a rational r′ such that
|y(t)− r′| 6 2−n in time:

poly(deg(p), leny(0, t), log ‖y(0)‖ , log Σp,− log 2−n)d

Recall that in this case, all the parameters d,Σp,deg(p) only depend on f and thus fixed and
that |r| is bounded by a constant. Thus these are all considered constants. So in particular,
we can compute r′ such that |y(Ω(|r|, (n+ 1) ln 2)− r′| 6 2−n−1 in time:

poly(leny(0,Ω(|r|, (n+ 1) ln 2)), log ‖q(r)‖ , (n+ 1) ln 2)

Note that |r| 6 max(|a|, |b|) and since a and b are constants and q is a polynomial, ‖q(r)‖ is
bounded by a constant. Furthermore,

leny(0,Ω(|r|, (n+ 1) ln 2)) =
∫

0Ω(|r|,(n+1) ln 2) max(1, ‖y(t)‖)deg(p)dt

6
∫

0Ω(|r|,(n+1) ln 2) poly(Υ(‖r‖ , t))dt

XX:24 CONTENTS

6 Ω(|r|, (n+ 1) ln 2) poly(Υ(|r|,Ω(|r|, (n+ 1) ln 2)))dt
6 poly(|r|, n) 6 poly(n)

Thus r′ can be computed in time:

poly(n)

Finally:

|f(r)− r′| 6 |f(r)− y(Ω(|r|, (n+ 1) ln 2))|+ |y(Ω(|r|, (n+ 1) ln 2))− r′|
6 e−(n+ 1) ln 2 + 2−n−1

6 2−n

This show that f is polytime computable.

E.2 Proof of Theorem 7

A way to get a short proof is to use Lemma 13: Let Ω, δ, d, p and y0 be corresponding to
the statement of Lemma 13. Without loss of generality, we assume Ω to be an increasing
function.

Let u, v ∈ dom f and µ ∈ R+. Assume that ‖u− v‖ 6 e−Λ(‖u‖+1,µ+ln 2) and consider the
following system:

y(0) = y0 y′(t) = p(y(t), u)

By definition, ‖y1..m(t)− f(u)‖ 6 e−µ−ln 2 for all t > Ω(‖u‖ , µ+ ln 2). For the same reason,
‖y1..m(t)− f(v)‖ 6 e−µ−ln 2 for all t > Ω(‖v‖ , µ+ln 2) because ‖u− v‖ 6 e−Λ(‖u‖+1,µ+ln2) 6
e−Λ(‖v‖,µ+ln 2). Apply both result to t = Ω(‖u‖ + 1, µ + ln 2) to get that ‖f(u)− f(v)‖ 6
2e−µ−ln 2.

F Polytime computability implies polytime analog computability

F.1 Proof of Lemma 10

I Remark (Uniqueness). The uniqueness of y in Definition 9 can be seen as follows: consider
x ∈ I and γ a smooth curve16 from x0 to x with values in I and consider z(t) = y(γ(t)) for
t ∈ [0, 1]. It can be seen that z′(t) = Jy(γ(t))γ′(t) = p(y(γ(t))γ′(t) = p(z(t))γ′(t), z(0) =
y(x0) = y0 and z(1) = y(x). The initial value problem z(0) = y0 and z′(t) = p(z(t))γ′(t)
satisfies the hypothesis of the Cauchy-Lipschitz theorem and as such admits a unique solution.
Since this IVP is independent of y, it shows that y(x) must be unique. Note that the existence
of y (and thus the domain of definition) is an hypothesis of the definition.

I Remark (Regularity). In the euclidean space Rn, Ck smoothness is equivalent to the
smoothness of the order k partial derivatives. Consequently, the equation Jy = p(y) on the
open set I immediately proves that y is C∞. As solutions of analytic ODE are analytic, y is
in fact real analytic.

16 see Remark F.1

CONTENTS XX:25

I Remark (Domain of definition). Definition 9 requires the domain of definition of f to be
connected, otherwise it would not make sense. Indeed, we can only define the value of f at
point u if there exists a path from x0 to u in the domain of f . It could seem, at first sight,
that the domain being “only” connected may be too weak to work with. This is not the
case, because in the euclidean space Rd, open connected subsets are always smoothly arc
connected, that is any two points can be connected using a smooth C1 (and even C∞) arc.
I Remark (Multidimensional output). The following is true: f :⊆ Rd → Rn is generable if and
only if each of its component is generable (i.e. fi is generable for all i).
I Remark (Definition consistency). Definition 9 for d = e = 1 corresponds to PIVP functions.

Lemma 10 follows clearly from the following more precise statement:

I Lemma 23 (Arithmetic on generable functions). Let d, e, n,m ∈ N, sp, sp : R → R+,
f :⊆ Rd → Rn ∈ GVAL and g :⊆ Re → Rm ∈ GVAL. Then:

f + g, f − g ∈ GVAL over dom f ∩ dom g if d = e and n = m

fg ∈ GVAL if d = e and n = m

f ◦ g ∈ GVAL if m = d and g(dom g) ⊆ dom f

Proof. We focus on the case of the composition, the other cases are very similar.
Apply Definition 9 to f and g to respectively get l, l̄ ∈ N, p ∈ Ml,d (K) [Rl], p̄ ∈

Ml̄,e (K) [Rl̄], x0 ∈ dom f ∩ Kd, x̄0 ∈ dom g ∩ Ke, y0 ∈ Kl, ȳ0 ∈ Kl̄, y : dom f → Rl and
ȳ : dom g → Rl̄. Define h = y ◦ g, then Jh = Jy(g)Jg = p(h)p̄1..m(ȳ) and h(x̄0) = y(ȳ0) ∈ Kl.
In other words (ȳ, h) satisfy:{

ȳ(x̄0)= y0 ∈ Kl̄

h(x̄0)= y(ȳ0) ∈ Kl

{
ȳ′= p̄(ȳ)
h′= p(h)p̄1..m(ȳ)

This shows that f◦g = z1..m ∈ GVAL. Furthermore, ‖(ȳ(x), h(x))‖ 6 max(‖ȳ(x)‖ , ‖y(g(x))‖) 6
max(sp(‖x‖), sp(‖g(x)‖)) 6 max(sp(‖x‖), sp(sp(‖x‖))). J

F.2 Proof of Lemma 11
Lemma 11 follows from the following more general statement:

I Theorem 24 (Generable ODE rewriting). Let d, n ∈ N, I ⊆ Rn, X ⊆ Rd, sp : R+ → R+
and (f : I × X → Rn) ∈ GVAL. Define sp = max(id, sp). Then there exists m ∈ N,
(g : I ×X → Rm) ∈ GVAL and p ∈ Km[Rm × Rd] such that for any interval J , t0 ∈ K ∩ J ,
y0 ∈ Kn ∩ J , y ∈ C1(J, I) and x ∈ C1(J,X), if y satisfies:{

y(t0)= y0

y′(t)= f(y(t), x(t))
∀t ∈ J

then there exists z ∈ C1(J,Rm) such that:{
z(t0)= g(y0, x(t0))
z′(t)= p(z(t), x′(t))

{
y(t)= z1..d(t)

‖z(t)‖6 sp(‖y(t), x(t)‖)
∀t ∈ J

Proof. Apply Definition 9 to f get m ∈ N, p ∈Mm,n+d (K) [Rm], f0 ∈ dom f ∩Kd, w0 ∈ Km
and w : dom f → Rm such that w(f0) = w0, Jw(v) = p(w(v)), ‖w(v)‖ 6 sp(‖v‖) and
w1..n(v) = f(v) for all v ∈ dom f . Define u(t) = w(y(t), x(t)), then:

u′(t) = Jw(y(t), x(t))(y′(t), x′(t))

XX:26 CONTENTS

= p(w(y(t), x(t)))(f(y(t), x(t)), x′(t))
= p(u(t))(u1..n(t), x′(t))
= q(u(t), x′(t))

where q ∈ Km[Rm+d] and u(t0) = w(y(t0)) = w(y0, x(t0)). Note that w itself is a generable
function and more precisely w ∈ GPVAL sp by definition. Finally, note that y′(t) = u1..d(t)
so that we get for all t ∈ J :{

y(t0)= y0

y′(t)= u1..d(t)

{
u(t0)= w(y0, x(t0))
u′(t)= q(u(t), x′(t))

Define z(t) = (y(t), u(t)), then z(t0) = (y0, w(y0, x(t0))) = g(y0, x(t0)) where y0 ∈ Kn and
w ∈ GVAL so g ∈ GVAL. And clearly z′(t) = r(z(t), x′(t)) where r ∈ Kn+m[Rn+m]. Finally,
‖z(t)‖ = ‖y(t), w(y(t), x(t))‖ 6 max(‖y(t)‖ , sp(‖y(t), x(t)‖)) 6 sp(‖y(t), x(t)‖). J

F.3 Proof of GPVAL ⊂ AP under conditions on the domain
Generable functions are continuous and continuously differentiable, so locally Lipschitz
continuous. We can give a precise expression for the modulus of continuity in the case where
the domain of definition is simple enough.

I Lemma 25 (Modulus of continuity). Let sp : R+ → R+, f ∈ GVAL. There exists
q ∈ K[R] such that for any x1, x2 ∈ dom f , if [x1, x2] ⊆ dom f then ‖f(x1)− f(x2)‖ 6
‖x1 − x2‖ q(sp(max(‖x1‖ , ‖x2‖))). In particular, if f ∈ GPVAL then there exists q ∈ K[R]
such that if [x1, x2] ⊆ dom f then ‖f(x1)− f(x2)‖ 6 ‖x1 − x2‖ q(max(‖x1‖ , ‖x2‖)).

The following can be established: See [33].

I Lemma 26 (Generable field stability, [33]). Let (f :⊆ Rd → Re) ∈ GVAL, then f(Kd ∩
dom f) ⊆ Ke.

We can go to the proof of GPVAL ⊂ AP under conditions on the domain:

I Definition 27 (Star domain). A set X ⊆ Rn is called a star domain if there exists x0 ∈ X
such that for all x ∈ U the line segment from x0 to x is in X, i.e [x0, x] ⊆ X. Such an x0 is
called a vantage point.

I Theorem 28 (GPVAL ⊆ AP over star domains). If f ∈ GPVAL has a star domain with a
vantage point with coordinates in RP then f ∈ AP.

Proof. Let (f :⊆ Rn → Rm) ∈ GPVAL and z0 ∈ dom f ∩ Kn a generable vantage point.
Apply Definition 9 to get d, p, x0, y0 and y. Since y is generable and z0 ∈ Kd, apply Lemma 26
to get that y(z0) ∈ Kd. Let x ∈ dom f and consider the following system:

x(0)= x

γ(0)= x0

z(0)= y(z0)


x′(t)= 0
γ′(t)= x(t)− γ(t)
z′(t)= p(z(t))(x(t)− γ(t))

First note that x(t) is constant and check that γ(t) = x+ (x0−x)e−t and note that γ(R+) ⊆
[x0, x] ⊆ dom f because it is a star domain. Thus z(t) = y(γ(t)) since γ′(t) = x(t) − γ(t)
and Jy = p. It follows that ‖f(x)− z1..m(t)‖ = ‖f(x)− f(γ(t))‖ since z1..m = f . Apply
Lemma 25 to f to get q, and since ‖γ(t)‖ 6 ‖x0, x‖ we have:

‖f(x)− z1..m(t)‖ 6 ‖x− x0‖ e−tq(‖x0, x‖) 6 e−t poly(‖x‖)

CONTENTS XX:27

Finally, ‖z(t)‖ 6 poly(‖x‖) because ‖z(t)‖ is polynomially bounded. This implies that the
length of the curve is also polynomially bounded.

As a final remark, one can observe that the issue of the domain is in fact reduced to the
problem of building γ. In the case of a star domain, this is trivial. In the general case, one
would need to show that there is a “generic” such γ that given a point x goes from x0 to x
and stays in the domain of f . J

F.4 Proof that AP implies AWP
We start by a remark:

I Lemma 29 (Norm function, [33]). There is a family of function norm∞,δ ∈ GPVAL such
that: For any x ∈ Rn and δ ∈]0, 1] we have:

‖x‖ 6 norm∞,δ(x) 6 ‖x‖ + δ.

To prove AP ⊂ AWP, the kea idea is to rescale the system using the length of the curve
to make sure it does not grow faster than a polynomial. This is then ensured by the technical
condition.

More precisely:
Let f ∈ ALP. Apply Definition 3 to get Ω, d, p, q. Also assume that polynomial Ω is an

increasing function. Let k = deg(p). Apply Lemma 29 to get that g(x) = norm∞,1(p(x))
belongs to GPVAL. Apply Definition 9 to get corresponding m, r, x0 and z0. Let x ∈ dom f .
For the analysis, it will useful to consider the following systems:{

y(0)= q(x)
z(x0)= z0

{
y′(t)= p(y(t))
Jz(x)= r(z(x))

Note that by definition z1(x) = g(x). Define ψ(t) = g(y(t)) and ψ̂(u) =
∫ u

0 ψ(t)dt. Now
define the following system:

ŷ(0)= q(x)
ẑ(0)= z(q(x))
ŵ(0)= 1

g(q(x))


ŷ′(u)= ŵ(u)p(ŷ(u))
ẑ′(u)= ŵ(u)r(ẑ(u))p(ŷ(u))
ŵ′(u)= −ŵ(u)3r1(ẑ(u))p(ŷ(u))

where by r1 we mean the first line of r. We will check that ŷ(u) = y(ψ̂−1(u)), ẑ(u) = z(ŷ(u))
and ŵ(u) = (ψ̂−1)′(u). We will use the fact that for any h ∈ C1, (g−1)′ = 1

g′◦g−1 . Also note
that ψ̂′ = ψ.

ŷ(0) = y(ψ̂−1(0)) = y(0) = q(x)
ŷ′(u) = (ψ̂−1)′(u)y′(ψ̂−1(u)) = ŵ(u)p(y(ψ̂−1(u))) = ŵ(u)p(ŷ(u))
ẑ(0) = z(ŷ(0)) = z(q(x))
ẑ′(u) = Jz(ŷ(u))ŷ′(u) = ŵ(u)r(z(ŷ(u)))p(ŷ(u)) = ŵ(u)r(ẑ(u))p(ŷ(u))
ŵ(0) = 1

ψ̂′(ψ̂−1(0)) = 1
ψ(0) = 1

g(q(x))

ŵ′(u) = −(ψ̂−1)′(u)ψ̂′′(ψ̂−1(u))
(ψ̂′(ψ̂−1(u)))2 = −ŵ(u)3ψ′(ψ̂−1(u)) = ∇g(y(ψ̂−1(u))) · y′(ψ̂−1) and since

∇g(x) = r1(z(x))T (transpose of the first line of the jaocibian matrix of z because g = z1)
then ŵ′(u) = −ŵ(u)3r1(z(y(ψ̂−1(u))))

T
· p(y(ψ̂−1(u))) = −ŵ(u)3r1(ẑ(u))p(ŷ(u))

We now claim that this system computes f quickly and has polynomial bound. First note
that by Lemma 29, ‖y′(t)‖ 6 g(y(t)) 6 ‖y′(t)‖ + 1 thus leny(0, t) 6 ψ̂(t) 6 leny(0, t) + t.
Thus

XX:28 CONTENTS

lenŷ(0, u) =
∫ u

0
‖ŷ′(ξ)‖ dξ =

∫ ψ̂−1(u)

0

∥∥∥ŵ(ψ̂(t))p(ŷ(ψ̂(t)))
∥∥∥ ψ̂′(t)dt

=
∫ ψ̂−1(u)

0

∥∥∥(ψ̂−1)′(ψ̂(t))ψ̂′(t)p(y(t))
∥∥∥ dt =

∫ ψ̂−1(u)

0
‖p(y(t))‖ dt = leny(0, ψ̂−1(u)) 6 ψ̂(ψ̂−1(u)) 6 u.

(4)

It follows that ‖ŷ(u)‖ 6 ‖ŷ(0)‖ + u 6 ‖q(x)‖ + u 6 poly(‖x‖ , u). Similarly, ‖ẑ(u)‖ =
‖z(ŷ(u))‖ 6 poly(‖x‖ , u) because z ∈ GPVAL and thus is polynomially bounded. Finally,
‖ŵ‖ = 1

ψ(ψ̂−1(u) = 1
g(ŷ(u)) 6

1
‖y′(ψ̂−1(u))‖ 6 1 because by hypothesis, ‖y′(t)‖ > 1 for all

t ∈ R+. This shows that indeed ‖(ŷ, ẑ, ŵ)(u)‖ is polynomially bounded in ‖x‖ and u.
Now let µ ∈ R+ and t > 1 + Ω(‖x‖ , µ) then lenŷ(0, t) = leny(0, ψ̂−1(t)) > ψ̂(ψ̂−1(t)) −
ψ̂−1(t) > t − ψ̂−1(t) > 1 + Ω(‖x‖ , µ) − 1

ψ(ψ̂−1(t)) > Ω(‖x‖ , µ) because, as we already saw,∥∥∥ψ(ψ̂−1(t))
∥∥∥ > 1. Thus by definition, ‖ŷ1..m(t)− f(x)‖ 6 e−µ because ŷ(t) = y(ψ̂−1(t)).

This shows that f ∈ AWP.

F.5 Proof that AWP implies ARP
The purpose is to state that one can tolerate small errors on the dynamic.

Formally:

I Theorem 30 (Weak ⊆ robust). AWP ⊆ ARP.

where

I Definition 31 (Analog robust computability). Let n,m ∈ N, f :⊆ Rn → Rm, Θ,Ω : R2
+ →

R+ and Υ : R3
+ → R+. We say that f is (Υ,Ω,Θ)-robustly-computable if and only if there

exists d ∈ N, and (h : Rd → Rd), (g : Rn×R+ → Rd) ∈ GPVAL such that for any x ∈ dom f ,
µ ∈ R+, e0 ∈ Rd and e ∈ C0(R+,Rd) satisfying ‖e0‖ +

∫∞
0 ‖e(t)‖ dt 6 e−Θ(‖x‖,µ), there

exists (a unique) y : R+ → Rd satisfying for all t ∈ R+:
y(0) = g(x, µ) + e0 and y′(t) = h(y(t)) + e(t) I y satisfies a generable IVP
if t > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m converges to f(x)
‖y(t)‖ 6 Υ(‖x‖ , µ, t) I y(t) is bounded

We denote by AR(Υ,Ω,Θ) the set of (Υ,Ω,Θ)-robustly-computable functions, and by ARP
the set of (poly, poly, poly)-robustly-computable functions.

The following Lemma can be proved: See [33] for its motivation, and for an explanation
of the proof of the next theorem on simple cases.

I Lemma 32 (PIVP Slow-Stop,[33]). Let d ∈ N, y0 ∈ Rd, T, θ ∈ R+, (e0,y, e0,A) ∈ Rd+1,
(ey, eA) ∈ C0(R+,Rd+1) and p ∈ Kd[Rd]. Assume that ‖e0‖ +

∫∞
0 ‖e(t)‖ dt 6 e−θ and

consider the following system:{
y(0)= y0 + e0,y

A(0)= T + 2 + e0,A

{
y′(t)= 1+tanh(A(t))

2 p(y(t)) + ey(t)
A′(t)= −1 + eA(t)

Then there exists an increasing function ψ ∈ C0(R+,R+) and z : ψ(R+)→ Rd such that:

ψ(0) = 0 z(0) = y0 + e0,y z′(t) = p(z(t)) + (ψ−1)′(t)ey(ψ−1(t))

and y(t) = z(ψ(t)). Furthermore ψ(T +1) > T and ψ(t) 6 T +4 for all t ∈ R+. Furthermore,
|A(t)| 6 T + 3 for all t ∈ R+.

CONTENTS XX:29

We will also need the following small theorem about PIVP.

I Theorem 33 (Parameter dependency of PIVP,[34]). Let I = [a, b], p ∈ Rn[Rn+d], k = deg(p),
e ∈ C0(I,Rd), x, δ ∈ C0(I,Rn) and y0, z0 ∈ Rd. Assume that y, z : I → Rd satisfy:{

y(a)= y0

y′(t)= p(y(t), x(t))

{
z(a)= z0

z′(t)= e(t) + p(z(t), x(t) + δ(t))
t ∈ I

Assume that there exists ε > 0 such that for all t ∈ I,

µ(t) :=
(
‖z0 − y0‖ +

∫ t

a

‖e(u)‖ + kΣpMk−1(u) ‖δ(u)‖ du
)

exp
(
kΣp

∫ t

a

Mk−1(u)du
)
< ε

where M(t) = ε+ ‖y(t)‖ + ‖x(t)‖ + ‖δ(t)‖. Then for all t ∈ I,

‖z(t)− y(t)‖ 6 µ(t)

Recall:

I Definition 34 (Analog weak computability). Let n,m ∈ N, f :⊆ Rn → Rm, Ω : R2
+ → R+

and Υ : R3
+ → R+. We say that f is (Υ,Ω)-weakly-computable if and only if there exists

d ∈ N, p ∈ Kd[Rd], q ∈ Kd[Rn+1] such that for any x ∈ dom f and µ ∈ R+, there exists (a
unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x, µ) and y′(t) = p(y(t)) I y satisfies a PIVP
if t > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m converges to f(x)
‖y(t)‖ 6 Υ(‖x‖ , µ, t) I y(t) is bounded

We denote by AW(Υ,Ω) the set of (Υ,Ω)-weakly-computable functions.

The proof of Theorem 30 is then the following.

Proof. Let Υ∗,Ω∗ be polynomials such that f ∈ AW(Υ∗,Ω∗). Without loss of generality, we
assume they are increasing functions of both arguments. Apply Definition 34 to get d ∈ N,
p ∈ Kd[Rd], q ∈ Kd[Rn+1] and let k = deg(p). Define:

T (α, µ) = Ω∗(α, µ+ ln 2)
Θ(α, µ) = kΣp(T (α+ 1, µ) + 4)(Υ∗(α, µ, T (α+ 1, µ) + 4) + 1)k−1 + µ+ ln 2
Ω(α, µ) = T (α+ 1, µ) + 1

Let x ∈ dom f , (e0,y, e0,A) ∈ Rd+1, (ey, eA) ∈ C0(R+,Rd+1) and µ ∈ R+ such that ‖e0‖ +∫∞
0 ‖e(t)‖ dt 6 e

−Θ(‖x‖,µ). Apply Lemma 32 and consider the following systems (where ψ is
given by the lemma):{

y(0)= q(x, µ) + e0,y

A(0)= T (norm∞,1(x), µ) + 2 + e0,A

{
y′(t)= 1+tanh(A(t))

2 p(y(t)) + ey(t)
A′(t)= −1 + eA(t)

{
z(0)= q(x, µ) + e0,y

z′(t)= p(z(t)) + (ψ−1)′(t)ey(ψ−1(t))

{
w(0)= q(x, µ)
w′(t)= p(w(t))

By definition of p and q, if t > Ω∗(‖x‖ , µ) then ‖w1..m(t)− f(x)‖ 6 e−µ. Furthermore,
‖w(t)‖ 6 Υ∗(‖x‖ , µ, t) for all t ∈ R+. Define T ∗ = T (norm∞,1(x), µ). Apply Lemma 29

XX:30 CONTENTS

to get that ‖x‖ 6 norm∞,1(x) 6 ‖x‖ + 1 and thus T (‖x‖ , µ) 6 T ∗ 6 T (‖x‖ + 1, µ). By
construction, ψ(t) 6 T ∗ + 4 for all t ∈ R+. Let t ∈ R+, apply Theorem 33 by checking that:(

‖e0,y‖ +
∫ ψ(t)

0

∥∥(ψ−1)′(u)ey(ψ−1(u))du
∥∥) ekΣp

∫ ψ(t)

0
(‖w(u)‖+1)k−1du

6

(
‖e0,y‖ +

∫ t

0
‖ey(u)‖ du

)
e
kΣp
∫ ψ(t)

0
(Υ∗(‖x‖,µ,u)+1)k−1du by a change of variable

6 ekΣpψ(t)(Υ∗(‖x‖,µ,ψ(t))+1)k−1−Θ(‖x‖,µ) by hypothesis on the error

6 ekΣp(T (‖x‖+1,µ)+4)(Υ∗(‖x‖,µ,T (‖x‖+1,µ)+4)+1)k−1−Θ(‖x‖,µ) because ψ is bounded
6 e−µ−ln 2 6 1 by definition of Θ

Thus ‖z(ψ(t))− w(ψ(t))‖ 6 e−µ−ln 2 for all t ∈ R+. Furthermore, if t > Ω(‖x‖ , µ) then
ψ(t) > ψ(T (‖x‖ + 1, µ) + 1) > ψ(T ∗ + 1) > T ∗. By construction ψ(T ∗) > T ∗ so ψ(t) >
T ∗ > T (‖x‖ , µ) = Ω∗(‖x‖ , µ + ln 2) thus ‖z(ψ(t))− f(x)‖ 6 e−µ−ln 2. Consequently,
‖y(t)− f(x)‖ 6 ‖z(ψ(t))− w(ψ(t))‖ + ‖w(ψ(t))− f(x)‖ 6 2e−µ−ln 2 6 e−µ.

Let t ∈ R+, then ‖y(t)‖ = ‖z(ψ(t))‖ 6 ‖w(ψ(t))‖ + e−µ 6 Υ∗(‖x‖ , µ, ψ(t)) + 1 6
Υ∗(‖x‖ , µ, T (‖x‖ + 1, µ) + 4) + 1 6 Υ∗(‖x‖ , µ,Ω∗(‖x‖ + 1, µ + ln 2) + 4) + 1 which is
polynomially bounded in ‖x‖ and µ. Furthermore |A(t)| 6 T ∗+ 4 6 Ω∗(‖x‖+ 1, µ+ ln 2) + 4
which are both polynomially bounded in ‖x‖, µ.

Finally, (y,A)(0) = g(x, µ) + e0 and (y,A)′(t) = h(y(t), A(t)) + e(t) where g and h belong
to GPVAL because tanh, norm∞,1 ∈ GPVAL. J

I Remark (Polynomial versus generable). The proof of Theorem 30 also works if q is generable
(i.e. q ∈ GPVAL) instead of polynomial in Definition 22 or Definiinition 34.

F.6 Proof that ARP implies ASP
The purpose is to state that one can tolerate small errors on the dynamic + on inputs.

Formally:

I Theorem 35 (Robust ⊆ strong). ARP ⊆ ASP.

where

I Definition 36 (Analog strong computability). Let n,m ∈ N, f :⊆ Rn → Rm, Θ,Ω : R2
+ →

R+ and Υ : R4
+ → R+. We say that f is (Υ,Ω,Θ)-strongly-computable if and only if there

exists d ∈ N, and (h : Rd → Rd), (g : Rn × R+ → Rd) ∈ GPVAL such that for any x ∈ Rn,
µ ∈ R+, e0 ∈ Rd and e ∈ C0(R+,Rd), there is exists (a unique) y : R+ → Rd satisfying for
all t ∈ R+ and ê(t) = ‖e0‖ +

∫ t
0 ‖e(u)‖ du:

y(0) = g(x, µ) + e0 and y′(t) = h(y(t)) + e(t) I y satisfies a generable IVP
if x ∈ dom f , t > Ω(‖x‖ , µ) and ê(t) 6 e−Θ(‖x‖,µ) then ‖y1..m(t)− f(x)‖ 6 e−µ
‖y(t)‖ 6 Υ(‖x‖ , µ, ê(t), t) I y(t) is bounded

We denote by AS(Υ,Ω,Θ) the set of (Υ,Ω,Θ)-strongly-computable functions, and by ASP
the set of (poly, poly, poly)-strongly-computable functions.

The following Lemma can be proved by providing explicitely such a function:

I Lemma 37 (Max function, [33]). There is a family of functions mxδ ∈ GPVAL such that:
For any x, y ∈ R and δ ∈]0, 1] we have:

max(x, y) 6 mxδ(x, y) 6 max(x, y) + δ

CONTENTS XX:31

For any x ∈ Rn and δ ∈]0, 1] we have:

max(x1, . . . , xn) 6 mxδ(x) 6 max(x1, . . . , xn) + δ

The following lemmas can also be established:

I Lemma 38 (Bounds on tanh, [33]). 1− sgn(t) tanh(t) 6 e−|t| for all t ∈ R.

I Lemma 39 (Perturbed time-scaling). Let d ∈ N, x0 ∈ Rd, p ∈ Rd[Rd], e ∈ C0(R+,Rd) and
φ ∈ C0(R+,R+). Let ψ(t) =

∫ t
0 φ(u)du. Assume that ψ is an increasing function and that

y, z : R+ → Rd satisfy for all t ∈ R+:{
y(0)= x0

y′(t)= p(y(t)) + (ψ−1)′(t)e(ψ−1(t))

{
z(0)= x0

z′(t)= φ(t)p(z(t)) + e(t)

Then z(t) = y (ψ(t)) for all t ∈ R+. In particular,
∫ ψ(t)

0
∥∥(ψ−1)′(u)e(ψ−1(u))

∥∥ du =∫ t
0 ‖e(u)‖ du and supu∈[0,ψ(t)]

∥∥(ψ−1)′(u)e(ψ−1(u))
∥∥ = supu∈[0,t]

‖e(u)‖
φ(u) .

Proof. Use that φ = ψ′, ψ′ · (ψ−1)′ ◦ ψ = 1 and that ψ′ > 0. J

On a more technical side, we will need to “apply” Definition 31 over finite intervals and
we need the following lemma to do so.

I Lemma 40 (Finite time robustness). Let f ∈ AR(Υ,Ω,Θ), I = [0, T], x ∈ dom f , µ ∈ R+,
e0 ∈ Rd and e ∈ C0(I,Rd) such that ‖e0‖+

∫
I
‖e(t)‖ dt < e−Θ(‖x‖,µ). Assume that y : I → Rd

satisfies for all t ∈ I:

y(0) = g(x, µ) + e0 y′(t) = h(y(t)) + e(t)

where g, h come from Definition 31 applied to f . Then for all t ∈ I:
‖y(t)‖ 6 Υ(‖x‖ , µ, t)
if t > Ω(‖x‖ , µ) then ‖y1..m − f(x)‖ 6 e−µ

Proof. The trick is simply to extend e so that it is defined over R+ and such that:

‖e0‖ +
∫ ∞

0
‖e(u)‖ du 6 e−Θ(‖x‖,µ)

This is always possible because the truncated integral is stricer smaller than the bound.
Formally, define for t ∈ R+:

ē(t) =
{
e(t) if t 6 T
e(T)e

e(T)
ε (T−t) otherwise

where ε = e−Θ(‖x‖,µ) − ‖e0‖ −
∫
I

‖e(t)‖ > 0

One easily checks that ē ∈ C0(R+,Rd) and that:

‖e0‖ +
∫ ∞

0
‖ē(t)‖ dt = ‖e0‖ +

∫ T

0
‖e(t)‖ dt+

∫ ∞
T

e(T)e
e(T)
ε (T−t)dt

= e−Θ(‖x‖,µ) − ε+
[
−εe(T)e

e(T)
ε (T−t)

]∞
T

= e−Θ(‖x‖,µ)

Assume that z : R+ → Rd satisfies for t ∈ R+:

z(0) = g(x, µ) z′(t) = g(z(t)) + ē(t)

Then z satisfies Definition 31 so ‖z‖ (t) 6 Υ(‖x‖ , µ) and if t > Ω(‖x‖ , µ) then ‖z1..m(t)− f(x)‖ 6
e−µ. Conclude by noting that z(t) = y(t) for all t ∈ [0, T] since e(t) = ē(t). J

XX:32 CONTENTS

The proof of Theorem 35 is then the following.

Proof. Let Ω,Θ,Υ be polynomials and (f :⊆ Rn → Rm) ∈ AR(Υ,Ω,Θ). Without loss
of generality, we assume that Ω, Θ, Υ are increasing functions of their arguments. Apply
Definition 31 to get d, h and g. Let x ∈ Rn, µ ∈ R+, (e0,y, e0,`) ∈ Rd+1 and (ey, e`) ∈
C0(R+,Rd+1). Define ê(t) = ‖e0‖ +

∫ t
0 ‖e(u)‖ du, and consider the following system for

t ∈ R+:
y(0)= g(x, µ) + e0,y

y′(t)= ψ(t)h(y(t)) + ey(t)
`(0)= mx1(norm∞,1(x), µ) + 1 + e0,`

`′(t)= 1 + e`(t)

ψ(t) = 1 + tanh(∆(t))
2 ∆(t) = Υ(`(t), `(t), `(t)) + 1− norm∞,1(y(t))

We will first show that the system remains polynomially bounded. Apply Lemma 37 and
Lemma 29 to get that:

‖`(0)‖ 6 max(‖x‖ + 1, µ) + 1 + ‖e0,`‖
6 poly(‖x‖ , µ) + ‖e0,`‖

Consequently:

‖`(t)‖ 6 ‖`(0)‖ +
∫ t

0
1 + ‖e`(u)‖ du

6 poly(‖x‖ , µ) + t+ ‖e0,`‖ +
∫ t

0
‖e`(u)‖ du

6 poly(‖x‖ , µ) + t+ ê(t)
6 poly(‖x‖ , µ, t, ê(t)) (5)

Since g, h ∈ GPVAL, there exists sp and sp polynomials such that ‖g(x)‖ 6 sp(‖x‖) and
‖h(x)‖ 6 sp(‖x‖) for all x ∈ Rd and without loss of generability, we assume that sp and sp
are increasing functions. Let t ∈ R+, there are two possibilities:

If ∆(t) > 0 then norm∞,1(y(t)) 6 1 + Υ(`(t), `(t), `(t)) so apply Lemma 29 and use (5)
to conclude that ‖y(t)‖ 6 poly(‖x‖ , µ, t, ê(t)) and thus:

‖ψ(t)h(y(t))‖ 6 sp(‖y(t)‖) use that tanh < 1
6 poly(‖x‖ , µ, t, ê(t)) (6)

If ∆(t) < 0 then apply Lemma 38 to get that ψ(t) 6 1
2e

∆(t) 6 e∆(t). Apply Lemma 29 to
get that ∆(t) 6 Υ(`(t), `(t), `(t))+1−‖y(t)‖ and thus ‖y(t)‖ 6 Υ(`(t), `(t), `(t))+1−∆(t)
and thus:

‖ψ(t)h(y(t))‖ 6 e∆(t)sp(‖y(t)‖) use the bound on ψ

6 e∆(t)sp(Υ(`(t), `(t), `(t)) + 1−∆(t)) use the bound on ‖y(t)‖

6 poly(`(t))e∆(t) poly(−∆(t)) use that Υ is polynomial
6 poly(`(t)) use that e−x poly(x) = O (1) for x > 0 and fixed poly
6 poly(‖x‖ , µ, t, ê(t)) (7)

CONTENTS XX:33

Putting (6) and (7) together, we get that:

‖y(t)‖ 6 ‖g(x, µ)‖ + ‖e0,y‖ +
∫ t

0
‖ψ(u)h(y(u))‖ + ‖ey(u)‖ du

6 sp(‖x, µ‖) +
∫ t

0
poly(‖x‖ , µ, u, ê(u))du+ ê(t)

6 poly(‖x‖ , µ, t, ê(t))

We will now analyze the behavior of the system when the error is bounded. Define Θ∗(α, µ) =
Θ(α, µ)+1. Define ψ̂(t) =

∫ t
0 ψ(u)du and note that it is a diffeomorphism since ψ > 0. Apply

Lemma 39 to get that y(t) = z(ψ̂(t)) for all t ∈ R+, where z satisfies for ξ ∈ ψ̂(R+):

z(0) = g(x, µ) + e0,y z′(ξ) = h(z(ξ)) + ẽ(ξ) where
∫ ψ̂(t)

0
‖ẽ(ξ)‖ dξ =

∫ t

0
‖ey(u)‖ du

Assume that x ∈ dom f and let T ∈ R+ such that ê(T) 6 e−Θ∗(‖x‖,µ). Then ê(T) <
e−Θ(‖x‖,µ) and for all t ∈ [0, T]:

‖e0,y‖ +
∫ ψ̂(t)

0
‖ẽ‖ (u)du = ‖e0,y‖ +

∫ t

0
‖ey(u)‖ du

6 ê(t) 6 e−Θ(‖x‖,µ)

Apply Lemma 40 to get for all u ∈ [0, ψ̂(T)]:

‖z(u)‖ 6 Υ(‖x‖ , µ, u) (8)

if u > Ω(‖x‖ , µ) then ‖z1..m(u)− f(x)‖ 6 e−µ (9)

Apply Lemmas 37 and 29 to get for all t ∈ [0, T]:

`(t) > mx1(norm∞,1(‖x‖ , µ)) + 1− ‖e0,`‖ + t−
∫ t

0
‖e`(u)‖ du

> max(‖x‖ , µ) + 1 + t− ê(t)
> max(‖x‖ , µ, t) using that ê(t) 6 1

Consequently, using Lemma 29, for all t ∈ [0, T]:

∆(t) > Υ(`(t), `(t), `(t))− ‖y(t)‖
> Υ(‖x‖ , µ, t)− ‖y(t)‖ using that `(t) > max(‖x‖ , µ, t)

= Υ(‖x‖ , µ, t)−
∥∥∥z(ψ̂(t))

∥∥∥ using that y(t) = z(ψ̂(t))

> 0 because ψ̂(t) ∈ [0, ψ̂(T)]

Consequently for all t ∈ [0, T]:

ψ̂(t) =
∫ t

0
ψ(u)du =

∫ t

0

1 + tanh(∆(u))
2 du >

t

2

Define Ω∗(α, µ) = 2Ω(α, µ). Assume that T > Ω∗(‖x‖ , µ) then ψ̂(T) > Ω(‖x‖ , µ) and thus
‖y1..m(T)− f(x)‖ =

∥∥∥z(ψ̂(T))− f(x)
∥∥∥ 6 e−µ.

Finally, (y, `)(0) = g∗(x, µ) + e0 where g∗ ∈ GPVAL. Similarly (y, `)′(t) = h∗((y, `)(t)) +
e(t) where h∗ ∈ GPVAL. Note again that both h∗ and g∗ are defined over the entire space.
This concludes the proof that f ∈ AS(Ω∗,poly,Θ∗). J

XX:34 CONTENTS

F.7 Proof that ASP implies AXP
The purpose is to deal with the fact a system could explode (i.e. behave uncorrectly) for
inputs not in the domain of the function, or for too big perturbation of the dynamics, by
adding a mechanism to forbid explosions in these cases

Formally:

I Theorem 41 (Strong ⊆ extreme). ASP ⊆ AXP. If f ∈ ASP then there exists polynomials
Υ,Λ,Θ and a constant polynomial Ω such that f ∈ AX(Υ,Ω,Λ,Θ).

where

I Definition 42 (Extreme computability). Let n,m ∈ N, f :⊆ Rn → Rm, Υ : R3
+ → R+ and

Ω,Λ,Θ : R2
+ → R+. We say that f is (Υ,Ω,Λ,Θ)-extremely-computable if and only if there

exists δ > 0, d ∈ N and (g : Rd × Rn+1 → Rd) ∈ GPVAL such that for any x ∈ C0(R+,Rn),
µ ∈ C0(R+,R+), y0 ∈ Rd, e ∈ C0(R+,Rd) there exists (a unique) y : R+ → Rd satisfying for
all t ∈ R+:

y(0) = y0 and y′(t) = g(t, y(t), x(t), µ(t)) + e(t)
‖y(t)‖ 6 Υ

(
supδ ‖x‖ (t), supδµ(t), ‖y0‖ 1[1,δ](t) +

∫ t
max(0,t−δ) ‖e(u)‖ du

)
For any I = [a, b], if there exists x̄ ∈ dom f and µ̌, µ̂ > 0 such that for all t ∈ I, µ(t) ∈
[µ̌, µ̂], ‖x(t)− x̄‖ 6 e−Λ(‖x̄‖,µ̂) and

∫ b
a
‖e(u)‖ du 6 e−Θ(‖x̄‖,µ̂) then ‖y1..m(u)− f(x̄)‖ 6

e−µ̌ whenever a+ Ω(‖x̄‖ , µ̂) 6 u 6 b.
We denote by AX(Υ,Ω,Λ,Θ) the set of (Υ,Ω,Λ,Θ)-extremely-computable functions and by
AXP the set of (poly, poly, poly, poly)-extremely-computable functions.

A very common pattern in signal processing is known as “sample and hold”, where we have
a variable signal and we would like to apply some process to it. Unfortunately, the processor
often assumes (almost) constant input and does not work in real time (analog-to-digital
converters are typical example). In this case, we cannot feed the signal directly to the
processor so we need some black box that samples the signal to capture its value, and hold
this value long enough for the processor to compute its output. This process is usually used
in a τ -periodic fashion: the box samples for time δ and holds for time τ − δ.

The following is proved in [33]

I Lemma 43 (Sample and hold, [33]). There is a family of functions sampleI,τ (t, µ, x, g) ∈
GPVAL, where t ∈ R, µ, τ ∈ R+, x, g ∈ R, I = [a, b] ([0, τ], such that: Let τ ∈ R+,
I = [a, b] ([0, τ], y : R+ → R, y0 ∈ R, x, e ∈ C0(R+,R) and µ : R+ → R+ an increasing
function. Suppose that for all t ∈ R+:

y(0) = y0 y′(t) = sampleI,τ (t, µ(t), y(t), x(t)) + e(t)

Then:

|y(t)| 6 2 +
t∫

max(0,t−τ−|I|)

|e(u)|du+ max
(
|y(0)|1[0,b](t), supτ+|I||x|(t)

)
Furthermore:

if t /∈ I (mod τ) then |y′(t)| 6 e−µ(t) + |e(t)|
for n ∈ N, if there exists x̄ ∈ R and ν, ν′ ∈ R+ such that |x̄− x(t)| 6 e−ν and µ(t) > ν′
for all t ∈ nτ + I then |y(nτ + b)− x̄| 6

∫
nτ+I |e(u)|du+ e−ν + e−ν

′

for n ∈ N, if there exists x̌, x̂ ∈ R and ν ∈ R+ such that x(t) ∈ [x̌, x̂] and µ(t) > ν for all
t ∈ nτ + I then y(nτ + b) ∈ [x̌− ε, x̂+ ε] where ε = 2e−ν +

∫
nτ+I |e(u)|du

CONTENTS XX:35

for any J = [c, d] ⊆ R+, if there exists ν, ν′ ∈ R+ and x̄ ∈ R such that µ(t) > ν′

for all t ∈ J and |x(t) − x̄| 6 e−ν for all t ∈ J ∩ (nτ + I) for some n ∈ N, then
|y(t)− x̄| 6 e−ν + e−ν

′ +
∫ t
t−τ−|I| |e(u)|du for all t ∈ [c+ τ + |I|, d]

if there exists Ω : R+ → R+ such that for any J = [a, b] and x̄ ∈ R such that for all
ν ∈ R+, n ∈ N and t ∈ (nτ + I) ∩ [a+ Ω(ν), b], |x̄− x(t)| 6 e−ν ; then |y(t)− x̄| 6 e−ν

for all t ∈ [a+ Ω∗(ν), b] where Ω∗(ν) = max(Ω(ν + ln 3), µ−1(ν + ln 3)) + τ + |I|

I Lemma 44 (“periodic low-integral-low”). There is a family of functions plilI,τ ∈ GPVAL
where µ, τ ∈ R+, I = [a, b] ([0, τ] and x ∈ R such that: there exists a constant K and φ
such that plilI,τ (t, µ, x) = φ(t, µ, x)x and:

plilI,τ (·, µ, x) is τ -periodic
∀t /∈ I, | plilI,τ (t, µ, x)| < e−µ

for any α : I → R+, β : I → R:

1 6
∫ b

a

φ(t, α(t), β(t))dt 6 K

We then get to the proof of Theorem 41

Proof. Let (f :⊆ Rn → Rm) ∈ AS(Υ,Ω,Θ) where Υ, Ω Θ are polynomials which we assume,
without loss of generability, to be increasing functions of theirs inputs. Apply Definition 36
to get d, h and g.

Let e = 1 + d + m, x ∈ C0(R+,Rn), µ ∈ C0(R+,R+), (ν0, y0, z0) ∈ Re, (eν , ey, ez) ∈
C0(R+,Re) and consider the following system:


ν(0)= ν0

y(0)= y0

z(0)= z0


ν′(t)= sample[0,1],4(t, µ∗(t), ν(t), µ(t) + ln ∆ + 7) + eν(t)
y′(t)= sample[1,2],4(t, µ∗(t), y(t), g(x(t), ν(t)))

+ plil[2,3],4(t, µ∗(t), A(t)h(y(t))) + ey(t)
z′(t)= sample[3,4],4(t, µ∗(t), z(t), y1..m(t)) + ez(t)

where

∆ = 5 ∆′ = ln ∆ + 10

µ∗(t) = f∗(1 + norm∞,1(x(t)), ν(t) + 4)

A(t) = 1 + Ω(1 + norm∞,1(x(t)), ν(t))

Λ∗(α, µ) = Θ∗(α, µ) = f∗(α, µ+ ∆′)

f∗(α, µ) = µ+ ln ∆ + Θ(α, µ) + ln q(α+ µ)

Let I = [a, b] and assume there exists x̄ ∈ dom f and µ̌, µ̂ ∈ R+ such that for all t ∈ I,
µ(t) ∈ [µ̌, µ̂], ‖x(t)− x̄‖ 6 e−Λ∗(‖x̄‖,µ̂) and

∫ b
a
‖e(u)‖ du 6 e−Θ∗(‖x̄‖,µ̂). Apply Theorem 25

to g to get q ∈ K[R], without loss of generality we can assume that q is an increasing
function and q > 1. We will use Lemma 29 to get that norm∞,1(x(t)) + 1 > ‖x̄‖ because
‖x(t)− x̄‖ 6 1. Also note that µ∗,Θ∗,Λ∗ are increasing functions of their arguments. Let
n ∈ N such that [4n, 4n+ 4] ⊆ I and t ∈ [4n, 4n+ 4]. We will first analyse the variable ν,
note that the analysis is extremely rough to simplify the proof.

if t ∈ [4n, 4n+ 1] then µ∗(t) > 0 so apply Lemma 43 to get that ν(4n+ 1) ∈ [µ̌+ ln ∆ +
7 − ε, µ̂ + ln ∆ + 7 + ε] where ε 6 2e−0 +

∫ 4n+1
4n |eν(u)|du 6 3 because

∫ b
a
‖e(t)‖ 6 1.

Define ν̄ = ν(4n+ 1), then ν̄ ∈ [µ̌+ ln ∆ + 4, µ̂+ ln ∆ + 10︸ ︷︷ ︸
=∆′

]

XX:36 CONTENTS

if t ∈ [4n + 1, 4n + 4] then µ∗(t) > 0 so apply Lemma 43 to get that |ν′(t)| 6 e−0 +∫ t
4n+1 |eν(u)|du and thus |ν(t)−ν̄| 6 (t−4n−1)+

∫ t
4n+1 ‖e(u)‖ du 6 4 because

∫ b
a
‖e(t)‖ 6

1. In other words ν(t) ∈ [ν̄ − 4, ν̄ + 4].
Furthermore for t ∈ [4n+ 1, 4n+ 4] we have:

µ∗(t) > Θ∗(1 + norm∞,1(x(t)), ν(t) + 4) > f∗(‖x̄‖ , ν̄)

It will also be useful to note that:

Λ∗(‖x̄‖ , µ̂) = Θ∗(‖x̄‖ , µ̂) > f∗(‖x̄‖ , µ̂+ ∆′)
> f∗(‖x̄‖ , ν̄)

We can now analyze y using this property:
if t ∈ [4n + 1, 4n + 2] then |ν′(t)| 6 e−µ

∗(t) + |eν(t)| thus |ν(t) − ν̄| 6 e−f
∗(‖x̄‖,ν̄) +∫ 4n+2

4n+1 |eν(u)|du. Furthermore sup[4n+1,4n+2] ‖x‖ 6 ‖x̄‖ + 1, thus:

‖g(x̄, ν̄)− g(x(t), ν(t))‖ 6 max(|ν(t)− ν̄|, ‖x(t)− x̄‖)q(max(‖x̄‖ , |ν̄|))

6 max
(
e−Θ∗(‖x̄‖,µ̂) + e−f

∗(‖x̄‖,ν̄), e−Λ∗(‖x̄‖,µ̂)
)
q(‖x̄‖ + ν̄)

6 2e−Θ(‖x̄‖,ν̄)−ln ∆

Also note that
∥∥∥y′(t)− sample[1,2],4(t, µ∗(t), y(t), g(x(t), ν(t)))

∥∥∥ 6 e−µ∗(t) by Lemma 44.
So we can apply Lemma 43 to get that ‖y(4n+ 2)− g(x̄, ν̄)‖ 6 2e−Θ(‖x̄‖,ν̄)−ln ∆ +
e−f

∗(‖x̄‖,ν̄) +
∫ 4n+2

4n+1 ‖e(u)‖ du 6 4e−Θ(‖x̄‖,ν̄)−ln ∆.
if t ∈ [4n+ 2, 4n+ 3] then apply Lemmas 43 and 44 to get φ such that

∫ 4n+3
4n+2 φ(u)du > 1

and ‖y′(t)− φ(t)A(t)h(y(t))‖ 6 e−µ
∗(t) + ‖ey(t)‖. Define ψ(t) =

∫ t
4n+2 φ(u)A(u)du

then ψ(4n + 3) > Ω(‖x̄‖ , ν̄) since A(u) > Ω(‖x̄‖ , ν̄) for u ∈ [4n + 2, 4n + 3]. Apply
Lemma 39 over [4n + 2, 4n + 3] to get that y(t) = w(ψ(t)) where w satisfies w(0) =
y(4n + 2) and w′(ξ) = h(w(ξ)) + ẽ(ξ) where ẽ ∈ C0(R+,Rd) satisfies

∫ ψ(t)
0 ‖ẽ(ξ)‖ dξ =∫ t

4n+2 ‖ey(u)‖ du 6 e−Θ∗(‖x̄‖,µ̂) 6 e−Θ(‖x̄‖,ν̄)−ln ∆. Furthermore, ‖w(0)− g(x̄, ν̄)‖ 6
4e−Θ(‖x̄‖,ν̄)−ln ∆ from the result above. In other words, w(0) = g(x̄, ν̄) + ẽ0 and w′(t) =
g(w(t))+ẽ(t) where ‖ẽ0‖+

∫ ψ(t)
0 ‖e(u)‖ du 6 5e−Θ(‖x̄‖,ν̄)−ln ∆ 6 e−Θ(‖x̄‖,ν̄) because ∆ > 5.

Apply Definition 36 to get that ‖w1..m(ψ(4n+ 3))− f(x̄)‖ 6 e−ν̄ since ψ(4n + 3) >
Ω(‖x̄‖ , ν̄).
if t ∈ [4n + 3, 4n + 4] then ‖y′(t)‖ 6 e−µ

∗(t) + ‖ey(t)‖ thus ‖y(t)− y(4n+ 3)‖ 6
e−f

∗(‖x̄‖,ν̄) +
∫ t

4n+3 ‖ey(u)‖ du 6 2e−ν̄ so ‖y1..m(t)− f(x̄)‖ 6 3e−ν̄ .
Note that the above reasoning is also true for the last segment [4n, b] ⊆ I in which case
the result only applies up to time b of course. In other words, the results apply as long as
t ∈ [4n, 4 + 4]∩ I and 4n > a. From this we conclude that if t ∈ [a+ 4, b]∩ [4n+ 3, 4n+ 3] for
some n ∈ N then ‖y1..m(t)− f(x̄)‖ 6 3e−ν̄ . Apply Lemma 43 to get, using that ν̄ > µ̌+ ln ∆
and ∆ > 5, that for all t ∈ [a+ 5, b]:

‖z(t)− f(x̄)‖ 6 3e−ν̄ + e−f
∗(‖x̄‖,ν̄) +

∫ t

t−5
‖e(u)‖ du 6 5e−ν̄

6 e−µ̌

To complete the proof, we must also analyze the norm of the system. As a shorthand, we
introduce the following notation:

int+
δ α(t) =

∫ t

max(0,t−δ)
α(u)du

CONTENTS XX:37

Apply Lemma 43 to get that:

|ν(t)| 6 2 +
t∫

max(0,t−5)

|eν(u)|du+ max
(
|ν0|1[0,4](t), sup5|µ+ ln ∆ + 7|(t)

)
6 poly

(
|ν0|1[0,5](t) + int+

5 |eν |(t), sup5µ(t)
)

The analysis of y is a bit more painful, as it uses both results about the sampling function
and the strongly-robust system we are simulating. Let n ∈ N, and t ∈ [4n, 4n+ 4]:

if t ∈ [4n, 4n + 1] then apply Lemmas 43 and 44 to get, using that µ(t) > 0, that
‖y′(t)‖ 6 2 + ‖e(t)‖ and thus ‖y(t)− y(4n)‖ 6 2 +

∫ t
4n ‖e(u)‖ du.

if t ∈ [4n+1, 4n+2] then using the result on ν, ‖g(x(t), ν(t))‖ 6 sup[4n+1,t] poly(‖x‖ , ν) 6
poly

(
|ν0|1[0,5](t) + int+

6 ‖e‖ (t), sup6µ(t), sup1 ‖x‖ (t)
)
. Apply Lemmas 43 and 44 to get,

using that µ(t) > 0 and the result on ν, that:

‖y(4n+ 2)‖ 6 sup
[4n+1,4n+2]

‖g(x, ν)‖ + 2 +
∫ 4n+2

4n+1
‖e(u)‖ du

6 poly
(
|ν0|1[0,5](4n+ 2) + int+

6 ‖e‖ (4n+ 2), sup6µ(4n+ 2), sup1 ‖x‖ (4n+ 2)
)

and also that:

‖y(t)‖ 6 max
(

sup
[4n+1,t]

‖g(x, ν)‖ + 2, ‖y(4n+ 1)‖
)

+
∫ t

4n+1
‖e(u)‖ du

6 poly
(
|ν0|1[0,5](t) + int+

6 ‖e‖ (t), sup6µ(t), sup1 ‖x‖ (t), ‖y(4n)‖
)

if t ∈ [4n+ 2, 4n+ 3] then apply Lemma 43, Lemmas 44, 39 and 36 to get that ‖y(t)‖ 6
Υ(0, 0, ê(Â(t)), Â(t)) where Â(t) =

∫ t
4n+2A(u)du and ê(Â(t)) = ‖y(4n+ 2)− g(0, 0)‖ +∫ t

4n+2 1 + ‖e(u)‖ du. Since Ω is a polynomial, and using the result on ν, we get that:

Â(t) 6 sup
[4n+2,t]

poly(‖x‖ , |ν|)

6 poly
(
|ν0|1[0,5](t) + int+

6 ‖e‖ , sup6µ(t), sup1 ‖x‖ (t)
)

and using that 4n+ 2 6 t 6 4n+ 3:

‖y(4n+ 2)− g(0, 0)‖ 6 ‖y(4n+ 2)‖ + ‖g(0, 0)‖
6 poly

(
|ν0|1[0,5](t) + int+

6 ‖e‖ , sup7µ(t), sup2 ‖x‖ (t)
)

And since Υ is a polynomial, we conclude that:

‖y(t)‖ 6 poly
(
|ν0|1[0,5](t) + int+

6 ‖e‖ (t), sup7µ(t), sup2 ‖x‖ (t)
)

if t ∈ [4n+ 3, 4n+ 4] then apply Lemmas 43 and 44 to get, using that µ(t) > 0, that
‖y′(t)‖ 6 2 + ‖e(t)‖ and thus ‖y(t)− y(4n+ 3)‖ 6 2 +

∫ t
4n+3 ‖e(u)‖ du.

From this analysis we can conclude that for all t ∈ [0, 2]:

‖y(t)‖ 6 poly
(
|ν0|1[0,5](t) + int+

6 ‖e‖ (t), sup6µ(t), sup1 ‖x‖ (t), ‖y(0)‖
)

6 poly
(
|ν0|+ int+

6 ‖e‖ (t), sup6µ(t), sup1 ‖x‖ (t), ‖y0‖
)

and for all n ∈ N and t ∈ [4n+ 2, 4n+ 6]:

‖y(t)‖ 6 poly
(
|ν0|1[0,5](t) + int+

9 ‖e‖ (t), sup9µ(t), sup4 ‖x‖ (t)
)

Putting everything together, we get for all t ∈ R+:

‖y(t)‖ 6 poly
(
‖y0, ν0‖ 1[0,5](t) + int+

9 ‖e‖ (t), sup9µ(t), sup4 ‖x‖ (t)
)

Finally apply Lemma 43 to get the a similar bound on z and thus on the entire system. J

XX:38 CONTENTS

F.8 Proof that AXP implies AOP
The purpose is now to go to a notion of online computation, i.e. to Lemma 13

We start by the following lemmas:

I Lemma 45 (AXP time rescaling). If f ∈ AXP then there exists polynomials Υ,Λ,Θ and a
constant polynomial Ω such that f ∈ AX(Υ,Ω,Λ,Θ).

Proof. We go for the shortest proof: we will show that AXP ⊆ AWP and use Theorem 30
then Theorem 35 followed by Theorem 41 which proves exactly our statement.

The proof that AXP ⊆ AWP is next to trivial because the extreme system and some
given input and precision, we can simply store the input and precision into some variables
and feed them into the system. We make the system autonomous by using a variable to store
the time.

Let (f :⊆ Rn → Rm) ∈ AX(Υ,Ω,Λ,Θ), apply Definition 42 to get δ, d and g. Let
x ∈ dom f and µ ∈ R+, and consider the following system:

x(0)= x

µ(0)= µ

τ(0)= 0
y(0)= 0


x′(t)= 0
µ′(t)= 0
τ ′(t)= 1
y′(t)= g(t, y(t), x(t), µ(t))

Clearly he system of the form z(0) = h(x, µ) and z′(t) = H(z(t)) where h and H belong to
GPVAL (and are defined over the entire space). Apply the definition to get that:

‖y(t)‖ 6 Υ(‖x‖ , µ, 0)

And thus the entire system in bounded by a polynomial in ‖x‖ , µ and t. Furthermore, if
t > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ. To conclude the proof, we need to rewrite the
system as a PIVP using Theorem 24. J

The following is established in [33]

I Lemma 46 (Reach). There exists reach ∈ GPVAL such that: For any I = [a, b], any
φ ∈ C0(I,R+), any g,E ∈ C0(I,R), any y0, g∞ ∈ R and η > 0 such that for all t ∈ I,
|g(t)− g∞| 6 η. Assume that y : I → R satisfies{

y(0)= y0

y′(t)= reach(φ(t), y(t), g(t)) + E(t)

Then for any t ∈ I,

|y(t)− g∞| 6 η +
∫ t

a

|E(u)|du+ exp
(
−
∫ t

a

φ(u)du
)

whenever
∫ t

a

φ(u)du > 1

And for any t ∈ I,

|y(t)− g∞| 6 max(η, |y(0)− g∞|) +
∫ t

0
|E(u)|du

We then get to the proof of Lemma 13.

CONTENTS XX:39

Proof. Apart from the issue of the input, the system is quite intuitive: we constantly feed the
extreme system with the (smoothed) input and some precision. By increasing the precision
with time, we ensure that the system will converge when the input is stable. However there
is a small catch: over a time interval I, if we change the precision within a range [µ̌, µ̂] then
we must provide the extreme system with precision based on µ̂ in order to get precision µ̌.
Since the extreme system takes time Ω(‖x‖ , µ̂) to compute, we need arrange so that the
requested precision doesn’t change too much over periods of this duration to make things
simpler. We will use to our advantage that Ω can always be assumed to be a constant.

Let (f :⊆ Rn → Rm) ∈ AX(Υ,Ω,Λ,Θ) where Υ,Ω,Λ and Θ are polynomials, which we
can assume to be increasing functions of their arguments. Apply Lemma 45 to get ω > 0
such that for all α ∈ Rn, µ ∈ R+:

Ω(α, µ) = ω

Apply Definition 42 to get δ, d and g. Define:

τ = ω + 2 δ′ = max(δ, τ + 1)

Let x ∈ C0(R+,Rn) and consider the following systems:
x∗(0)= 0
y(0)= 0
z(0)= 0


x∗′(t)= reach(φ(t), x∗(t), x(t))
y′(t)= g(t, y(t), x∗(t), µ(t))
z′(t)= sample[ω+1,ω+2],τ (t, µ(t), z(t), y1..m(t))

where

φ(t) = ln 2 + µ(t) + Λ∗(2 + x1(t)2 + · · ·+ xn(t)2, µ(t)) µ(t) = t

τ

Let t > 1, since φ > 1 then Lemma 46 gives:

‖x∗(t)‖ 6 sup1 ‖x‖ (t) + e
−
∫ t
t−1

φ(u)du
6 sup1 ‖x‖ (t) + 1

Also for t ∈ [0, 1] we get that:

‖x∗(t)‖ 6 sup
[0,t]
‖x‖

This proves that ‖x∗(t)‖ 6 sup1 ‖x‖ (t) + 1 for all t ∈ R+. From this we deduce that:

‖y(t)‖ 6 Υ(supδ ‖x∗‖ (t), supδµ(t), 0)
6 poly(supδ ‖x‖ (t), t)

Apply Lemma 43 to get that:

‖z(t)‖ 6 2 + supτ+1 ‖y‖ (t)
6 poly(supδ′ ‖x‖ (t), t)

Let I = [a, b] and assume there exists x̄ ∈ dom f and µ̄ such that for all t ∈ I, ‖x(t)− x̄‖ 6
e−Λ(‖x̄‖,µ̄). Note that 2 +

∑n
i=1 xi(t)2 > 1 + ‖x(t)‖ > ‖x̄‖ for all t ∈ I. Let n ∈ N such

that n > µ̄ + ln 2 and [nτ, (n + 1)τ] ⊆ I. Note that µ(t) ∈ [n, n + 1] for all t ∈ In. Apply
Lemma 46, using that φ > 1, to get that for all t ∈ [nτ + 1, (n+ 1)τ]:

‖x∗(t)− x̄‖ 6 e−Λ∗(‖x̄‖,n) + e
−
∫ t
nτ
φ(u)du 6 2e−Λ∗(‖x̄‖,n)

XX:40 CONTENTS

6 e−Λ(‖x̄‖,µ̄+ln 2)

Using the definition of extreme computability, we get that for all t ∈ [nτ + 1 + ω, (n+ 1)τ] =
[nτ + ω + 1, nτ + ω + 2]:

‖y1..m − f(x̄)‖ 6 e−µ̄+ln 2

Define J = [a + (1 + µ̄ + ln 2)τ, b] ⊆ I. Assume that t ∈ J ∩ [nτ + 1, (n + 1)τ] for some
n ∈ N, then we must have (n + 1)τ > (1 + µ̄ + ln 2)τ and thus n > µ̄ + ln 2 so we can
apply the above reasoning to get that ‖y1..m(t)− f(x)‖ 6 e−µ̄+ln 2. Furthermore, we also
have µ(t) > (1+µ̄+ln 2)τ

τ > µ̄+ ln 2 for all t ∈ J . Apply Lemma 43 to conclude that for any
t ∈ [a+ τ + µ̄+ ln 2 + τ + 1, b], we have ‖z(t)− f(x)‖ 6 2e−µ̄+ln 2 6 e−µ̄.

To conclude the proof, we need to rewrite the system as a PIVP using Lemma 24. Note
that this works because we only rewrite the variable y, and doing so we require that x∗ be a
C1 function (which is the case) and the new initial variable will depend on x∗(0) = 0 which
is constant. J

F.9 Proof of Theorem 14
We first precise some concepts.

F.9.1 More on Turing Machines
First the step function of a Turing machineM corresponds to the function defined by:

M(x, σ, y, q) =



(λ, b, σ′y, q′) if d = L and x = λ

(x2..|x|, x1, σ
′y, q′) if d = L and x 6= λ

(x, σ′, y, q′) if d = S

(σ′x, b, λ, q′) if d = R and y = λ

(σ′x, y1, y2..|y|, q
′) if d = R and y 6= λ

where


q′ = δ1(q, σ)
σ′ = δ2(q, σ)
d = δ3(q, σ)

I Definition 47 (Result of a computation). The result of a computation of M on a word
w ∈ Σ∗ is defined by:

M(w) =
{
x if ∃n ∈ N,M[n](c0(w)) = c∞(x)
⊥ otherwise

I Remark. The result of a computation is well-defined because we imposed that when a
machine reaches a halting state, it does not move, change state or change the symbol under
the head.

F.9.2 Polynomial interpolation
In order to implement the transition function of the Turing Machine, we will use a polynomial
interpolation scheme (Lagrange interpolation). But since our simulation may have to deal
with some amount of error in inputs, we have to investigate how this error propagates through
the interpolating polynomial.
I Definition 48 (Lagrange polynomial). Let d ∈ N and f : G→ R where G is a finite subset
of Rd, we define

Lf (x) =
∑
x̄∈G

f(x̄)
∏
y∈G
y 6=x̄

d∏
i=1

xi − yi
x̄i − yi

CONTENTS XX:41

I Lemma 49 (Lagrange interpolation). For any finite G ⊆ Kd and f : G→ K, Lf ∈ AP and
Lf �G= f .

Proof. The fact that Lf matches f on G is a classical calculation. Also Lf is a polynomial
with coefficients in K so clearly it belongs to AP. J

We will often need to interpolate characteristic functions, that is polynomials that value
1 when f(x) = a and 0 otherwise. For convenience we define a special notation for it.

I Definition 50 (Characteristic interpolation). Let d ∈ N, f : G → R where G is a finite
subset of Rd, α ∈ R, and define:

Df=α(x) = Lfα(x) Df 6=α(x) = L1−fα(x) fα(x) =
{

1 if f(x) = α

0 otherwise

I Lemma 51 (Characteristic interpolation). For any finite G ⊆ Kd, f : G→ K and α ∈ K,
Df=α, Df 6=α ∈ AP.

Proof. Observe that fα : G→ {0, 1} and {0, 1} ⊆ K. Apply Lemma 49. J

F.9.3 Specific Functions and Operations
We need some specific adhoc functions:

I Definition 52 (Round). Let rnd∗ ∈ C0(R,R) be the unique function such that:
rnd∗(x, µ) = n for all x ∈

[
n− 1

2 + e−µ, n+ 1
2 − e

−µ] for all n ∈ Z
rnd∗(x, µ) is affine over

[
n+ 1

2 − e
−µ, n+ 1

2 + e−µ
]
for all n ∈ Z

I Theorem 53 (Round, [33]). rnd∗ ∈ AP.

The idea of the proof of above theorem is to build a function computing the “fractional
part” function, by this we mean a 1-periodic function that maps x to x over [−1+e−µ, 1−e−µ]
and is affine at the border to be continuous. The rounding function immediately follows by
subtracting the fractional of x to x. In the details, building this function is not immediate.
The intuition is that 1

2π arccos(cos(2πx)) works well over [0, 1/2− e−µ] but needs to be fixed
at the border (near 1/2), and also its parity needs to be fixed based on the sign of sin(2πx).

I Theorem 54 (Closure by arithmetic operations). If f, g ∈ AP then f ± g, fg ∈ AP, with the
obvious restrictions on the domains of definition.

Proof. We do the proof in the case of f + g in details. Let Ω,Υ,Ω′,Υ′ polynomials such
that f ∈ AC(Υ,Ω) and g ∈ AC(Υ′,Ω′). Apply Definition 22 to f and g to get d, p, q and
d′, p′, q′ respectively. Let x ∈ dom f ∩ dom g and consider the following system:

y(0)= q(x)
z(0)= q′(x)
w(0)= q(x) + q′(x)


y′(t)= p(y(t))
z′(t)= p′(z(t))
w′(t)= y′(t) + z′(t)

Let Ω∗(α, µ) = max(Ω(α, µ+ ln 2),Ω′(α, µ+ ln 2)) and Υ∗(α, t) = Υ(α, t) + Υ′(α, t). Since,
by construction, w(t) = y(t) + z(t), if t > Ω∗(α, µ) then ‖y1..m(t)− f(x)‖ 6 e−µ−ln 2 and
‖z1..m(t)− g(x)‖ 6 e−µ−ln 2 thus ‖w1..m(t)− f(x)− g(x)‖ 6 e−µ. Furthermore, ‖y(t)‖ 6
Υ(‖x‖ , t) and ‖z(t)‖ 6 Υ′(‖x‖ , t) thus ‖w(t)‖ 6 Υ∗(‖x‖ , t).

XX:42 CONTENTS

The case of f − g is exactly the same. The case of fg is slightly more involved: one need
to take w′(t) = y′1(t)z1(t) + y1(t)z′1(t) = p1(y(t))z1(t) + y1(t)p′1(z(t)) so that w(t) = y(t)z(t).
The error analysis is a bit more complicated. First note that ‖f(x)‖ 6 1 + Υ(‖x‖ ,Ω(‖x‖ , 0))
and ‖g(x)‖ 6 1 + Υ′(‖x‖ ,Ω′(‖x‖ , 0)), and denote by `(‖x‖) and `∗(‖x‖) those two bounds
respectively. Let t > Ω(‖x‖ , µ+ ln 2`∗(‖x‖)) then ‖y1(t)− f(x)‖ 6 e−µ−ln 2‖g(x)‖ and simil-
arly if t > Ω′(‖x‖ , µ+ ln 2(1 + `∗(‖x‖))) then ‖z1(t)− g(x)‖ 6 e−µ−ln 2(1+‖f(x)‖). Thus for t
greater than the maximum of both bounds, ‖y1(t)z1(t)− f(x)g(x)‖ 6 ‖(y1(t)− f(x))g(x)‖+
‖y1(t)(z1(t)− g(x))‖ 6 e−µ because ‖y1(t)‖ 6 1 + ‖f(x)‖ 6 1 + `(‖x‖). J

I Theorem 55 (Closure by composition). If f, g ∈ AP and f(dom f) ⊆ dom g then g◦f ∈ AP.

Proof. Let f : I ⊆ Rn → J ⊆ Rm and g : J → K ⊆ Rl. We will show that g ◦ f is
computable by using the fact that both f and g are online-computable. We could show
directly that g ◦ f is online-computable but this would only complicated the proof for no
apparent gain.

Apply Lemma 13 to get that g is (Υ,Ω,Λ)-online-computable,
where

IDefinition 56 (Online computability). Let n,m ∈ N, f :⊆ Rn → Rm and Υ,Ω,Λ : R2
+ → R+.

We say that f is (Υ,Ω,Λ)-online-computable if and only if there exists δ > 0, d ∈ N and
p ∈ Kd[Rd × Rn] and y0 ∈ Kd such that for any x ∈ C0(R+,Rn), there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+:

y(0) = y0 and y′(t) = p(y(t), x(t))
‖y(t)‖ 6 Υ

(
supδ ‖x‖ (t), t

)
For any I = [a, b], if there exists x̄ ∈ dom f and µ̄ > 0 such that for all t ∈ I, ‖x(t)− x̄‖ 6
e−Λ(‖x̄‖,µ̄) then ‖y1..m(u)− f(x̄)‖ 6 e−µ̄ whenever a+ Ω(‖x̄‖ , µ̄) 6 u 6 b.

We denote by AO(Υ,Ω,Λ) the set of (Υ,Ω,Λ)-online-computable functions.

Apply Definition 56 to get e,∆, z0 for g. Assume that f is (Υ′,Ω′)-computable. Apply
Definition 22 to get d, p, q for f . Let x ∈ I and consider the following system:{

y(0)= q(x)
y′(t)= p(y(t))

{
z(0)= z0

z′(t)= q(z(t), y1..m(t))

Define v(t) = (x(t), y(t), z(t)) then it immediately follows that v satisfies a PIVP of the
form v(0) = poly(x) and v′(t) = poly(v(t)). Furthermore, by definition:

‖v(t)‖ 6 max(‖x‖ , ‖y(t)‖ , ‖z(t)‖)

6 max
(
‖x‖ , ‖y(t)‖ ,Υ

(
sup

u∈[t,t−∆]∩R+

‖y1..m(t)‖ , t
))

6 poly
(
‖x‖ , sup

u∈[t,t−∆]∩R+

‖y(t)‖ , t
)

6 poly
(
‖x‖ , sup

u∈[t,t−∆]∩R+

Υ′ (‖x‖ , u) , t
)

6 poly (‖x‖ , t)

Define x̄ = f(x), Υ∗(α) = 1 + Υ′(α, 0) and Ω′′(α, µ) = Ω′(α,Λ(Υ∗(α), µ)) + Ω(Υ∗(α), µ).
By definition of Υ′, ‖x̄‖ 6 1 + Υ′(‖x‖ , 0) = Υ∗(‖x‖). Let µ > 0 then by definition of

CONTENTS XX:43

Ω′, if t > Ω′(‖x‖ ,Λ(Υ∗(‖x‖), µ)) then ‖y1..m(t)− x̄‖ 6 e−Λ(Υ∗(‖x‖),µ) 6 e−Λ(‖x̄‖,µ). Apply
Defiintion 56 for a = Ω′(‖x‖ ,Λ(Υ∗(‖x‖), µ)) to get that ‖z1..l(t)− g(f(x))‖ 6 e−µ for any
t > a + Ω(x̄, µ). And since t > a + Ω(x̄, µ) whenever t > Ω′′(‖x‖ , µ), we get that g ◦ f is
computable. J

F.9.4 On Encoding and Ideal Step Function
Finaly, a remark on our selected encoding:

Recall:

I Definition 57 (Real encoding). Let c = (x, σ, y, q) be a configuration ofM, the real encoding
of c is 〈c〉 = (0.x, σ, 0.y, q) ∈ Q×Σ×Q×Q where 0.x = x1k

−1 +x2k
−2 + · · ·+x|w|k

−|w| ∈ Q.

We have:

I Lemma 58 (Encoding range). For any word x ∈ J0, k − 2K∗, 0.x ∈
[
0, k−1

k

]
.

Proof. 0 6 0.x =
∑|x|
i=1 xik

−i 6
∑∞
i=1(k − 2)k−i 6 k−2

k−1 6
k−1
k . J

The same way we considered the step function for Turing machines on configurations,
we have to define a step function that works directly the encoding of configuration. This
function is ideal in the sense that it is only defined over real numbers that are encoding of
configurations.

I Definition 59 (Ideal real step). The ideal real step function of a Turing machineM is the
function defined over 〈CM〉 by:

〈M〉∞ (x̃, σ, ỹ, q) =


(

frac(kx̃), int(kx̃), σ
′+ỹ
k , q′

)
if d = L

(x̃, σ′, ỹ, q′) if d = S(
σ′+x̃
k , int(kỹ), frac(kỹ), q′

)
if d = R

where


q′= δ1(q, σ)
σ′= δ2(q, σ)
d= δ3(q, σ)

I Lemma 60 (〈M〉∞ is correct). For any machine M and configuration c, 〈M〉∞ (〈c〉) =
〈M(c)〉.

Proof. Let c = (x, σ, y, q) and x̃ = 0.x. The proof boils down to a case analysis (the analysis
is the same for x and y):

If x = λ then x̃ = 0 so int(kx̃) = b and frac(kx̃) = 0 = 0.λ because b = 0.
If x 6= λ, int(kx̃) = x1 and frac(kx̃) = 0.x2..|x| because kx̃ = x1 + 0.x2..|x| and Lemma 58.

J

F.9.5 Proof of Theorem 14
We consider the following function.

I Definition 61 (Real step). For any x̄, σ̄, ȳ, q̄ ∈ R and µ ∈ R+, define the real step function
of a Turing machineM by:

〈M〉 (x̄, σ̄, ȳ, q̄, µ) = 〈M〉∗ (x̄, rnd∗(σ̄, µ), ȳ, rnd∗(q̄, µ), µ)

where:

〈M〉∗ (x̄, σ̄, ȳ, q̄, µ) = 〈M〉?
(
x̄, ȳ, Lδ1(q̄, σ̄), Lδ2(q̄, σ̄), Lδ2(q̄, σ̄), µ

)

XX:44 CONTENTS

where:

〈M〉?
(
x̄, ȳ, q̄, σ̄, d̄, µ

)
=


choose

[
frac∗(kx̄), x̄, σ̄+x̄

k

]
choose [int∗(kx̄), σ̄, int∗(kȳ)]

choose
[
σ̄+ȳ
k , ȳ, frac∗(kȳ)

]
q̄


where:

choose[l, s, r] = Did=L(d̄)l +Did=S(d̄)s+Did=R(d̄)r

int∗(x) = rnd∗
(
x− 1

2 + 1
2k , µ+ ln k

)
frac∗(x) = x− int∗(x)

rnd∗ is defined in Definition 52.

We can now prove Theorem 14:

Proof Of Theorem 14. We begin by a small result about int∗ and frac∗: if ‖x̄− 0.x‖ 6
1

2k2 − e−µ then int∗(kx̄) = int(k0.x) and ‖frac∗(kx̄)− frac(k0.x)‖ 6 k ‖x̄− 0.x‖. In-
deed, by Lemma 58, k0.x = n + α where n ∈ N and α ∈

[
0, k−1

k

]
. Thus int∗(kx̄) =

rnd∗
(
kx̄− 1

2 + 1
2k , µ

)
= n because α+ k ‖x̄− 0.x‖ − 1

2 + 1
2k ∈

[
− 1

2 + ke−µ, 1
2 − ke

−µ]. Also,
frac∗(kx̄) = kx̄− int∗(kx̄) = k ‖x̄− 0.x‖ + kx− int(kx) = frac(kx) + k ‖x̄− 0.x‖.

Write 〈c〉 = (x, σ, y, q) and c̄ = (x̄, σ̄, ȳ, q̄). Apply Definition 52 to get that rnd∗(σ̄, µ) = σ

and rnd∗(q̄, µ) = q because ‖(σ̄, q̄)− (σ, q)‖ 6 1
2 − e

−µ. Consequently, Lδi(q̄, σ̄) = δi(q, σ)
and 〈M〉 (c̄, µ) = 〈M〉? (x̄, ȳ, q′, σ′, d′) where q′ = δ1(q, σ), σ′ = δ2(q, σ) and d′ = δ3(q, σ). In
particular d′ ∈ {L, S,R} so there are three cases to analyze.

If d′ = L then choose[l, s, r] = l, int∗(kx̄) = int(kx), ‖frac∗(kx̄)− frac(kx)‖ 6 k ‖x̄− x‖
and

∥∥∥σ′+ȳk − σ′+y
k

∥∥∥ 6 ‖x̄− x‖. Thus ‖〈M〉 (c̄, µ)− 〈M〉∞ (〈c〉)‖ 6 k ‖c̄− 〈c〉‖. Con-
clude using Lemma 60.
If d′ = S then choose[l, s, r] = s so we immediately have that ‖〈M〉 (c̄, µ)− 〈M〉∞ (〈c〉)‖ 6
‖c̄− 〈c〉‖. Conclude using Lemma 60.
If d′ = R then choose[l, s, r] = r and everything else is similar to the case of d′ = L.

Finally apply Lemma 49, Theorem 53, and Theorem 54 and Theorem 55 to get that
〈M〉 ∈ AP. J

F.10 Proof of Theorem 15

F.10.1 Some facts
We first state some facts.

I Lemma 62 (Round, [33]). There exists rnd ∈ GPVAL such that: For any n ∈ Z, λ > 2,
µ > 0, | rnd(x, µ, λ)− n| 6 1

2 for all x ∈
[
n− 1

2 , n+ 1
2
]
and | rnd(x, µ, λ)− n| 6 e−µ for all

x ∈
[
n− 1

2 + 1
λ , n+ 1

2 −
1
λ

]
.

I Lemma 63 (Clamped exponential). For any a, b, c, d, x ∈ R such that a 6 b and ` ∈ R+,
define h as follows. Then h ∈ AP:

h(a, b, c, d, x) = max(a,min(b, cex + d))

CONTENTS XX:45

F.10.2 Computing limits
Intuitively, this model of computation already contains the notion of limit. More precisely, if
f is computable and is such that f(x, t) → g(x) when t → ∞ then g is computable. This
is just a reformulation of equivalence between computability and weak-computability. The
result below extends this result to the case where the limit is restricted to t ∈ N. The
optimality of the assumptions is discussed in Remark F.10.2.

The idea of the proof is to show that g is weakly-computable and use the equivalence with
computability. Given x and µ, we want to run f on (x, dωe) ∈ I × J where ω = f(‖x‖ , µ).
Unfortunately we cannot compute the ceiling value in a continuous fashion. The trick is
to run two systems in parallels: one on (x, (rndω)) and one on (x, rnd(ω + 1

2)). This way
one system will always have a correct input value but we must select which one. If rnd is a
good rounding function around [n − 1

3 , n+ 1
3], we build the selecting function to pick the

first system in [n, n+ 1
6], a barycenter of both in [n+ 1

6 , n+ 1
3] and the second system in

[n+ 1
3 , n+ 2

3] and so on. The crucial point is that in the region where we mix both system,
both have correct inputs so the mixing process doesn’t create any error. Furthermore, we
can easily build such a continuous selecting function and the mixing process has already
been studied in a previous section.

I Theorem 64 (Closure by limit). Let f : I×J ⊆ Rn+1 → Rm, g : I → Rm and f : R2
+ → R+

a polynomial. Assume that f ∈ AP and that J ⊇ N. Further assume that for all (x, τ) ∈ I×J
and µ > 0, if τ > f(‖x‖ , µ) then ‖f(x, τ)− g(x)‖ 6 e−µ. Then g ∈ AP.

Proof. First note that 1
2 − e

−2 > 1
3 and define for x ∈ I and n ∈ N:

f0(x, τ) = f(x, rnd∗(τ, 2)) τ ∈
[
n− 1

3 , n+ 1
3
]

f1(x, τ) = f(x, rnd∗(τ + 1
2 , 2)) τ ∈

[
n+ 1

6 , n+ 5
6
]

By Definition 52 and hypothesis on f , both are well-defined because N ⊆ J . Also note that
their domain of definition overlap on [n+ 1

6 , n+ 1
3] and [n+ 2

3 , n+ 5
6] for all n ∈ N. Apply

Theorems 53 and 55 to get that f0, f1 ∈ AP. We also need to build the indicator function:
this is where the choice of above values will prove convenient. Define for any τ ∈ R+:

i(x, τ) = 1
2 − cos(2πτ)

It is now easy to check that:

{(x, n) | i(x) < 1} = R+ ∩ ∪n∈N
]
n− 1

3 , n+ 1
3
[
⊆ dom f0

{(x, n) | i(x) > 0} = R+ ∩ ∪n∈N
]
n+ 1

6 , n+ 5
3
[
⊆ dom f1

Define for any x ∈ I and µ ∈ R+:

f∗(x, τ) = mix(i, f0, f1)(x, τ)

We can thus apply Theorem 77 to get that f∗ ∈ AP. Note that f∗ is defined over I×R+. We
now claim that for any x ∈ I and µ ∈ R+, if t > 1+f(‖x‖ , µ) then ‖f∗(x, τ)− g(x)‖ 6 2e−µ.
There are three cases to consider:

If τ ∈ [n− 1
6 , n+ 1

6] for some n ∈ N then i(x) 6 0 so mix(i, f0, f1)(x, τ) = f0(x, τ) = f(x, n)
and since n > τ − 1

6 then n > f(‖x‖ , µ) thus ‖f∗(x, τ)− g(x)‖ 6 e−µ.
If τ ∈ [n + 1

3 , n + 2
3] for some n ∈ N then i(x) > 1 so mix(i, f0, f1)(x, τ) = f1(x, τ) =

f(x, n+ 1) and since n > τ − 2
3 then n+ 1 > f(‖x‖ , µ) thus ‖f∗(x, τ)− g(x)‖ 6 e−µ.

XX:46 CONTENTS

If τ ∈ [n + 1
6 , n + 1

3] ∪ [n + 2
3 , n + 5

6] for some n ∈ N then i(x) ∈ [0, 1] so f∗(x, τ) =
(1− i(x, τ))f0(x, τ) + i(x, τ)f1(x, τ) = (1− i(x, τ))f(x, bτe) + i(x, τ)f(x,

⌊
τ + 1

2
⌉
). Since

bτe ,
⌊
τ + 1

2
⌉
> f(‖x‖ , µ) then ‖f(x, bτe)− g(x)‖ 6 e−µ and

∥∥f(x,
⌊
τ + 1

2
⌉
)− g(x)

∥∥ 6
e−µ thus ‖f∗(x, τ)− g(x)‖ 6 2e−µ because |i(x, τ)| 6 1.

It follows that g is the limit of f∗ and thus g ∈ AWP (see Remark F.12.2) and one
concludes using that AWP = AP. J

I Remark (Optimality). The condition that f be a polynomial is essentially optimal. Intu-
itively, if f ∈ AP and satisfies that ‖f(x, τ)− g(x)‖ 6 e−µ whenever τ > f(‖x‖ , µ) then
f is a modulus of continuity for g. By Theorem 7, if g ∈ AP then it admits a polynomial
modulus of continuity so f must be a polynomial. For a formal proof of this intuition, see
examples 65 and 66

I Example 65 (f must be polynomial in x). Let f(x, τ) = min(ex, τ) and g(x) = ex. Trivially
f(x, ·) converges to g because f(x, τ) = g(x) for τ > ex. But g /∈ AP because it is not
polynomially bounded. In this case f(x, µ) = ex which is exponential and f ∈ AP by
Lemma 63.

I Example 66 (f must be polynomial in µ). Let g(x) = −1
ln x for x ∈ [0, e] which is defined in 0

by continuity. Observe that g /∈ AP, indeed its modulus of continuity is exponential around 0
because g(e−eµ) = e−µ for all µ > 0. However note that g∗ ∈ AP where g∗(x) = g(e−x) = 1

x

for x ∈ [1,+∞[. Let f(x, τ) = g∗(min(− ln x, τ)) and check, using that g is increasing and
non-negative, that: |f(x, τ)− g(x)| = |g(max(x, e−τ))− g(x)| 6 g(max(x, e−τ)) 6 1

τ . Thus
f(‖x‖ , µ) = eµ which is exponential and f ∈ AP because (x, τ) 7→ min(− ln x, τ) ∈ AP by a
proof similar to Lemma 63.

F.10.3 Proof of Theorem 15
We now go to the Proof of Theorem 15.

We use three variables y, z and w and build a cycle to be repeated n times. At all time,
y is an online system computing f(w). During the first stage of the cycle, w stays still and
y converges to f(w). During the second stage of the cycle, z copies y while w stays still.
During the last stage, w copies z thus effectively computing one iterate.

The crucial point is in the error estimation, which we informally develop here. Denote the
kth iterate of x by x[k] and by x(k) the point computed after k cycles in the system. Because
we are doing an approximation of f at each step step, the relationship between the two is that
x0 = x[0] and

∥∥x(k+1) − f(xk)
∥∥ 6 e−νk+1 where νk+1 is the precision of the approximation,

that we control. Define µk the precision we need to achieve at step k:
∥∥x(k) − x[k]

∥∥ 6 e−µk
and µn = µ. The triangle inequality ensures that the following choice of parameters is safe:

νk > µk + ln 2 µk−1 > f
(∥∥∥x[k−1]

∥∥∥)+ µk + ln 2

This is ensured by taking µk >
∑n−1
i=k f(Π(‖x‖ , i))+µ+(n−k) ln 2 which is indeed polynomial

in k, µ and ‖x‖. Finally a point worth mentionning is that the entire reasoning makes sense
because the assumption ensures that x(k) ∈ I at each step.

Formally, apply Lemma 13 to get that f ∈ AX(Υ,Ω,Λ,Θ) where Υ,Λ,Θ,Ω are polyno-
mials. Without loss of generability we assume that Υ,Λ,Θ,f and Π are increasing functions.
Apply Lemma 45 to get ω > 1 such that for all α ∈ R, µ ∈ R+:

Ω(α, µ) = ω > 1

CONTENTS XX:47

Apply Definition 42 to get δ, d and g. Define:

τ = ω + 2

We will show that f∗0 ∈ AWP = AP: let n ∈ N, x ∈ In, µ ∈ R+ and consider the following
system:

`(0)= norm∞,1(x)
µ(0)= µ

n(0)= n


`′(t)= 0
µ′(t)= 0
n′(t)= 0


y(0)= 0
z(0)= x

w(0)= x
y′(t)= g(t, y(t), w(t), ν(t))
z′(t)= sample[ω,ω+1],τ (t, ν(t), z(t), y1..n(t))
w′(t)= hxl[0,1](t− nτ, ν(t) + t, sample[ω+1,ω+2],τ (t, ν∗(t) + ln(1 + ω), w(t), z(t)))

`∗ = 1 + Π(`, n) ν = nf(`∗) + n ln 6 + µ+ ln 3 ν∗ = ν + Λ(`∗, ν)

First notice that `, µ and n are constant functions and we identify µ(t) with µ and n(t)
with n. Apply Lemma 29 to get that ‖x‖ 6 ` 6 ‖x‖ + 1, so in particular `∗, ν and ν∗ are
polynomially bounded in ‖x‖ and n. We will need a few notations: for i ∈ J0, nK, define
x[i] = f [i](x) and x(i) = w(iτ). Note that x[0] = x(0) = x. We will show by induction for
i ∈ J0, nK that:∥∥∥x(i) − x[i]

∥∥∥ 6 e−(n−i)f(`∗)−(n−i) ln 6−µ−ln 3

Note that this is trivially true for i = 0. Let i ∈ J0, n − 1K and assume that the result is
true for i, we will show that it holds for i+ 1 by analyzing the behavior of the sytem during
period [iτ, (i+ 1)τ].

For y and w, if t ∈ [iτ, iτ + ω + 1] then apply Lemma 71 to get that hxl ∈ [0, 1] and
Lemma 43 to get that ‖w′(t)‖ 6 e−ν∗−ln(1+ω). Conclude that ‖w(i)− w(t)‖ 6 e−ν∗ , in
other words

∥∥w(t)− x(i)
∥∥ 6 e−Λ(‖x(i)‖,ν) since

∥∥x(i)
∥∥ 6 ∥∥x[i]

∥∥ + 1 6 1 + Π(‖x‖ , i) 6 `∗.
Thus, by definition of extreme computability,

∥∥f(x(i))− y1..n(u)
∥∥ 6 e−ν if u ∈ [iτ +

ω, iτ + ω + 1] because Ω
(∥∥x(i)

∥∥ , ν) = ω.
For z, if t ∈ [iτ+ω, iτ+ω+1] then apply Lemma 43 to get that

∥∥f(x(i))− z(iτ + ω + 1)
∥∥ 6

2e−ν .
For z and w, if t ∈ [iτ+ω+1, iτ+ω+2] then apply Lemma 43 to get that ‖z′(t)‖ 6 e−ν

thus
∥∥f(x(i))− z(t)

∥∥ 6 3e−ν . Apply Lemma 71 to get that
∥∥∥y′(t)− sample[ω+1,ω+2],τ (t, ν∗ + ln(1 + ω), w(t), z(t))

∥∥∥ 6
e−ν−t. Apply Lemma 43 again to get that

∥∥f(x(i))− w(iτ + ω + 2)
∥∥ 6 4e−ν + e−ν

∗
6

5e−ν .
Our analysis concluded that

∥∥f(x(i))− z((i+ 1)τ)
∥∥ 6 5e−ν . Also, by hypothesis,

∥∥x(i) − x[i]
∥∥ 6

e−(n−i)f(`∗)−(n−i) ln 6−µ−ln 3 6 e−f(‖x[i]‖)−µ∗ where µ∗ = (n−i−1)f(`∗)+(n−i) ln 6+µ+ln 3
because

∥∥x[i]
∥∥ 6 `∗. Consequently, ∥∥f(x(i))− x[i+1]

∥∥ 6 e−µ∗ and thus:∥∥∥x(i+1) − x[i+1]
∥∥∥ 6 5e−ν + e−µ

∗
6 6e−µ

∗
6 e−(n−1−i)f(`∗)−(n−1−i) ln 6−µ−ln 3

From this induction we get that
∥∥x(n) − x[n]

∥∥ 6 e−µ−ln 3. We still have to analyze the
behavior after time nτ .

If t ∈ [nτ, nτ + 1] then apply Lemmas 43 and 71 to get that ‖w′(t)‖ 6 e−ν
∗−ln(1+ω)

thus
∥∥w(t)− x(n)

∥∥ 6 e−ν∗−ln(1+ω).

XX:48 CONTENTS

If t > nτ+1 then apply Lemma 71 to get that ‖w′(t)‖ 6 e−ν−t thus ‖w(t)− w(nτ + 1)‖ 6
e−ν .

Putting everything together we get for t > nτ + 1 that:∥∥∥w(t)− x[n]
∥∥∥ 6 e−µ−ln 3 + e−ν

∗−ln(1+ω) + e−ν

6 3e−µ−ln 3 6 e−µ

We also have to show that the system does not grow to fast. The analysis during the time
interval [0, nτ + 1] has already been done (although we did not write all the details, it is an
implicit consequence). For t > nτ + 1, have ‖w(t)‖ 6

∥∥x[n]
∥∥ + 1 6 Π(‖x‖ , n) + 1 which is

polynomially bounded. The bound on y comes from Definition 42:

‖y(t)‖ 6 Υ (supδ ‖w‖ (t), ν, 0) 6 Υ(Π(‖x‖ , n), ν, 0) 6 poly(‖x‖ , n, µ)

And finally, apply Lemma 43 to get that:

‖z(t)‖ 6 2 + supτ+1 ‖y1..n‖ (t) 6 poly(‖x‖ , n, µ)

This conclude the proof that f∗0 ∈ AWP.
We will now tackle the case of η > 0. Let η ∈]0, 1

2 [and define gη(x, µ) = rnd(x, µ, 1
2 − η)

for x ∈ Z +]−η, η[. Apply Lemma 62 to get that rnd ∈ GPVAL and Theorem 28 to get17
that gη ∈ AP. By definition, ‖gη(x, µ)− n‖ 6 e−µ if x ∈ [n − η, n + η] thus we can apply
Theorem 64 to get that g∗η(x) = limµ→∞ gη(x, µ) belongs to AP and g∗η(x) = n for any
x ∈ [n− η, n+ η]. Now define f∗η (x, u) = f∗0 (x, g∗η(u)) and apply Theorem 55 to conclude. As
a final remark, note that g∗η is a pretty good rounding function but we can do much better:
see Theorem 53 for more details.

I Remark (Optimality of growth constraint). It is easy to see that without any condition, the
iterates can produce an exponential function. Pick f(x) = 2x then f ∈ AP and f [n](x) = 2nx
which is clearly not polynomial in x and n. More generally, by Lemma 74, it is necessary
that f∗ be polynomially bounded so clearly f [n](x) must be polynomially bounded in ‖x‖
and n.

I Remark (Optimality of modulus constraint). Without any constraint, it is easy to build an
iterated function with exponential modulus of continuity. Define f(x) =

√
x then f ∈ AP

and f [n](x) = x
1

2n . For any µ ∈ R, f [n](e−2nµ)− f [n](0) = (e−2nµ) 1
2n = e−µ. Thus f∗ has

exponential modulus of continuity in n.

I Remark (Domain of definition). Intuitively we could have written the theorem differently,
only requesting that f(I) ⊆ I, however this has some problems. First if I is discrete, the
iterated modulus of continuity becomes useless and the theorem is false. Indeed, define
f(x, k) = (

√
x, k + 1) and I = {(2n

√
e, n), n ∈ N}: f �I has polynomial modulus of continuity

f because I is discrete, yet f∗ �I /∈ AP as we saw in Remark F.10.3. But in reality, the
problem is more subtle than that because if I is open but the neighbourhood of each point is
too small, a polynomial system cannot take advantage of it. To illustrate this issue, define
In =]0, 2n

√
e[×

]
n− 1

4 , n+ 1
4
[
and I = ∪n∈NIn. Clearly f(In) = In+1 so I is f -stable but

f∗ �I /∈ AP for the same reason as before.

17Although this is a forward reference, the proof does not relies on the iteration of functions

CONTENTS XX:49

I Remark (Classical error bound). The third condition in Theorem 15 is usually far more
subtle than necessary. In practice, is it useful to note this condition is satisfied in f verifies
for some constants ε,K > 0 that

for all x ∈ In, y ∈ Rm, if ‖x− y‖ 6 ε then y ∈ I and ‖f(x)− f(y)‖ 6 K ‖x− y‖

I Remark (Dependency of f in n). In the statement of thereom, f is only allowed to depend
on ‖x‖ whereas it might be useful to also make it depend on n. In fact the theorem is still true
if the last condition is modified to be ‖x− y‖ 6 e−f(‖x‖,n)−µ. The proof is straightfoward:

F.11 Proof of Theorem 2

F.11.1 FP iff emulable
In this subsection, we fix an alphabet Γ and all languages are considered over Γ, so in
particular P ⊂ Γ∗. It is common to take Γ = {0, 1} but the proofs work for any finite
alphabet. We will assume that Γ comes with an injective mapping γ : Γ→ N∗, in other words
every letter has an uniquely assigned positive number. By extension, γ applies letterwise
over words.

We start by proving that functions of FP (i.e. computable in polynomial time) are
emulable and conversely.

Before, we state that the following lemma can be proved:

I Lemma 67 (Size recovery, [33]). For any machine M, there exists a function (tsizeM :
〈CM〉 × N → N) ∈ AP such that for any word w ∈ (Σ \ {b})∗ and any n > |w|, the size of
the tape satisfies tsizeM(0.w, n) = |w|.

I Definition 68 (Discrete emulation). f : Γ∗ → Γ∗ is called emulable if there exists g ∈ AP
and k > 1 + max(γ(Γ)) such that for any word w ∈ Γ∗:

g(ψ(w)) = ψ(f(w)) where ψ(w) =

 |w|∑
i=1

γ(wi)k−i, |w|


We say that g emulates f with k.

I Theorem 69 (FP equivalence). f ∈ FP if and only if f is emulable (with k = 2 +
max(γ(Γ))).

Proof. Let f ∈ FP, then there exists a Turing machine M = (Q,Σ, b, δ, q0, F) where
Σ = J0, k − 2K and γ(Γ) ⊂ Σ \ {b}, and a polynomial pM such that for any word w ∈ Γ∗,M
halts in at most pM(|w|) steps, that isM[pM(|w|)](c0(γ(w))) = c∞(γ(f(w))). Note that we
assume that pM(N) ⊆ N. Also note that ψ(w) = (0.γ(w), |w|) for any word w ∈ Γ∗.

Let µ = ln(4k2) and h(c) = M(c, µ) for all c ∈ R4. Define I∞ = 〈CM〉 and In =
I∞ + [−εn, εn]4 where εn = 1

4k2+n for all n ∈ N. Note that εn+1 6
εn
k and that that

ε0 6 1
2k2 − e−µ. Apply Theorem 14 to get that h ∈ AP and h(In+1) ⊆ In. In particular∥∥h[n](c̄)− h[n](c)

∥∥ 6 kn ‖c− c̄‖ for all c ∈ I∞ and c̄ ∈ In, for all n ∈ N. Let δ ∈
[
0, 1

2
[
and

define J = ∪n∈NIn × [n− δ, n+ δ]. Apply Theorem 15 to get (h∗ : J → I0) ∈ AP such that
for all c ∈ I∞ and n ∈ N and h∗(c, n) = h[n](c).

Let π3 denote the third projection, that is π3(a, b, c, d) = c, then π3 ∈ AP. Define
g(y, `) = π3(h∗(0, b, y, q0, pM(`))) for y ∈ ψ(Γ∗) and ` ∈ N. Note that g ∈ AP and is

XX:50 CONTENTS

well-defined. Indeed, if ` ∈ N then pM(`) ∈ N and if y = ψ(w) = 0.w then (0, b, y, q0) =
〈(λ, b, w, q0)〉 = 〈c0(w)〉 ∈ I∞. Furthermore, by construction, for any word w ∈ Γ∗ we have:

g(ψ(w), |w|) = π3 (h∗(〈c0(w)〉 , pM(|w|)))

= π3

(
h[pM(|w|)](c0(w))

)
= π3

(〈
C[pM(|w|)]
M (c0(w))

〉)
= π3 (〈c∞(γ(f(w)))〉)
= 0.γ(f(w)) = ψ(f(w))

Furthermore, the size of the tape cannot be greater than the initial size plus the number of
steps, thus |f(w)| 6 |w|+ pM(|w|). Apply Lemma 67 to get that tsizeM(g(ψ(w), |w|), |w|+
pM(|w|)) = |f(w)| since f(w) does not contain any blank character (this is true because
γ(Γ) ⊂ Σ \ {b}). This proves that f is emulable because g ∈ AP and the tape size
tsizeM ∈ AP.

Conversely, assume that f is emulable and apply Definition 68 to get g ∈ AC(Υ,Ω) where
Υ,Ω are polynomials, and k ∈ N. Let w ∈ Γ∗: we will describe an FP algorithm to compute
f(w). Apply Definition 22 to g to get d, p, q and consider the following system:

y(0) = q(ψ(w)) y′(t) = p(y(t))

Note that by construction, y is defined over R+. Also note18 that the coefficients of p, q
belong to RP which means that they are polynomial time computable. And since ψ(w) is a
pair of rational numbers with polynomial size (with respect to |w|), then q(ψ(w)) ∈ RdP .

The algorithm works in two steps: first we compute a rough approximation of the output
to guess the size of the output. Then we rerun the system with enough precision to get the
full output.

Let tw = Ω(|w|, 2) for any w ∈ Σ∗, note that tw ∈ RP and that it is polynomially bounded
in |w| because Ω is a polynomial. Apply Theoorem 8 to compute ỹ such that ‖ỹ − y(tw)‖ 6
e−2: this takes a time polynomial in |w| because tw is polynomially bounded and because
leny(0, tw) 6 poly(tw, sup[0,tw] ‖y‖) and by construction, ‖y(t)‖ 6 Υ(‖ψ(w)‖ , tw) for t ∈
[0, tw] where Υ is a polynomial. Furthermore, by definition ‖y(tw)− g(ψ(w))‖ 6 e−2 thus
‖ỹ − ψ(f(w))‖ 6 2e−2 6 1

3 . But since ψ(f(w)) = (0.γ(f(w)), |f(w)|), from ỹ2 we can find
|f(w)| by rounding to the closest integer (which is unique because at distance at most 1

3). In
other words, we can compute |f(w)| in polynomial time in |w|. Note that this implies that
|f(w)| is at most polynomial in |w|.

Let t′w = Ω(|w|, 2 + |f(w)| ln k) which is polynomial in |w| because Ω is a polynomial and
|f(w)| is at most polynomial in |w|. We can use the same reasoning and apply Theorem 8
to get ỹ such that ‖ỹ − y(t′w)‖ 6 e−2−|f(w)| ln k. Again this takes a time polynomial in
|w|. Furthermore, ‖ỹ1 − 0.γ(f(w))‖ 6 2e−2−|f(w)| ln k 6 1

3k
−|f(w)|. We claim that this

allows to recover f(w) unambiguously in polynomial time in |f(w)|. Indeed, it implies that∥∥k|f(w)|ỹ1 − k|f(w)|0.γ(f(w))
∥∥ 6 1

3 . Unfolding the definition shows that k|f(w)|0.γ(f(w)) =∑|f(w)|
i=1 γ(f(w)i)k|f(w)|−i ∈ N thus by rounding k|f(w)|ỹ1 to the nearest integer, we recover

γ(f(w)), and then f(w). This is all done in polynomial time in |f(w)|, which proves that f
is polynomial time computable. J

18 and that is absolutely crucial

CONTENTS XX:51

An question arises when looking at this theorem: does the choice of k in Definition 68
matters, especially for the equivalence with FP ? Fortunately not, as long as k is large
enough, as shown in the next lemma.

I Lemma 70 (Emulation reencoding, [33]). Assume that g ∈ AP emulates f with k ∈ N.
Then for any k′ > k, there exists h ∈ AP that emulates f with k′.

F.11.2 Proof of Theorem 2
We start by some technical lemma.

I Lemma 71 (“low-X-high” and “high-X-low”, [33]). There exists lxhI , hxlI ∈ GPVAL such
that: Let I = [a, b], µ ∈ R+, then ∀t, x ∈ R:
∃φ1, φ2 such that lxhI(t, µ, x) = φ1(t, µ, x)x and hxlI(t, µ, x) = φ2(t, µ, x)x
if t 6 a, | lxhI(t, µ, x)| 6 e−µ and |x− hxlI(t, µ, x)| 6 e−µ

if t > b, |x− lxhI(t, µ, x)| 6 e−µ and | hxlI(t, µ, x)| 6 e−µ

in all cases, | lxhI(t, µ, x)| 6 |x| and | hxlI(t, µ, x)| 6 |x|

The proof is based on the equivalence between AP and ALP, and the FP equivalence.
Indeed, decidability can be seen as the computability of particular functions with boolean
output. The only technical point is to make sure that the decision of the system is irreversible.
To do that, we run the system from the FP equivalence (which will output 0 or 1) for long
enough so that the output is approximate but good enough. Only then will another variable
reach −1 or 1. The fact that the decision complexity is based on the length of the curve also
makes the proof slightly more complicated because the system we build essentially takes a
decision after a certain time (and not length).

Let L ∈ P, then there exists f ∈ FP and two distinct symbols 0̄, 1̄ ∈ Γ such that
for any w ∈ Γ∗, f(w) = 1̄ if w ∈ M and f(w) = 0̄ otherwise. Let dec be defined by
dec(k−1γ(0̄)) = −2 and dec(k−1γ(1̄)) = 2. Recall that Ldec ∈ AP by Lemma 49. Apply
Theorem 69 to get g and k that emulate f . Note in particular that for any w ∈ Γ∗,
f(w) ∈ {0̄, 1̄} so ψ(f(w)) = (γ(0̄)k−1, 1) or (γ(1̄)k−1, 1). Define g∗(x) = Ldec(g1(x)) and
check that g∗ ∈ AP. Furthermore, g∗(ψ(w)) = 2 if w ∈ L and g∗(ψ(w)) = −2 otherwise, by
definition of the emulation and the interpolation. Let Ω and Υ be polynomials such that
g∗ ∈ AC(Υ,Ω) and assume, without loss of generality, that they are increasing functions.
Apply Definition 22 to get d, p, q. Let w ∈ Γ∗ and consider the following system:

y(0)= q(ψ(w))
v(0)= ψ(w)
z(0)= 0
τ(0)= 0


y′(t)= p(y(t))
v′(t)= 0
z′(t)= lxh[0,1](τ(t)− τ∗, 1, y1(t)− z(t))
τ ′(t)= 1

τ∗ = Ω(v2(t), ln 2)

In this system, y computes g∗ f , v is a constant variable used to store the input and in
particular the input size (v2(t) = |w|), τ(t) = t is used to keep the time and z is the decision
variable. Let t ∈ [0, τ∗], then by Lemma 71, ‖z′(t)‖ 6 e−1−t thus ‖z(t)‖ 6 e−1 < 1. In other
words, at time τ∗ the system has still not decided if w ∈ L or not. Let t > τ∗, then by
definition of Ω and since v2(t) = ψ2(w) = |w| = ‖ψ(w)‖, ‖y1(t)− g∗(ψ(w))‖ 6 e− ln 2. Recall
that g∗(ψ(w)) ∈ {−2, 2} and let ε ∈ {−1, 1} such that g∗(ψ(w)) = ε2. Then ‖y1(t)− ε2‖ 6 1

2

XX:52 CONTENTS

which means that y1(t) = ελ(t) where λ(t) > 3
2 . Apply Lemma 71 to conclude that z satisfies

for t > τ∗:

z(τ∗) ∈ [−e−1, e−1] z′(t) = φ(t)(ελ(t)− z(t))

where φ(t) > 0 and φ(t) > 1 − e−1 for t > τ∗ + 1. Let zε(t) = εz(t) and check that zε
satisfies:

zε(τ∗) ∈ [−e−1, e−1] z′ε(t) > φ(t)(3
2 − zε(t))

It follows that zε is an increasing function and from a classical argument about differential
inequalities that:

zε(t) >
3
2 −

(
3
2 − zε(τ

∗)
)
e
−
∫ t
τ∗
φ(u)du

In particular for t∗ = τ∗ + 1 + 2 ln 4 we have:

zε(t) >
3
2 − (3

2 − zε(τ
∗))e−2 ln 4(1−e−1) >

3
2 − 2e− ln 4 > 1

This proves that |z(t)| is an increasing function, so in particular once it has reached 1, it stays
greater than 1. Furthermore, if w ∈ L then z(t∗) > 1 and if w /∈ L then z(t∗) 6 1. Also note
that ‖(y, v, z, w)′(t)‖ > 1 for all t > 1. Also note that z is bounded by a constant, by a very
similar reasoning. This shows that if Y = (y, v, z, τ), then ‖Y (t)‖ 6 poly(‖ψ(w)‖ , t) because
‖y(t)‖ 6 Υ(‖ψ(w)‖ , t). Consequently, there is a polynomial Υ∗ such that ‖Y ′(t)‖ 6 Υ∗
(this is immediate from the expression of the system), and without loss of generality, we
can assume that Υ∗ is an increasing function. And since ‖Y ′(t)‖ > 1, we have that
t 6 lenY (0, t) 6 t supu∈[0,t] ‖Y ′(u)‖ 6 tΥ∗(‖ψ(w)‖ , t). Define Ω∗(α) = t∗Υ∗(α, t∗) which
is a polynomial becase t∗ is polynomially bounded in ‖ψ(w)‖ = |w|. Let t such that
lenY (0, t) > Ω∗(|w|), then by the above reasoning, tΥ∗(|w|, t) > Ω∗(|w|) and thus t > t∗ so
|z(t)| > 1, i.e. the system has decided.

F.12 Proof of Theorem 1
F.12.1 FP iff emulable: extension to multiple inputs/outputs
The equivalence between FP and the fact of beeing emulable has been proved in Theorem 69
for single input function, which is sufficient in theory because we can always encode tuples of
words using a single word or give Turing machines several input/output tapes. For what
follows, it will be useful to have function with multiple inputs/ouputs without going through
an encoding. We extend the notion of discrete encoding in the natural way to handle this
case.

I Definition 72 (Discrete emulation). f : (Γ∗)n → (Γ∗)m is called emulable if there exists
g ∈ AP and k ∈ N such that for any word ~w ∈ (Γ∗)n:

g(ψ(~w)) = ψ(f(~w)) where ψ(x1, . . . , x`) = (ψ(x1), . . . , ψ(x`))

and ψ is defined as in Definition 68.

I Remark (Consistency). It is trivial that Definition 72 matches Definition 68 in the case of
unidimensional functions, thus the two definitions are consistent with each other.

CONTENTS XX:53

I Theorem 73 (Multidimensional FP equivalence). Let f : (Γ∗)n → (Γ∗)m. Then f ∈ FP if
and only if f is emulable.

Proof. First note that we can always assume that m = 1 by applying the result component-
wise. Similarly, we can always assume that n = 2 by applying the result repeatedly. Since
FP is robust to the exact encoding used for pairs, we choose a particular encoding to prove
the result. Let # be a fresh symbol not found in Γ and define Γ# = Γ ∪ {#}. We naturally
extend γ to γ# which maps Γ# to N∗ injectively. Let h : Γ#∗ → Γ∗ and define for any
w,w′ ∈ Γ∗:

h#(w,w′) = h(w#w′)

It follows19 that

f ∈ FP if and only if ∃h ∈ FP such that h# = f

Assume that f ∈ FP, then there exists h ∈ FP such that h# = f . Note that h naturally
induces a function (still called) h : Γ#∗ → Γ#∗ so we can apply Theorem 69 to get that h is
emulable over alphabet Γ#. Apply Definition 68 to get g ∈ AP and k ∈ N that emulate h.
In the remaining of the proof, ψ denotes encoding of Definition 68 for this particular k, in
other words:

ψ(w) =

 |w|∑
i=1

γ#(wi)k−i, |w|


Define for any x, x′ ∈ R and n, n′ ∈ N:

ϕ(x, n, x′, n) =
(
x+

(
γ#(#) + x′

)
k−n−1, n+m+ 1

)
We claim that ϕ ∈ AP and that for any w,w′ ∈ Γ∗, ϕ(ψ(w), ψ(w′)) = ψ(w#w′). The fact
that ϕ ∈ AP is immediate using Theorem 54 and the fact that n 7→ k−n−1 is analog-polytime-
computable20. The second fact is follows from a calculation:

ϕ(ψ(w), ψ(w′)) = ϕ

 |w|∑
i=1

γ#(wi)k−i, |w|,
|w′|∑
i=1

γ#(w′i)k−i, |w′|


=

 |w|∑
i=1

γ#(wi)k−i +

γ#(#) +
|w′|∑
i=1

γ#(w′i)k−i
 k−|w|−1, |w|+ |w′|+ 1


=

|w#w′|∑
i=1

γ#((w#w′)i)k−i, |w#w′|


= ψ(w#w′)

Define G = g ◦ ϕ, we claim that G emulates f with k. First G ∈ AP thanks to Theorem 55.
Second, for any w,w′ ∈ Γ∗, we have:

G(ψ(w,w′)) = g(ϕ(ψ(w), ψ(w′))) By definition of G and ψ

19This is folklore, but mostly because this particular encoding of pairs is polytime computable.
20Note that it works only because n > 0.

XX:54 CONTENTS

= g(ψ(w#w′)) By the above equality
= ψ(h(w#w′)) Because g emulates h
= ψ(h#(w,w′)) By definition of h#

= ψ(f(w,w′)) By the choice of h

Conversely, assume that f is emulable. Define F : Γ#∗ → Γ#∗ × Γ#∗ as follows for any
w ∈ Γ#∗:

F (w) =
{

(w′, w′′) if w = w′#w′′ where w′, w′′ ∈ Γ∗

(λ, λ) otherwise

Clearly F1, F2 ∈ FP so apply Theorem 69 to get that they are emulable. Thanks to Lemma 70,
there exists h, g1, g2 that emulate f, F1, f2 respectively with the same k. Define:

H = h ◦ (g1, g2)

Clearly H ∈ AP because g1, g2, h ∈ AP. Furthermore, H emulates f ◦ F because for any
w ∈ Γ#∗:

H(ψ(w)) = h(g1(ψ(w)), g2(ψ(w)))
= h(ψ(g1(w)), ψ(g2(w))) Because gi emulates Fi
= h(ψ(F (w))) By definition of ψ
= ψ(f(F (w))) Because h emulates f

Since f ◦ F : Γ#∗ → Γ#∗ is emulable, we can apply Theorem 69 to get that f ◦ F ∈ FP. It
is now trivial so see that f ∈ FP because for any w,w′ ∈ Γ∗:

f(w,w′) = (f ◦ F)(w#w′)

and ((w,w′) 7→ w#w′) ∈ FP J

F.12.2 Some facts
We need the following facts.

I Lemma 74. Let f ∈ AP, there exists a polynomial P such that ‖f(x)‖ 6 P (‖x‖) for all
x ∈ dom f .

Proof. Assume that f ∈ AC(Υ,Ω) and apply Definition 22 to get d, p, q. Let x ∈ dom f

and let y be the solution of y(0) = q(x) and y′ = p(y). Apply the definition to get that
‖f(x)− y1..m(Ω(‖x‖ , 0))‖ 6 1 and ‖y(Ω(‖x‖ , 0))‖ 6 Υ(‖x‖ ,Ω(‖x‖ , 0)) 6 poly(‖x‖) since
Υ and Ω are polynomials. J

I Theorem 75 (Extraction, [33]). There exists extract ∈ AP such that for any x ∈ R and
n ∈ N:

extract(x, n) = cos(2π2nx)

Notice that the proof of above theorem is obtained using an iteration: See [33].

CONTENTS XX:55

I Definition 76 (Mixing function). Let f0 :⊆ Rn → Rd, f1 :⊆ Rn → Rd and i :⊆ Rn → R.
Assume that {x | i(x) < 1} ⊆ dom f0 and {x | i(x) > 0} ⊆ dom f1, and define for x ∈ dom i:

mix(i, f0, f1)(x) =


f0(x) if i(x) 6 0
(1− i(x))f0(x) + i(x)f1(x) if 0 < i(x) < 1
f1(x) if i(x) > 1

I Theorem 77 (Closure by mixing, [33]). Let f0 :⊆ Rn → Rd, f1 :⊆ Rn → Rd and i :⊆ Rn →
R. Assume that f0, f1, i ∈ AP, that {x | i(x) < 1} ⊆ dom f0 and that {x | i(x) > 0} ⊆ dom f1.
Then mix(i, f0, f1) ∈ AP.

I Remark (Limit computability). A careful look at Definition 34 shows that analog weak
computability is a form of limit computability. Formally, let f : I × R∗+ → Rn, g : I → Rn
and f : R2

+ → R+ a polynomial. Assume that f ∈ AP and that for any x ∈ I and τ ∈ R∗+, if
τ > f(‖x‖ , µ) then ‖f(x, τ)− f(x)‖ 6 e−µ. Then g ∈ AWP because the analog system for
f satisfies all the items of the definition.

I Theorem 78 (Word decoding, [33]). Let k1, k2 ∈ N∗ and κ : J0, k1−1K→ J0, k2−1K. There
exists a function (decodeκ :⊆ R× N× R→ R) ∈ AP such that for any word w ∈ J0, k1− 1K∗

and µ, ε > 0:

if ε 6 k−|w|1 (1−e−µ) then decodeκ

 |w|∑
i=1

wik
−i
1 + ε, |w|, µ

 =

 |w|∑
i=1

κ(wi)k−i2 ,#{i|wi 6= 0}


I Lemma 79 (Reencoding). Let k1, k2 ∈ N∗ and κ : J1, k1 − 2K→ J0, k2 − 1K. There exists
a function (reencκ :⊆ R× N→ R× N) ∈ AP such that for any word w ∈ J1, k1 − 2K∗ and
n > |w| we have:

reencκ

 |w|∑
i=1

wik
−i
1 , n

 =

 |w|∑
i=1

κ(wi)k−i2 , |w|


Proof. The proof is immediate: extend κ with κ(0) = 0 and define

reencκ(x, n) = decodeκ(x, n, 0)

Since n > |w|, we can apply Theorem 78 with ε = 0 to get the result. Note that stricly
speaking, we are not applying the theorem to w but rather to w padded with as many 0
symbols as necessary, ie w0n−|w|. Since w does not contain the symbol 0 so its length is the
same as the number of non-blank symbols it contains. J

F.12.3 Proof of Theorem 1
Assume that the theorem is true for functions in C0([0, 1/2]), then we claim the theorem
follows. Indeed, if f ∈ C0([a, b],R) is polynomial time computable, then there exists21
m,M ∈ RP such that m < f(x) < M for all x ∈ [a, b]. Define for α ∈ [0, 1/2]:

g(α) = f(a+ 2α(b− a))−m
2(M −m)

21To see that, observe that any polytime computable function is bounded by a polynomial.

XX:56 CONTENTS

then clearly g ∈ C0([0, 1/2]) and is polytime computable because a, b,m,M ∈ RP . It follows
that g ∈ AP and then f ∈ AP by the closure properties of AP. Conversely, if f ∈ C0([0, 1/2])
belongs to AP then there also exists22 m,M ∈ RP as above and the reasoning is exactly the
same. In the remaining of the proof, we assume that f ∈ C0([0, 1/2]). This restriction is
useful to simplify the encoding used later in the proof.

Let f ∈ C0([0, 1/2]) be a polynomial time computable function. From classical recursive
analysis arguments, there exists a computable (resp. polynomial time computable23) function
g : (Q ∩ [a, b])×N→ Q and a computable (resp. polynomial) function m : N→ N such that:

m is a modulus of continuity for f
for any n ∈ N and d ∈ [a, b] ∩Q, |g(d, n)− f(d)| 6 2−n

Note that g : Q ∩ [0, 1/2]× N→ Q ∩ [0, 1/2] has its second argument written in unary. In
order to apply the FP characterization, we need to discuss the encoding of rational numbers
and unary integers. Let us choose a binary alphabet Γ = {0, 1} with γ(0) = 1 and γ(1) = 2
and define for any w,w′ ∈ Γ∗:

ψN(w) = |w| ψQ(w) =
|w|∑
i=1

wi2−i

Note that ψQ is a bijection from Γ∗ to Q ∩ [0, 1[. Define for any w,w′ ∈ Γ∗:

gΓ(w,w′) = ψ−1
Q (g(ψQ(w), ψN(w′))

Since ψQ is a polytime computable encoding, then gΓ ∈ FP because it has running time
polynomial in the size of ψQ(w) and the (unary) value of ψN(w′), which are the size of w and
w′ respectively, by definition of ψQ and ψN. Apply Theorem 73 to get that gΓ is emulable.
Thus there exits h ∈ AP and k ∈ N such that for all w,w′ ∈ Γ∗:

h(ψ(w,w′)) = ψ(gΓ(w,w′))

where ψ is defined as in Definition 72, for this specific value of k. Define κ : J0, k−2K→ {0, 1}
by κ(γ(0)) = 0 and κ(γ(1)) = 1 and κ(α) = 0 otherwise, and define:

ψ∗Q(x, n) = reencκ,1(x, n)

It follows from Lemma 79 that ψ∗Q ∈ AP and:

ψ∗Q(ψ(w)) = reencκ,1

 |w|∑
i=1

γ(wi)k−i, |w|

 =
|w|∑
i=1

κ(γ(wi))2−i =
|w|∑
i=1

wi2−i = ψQ(w)

We can now define:

g∗Γ(x, n, x′, n′) = ψ∗Q(h(x, n, x′, n′)

and get that for any w,w′ ∈ Γ∗:

g∗Γ(ψ(w,w′)) = ψ∗Q(h(ψ(w,w′))) = ψ∗Q(ψ(gΓ(w,w′)) = ψQ(gΓ(w,w′)) = g(ψQ(w), ψN(w′))

Let us summarize what we have done so far: we built g∗Γ ∈ AP that, if provided with the
encoding of w,w′, compute g(ψQ(w), ψN(w′)). To use this function, we need to be able to

22By Lemma 74, functions in AP are bouned by a polynomial.
23The second argument of g must be in unary.

CONTENTS XX:57

compute, from the input x ∈ [0, 1] and the requested precision µ > 0, words w,w′ such that
|w′| > µ and |x − ψQ(w)| 6 2−m(ψN(w′)) so that we can run g∗Γ and get an approximation
of f(x)± 2−µ. The problem is that for continuity reason, it is impossible to compute such
w,w′ in general. This is where mixing comes into play: given x and µ, we will compute two
pairs w,w′ and u, u′ such that at least one of them satisfies the above criteria. We will then
apply g∗Γ on both of them and mix the result.

Define24 ι : Γ→ J0, k− 1K by ι = γ. Apply Theorems 78 and 75 to get decodeι, extract ∈
AP. Define for any n ∈ N:

u(n) =
(

1−k−n
k−1 , n

)
Clearly u ∈ AP and one checks that u(n) = ψ(0n) because:

ψ(0n) =
(

n∑
i=1

γ(0)k−i, n
)

=
(

1
k

1−kn
1−k , n

)
= u(n)

Now define for any n ∈ N and relevant25 x ∈ [0, 1]:

v(x, n) = (decodeι,1(x, n, 2), n)

It follows from Theorem 78 and the fact that 1− e−2 > 2
3 that:

if x = ψQ(w) + ε for some w ∈ Γn and ε ∈
[
0, 2−n 2

3
]
then v(x, n) = ψ(w)

Now define for any n ∈ N and relevant x ∈ [0, 1]:

f0(x, n) = g∗Γ(v(x, n), u(n))
f1(x, n) = g∗Γ

(
v
(
x+ 2−n−1, n

)
, u(n)

)
i(x, n) = 1

2 + extract
(
x+ 2−n 1

6 , n
)

From the domain of definition of v, it follows that:⋃
w∈Γn

[
ψQ(w), ψQ(w) + 2−n 2

3
]
⊆ dom f0

⋃
w∈Γn

[
ψQ(w)− 2−n−1, ψQ(w) + 2−n 1

6
]
⊆ dom f1

First off, check that for any n ∈ N:⋃
w∈×Γn

[
ψQ(w), ψQ(w) + 2−n

[
= [0, 1[

Check that for any n ∈ N, ε ∈ [0, 2−n[, n ∈ N and w ∈ Γn:

i(ψQ(w) + ε, n) = 1
2 + cos(2π2nε+ π

3)

It follows that any n ∈ N, ε ∈ [0, 2−n[, w ∈ Γn and x = ψQ(w) + ε we have:

ε ∈
[
0, 2−n 1

6
[

⇒ i(x, n) ∈ [0, 1[

24This is a technicality because decodeι will encode the output in basis k if ι : Γ→ J0, k − 1K.
25We will discuss the domain of definition of v right after.

XX:58 CONTENTS

ε ∈
[
2−n 1

6 , 2
−n 1

2
]

⇒ i(x, n) 6 0
ε ∈

]
2−n 1

2 , 2
−n 2

3
[

⇒ i(x, n) ∈]0, 1[
ε ∈

[
2−n 2

3 , 2
−n[⇒ i(x, n) > 1

Thus:

{(x, n) | i(x, n) < 1} ⊆ dom f0 {(x, n) | i(x, n) > 0} ⊆ dom f1

Define for any x ∈ [0, 1/2] and n ∈ N:

g∗(x, n) = mix(i, f0, f1)(x, n)

We can thus apply Theorem 77 to get that g∗ ∈ AP. Note that g∗ is defined over [0, 1[×N
which obviously contains [0, 1/2]× N. We will now see that g∗ approximates f and conclude
that f ∈ AWP. To do so, we will show the following statement by a case analysis, for all
x ∈ [0, 1/2] and n ∈ N:

∃y, z ∈ Q∩ [0, 1/2], α ∈ [0, 1], |x−y|, |x−z| 6 2−n and g∗(x, n) = αg(y, n)+(1−α)g(z, n)

To see that, first note that there exists26 w ∈ Γn such that27 x ∈ [ψQ(w), ψQ(w) + 2−n].
Furthermore, since x ∈ [0, 1/2], we can always assume that w ∈ {0} × Γn−1. Write
ε = x − ψQ(w), then there are four possible cases. It will be useful to keep in mind that
u(n) = ψ(0n) as shown previously and that ψN(0n) = n. Also remember that we showed
that g∗Γ(ψ(w,w′)) = g(ψQ(w), ψN(w′)). In almost all cases, we will define y = ψQ(w) and
thus |x− y| = ε 6 2−n.

If ε ∈
[
0, 2−n 1

6
[

then i(x, n) ∈ [0, 1[thus g∗(x, n) = i(x, n)f0(x, n) + (1− i(x, n))f1(x, n).
By construction of v, v(x, n) = ψ(w) thus f0(x, n) = g∗Γ(ψ(w), ψ(0n)) = g∗Γ(ψ(w, 0n)) =
g(ψQ(w), ψN(0n)) = g(y, n). Since, x + 2−n−1 − ψQ(w) ∈ [0, 2−n 2

3] we similarly have
v(x+ 2−n−1, n) = ψ(w) and thus f1(x, n) = f0(x, n) = g(y, n). It follows that g∗(x, n) =
g(y, n). So in this case, z = y ∈ [0, 1/2] and α can be anything.
If ε ∈

[
2−n 1

6 , 2
−n 1

2
]

then i(x, n) 6 0 thus g∗(x, n) = f0(x, n). By construction of v,
v(x, n) = ψ(w) thus f0(x, n) = g∗Γ(ψ(w), ψ(0n)) = g∗Γ(ψ(w, 0n)) = g(ψQ(w), ψN(0n)) =
g(y, n). It follows that g∗(x, n) = g(y, n). So in this case, z = y ∈ [0, 1/2] and α can be
anything.
If ε ∈

]
2−n 1

2 , 2
−n 2

3
[

then i(x, n) ∈ [0, 1[thus g∗(x, n) = i(x, n)f0(x, n)+(1−i(x, n))f1(x, n).
By construction of v, v(x, n) = ψ(w) thus f0(x, n) = g∗Γ(ψ(w), ψ(0n)) = g∗Γ(ψ(w, 0n)) =
g(ψQ(w), ψN(0n)) = g(y, n). However, x + 2−n−1 − ψQ(w) ∈ [2−n, 2−n(1 + 1

6)]. Thus
define w′ ∈ Γn such that28ψQ(w′) = ψQ(w) + 2−n and define z = ψQ(w′). It follows that
x−ψQ(w′) ∈ [0, 2−n 1

6] thus v(x+2−n−1, n) = ψ(w′) and thus f1(x, n) = f0(x, n) = g(z, n).
It follows that g∗(x, n) = αg(y, n)+(1−α)g(z, n) where α = i(x, n) ∈ [0, 1]. Furthermore,
|z − x| 6 2−n by construction of w′.
If ε ∈

]
2−n 2

3 , 2
−n] then i(x, n) > 1 thus g∗(x, n) = f1(x, n). Define w′ ∈ Γn such

that28ψQ(w′) = ψQ(w)+2−n and define z = ψQ(w′). It follows that x−ψQ(w′) ∈ [0, 2−n 1
2]

thus v(x + 2−n−1, n) = ψ(w′) and thus f1(x, n) = f0(x, n) = g(z, n). So in this case,
y = z ∈ [0, 1/2] and α can be anything.

26 It may not be unique since we closed the interval on both sides in order to get all of [0, 1/2] with words
in {0} × Γn. If we opened the interval on the right, we would only get [0, 1/2[with such words.

27The use of this assumption will become later on. Essentially, it is there to ensure that the y we construct
belongs to [0, 1/2] so that we can apply the function g to it.

28This is always possible, formally if w is seen as a number, written in binary, then w′ is w + 1.

CONTENTS XX:59

We are now in position to conclude thanks to the modulus of continuity of f . Recall that by
definition, m is a polynomial such that for any x, y ∈ [0, 1/2] and k ∈ N, if |x− y| 6 2−m(k)

then |f(x)− f(y)| 6 2−k. Without loss of generality, we can assume29 that m(N) ⊆ N and
m(n) > n. Now define for any x ∈ [0, 1/2] and n ∈ N:

g∗∗(x, n) = g∗(x,m(n+ 1))

Clearly g ∈ AP since g ∈ AP and m is a polynomial. Let x ∈ N and n ∈ N. Then we have
shown that there exists y, z ∈ Q∩ [0, 1/2] and α ∈ N such that |x−y|, |x−z| 6 2−m(n+1) and
g∗(x,m(n+1)) = αg(y,m(n+1))+(1−α)g(z,m(n+1)). By definition of g, |g(y,m(n+1))−
f(y)| 6 2−m(n+1) 6 2−n−1 since m(n+ 1) > 2. Similarly, |g(z,m(n+ 1))− f(z)| 6 2−n−1.
Furthermore, |f(y)− f(x)|, |f(z)− f(x)| 6 2−n−1. Thus:

|g∗∗(x, n)− f(x)| 6 α|g∗(y,m(n+ 1))− f(x)|+ (1− α)|g∗(z,m(n+ 1))− f(x)|
6 α(2−n−1 + |f(y)− f(x)|) + (1− α)(2−n−1 + |f(z)− f(x)|)
6 α2−n + (1− α)2−n

6 2−n

Using Remark F.12.2, we have thus shown that f ∈ AWP and since AWP = AP, f ∈ AP.

29Do do so, consider the same polynomial where each coefficient is the ceiling value of the absolute value
of the corresponding coefficient of m, and add the monomial x 7→ x.

	1 Introduction
	2 Our Results
	3 Discussion
	4 Overview of the proof
	4.1 Polytime analog computability implies polytime computability
	4.2 Polytime computability implies polytime analog computability

	A Table of Contents
	B Complements on Related Works
	C Some Formal Statements About Facts Mentioned in the Discussion
	C.1 A Characterization of EXPTIME
	C.2 A (Too simple) Characterization of NP

	D Notations
	E Polytime analog computability implies polytime computability
	E.1 Proof of Theorem 1 (AP implies P)
	E.2 Proof of Theorem 7

	F Polytime computability implies polytime analog computability
	F.1 Proof of Lemma 10
	F.2 Proof of Lemma 11
	F.3 Proof of under conditions on the domain
	F.4 Proof that AP implies AWP
	F.5 Proof that AWP implies ARP
	F.6 Proof that ARP implies ASP
	F.7 Proof that ASP implies AXP
	F.8 Proof that AXP implies AOP
	F.9 Proof of Theorem 14
	F.9.1 More on Turing Machines
	F.9.2 Polynomial interpolation
	F.9.3 Specific Functions and Operations
	F.9.4 On Encoding and Ideal Step Function
	F.9.5 Proof of Theorem 14

	F.10 Proof of Theorem 15
	F.10.1 Some facts
	F.10.2 Computing limits
	F.10.3 Proof of Theorem 15

	F.11 Proof of Theorem 2
	F.11.1 FP iff emulable
	F.11.2 Proof of Theorem 2

	F.12 Proof of Theorem 1
	F.12.1 FP iff emulable: extension to multiple inputs/outputs
	F.12.2 Some facts
	F.12.3 Proof of Theorem 1

