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Abstract

A skew-symmetric graph (D = (V, A), o) is a directed graph D with an involution o on
the set of vertices and arcs. Flows on skew-symmetric graphs have been used to generalize
maximum flow and maximum matching problems on graphs, initially by Tutte [1967], and
later by Goldberg and Karzanov [1994, 1995]. In this paper, we introduce a separation
problem, d-SKEW-SYMMETRIC MULTICUT, where we are given a skew-symmetric graph
D, a family of T of d-sized subsets of vertices and an integer k. The objective is to
decide if there is a set X C A of k arcs such that every set J in the family has a vertex v
such that v and o(v) are in different connected components of D' = (V, A\ (X Uo(X)).
In this paper, we give an algorithm for d-SKEW-SYMMETRIC MULTICUT which runs in
time O((4d)*(m + n +¢)), where m is the number of arcs in the graph, n the number of
vertices and ¢ the length of the family given in the input.

This problem, apart from being independently interesting, also abstracts out and
captures the main combinatorial obstacles towards solving numerous classical problems.
Our algorithm for d-SKEW-SYMMETRIC MULTICUT paves the way for the first linear time
parameterized algorithms for several problems. We demonstrate its utility by obtaining
following linear time parameterized algorithms.

e We show that ALMOST 2-SAT is a special case of 1-SKEW-SYMMETRIC MULTI-
CUT, resulting in an algorithm for ALMOST 2-SAT which runs in time (9(4]%46
where k is the size of the solution and £ is the length of the input formula. Then,
using linear time parameter preserving reductions to ALMOST 2-SAT, we obtain
algorithms for ODD CYCLE TRANSVERSAL and EDGE BIPARTIZATION which run
in time O(4kk*(m + n)) and O(4¥k®(m + n)) respectively where k is size of the
solution, m and n are the number of edges and vertices respectively. This resolves
an open problem posed by Reed, Smith and Vetta [Operations Research Letters,
2003] and improves upon the earlier almost linear time algorithm of Kawarabayashi
and Reed [SODA, 2010].

e We show that DELETION ¢g-Horn BACKDOOR SET DETECTION is a special case
of 3-SKEW-SYMMETRIC MULTICUT, giving us an algorithm for DELETION ¢-Horn
BACKDOOR SET DETECTION which runs in time O(12¥k%¢) where k is the size of
the solution and ¢ is the length of the input formula. This gives the first fixed-
parameter tractable algorithm for this problem answering a question posed in a
paper by a superset of the authors [STACS, 2013]. Using this result, we get an
algorithm for SATISFIABILITY which runs in time O(12¥k°¢) where k is the size
of the smallest ¢-Horn deletion backdoor set, with ¢ being the length of the input
formula.
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1 Introduction

A skew-symmetric graph is a digraph D = (V, A) along with an involution o : VUA — VUA
where for every z € VU A, o(z) # x and o(o(z)) = x and for every x € V (x € A),
o(x) € V (respectively o(x) € A). Skew-symmetric graphs were introduced under the name
of antisymmetrical digraphs by Tutte [40] along with a notion of self-conjugate flows as a
generalization of maximum flows in networks and matchings in graphs and subsequently by
Zelinka [44] and Zaslavsky [43]. Goldberg and Karzanov [15, [16] revisited the work of Tutte
and gave unified proofs for the analogues of the flow-decomposition and max-flow min-cut
theorems on these graphs.

In this paper we use skew-symmetric graphs and an appropriate notion of separators
on them as a model to abstract out “cut properties” underlying several problems in pa-
rameterized complexity. In parameterized complexity each problem instance comes with a
parameter k and a central notion in parameterized complexity is fized parameter tractability
(FPT). This means, for a given instance (x, k), solvability in time f(k) - p(|z|), where f is
an arbitrary function of k and p is a polynomial in the input size.

We now introduce the main problem studied in this paper — a variant of the MULTICUT
problem on skew-symmetric graphs.

d-SKEW-SYMMETRIC MULTICUT Parameter: k
Input: A skew-symmetric graph D = ((V, A), o), a family T of d-sets of vertices, integer
k.

Question: Is there a set S C A such that S = o(5), |S| < 2k, and for any d-set
{v1,...,vq} in T, there is a vertex v; such v; and o(v;) lie in distinct strongly connected
components of D \ S?

The set S is the above definition is called a skew-symmetric multicut for the given instance.
Our main result is a FPT algorithm for the above problem where the dependence of the
running time of the algorithm on the input size is linear. Formally,

Theorem 1. There is an algorithm that, given an instance (D = (V, A,0),T, k) of d-SKEW-
SYMMETRIC MULTICUT, runs in time O((4d)Fk*(¢ + m 4+ n)) and either returns a skew-

symmetric multicut of size at most 2k or correctly concludes that no such set exists, where
m = |A| and n = |V|, and ¢, the length of the family T, is defined as d - |T|.

Overview of our algorithm.  The main obstacle to applying existing digraph algorithms
on skew-symmetric graphs comes from the fact that standard arguments heavily based on
sub-modularity of cuts break down, allowing only approximations, (see for example [28] [13]).
Our first contribution is a reduction rule which overcomes this obstacle by allowing us to
essentially (and correctly) think of local parts of an irreducible instance as a normal digraph.
The reduction rule is essentially the following.

“Given two vertex sets X and Y which satisfy certain properties, if there is
a minimum X-Y separator which contains an arc a and its image o(a), then
some arc (not necessarily a) in this separator is part of an optimal solution and
therefore, we find this arc, delete it from the instance, reduce the budget and
continue.”

Though simple to state, the soundness of this reduction rule is far from obvious, requires
certain structural observations specific to separators in skew-symmetric graphs. Observe
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that this is a parameter decreasing rule which ensures that the number of applications of
this rule is bounded linearly in the parameter. We believe that this rule could prove to be
of independent interest for data reduction (or kernelization) for this as well as other similar
problems.

Given this reduction rule, the next obstacle we need to overcome is that of applying
this rule in linear time. For this, we start from the Ford-Fulkerson algorithm for computing
maximum flows and by coupling it carefully with structural properties of skew-symmetric
graphs, show that in linear time, we can either apply the reduction rule or locate a part of
the graph which is already “reduced” for the next step of our algorithm. In the final step
of our algorithm, having found a reduced part of the graph, we show that it is sufficient
for us to consider arcs emanating from this part whose number is linearly bounded in the
parameter and move ahead by performing an exhaustive branching on this bounded set of
arcs. Finally, by a combination of these three subroutines, we obtain a linear time FPT
algorithm for d-SKEW-SYMMETRIC MULTICUT.

An additional feature of the algorithm we present is that it does not require the family 7
to be explicitly given as part of the input. It is sufficient for our algorithm to have access to a
linear time violation oracle for T, i.e, an algorithm which, in linear time returns a violated set
in 7. This feature increases the utility of this algorithm substantially and we demonstrate
this in the case of DELETION ¢g-Horn BACKDOOR SET DETECTION where even though a
direct reduction does not run in linear time, we can use a linear time violation oracle to
obtain a linear time FPT algorithm for DELETION ¢-Horn BACKDOOR SET DETECTION.

Applications. Here we provide the list of main applications (see Figure 1)) that can be
derived from our algorithm (Theorem (1)) together with a short overview of previous work on
each application.

ODD CYCLE TRANSVERSAL, ALMOST 2-SAT and related problems. Graph bipartization
is a classical NP-hard problem with several applications [0, 38| 33]. In the field of param-
eterized complexity, this problem is better known as ODD CYCLE TRANSVERSAL, which is
formally defined as follows.

ODD CYCLE TRANSVERSAL(OCT) Parameter: k
Input: A graph G, positive integer k

Question: Does there exist a set S of at most k vertices such that G\ S is a bipartite
graph?

The parameterized complexity of ODD CYCLE TRANSVERSAL was a well known open
problem for a long time. In 2003, in a breakthrough paper, Reed et al. [37] showed that
OCT is FPT by developing an algorithm for the problem running in time O(3*mn). We use
n and m to denote the number of vertices and edges of the input graph respectively. In fact
this was the first time that the iterative compression technique was used. This technique has
been useful in resolving several other open problems in the area of parameterized complex-
ity, including DIRECTED FEEDBACK VERTEX SET, ALMOST 2-SAT, Murticut 4], 36, 29].
However, the algorithm for OCT had seen no further improvements in the last 9 years,
though reinterpretations of the algorithm have been published [I7, 23]. Only recently, Lok-
shtanov et al. [2I] obtained an algorithm with an improved dependence on the parameter
k. This algorithm is based on a branching guided by linear programming and runs in time
0(2.32¥n9M). In a parallel line of research, Fiorini et al. [I0] showed that when the input is
restricted to planar graphs there is an O(f(k)n) time algorithm— a linear time algorithm, for
OCT. Continuing this line of research, recently, Kawarabayashi and Reed [I8] obtained an
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Figure 1: Problems with a linear time parameter preserving reduction to d-SKEW-
SYMMETRIC MULTICUT

algorithm for OCT on general graphs with an improved dependence on the input size. This
algorithm uses tools from graph minors and odd variants of graph minors and runs in time
O(f(k)m-a(m,n)). Here the function a(m,n) is the inverse of the Ackermann function (see
by Tarjan [39]) and f(k) is at least a triple exponential function. However, an algorithm on
general graphs with a linear dependence on the input size has so far proved elusive. In this
work, we obtain the first linear time algorithm for OCT running in time O(4¥k*(m + n)).
This resolves an open problem posed by Reed et al. in 2003 [37].

In the edge version of OCT, namely EDGE BIPARTIZATION, the objective is to test if
there is a set of at most k& edges whose deletion makes the input graph bipartite. Using
a known linear time parameter preserving reduction from EDGE BIPARTIZATION to OCT,
we also get a similar result for EDGE BIPARTIZATION. In fact, both these problems have
linear time parameter preserving reductions to the more general problem of ALMOST 2-SAT.
In fact, our algorithms for EDGE BIPARTIZATION and OCT are obtained via reductions
to ALMOST 2-SAT, which in turn is solved using our algorithm for d-SKEW-SYMMETRIC
MULTICUT (Theorem [L).

The ALMOST 2-SAT problem is formally defined as follows.

ALMOST 2-SAT
Input: A 2-CNF formula F, positive integer k

Question: Does there exist a set S. of at most k clauses of F' such that F'\ S, is
satisfiable?

Parameter: &k




It was introduced by Mahajan and Raman [24] in 1999 and its parameterized complexity
status remained open until 2008 when Razgon and O’Sullivan [35] gave an algorithm running
in time O(15¥km3) on formulas with m clauses. More recently, there have been a series of
improved algorithms (O(9*n®M)[34], O4+*n®M[7], O(2.618 n°MW)[30]) with the current
best algorithm running in time O(2.32¥n°(M)) [21]. However, none of these algorithms have
linear dependence on the input size. We show that ALmMoOST 2-SAT is a special case of 1-
SKEW-SYMMETRIC MULTICUT, resulting in an algorithm for ALMOST 2-SAT which runs in
time O(4Fk*¢) where k is the size of the solution and ¢ is the length of the input formula.

Another problem related to ALMOST 2-SAT is the ABOVE GUARANTEE VERTEX COVER
(AGvC) which is defined as follows.

ABOVE GUARANTEE VERTEX COVER (AGVC) Parameter: k — | M|
Input: (G = (V,E), M, k), where G is an undirected graph, M is a maximum matching
for G, k a positive integer

Question: Does G have a vertex cover of size at most k7

This problem is linear time equivalent to ALMOST 2-SAT in a parameter preserving way and
hence, our results imply an algorithm for AGVC with running time O(4*~IMl(k — |M|)*(m +
n)). This equivalence has already proved useful as a linear programming based branching
algorithm for AGVC led to algorithms for ALMOST 2-SAT and several other problems around
it. However, the linear time reduction from AGVC to ALMOST 2-SAT crucially utilizes the
fact that a maximum matching of the graph is also part of the input. Therefore, a natural
goal would to obtain an algorithm running in time f(k — |M|)(m + n) for AGVC even when
a maximum matching is not given as part of the input.

DELETION ¢-Horn BACKDOOR SET DETECTION and related problems. A strong C-back-
door set of a CNF formula F' is a set B of variables such that F[r] € C for each assignment
7 : B — {0,1}, that is, for every instantiation of the variables in B, the reduced formula is
in the class C. A deletion C-backdoor set of F' is a set B of variables such that F' — B € C.
Backdoor sets were independently introduced by Crama et al. [6] and by Williams et al. [42],
the latter authors coining the term “backdoor”. If we know a strong C-backdoor set of F
of size k, we can reduce the satisfiability of F' to the satisfiability of 2¥ formulas in C. If C
is clause-induced, every deletion C-backdoor set of F' is a strong C-backdoor set of F'. For
several base classes, deletion backdoor sets are of interest because they are easier to detect
than strong backdoor sets.

The parameterized complexity of finding small backdoor sets was initiated by Nishimura
et al. [32] who showed that for the base classes of Horn formulas and Krom formulas, the
detection of strong backdoor sets is fixed-parameter tractable. For base classes other than
Horn and Krom, strong backdoor sets can be much smaller than deletion backdoor sets, and
their detection is more difficult. For more recent results, the reader is referred to a survey
on the parameterized complexity of backdoor sets [14].

The class ¢-Horn, introduced by Boros, Crama and Hammer [2], is one of the largest
known classes of propositional CNF formulas for which satisfiability can be decided in poly-
nomial time. This class properly contains the fundamental classes of Horn and Krom formulas
as well as the class of renamable (or disguised) Horn formulas. The parameterized complexity
of finding small ¢-Horn backdoor sets was studied by Gaspers et al. [I3] who showed that the
DELETION ¢g-Horn BACKDOOR SET DETECTION problem is fixed-parameter approximable.
Formally, the DELETION ¢-Horn BACKDOOR SET DETECTION problem is the following.



DELETION ¢-Horn BACKDOOR SET DETECTION Parameter: £
Input: A CNF formula F' and a positive integer k
Question: Does F' have a deletion g-Horn backdoor set of size at most k7

We show that DELETION ¢g-Horn BACKDOOR SET DETECTION is a special case of 3-
SKEW-SYMMETRIC MULTICUT, giving us an algorithm for DELETION g-Horn BACKDOOR
SET DETECTION which runs in time O(12¥k%¢) where k is the size of the solution and ¢ is
the length of the input formula. This gives the first fixed-parameter tractable algorithm for
this problem. Using this result, we get an algorithm for SATISFIABILITY which runs in time
O(12Fk>¢) where k is the size of the smallest ¢-Horn deletion backdoor set, with ¢ being the
length of the input formula.

Related Results on Cut problems. d-SKEW-SYMMETRIC MULTICUT is neither the first
nor will it be the last cut problem studied in parameterized complexity. Marx [25] was the
first to consider graph separation problems in the context of parameterized complexity. He
gave an algorithm for MULTIWAY CUT with a running time of (’)(4]"3110(1)) which was later
improved to O(4*n®W) by Chen at al. [3]. The current fastest algorithm for MULTIWAY
CuT runs in time O(2¥n®M) [8]. The notions used in the paper of Marx have been useful
in settling the parameterized complexity, as well as obtaining improved FPT algorithms for
a wide variety of problems including DIRECTED FEEDBACK VERTEX SET [4], ALMOST 2-
SAT [36] and ABOVE GUARANTEE VERTEX COVER [36] 34]. These sequence of results have
led to an entirely new and very active subarea dealing with parameterized graph separation
problems both due to independent interest in the problems themselves, as well as due to
the fact that these problems seem to be able to capture the underlying properties of a large
variety of seemingly unrelated problems.

Organization of the paper. In Section |3 we define the notions of separators in skew-
symmetric graphs, followed by structural results on separators in skew-symmetric graphs
and the notions of (L, k)-components whose computation is at the core of our algorithm. In
Section [4] we prove an observation regarding the structure of optimal solutions, followed by
a description and proof of correctness of our algorithm. In Section |5, we give linear time
parameterized algorithms for a number of problems using our result.

2 Preliminaries

In this section we give some basic definitions and set up the notations for the paper.

Parameterized Complexity. Parameterized complexity is one of the ways to cope up with
intractability of problems. The goal of parameterized complexity is to find ways of solving
NP-hard problems more efficiently than by brute force. Here, the aim is to restrict the
combinatorial explosion of computational difficulty to a parameter that is hopefully much
smaller than the input size. Formally, a parameterization of a problem is the assignment of an
integer k to each input instance and we say that a parameterized problem is fized-parameter
tractable (FPT) if there is an algorithm that solves the problem in time f(k) - |I|°(1), where
|I] is the size of the input instance and f is an arbitrary computable function depending
only on the parameter k. For more background, the reader is referred to the monographs
[9, 11, 31].

Digraphs. Let D = (V, A) be a directed graph. For an arc (u,v) € A, we refer to u as the
tail of this arc and denote it by Tail(u,v) and we refer to v as the head of this arc and denote
it by Head(u,v). For a set of arcs P, we denote by Tail(P), the set U, ) p{Tail(u,v)}
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and we denote by Head(P) the set J, ,)c p{Head(u,v)}. For a set of vertices V', we let
A[V'] denote the set of arcs with both end points in the set V’. For a set of vertices V',
we let 67(V’) denote the set of arcs which have their tail in ¥V’ and their head in V' \ V.
Similarly, we let 6~ (V') denote the set of arcs which have their head in V' and their tail in
V\ V'. We also use NT(V’) to denote the set Head (6" (V’)) and N~ (V') to denote the set
Tail(6~(V’)). Given two disjoint vertex sets X and Y, we define an X-Y path as a directed
path from a vertex x € X to a vertex y € Y whose internal vertices are disjoint from X UY".

Skew-Symmetric Graphs. The notation is from [16]. A skew-symmetric graph is a digraph
D = (V,A) and an involution o : VU A — V U A such that:

1. foreach x € VUA, o(z) # z and o(o(z)) = s.
2. foreachv eV, o(v) eV
3. for each a = (v,w) € A, o(a) = (c(w), o (v))

We call o(x) symmetric to z and also refer to x and o(z) as conjugates. For ease of
description, we let 2’ denote the conjugate of an element x and we let S’ denote the set of
conjugates of the elements in the set S. We say that a set S is regular if SN S" = () and
irreqular otherwise. A set S is called self-conjugate if S = 5'.

CNF Formulas and Satifiability. A literal is a variable x or a negated variable z; if y = x or
y = T is a literal for some variable x, then we write § to denote T or x, respectively. A clause
is a finite set of literals and a finite set of clauses is a CNF formula where the clauses are
considered as a disjunction of its literals and the CNF formula is considered a conjunction
of its clauses. By C(F') we denote the set of clauses of a CNF formula F'. A formula is Horn
if each of its clauses contains at most one positive literal, a formula is Krom (or 2CNF, or
quadratic) if each clause contains at most two literals. The length of a CNF formula F' is
defined as ) . p |C]. If I is a formula and X a set of variables, then we denote by F' — X
the formula obtained from F' after removing all literals with a variable in X from the clauses
in F. Let F' be a formula and X C var(F). A truth assignment is a mapping 7: X — {0,1}
defined on some set X of variables. A truth assignment 7 satisfies a clause C' if C contains
some literal x with 7(x) = 1; 7 satisfies a formula F if it satisfies all clauses of F'. A formula
is satisfiable if it is satisfied by some truth assignment; otherwise it is unsatisfiable.

3 Skew-symmetric graphs, separators and components

The following observation is a direct consequence of the definition of a skew-symmetric graph.

Observation 3.1. Let D = ((V, A),0) be a skew-symmetric graph and let u,v € V. There
is a path from v to u in D iff there is a path from u’ to v'.

Definition 3.1. Let D = (V, A) be a directed graph and let X,Y be disjoint subsets of V.. A
set S C A is an X-Y separator if there is no directed path from X toY in the graph D\ S.
We say that S is a minimal X-Y separator if no proper subset of S is an X-Y separator.

Definition 3.2. Let D = ((V, A),0) be a skew-symmetric graph and let L be a regular set of
vertices. Let X C A be a self-conjugate set of arcs of D. We call X an L-L’ self-conjugate
separator if X is a (not necessarily minimal) L-L" separator. We call X a minimal L-L'
self-conjugate separator if there is no self-conjugate strict subset of X which is also an L-L’
separator.



Definition 3.3. Let D = ((V, A),0) be a skew-symmetric graph and let L be a regular set of
vertices. Let X be an L-L' self-conjugate separator. We denote by R(L, X) the set of vertices
of D that can be reached from L via directed paths in D\ X, and we denote by R(L, X) the
set of vertices of D which have a directed path to can reach L in D\ X.

Observation 3.2. Let D = ((V, A),0) be a skew-symmetric graph and let L be a regular set
of vertices. Let X be an L-L’ self-conjugate separator. Then, the sets R(L, X) and R(L', X)

are also regular and o(R(L, X)) = R(L', X).

Proof. Since deleting a self-conjugate set of arcs from a skew-symmetric graph results in a
skew-symmetric graph, we know that there is a path from w to v in D\ X iff there is a path
from v to v’ in D\ X. Therefore, if R(L, X) is irregular, then there is a path from L to y and
y' for some vertex y, which is disjoint from X, which implies a path from L to L' in D \ X,
which is a contradiction. Therefore, R(L, X) and R(L’, X) are regular and since D \ X is a
skew-symmetric graph, they are conjugates. O

3.1 Minimum separators in skew-symmetric graphs
Lemma 3.1. Let D = ((V, A),0) be a skew-symmetric graph, L be a reqular set of vertices.

1. Suppose that there is an L-L' path in D and let X be a minimum L- L' separator and
let Z=R(L,XUX'). Then, 6" (Z) is also a minimum L-L’ separator.

2. An arc is part of a minimum L-L' separator if and only if its conjugate is also part of
a minimum L-L' separator.

Proof. Recall that Z is regular (Observation . Since L is in Z and L' is disjoint from Z,
d%(Z) is an L-L’ separator. It remains to show that it is a minimum such separator. Clearly,
SHZ)CXUX'. Let A=6"(Z)NX and B=6"(2)\ X.

Since B is disjoint from X, it must be the case that B’ C X. We now claim that A
and B’ are disjoint. Suppose that this is not the case and let + € B such that 2/ € A.
Since o’ € §1(Z), it must be the case that € §~(Z’). Since there is a path from Z to
Z' via x and X is disjoint from A[Z U Z'] U {z}, there is a path from L to L’ disjoint
from X, a contradiction. Therefore, we conclude that A N B’ = (). We now have that
|67(Z)] = |AU B| = |A| + |B’| < |X| where the last inequality used the fact that A and
B’ are disjoint. Therefore, we conclude that §*(Z) is indeed a minimum L-L’ separator.
Consequently, §~(Z) is also a minimum L-L’ separator. This concludes the proof of the first
part of the lemma.

We claim that if X is an L-L’ separator, then X’ is an L-L’ separator as well. Suppose
that this is not the case and let there be a path vi,...,v, in D\ X’ where v; = [ and
v, = I'. However, this implies that X is disjoint from the path o(v.),...,o(v1), which is a
contradiction. This concludes the proof of the lemma. ]

Lemma 3.2. (Crossing-Uncrossing) Let D = ((V, A),0) be a skew-symmetric graph and let
BCV. If 5t (B)NdéT(B') = 0 then |67 (B\ B')| = [67(B)| and |67 (B \ B’)| < |67 (B)|
otherwise.

Proof. Let Q = B\ B’. We partition 67(Q) into the following sets (see Figure .

1. Q) =0T(Q)Ndé (V\ (BUB')), that is, those arcs with the tail in @ and the head in
V\(BUDB).
2. Q5=0T(Q)Nd (B\ B'), that is, those arcs with the tail in @ and the head in B’ \ B.
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Figure 2: An illustration of the partitions described in the proof of Lemma (3.2

3. Q4 =45"(Q)Nd~(BNB’)), that is, those arcs with the tail in @ and the head in BN B'.
Similarly, we partition 67 (B) as follows.

1. B = (6"(B\B')Né (V\(BUB)), that is, those arcs with the tail in B\ B" and the
head in V' \ (BU B’).

2. Bg = (67(B)N & (B'\ B), that is, those arcs with the tail in B\ B’ and the head in
B\ B.

3. B =46"(B)Ndt(B'\ B), that is, those arcs with the tail in BN B’ and the head in
B\ B

4. B = §+(B) N+ (B)

Observe that Q = By, Q% = BS and Q% = (Bg)’. Therefore, [67(Q)| = |67(B)] if B] is
empty and |67 (Q)| < |67 (B)| otherwise. This completes the proof of the lemma. O

3.2 (L, k)-Components

Definition 3.4. Let D = ((V, A),0) be a skew-symmetric graph and k € N. Let L CV be
a reqular set of vertices. A set of vertices Z C V is called an (L, k)-component if it satisfies
the following properties.

1. LCZ

2. Z is regular

3. Z is reachable from L in D[Z]
4

. The size of a minimum Z-Z' separator is equal to the size of a minimum L-L' separator
and this size is at most 2k.

5. Z is inclusion-wise mazimal among the sets satisfying the above properties.



Figure 3: An illustration of the sets in the proof of Lemma [3.3] The blue circles are the
strongly connected components of D; and a(s) =5 and «a(t) = 2.

Lemma gives an algorithm that in linear time either computes an (L, k)-component or
finds a minimum L-L’ separator of a particular kind, which we later show can be used to
reduce the instance. We first require the arc version of Lemma 2.4 from [27].

Lemma 3.3. Let s,t be two vertices in a digraph D = (V, A) such that the minimum size
of an s-t separator is £ > 0. Then, there is a collection X = {X1,..., Xy} of sets where
{s} € X; CV\A{t} such that

1. Xy CcXoC---C X,

2. X, is reachable from s in D[X;],

3. 16T (X;)| = ¢ for every 1 <i < q and

4. every s-t separator of size £ is fully contained in |Ji_, 67 (X;).

Furthermore, there is an OU(|V| + |A|)) time algorithm that produces the sets Xi, Xo \
Xi,..., X4\ Xq—1 corresponding to such a collection X .

Proof. This proof is from [27]. However, the proof in [27] does not need that X; is reachable
from s in D[X;]. Thus, we need to do a bit more extra work for the version presented here.
We first run ¢ iterations of the Ford-Fulkerson algorithm on the graph with unit capacities
on all arcs to find a maximum s-t flow. Let Dy be the residual graph. Let Cy,...,Cq be a
topological ordering of the strongly connected components of D such that i < j if there is
a path from C; to Cj. Recall that there is a t-s path in Dq. Let C, and Cy be the strongly
connected components of D; containing ¢ and s respectively. Since there is a path from ¢
to sin Dy, x < y. For each x < i <y, let Y; = U?:i Cj (see Figure . We first show that
|67 (Y;)| = €. Since no arcs leave Y; in the graph Dy, no flow enters Y; and every arc in 61 (Y;)
is saturated by the maximum flow. Therefore, [§1(Y;)| = .
We now show that every arc which is part of a minimum s-t separator is contained in
7, 67(Y;). Consider a minimum s-t separator S and an arc (a,b) € S. Let Y be the set
of vertices reachable from s in D\ S. Since F' is a minimum s-t separator, it must be the
case that §7(Y) = F and therefore, 67 (Y) is saturated by the maximum flow. Therefore,
we have that (b,a) is an arc in D;. Since no flow enters the set Y, there is no cycle in D;
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containing the arc (b,a) and therefore, if the strongly connected component containing b is
C;, and that containing a is Cj,, then 4, < i,. Furthermore, since there is flow from s to a
from b to t, it must be the case that z < i, < i, < y and hence the arc (a,b) appears in the
set 67(Y;,).

Finally, we define the set R(Y;) to be the set of vertices of ¥; which are reachable from
s in the graph D[Y;]. Then, the sets R(Yy,) C R(Y,—1) C --- C R(Yz41) form a collection of
the kind described in the statement of the lemma.

In order to compute these sets, we first need to run the Ford-Fulkerson algorithm for ¢
iterations and perform a topological sort of the strongly connected components of D;. This
takes time O(¢(|V| + |A|)). During this procedure, we also assign indices to the strongly
connected components in the manner described above, that is, ¢ < j if C; occurs before
Cj in the topological ordering. In O(¢(|V| + |A|)) time, we can assign indices to vertices
such that the index of a vertex v (denoted by «(v)) is the index of the strongly connected
component containing v. We then perform the following preprocessing for every vertex v
such that a(v) < a(s). We go through the list of in-neighbors of v and find

B(v) = uglv%)fu) {a(u) | a(v) < a(u)} and

v(v) = min {a(u) | a(v) < a(u)}
ueN~(v)
and set #'(v) = min{S(v), a(s)} and 7/(v) = max{vy(v), «a(t) + 1}.

The meaning of these numbers is that the vertex v occurs in each of the sets N ™ (Yar(v))5
N*(Ya()-1), --+» NT(Yy(y)). This preprocessing can be done in time O(m + n) since we
only compute the maximum and minimum in the adjacency list of each vertex. A vertex v is
said to be i-forbidden for all 7/(v) < i < f'(v). We now describe the algorithm to compute
the sets in the collection.

Computing the collection. We do a modified (directed) breadth first search (BFS) start-
ing from s by using only out-going arcs. Along with the standard BFS queue, we also
maintain an additional forbidden queue.

We begin by setting i = a(s) and start the BFS by considering the out-neighbors of s.
We add a vertex to the BFS queue only if it is both unvisited and not i-forbidden. If a vertex
is found to be i-forbidden (and it is not already in the forbidden queue), we add this vertex
to the forbidden queue. Finally, when the BFS queue is empty and every unvisited out-
neighbor of every vertex in this tree is in the forbidden queue, we return the set of vertices
added to the BFS tree in the current iteration as R(Y;) \ R(Y;11). Following this, the vertices
in the forbidden queue which are not (i — 1)-forbidden are removed and added to the BFS
queue and the algorithm continues after decreasing ¢ by 1. The algorithm finally stops when
i=alt).

We claim that this algorithm returns each of the sets R(Y,(s)), R(Yo(s)—1) \ R(Ya(s)),

s R(Yot)+1) \ R(Ya(t)42) and runs in time O(L(|V| + [A]). In order to bound the running
time, first observe that the vertices which are i-forbidden are exactly the vertices in the set
Nt(R(Y;)) and therefore the number of i-forbidden vertices for each i is at most ¢. This
implies that the number of vertices in the forbidden queue at any time is at most £. Hence,
testing if a vertex is ¢-forbidden or already in the forbidden queue for a fixed ¢ can be done
in time O(¢). Therefore, the time taken by the algorithm is O(¢) times the time required for
a BFS in D, which implies a bound of O(¢(|V| + |A])).

For the correctness, we prove the following invariant for each iteration. Whenever a set
is returned in an iteration,
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e the set of vertices currently in the forbidden queue are exactly the i-forbidden vertices

e the vertices in the current BFS tree are exactly the vertices in the set R(Y;).

For the first iteration, this is clearly true. We assume that the invariant holds at the end
of iteration j > 1 (where ¢ = ¢’) and consider the (j + 1)-th iteration (where i is now set as
i’ —1).

Let P; be the vertices present in the BFS tree at the end of the j-th iteration and Pjiq
be the vertices present in the BFS tree at the end of the (j + 1)-th iteration. We claim that
the set Pjy1 = R(Yi_1).

Since we never add a vertex to Pjyq if it is (i’ — 1)-forbidden, the vertices in Pjq \ P; are
precisely those vertices which are reachable from P; via a path disjoint from (i’ —1)-forbidden
vertices. Since the invariant holds for the preceding iteration, we know that P; = R(Y}/) and
by our observation about Pji; \ Pj, we have that Pj,; is the set of vertices reachable from
R(Y;) via paths disjoint from (i’ — 1)-forbidden vertices, which implies that Pjy; = R(Y;_1)
since R(Yy_1) is precisely the set of vertices reachable from R(Yj) via paths disjoint from
(7' — 1)-forbidden vertices. We now show that the vertices in the forbidden queue are exactly
the (i’ — 1)-forbidden vertices. Since the BFS tree in iteration j 4+ 1 could not be grown
any further, every out-neighbor of every vertex in the tree is in the forbidden queue. Since
we have already shown that the vertices in the BFS tree, that is in P;1, are precisely the
vertices in R(Yj_1), we have that every (i’ — 1)-forbidden vertex is already in the forbidden
queue. This proves that the invariant holds in this iteration as well and completes the proof
of correctness of the algorithm. O

The main lemma of this section is the following.

Lemma 3.4. Let D = ((V, A),0) be a skew-symmetric graph and k € N. Let L CV be a
reqular set of vertices such that there is an L-L' path in D. There is an algorithm which runs
in time O(k3(m +n)) and

e correctly concludes that no (L, k)-component exists or
e returns an (L, k)-component or

e returns an irreqular minimum L-L' separator
where m = |A| and n = |V|.

Proof. The main idea of the algorithm is to start with the collection coming from Lemma (3.3
and then use this to either find an (L, k)-component or to return an irregular minimum L-L'
separator. In what follows we describe possible situations that could arise and how they
could be handled. Finally, we use all this to describe the algorithm and prove its correctness.
We can, in O(k(m +n)) time check if the size of the minimum L-L’ separator is at most
2k by running 2k iterations of the Ford-Fulkerson algorithm [12]. If the size of the minimum
separator exceeds 2k, then we can conclude that no (L, k)-component exists. Therefore, we
assume in the rest of this proof that the size of the minimum L-L’ separator is at most 2k.
Let X = {Xy,...,X,} be a collection with the properties mentioned in Lemma where
“L acts as s and L acts as t”. We make this formal when we describe the algorithm later.
We begin by showing that not all X;’s can be irregular.

Claim 3.1. There is an index i > 1 such that for all j <1, the set X; is regular.

Proof. We first show that X; is regular. Suppose that this is not the case and there are
vertices y,y’ € X;. Since no arc in A[X;] is part of a minimum L-L’ separator (by property
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4 of the collection), Lemma implies that no arc in A[X] is the conjugate of an arc in
S = §t(Xy). Therefore, there is a path from L to y and a path from L to 3’ disjoint from
S U S’. However, this implies the presence of a path from L to L' in D\ (S U S’), which
is a contradiction. Therefore, X; is regular. Since every subset of a regular set is regular,
there is an index ¢ > 1 such that for all j <4, X is regular. This completes the proof of the
claim. O

Given the above claim, we first consider the case when X; is regular for every 1 <1 <gq.
This brings us to the following claim.

Claim 3.2. If X; is reqular for every 1 <i < g then X itself is an (L, k)-component.

Proof. Observe that X, satisfies the first four properties of an (L, k)-component and thus
it suffices to prove that X, is inclusion-wise maximal with respect to these 4 properties.
Suppose that X, is not maximal with respect to these properties and let Z > X, have
the required properties and let Y be a minimum Z-Z’ separator. Clearly, Y is a minimum
L-L’ separator. Since Z D Xg, there is an arc y € Y which is not in 67(X,). Since X,
strictly contains all other X;’s, y ¢ 67 (X;) for any i, which contradicts property 4 of the
collection. O

Claims [3.1] and act like base cases of our algorithm that we describe later.

We now suppose that there exists ¢ < ¢ such that X; is irregular. Let a be the highest
index such that X, is regular and X,11 is irregular. Let A = X, and B = X,41. Since
6% (B) is a minimum L-L’ separator, by the crossing-uncrossing lemma (Lemma , we
have that |67 (B \ B')| = [67(B)| and 67 (B) N §*(B’) = 0. That is, there is no arc which
enters V'\ (BUB’) from BN B’ and thus there is no arc which enters BN B’ from V'\ (BUB').
Furthermore, if there is an arc x € §t(B\ B')Né (B’ \ B), then 2/ € §*(B\ B’), which
implies that x, 2’ are contained in a minimum L-L’ separator. Therefore, from this point on,
we may assume that there is no arc in 67 (B\ B') N é (B’ \ B). Before we go further we
summarize the sets and the various intersections they have. From now onwards the sets B
and Q = B\ B’ will always have the following intersection properties.

Q=DB\B

07(B\ B')| = [67(Q)| = [6%(B)|
§H(B)N6+(B) =0
§=(B)yné—(B') =0
6T (B\B')No~(B'\B) =07(Q)Nd~(Q') =10

GU LN

The proof of the next observation follows from the fact that there is neither an arc entering
BN B from V' \ (BUB’) nor an are leaving BN B’ to V' \ (B U B’) (see Figure {4)).

Observation 3.3. Any path from Q to Q" with the internal vertices disjoint from QU Q' is
contained entirely in either D\ (BN B') or D[BU B'].

The next claim describes certain properties of paths exiting ) and entering B N B’. This
will be used later in some of the arguments.

Claim 3.3. Let B and Q be defined as above. Then for every ¢ € NT(Q) N (BN B’) there
is a path from q to N=(Q") N (B N B') which completely lies in the graph D[B N B’].
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Figure 4: An illustration of the sets defined in Lemma Observe that there are no arcs
between B\ B’ and B\ B and between BN B’ and V' \ (B U B’)

Proof. Suppose this is not the case. That is, there exists an edge = = (p,q) € §(Q) such
that ¢ € (BN B’) and there is no path from ¢ to N~ (Q') N (BN B’) which completely lies in
the graph D[BN B’]. Consider the graph D; = D\ (§7(Q)\ {z}). Since §*(Q) is a minimum
L-L' separator, there is path from L to L’ in D;. Since this path contains the arc z, there is
a subpath, say W, from ¢ to N~ (Q') that does not intersect @’. Furthermore, in D; the only
arc that emanates from @ is  and thus we have that W is disjoint from ) as well. However,
by Observation every path from @ to Q" with the internal vertices disjoint from @ and
Q' is contained in D[BU B’] or D[V \ (BN B’)]. Since ¢ € BN B’, we conclude that there is
a path from ¢ to N~ (Q") N (BN B’) in D[BN B’]. This is a contradiction to our assumption
and thus concludes the proof. O

We are now ready to describe the cases that occur when we have an irregular set. This case
is divided into following three exhaustive subcases.

Case I: AnB =0.
Case II: ANB #0 and A\ B # 0.
Case III: AC Bn B

We now consider each case one by one and show how we will handle it algorithmically (later).
Case I: AN B’ = (). We start by defining the set Q° =467 (Q)Ndé (BN B’).
The next claim proves an interesting structural property that is crucial to the correctness of

the algorithm.

Claim 3.4. Either every (L, k)-component Z 2 Q is such that Q° C 67 (Z) or there is an
arc y € Q° such that there is a minimum L-L' separator containing y and 3.

Proof. Let Z O Q be an (L, k)-component and z € Q° an arc such that z = (p,q) ¢ 67 (Z).
Note that this implies that € A[Z]. By Claim we have that there is a path from ¢ to
N=(Q") N (BN B') which lies in the graph D[B N B’]. Observe that N~ (Q') N (BN B’) =
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Tail((Q°)"). Let r € BN B’ be such that ¢ has a path in D[B N B’] from ¢ to r, where
(r,s) € (Q°)'. We claim that there is a minimum L-L’ separator containing (7, s) and (s’,r’).
Consider a minimum Z-Z' separator S. Since every arc in A[B N B’] has both endpoints
inside B and both endpoints outside A, none of these arcs appear in the set [JI_; d*(X;),
we conclude that S is disjoint from A[B N B'] (by property 4 of the collection). Since S is
disjoint from A[B N B’], we have that r € Z. Furthermore, since s € @, we have that s € Z’.
Consequently, we have that ' € Z’ and s’ € Z. Therefore, both the arcs (r,s) and (s',7’)
are in both the sets §*(Z) and 6~ (Z’), which implies that they are also present in S. Since
S is also a minimum L-L’ separator, this completes the proof of the claim. O

The following claims allow our algorithm to use the above observations recursively in the
graph D \ (B N B’) in the absence of y € Q° such that there is no minimum L-L’ separator
containing y and its conjugate 1/’.

Claim 3.5. Assume that every (L, k)-component Z D Q is such that Q° C §(Z). (Recall
Q° = 5°(Q)no-(BNB).)

1. If S is a minimum Q-Q' separator in D1 = D[V \ (BN B’)|, then SUQ° is a minimum
Q-Q' separator in D.

2. If Z is an (L, k)-component such that Q° C §*(Z), then Z is also an (L, k — |Q°])-
component in D1 = D[V \ (BN B’)| and furthermore, any (L, k — |Q°|)-component in
Dy is an (L, k)-component in D.

Proof. Recall that §7(B)N 46T (B') =0 and 6~ (B)Né (B’) = 0. Hence every Q-Q’ path in
D is contained entirely in the graph D; or Dy = D[B U B’|. The last assertion implies that
the size of the minimum Q-Q’ separator in D is the sum of the sizes of the minimum Q-Q’
separator in the graphs Dy and Ds. Since §17(Q) \ Q° is a minimum Q-Q’ separator in Dy,
S is no larger than §1(Q) \ Q°. Therefore, S U Q, is no larger than 67(Q). Since S U Q° is
clearly a Q-Q' separator in D, this completes the proof of this statement.

Now we show the second part of the claim. We first show that Z satisfies the first 4
properties of an (L,k — |Q°|)-component in D;. Recall that the size of a minimum @Q-Q’
separator in the graph Dy is |67(Q)| — |Q°|, which implies that Z indeed satisfies the first 4
properties of an (L, k — |Q°|)-component in D;.

Therefore, if Z were not an (L, k — |Q°|)-component in D;, then there is a set W O Z
which satisfies these 4 properties and let S be a minimum W-W’ separator in D;. We claim
that W also satisfies the first 4 properties of an (L, k)-component in D, which contradicts
our assumption of Z as an (L, k)-component. From the first part of the claim, we have that
S UQ° is a minimum Q-Q’ separator in D, which implies that W indeed satisfies the first 4
properties of an (L, k)-component in D.

In the converse direction, let Z be an (L, k — |Q°|)-component in D;. Since S U Q° is a
minimum Q-Q’ separator in D, we have that Z satisfies the first 4 properties of an (L, k)-
component in D. For contradiction assume that Z is not an (L, k)-component in D. Then
there exists W D Z that is a (L, k) component in D. Since every (L, k)-component W is
such that Q° C §+(W), we have that W N Head(Q°) = 0. But then it implies that W
also satisfies the first 4 properties of an (L, k — |Q°|)-component in D;. However this is a
contradiction to our assumption that Z is an (L, k — |Q°|)-component in D;. This completes
the proof of the claim. O

This completes the study of the case when AN B’ = (.
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Case II : ANB # () and A\ B' # 0.

Here, for a subcase we construct a new collection X’ where this case is avoided. Let Q = B\ B’
and P = AU (B\ B’). We have already observed that [67(Q)| = [61(B)| and that the set
6T (B) Nt (B') is empty. We now show that |67 (Q)| = |67 (P)]. Let Pf = 6T(P)\ 6 (Q)
and Q¢ = 07(Q) \ 67(P). We claim that |P?| = |Q¢|. But this is true since |P?| < |Q9]
implies that |61 (P)| < [67(Q)|, which is a contradiction since 67 (P) is an L-L’ separator
smaller than the minimum one and |Q¢| < |P?| implies that [T (A\ B’)| < |67 (A)|, which is a
contradiction since §(A\ B) is an L-L’ separator smaller than the minimum one. Therefore,
we conclude that |P?| = |Q9| and hence |[§1(Q)| = |67 (P).

By combining this with an application of the crossing-uncrossing lemma (Lemma
on the set K = B\ A, we have that [67(P)| = [67(K \ K’')| = |67 (K)|. Furthermore,
ACK CB,and ANK' = 0.

If K is irregular, then consider the collection X’ obtained by inserting the set K between
X, and X, in the collection X. Clearly, X’ is also a collection which satisfies the properties
1,2, and 4 of Lemma It also satisfies property 3 since 67 (K) is a minimum L-L’ separator.
However, if we consider the collection X’, A would still be the regular set with the highest
index, while K would be the irregular set with the least index. Since A is disjoint from K’,
we fall back into the previous case when we consider this collection.

If K is regular, then (BN B’)\ (AU A’) = (. Observe that N*(Q)N(BNB')C AnB
and N=(Q')N (BN B') C AN B. Since AN B’ # () and every vertex in A is reachable from
L, we have that N*(Q) N (BN B’) # () and thus N~ (Q') N (BN B’) # (. This together with
Claim implies that there is a path, say W, from AN B’ to A’ N B which lies in the graph
D[B N B']. Let p be the last vertex on W from AN B’. Since AN B’ and A’ N B partition
B N B, either there is an arc (p,q) such that p € AN B and g€ ANBorpe ANDB
and ¢ € B’. In either case this implies that there is an arc (¢/,p’) where ¢ € AN B’ in the
former case and ¢ € B’ in the latter case and p’ € A’N B. Since both (p,q) and (¢, p’) are in
ST (K)Nd~(K'), and §1(K) is a minimum L-L’ separator, we have that §*(K) is a minimum
L-L' separator containing arcs y and 3’ where y = (p, q).

Case III: A C BN B’. This case is non-existent since L C A and L N B’ = 0.

The Algorithm We begin by applying the Ford Fulkerson algorithm to compute a minimum
L-L' separator in the graph. If we require more than 2k iterations of the Ford Fulkerson
algorithm, then we return that there is no (L, k)-component. We then apply the algorithm
of Lemma to compute the collection X = {X7,..., X,;} which can be computed in time
O(k(m + n)). In order to apply Lemma we need vertices s and ¢. Therefore, we add
vertices s and t to the graph, add 2k + 1 arcs from s to each vertex in L and 2k 4+ 1 arcs
from each vertex in L to t. It is clear from this construction that no s-t separator of size at
most 2k will contain any of these newly added arcs and therefore, the s-t separators of size
at most 2k are in one to one correspondence with the L-L’ separators of size at most 2k.
This allows us to use Lemma in the form it is stated in.

We then simply need to examine each X;;1\ X; once to compute the index a such that X,
is the highest regular set and X, is the least irregular set. After computing the index a, in
O(m) time, we can compute the case we are currently in by computing the intersection of the
sets A and B. If we are in case (b), in time O(k?m), we can compute K and either find an
irregular minimum L-L’ separator by testing if there is a minimum L-L’ separator containing
y,y’ for some y € 67 (K) or move to case (a) where we already have computed the required
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Figure 5: An illustration of the sets Z, Y and P in the proof of Lemma

sets— the regular set with the highest index A and the irregular set with the least index K.
Finally, if we are in case (a), in O(m) time, we compute the set @ and iteratively compute
a (Q, k')-component in D\ (BN B’) (which we have already shown is an (L, k)-component)
where k¥’ < k or an irregular minimum Q-Q’ separator. In the latter case, we add Q° to this
minimum separator to get an irregular minimum Q-Q’ separator in D. The correctness of our
algorithm follows from the structural claims preceding the description. Furthermore, each
time we iterate, we attempt to compute an (L, k')-component where k' < k. Therefore, we
can have at most 2k such iterations and hence, the running time of our algorithm is bounded
by O(k3(m +n)). This completes the proof of the lemma. O

4 Algorithm for d-SKEW-SYMMETRIC MULTICUT

In this section we design our linear time parameterized algorithm for d-SKEW-SYMMETRIC
MurricuT. We first give a lemma which allows us to find a solution that is disjoint from
some part of the solution. More formally we show the following.

Lemma 4.1. Let (D = (V, A),0,T,k) be a YES instance of d-SKEW-SYMMETRIC MULTICUT
and let L be a reqular set of vertices such that there is an L-L' path in D. If there is a solution
for the given instance which is an L-L' self-conjugate separator in D, then the following hold.

1. An (L, k)-component exists.

2. Let Z CV be a reqular set of vertices containing L such that the size of the minimum
Z-Z' separator is the same as the size of the minimum L-L' separator. Then, there is
a solution for the given instance disjoint from A[Z].

Proof. For the first statement, observe that since there is a solution for the given instance
which is an L-L’ self-conjugate separator, the size of the minimum L-L’ separator is at most
2k. Therefore the set L itself satisfies the first 4 properties of an (L, k)-component and
therefore an (L, k)-component exists. This completes the proof for the first statement.

Now we prove the second part of the lemma. Let X be the solution defined above, that
is, X is an L-L' self-conjugate separator. If X is disjoint from A[Z], then we are done.
Therefore, suppose that X intersects A[Z] and let Y be the set of arcs in A[Z] such that
YUY’ C X. Let P C §"(Z) be such that Tail(P) is not reachable from L in D[Z]\Y. That
is, Y is an L-Tail(P) separator in the digraph D[Z]. It might be possible that Tail(P) = (.
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We now claim that the set X = (X \ (Y UY")) U (P U P")) (see Figure |5) is also a solution
for the given instance.

Claim 4.1. X = (X \(YUY"))U(PUP")) is a solution for the given instance and | X| < | X]|.

Proof. We first show that |X| < |X|. Since 67(Z) is a minimum L-L' separator, there are
|07(Z)| arc disjoint paths from L to Tail(07(Z)) in D[Z]. Therefore, |Y'| > |P|. Clearly, X
is no larger than X. Therefore, it remains to show that X is a skew-symmetric multicut for
D. If this were not the case, then there is a closed walk in the graph D \ X intersecting an
arc y € Y and containing vertices ¢ and t'. Here t € J where J € T and for every vertex
v; € J, v; and o(v;) lie in the same strongly connected components of D \ X. That is, Jis a
violated constraint.

Since Tail(y) is reachable from L in the graph D\ X, both t and ¢’ are reachable from L
in the graph D\ X, which implies the presence of a path, say W, from L to L' in D\ X. Now
using this path we construct another path W’ from L to L' in D\ X. This will contradict
our assumption that X is an L-L’ self-conjugate separator in D.

Observe that W must also intersect an arc in §*(Z) since L C Z and L’ is disjoint from Z.
However, since PU P’ C X, this arc, say (p,21), isin 67(Z)\ P. Furthermore, this path also
contains a subpath from a vertex z; € Head(d1(Z) \ P) to a vertex 29 € Tail(§—(Z’) \ P’)
whose arcs are disjoint from A[ZUZ'|U§(Z) U6 (Z'). We call this path W,,,,. Let (22,q)
be an arc in 6~ (Z’) \ P’ such that the arc (z2,¢) is on W. Observe that p, ¢’ are in Z and
there are paths from L to both p and ¢’ that avoids arcs of Y. The last assertion follows from
the fact that the vertices of 67(Z) \ P are reachable from L in D[Z]\ Y. Let these paths
avoiding arcs of Y be called Wi, and Wr,. Then observe that W, W, .,(Wry)' forms a
path in D\ X — a contradiction. Here, (W)  is the path that is conjugate to Wry. This
completes the proof of the claim. O

The above claim completes the proof of the lemma. O

From this point on, we assume that an instance of d-SKEW-SYMMETRIC MULTICUT is of
the form (D = (V,A),0,T,k, L) where L is a regular set of vertices and the question is to
check if there is a solution for the given instance which is an L-L’ self-conjugate separator.
To solve the problem on the given input instance, we simply solve it on the instance (D =

(V7 A)a g, 7-7 k: Q))

Lemma 4.2. Let (D = (V,A),0,T,k,L) be an instance of d-SKEW-SYMMETRIC MULTICUT
and let S be an irregular minimum L-L' separator. Then, there are arcs y,y’ such that
v,y € 0T (R(L,SUS"))) and there is a solution for the given instance containing y,y' .

Proof. Let Z = R(L,SUS’). By Lemma 0%(Z) is a minimum L-L’ separator and hence
|6%(Z)| = |S|. Since S is irregular, SUS’ contains arcs from at most |S| — 1 conjugate pairs.
Thus there are arcs y,y’ € §7(2).

Let X be a solution for the given instance. Since there is no path from L-L' in D \ X,
it must be the case that D\ X cannot contain paths from L to both Tail(y) and Tail(y’).
Therefore, it must be the case that X intersects A[Z] and intersects all paths from L to
Tail(y) or Tail(y'). However, by Lemma |4.1| we know that there exists a solution that does
not intersect A[Z]. This implies that there is also a solution containing the arcs y,y/’. O

The above lemma gives us the following reduction rule.

Reduction Rule 1. Let (D = (V,A),0,T,k,L) be an instance of d-SKEW-SYMMETRIC
MULTICUT and let S be an irreqular minimum L-L' separator. Let y,y' be the arcs given by
Lemmal4.4 Then return the instance (D = (V,A\ {y,y'}),0, T,k —1).
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Therefore, by combining this reduction rule with the algorithm of Lemma [3.4] we can, in
linear time either reduce the parameter or compute an (L, k)-component with a regular
neighborhood. We are now ready to prove Theorem [I] by giving an algorithm for d-SKEW-
SYMMETRIC MULTICUT.

Description of Algorithm. The input to our algorithm for d-SKEW-SYMMETRIC MULTI-
CUT is an instance (D = (V, A),0,T = {Ji,...,Jr},k,L) where J; = {v;,...,v;,} and the
algorithm either returns a skew-symmetric multicut of size at most 2k which is an L-L’ self-
conjugate separator in D or concludes correctly that no such set exists. In order to solve the
problem on the given instance of d-SKEW-SYMMETRIC MULTICUT, the algorithm is invoked
on the input (D = (V, A),0,T,k,0).

1. If L = ( or if there is no path from L to L’ in D, then the algorithm checks if there
is a set J; € T such that for all 1 < s < d, v;, and vl’-s lie in the same strongly connected
component in D, that is, a violated set. If there is no such set, then the algorithm returns
the emptyset. Otherwise, the algorithm picks such a set J;, and branches in 2d ways. In the
first d branches, it recurses on the instances {(D = (V, A),0,T,k,{vi;})}1<j<q and in the
next d branches, it recurses on the instances {(D = (V, A),0, T, k, {Uéj})}lgjgd-

2. Suppose L # () and there is an L-L’ path in D. Then, the algorithm of Lemma [3.4] is first
used on the instance (D = (V,A),0,T,k, L) to either compute an (L, k)-component (if it
exists) or an irregular minimum L-L’ separator. If an (L, k)-component does not exist, then
we return No. If an irregular minimum L-L’ separator is returned, then we apply Reduction
Rule Suppose that an (L, k)-component Z is returned. We check if Reduction Rule
applies on any arc in 67 (Z) and if it does, apply the rule. Therefore, at this point, we may
assume that an (L, k)-component Z is returned and that the rule is not applicable on any
arc in 67 (Z). Observe that 67 (Z) # () since there is an L-L’ path in D. The algorithm then
picks an arc a € §7(Z) and branches in 2 ways as follows. In the first branch, the algorithm
deletes {a,a’} and recurses on the resulting instances, that is, the algorithm recurses on the
instance (D = (V, A\ {a,d’'}),o0, T,k —1,L). In the next branch, the algorithm recurses on
the instance assuming that a is in A[R(L, X)] where X is the hypothetical solution, that is,
the algorithm recurses on the instance (D = (V, A),0,T,k, LU {Head(a)}).

Correctness. The correctness of the algorithm is proved by induction on a measure defined
on the instance I. Let this measure be denoted by u(I) = u((D, k), L) = 2k — X\(L, L) where
AL, L') is the size of the smallest L-L’ separator. In the base case, if \(L, L") > 2k, then the
algorithm of Lemma returns NO on input (D = (V, A), 0, k, L), and hence this algorithm
returns NO as well, which is correct since the solution we require contains an L-L’ separator
of size at most 2k. Similarly, the case when k& < 0 is also clearly correct. We now assume as
induction hypothesis that the algorithm is correct on all instances I such that pu(I) < p—1
and consider an instance I = (D = (V, A),0,T,k, L) such that x(/) = g and k > 0.

We first show that an application of Reduction Rule [1| does not decrease this measure.
Since deleting an arc and its conjugate from an irregular minimum L-L’ separator reduces the
size of the minimum size L-L’ separator by 2 and the budget k by 1, the measure 2k — (L, L)
remains unchanged.

We now consider the branching rules. If L = () or there is no L-L’' path in D, then
ML, L") = 0. Consider an instance I’ = (D = (V, A),0,T,k,{v}) resulting from a branch
here. Although the parameter has not decreased here, since there is a path from v to v/,
A(v,v") > 0, which implies that p(I") < u(I). Therefore, by combining the exhaustiveness of
the branching along with the induction hypothesis, we obtain the correctness of the algorithm
on the instance I as well.
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Figure 6: An illustration of the tighter analysis of the search tree in the algorithm.

We now suppose that L # () and there is an L-L’ path in D. The branching is exhaustive
due to Lemma We now show that for each of the resulting instances I’ from any of
the branches, u(I') < g — 1 in which case we can apply the induction hypothesis on these
instances, thus proving the correctness of the algorithm.

(a) We begin with the branch where we recurse on the instance I’ = (D = (V, A), 0, T, k, ZU
{Head(a)}). Since Z is an (L, k)-component, by definition, the size of the smallest separator
from ZU{Head(a)} to Z'U{(Head(a))'} is strictly larger than A(L, L"), which implies that

u(I') < p(l).

(b) We now consider the instance resulting from the other branch, that is the instance
I'=(D = (V,A\{a,d'}),0, T,k —1,L) where a € §7(Z). In this case, the parameter has
decreased by 1. Since Reduction Rule(l]is not applicable on 7 (Z), removing {a,a’} from the
graph reduces A\(L, L) by at most 1 and therefore, we have that u(I") < p. This completes
the proof of correctness of the algorithm.

Running time. We prove that on an instance I = (D = (V, A),0,T,k, L), the algorithm
computes a search tree with at most (2v/d)*(!) leaves. We have already proved that in each
branch, the measure () decreases by at least 1 and since we only have 2d-way branchings,
the number of nodes of the search tree is clearly bounded by (2d)*!). However, we analyze
more closely a branch which occurs in a 2d-way branching where u(I) decreases by exactly 1.
Suppose that J was the violating set computed in this step and suppose v € J be such that
A(v,v") = 1. Consider the branch where we recurse on the instance (D = (V, A), o, T, k, {v}).
In this recursion, we first observe that the reduction rule will not be applied. This is because
the reduction rule requires a minimum {v}-{v'} separator of size at least 2 while \(v,v") = 1.
Therefore, the algorithm of Lemma [3.4| will find a ({v}, k)-component Z.

Claim 4.2. [§t(Z)| =1.

Proof. Suppose not and let (a,b), (p,q) € 67 (Z). Furthermore, let S be a minimum Z-Z’
separator. Then, since |S| = 1 by our assumption, either (a,b) ¢ S or (p,q) ¢ S. Suppose
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that (a,b) ¢ S. Then, S is also a minimum Z U {b}-Z’' U {b'} separator, which contradicts
the maximality of Z as a ({v}, k)-component. O

Consider the branching performed on the single arc in §(Z). We have already shown that the
measure decreases by 1 in each of these branchings. Therefore, we combine these 2 branches
with the branch where we decided to recurse on the instance (D = (V, A), 0, T, k,{v}). This
leads to 2 branches where the measure decreases by 2 in each. For each branch in the 2d-
way branching where the measure decreases by 1, we can do the same to obtain at most 4d
branches in each of which the measure decreases by 2 (see Figure @ Therefore, our worst
case branching is a 4d-way branching, where the measure drops by 2 in each branch. Thus,
we obtain a bound of (2v/d)*) < (4d)* on the number of leaves of the search tree.

Since finding a violating set can be done in time O(m + n + ¢), computing an (L, k)-
component or an irregular minimum L-L’ separator can be done in time O(k3(m + n)) and
there can be at most k applications of Reduction Rule [I| along any root to leaf path of
this search tree, we have the claimed bound of O((4d)*k*(m + n + £)) on the running time,
completing the proof of Theorem O

We observe here that £ occurs in the running time simply because the time taken to compute
a violating set is O(¢+ m). However, in some cases, the set 7 may be given in the form of a
violation oracle, in which case, the running time bound remains the same if violation oracle
runs in time O(¥¢). Therefore, the theorem below follows from the proof of Theorem

Theorem 2. There is an algorithm for d-SKEW-SYMMETRIC MULTICUT that, given a tuple
(D = (V, A),0,k) along with a violation oracle for a family T , runs in time O((4d)*k*((+m+
n) and either returns a skew-symmetric multicut of size at most 2k or correctly concludes
that mo such set exists, where £ is the time required for the wviolation oracle to compute a
violated set in the family T, m = |A] and n = |V|.

5 Applications

In this section we use the algorithm developed for d-SKEW-SYMMETRIC MULTICUT to obtain
linear time parameterized algorithms for several other problems.

5.1 Linear time algorithm for ALmMoST 2-SAT

Algorithms for the ALMOST 2-SAT problem (defined in the introduction) together with its
variable version have turned out to be extremely useful as a subroutine in several parame-
terized algorithms (see [28] 29, 22]). The variable version of the problem is formally defined
as follows.

ALMOST 2-SAT(v) Parameter: k
Input: A 2-CNF formula F', integer k

Question: Does there exist a set S, of at most k variables such that by deleting all the
clauses which they occur in from F we get a satisfiable formula?

It is known that the variable version ALMOST 2-SAT(v) can be reduced to the clause version
ALmoOST 2-SAT via a linear time reductions [29]. Therefore, it suffices for us to give a
reduction from the clause version of ALMOST 2-SAT to d-SKEW-SYMMETRIC MULTICUT.
In order to give this reduction, we begin by recalling the notion of implication graphs of a
2-CNF formula.
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Definition 5.1. Given a 2-CNF formula F', the implication graph of F' is denoted by
D(F) and is defined as follows. The vertex set of the graph is the set of literals of F' and for
every clause {ly,l3} in F, we have arcs (11,12) and (l3,1).

Clearly, implication graphs are skew-symmetric where the involution o is defined as al)=1
and O'(ll, lg) = (lg, ll>.

Theorem 3. [I] A 2-CNF formula F is satisfiable iff no literal and its complement are
contained in the same strongly connected component of D(F).

Observation 5.1. Given a 2-CNF formula F', let D be the implication graph of this formula
and let C' be a subset of the clauses of F'. Let Cp be the corresponding set of arcs in the
graph D. Then, the implication graph of F' — C' is the same as the graph D\ Cp.

Lemma 5.1. Let F' be a 2-CNF formula on n variables x1,...,x,. Then, (F,k) is a YES
instance of ALMOST 2-SAT iff (D(F),T = {{z1},...,{xn}}, k) is a YES instance of 1-
SKEW-SYMMETRIC MULTICUT.

Proof. Suppose that C' is a set of clauses such that |C| < k and F — C is satisfiable and let
Cp be the corresponding set of arcs in D. Then, by Theorem [3] no literal of F appears in the
same strongly connected component as its complement in the implication graph of F' — C.
However, by Observation [5.1} we have that Cp is a set of arcs such that no vertex and its
conjugate lie in the same strongly connected component of D \ Cp, which implies that Cp
is a solution for the instance of 1-SKEW-SYMMETRIC MULTICUT.

Conversely, let Cp be a self-conjugate set of arcs such that |Cp| < 2k and no vertex in
T lies in the same strongly connected component as its conjugate in D \ Cp. Let C be the
set of clauses of F' corresponding to Cp. Since Cp is self-conjugate, we have that |C| < k.
Then, by Observation and Theorem [3| the formula F — C' is satisfiable, which implies
that C is indeed a solution for the instance of ALMOST 2-SAT. This completes the proof of
the lemma. O

Since the graph D(F') can be constructed in time O(|F|) and has O(|F|) arcs, we have the
following theorem.

Theorem 4. There is an algorithm that, given an instance (F,k) of ALMOST 2-SAT (AL-
MOST 2-SAT(v)), runs in time O(48k*¢) and either returns an assignment satisfying all but
at most k clauses of F' or correctly concludes that no such assignment exists.

Furthermore, there are known linear time parameter preserving reductions from EDGE BI-
PARTIZATION to OCT and from OCT to ALMOST 2-SAT (see [41, Page Number — 72 | and
[19]). The reduction from EDGE BIPARTIZATION to OCT increases the the number of edges
and vertices in the graph by a factor of O(k) and the reduction from OCT to ALMOST
2-SAT is both parameter as well as size preserving. Therefore, have the following corollaries.

Theorem 5. EDGE BIPARTIZATION and ODD CYCLE TRANSVERSAL can be solved in time
O4FE>(m +n)) and O(4Fk*(m + n)) respectively where m and n are the number of edges
and vertices in the input graph respectively.

5.2 Linear time algorithm for DELETION ¢-Horn BACKDOOR SET DETECTION

A CNF formula F is g-Horn if there is a certifying function B : var(F) U var(F) — {0, 5,1}
with 3(x) = 1 — (z) for every = € var(F') such that ), 3(I) < 1 for every clause C of
F. In this subsection, we prove Theorem [6] We begin by recalling the notion of a quadratic
cover given by Boros et al. [2].
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Definition 5.2. Given a CNF formula F', the quadratic cover of F, is a Krom formula
denoted by Fy and is defined as follows. Let x1,...,x, be the variables of F'. For every
clause C, we have |C| — 1 new variables ylc, e ,y%l_l. We order the literals in each clause
according to their variables, that is, a literal of x; will occur before a literal of x; if i < j.
Let llc, ... ,l‘%| be the literals of the clause C in this order. The quadratic cover is defined as.

Fy = Ucer Ulgigmq{{l??yzc}a{gicalgd}} U Ucer U1§i§|C\72{{@iC73/gL1}}-

Observation 5.2. If F' is a CNF formula of length ¢, then the number of arcs in D(Fy) is
o).

We require the following characterization of g-Horn formulas.

Lemma 5.2 ([2]). A CNF formula F is g-Horn iff no clause of F' has three literals Iy, la, I3
such that each l; and l; are in the same strongly connected component of D(F5).

Recall that a deletion C-backdoor set of F' is a set B of variables such that ' — B € C.
These characterizations allow us to give a linear time reduction from DELETION ¢-Horn
BACKDOOR SET DETECTION to 3-SKEW-SYMMETRIC MULTICUT.

Theorem 6. There is an algorithm that, given an instance (F,k) of DELETION ¢-Horn
BACKDOOR SET DETECTION, runs in time O(12°k0) and either returns a deletion ¢-Horn-back-

door set of F' of size at most k or correctly concludes that no such set exists, where £ is the
length of F.

Proof. The proof is by a reduction to 3-SKEW-SYMMETRIC MULTICUT. We first construct
the graph D(F3). We now define a graph D; which is a modification of D(F5) as follows. For
every vertex [; in D(F3) corresponding to a positive literal in F', we have two vertices l;r and
I;7 and an arc (I;,1;) and for every vertex [; in D(F3) corresponding to a negative literal we
have two vertices ;" and I, and an arc (I;,1;). We say that an arc (I;,1;") corresponds to
a (positive) literal [; and an arc (I;7,1;") corresponds to a (negative) literal I;.

Now, for every vertex y in D(F3y) which does not correspond to a literal of F', we add
vertices y1, - . ., yp+1 and for every arc (y, ;) in D(F»), if [; is a positive literal, then we add arcs
(y1,0; ), -+, (y2k+1,1; ) and if [; is a negative literal, then we add arcs (y1,1; ), ..., (Yor+1,1; )-
For every arc (I;,y) in D(Fy), if ; is a positive literal then we add arcs (I, y1), ..., (I, yog+1)
and if ; is a negative literal then we add arcs (I;,y1),...,(l; ,y2k+1). This completes the
construction of Dj. Clearly, D is also skew-symmetric. The purpose of modifying the graph
D(F3y) is simply to map literals of the input formula to arcs in the skew-symmetric graph
and conversely to ensure that arcs which do not correspond to literals of the formula F' are
unlikely to participate in skew-symmetric multicuts of size at most k. We note that {lf, l; }
are contained in the same strongly connected component of Dy if and only if {l1,l2} are in
the same strongly connected component of D(F3).

We now claim that (F, k) is a YES instance of DELETION ¢g-Horn BACKDOOR SET DE-
TECTION iff (D1,7,k,0) is a YES instance of 3-SKEW-SYMMETRIC MULTICUT where T is
the set of all triples of literals {l+, I, l;} in F' such that [1,ls,[3 occur in a clause in F'.

Consider a solution .S for the instance of DELETION ¢-Horn BACKDOOR SET DETECTION
and let Sp be the set of those arcs in D1 which correspond to the literals of the variables
in S. Clearly, Sp is self-conjugate and |Sp| < 2k. We claim that Sp is a skew-symmetric
multicut for the given instance. If this were not the case, then there is a clause C' € C(F) and
literals I, 12,13 € C such that lf, l2+ ,l3+ each lie in the same strongly connected component
of D1\ Sp as their complements. Recall that by C(F') we denote the set of clauses of a CNF

formula F.
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However, by Lemma there is no violating triple in the graph D(F3) \ lit(S) and
therefore, there cannot be a violated set in the graph Dy \ Sp.

Conversely, consider a solution Sp for the instance of 3-SKEW-SYMMETRIC MULTICUT.
It is easy to see from the construction of Dy that Sp is disjoint from arcs incident on any
yic . Therefore, the arcs in Sp correspond to literals and hence variables in F. Let S be
the this set of variables. We claim that S is a g-Horn deletion backdoor set. If this were
not the case, then by Lemma there is a clause C' € C(F') and literals Iy, 12,13 € C such
that [, 1,13 each lie in the same strongly connected component of D(F3) \ lit(S) as their
complements. However, this implies that lf, l; , l; each lie in the same strongly connected
component of D; \ Sp as their complements, which is a contradiction. This completes the
proof of correctness of the reduction.

Though this reduction is parameter preserving, it is not a linear time reduction since the
number of triples we need to give as input to the 3-SKEW-SYMMETRIC MULTICUT instance
could be super linear in the length of the formula. However, by using an algorithm by Boros
et al. [2] that runs in time O(¢) and returns a violated triple, we can use the above reduction
which runs in time O(kf) and returns a skew-symmetric graph with O(k¢) arcs, along with
our algorithm for 3-SKEW-SYMMETRIC MULTICUT to get an algorithm which runs in time
O(12Fk5¢). This completes the proof of the theorem. O

Since every deletion g-Horn backdoor set is also a strong ¢-Horn backdoor set, Theorem [6]
has the following corollary.

Corollary 1. There is an algorithm for SATISFIABILITY that runs in time O(12%k%¢), where
k is the size of the smallest ¢-Horn deletion backdoor set of the input formula.

6 Conclusions

We introduced the d-SKEW-SYMMETRIC MULTICUT problem, a general graph separation
problem which generalizes a large number of well-studied problems, and described an FPT
algorithm for this problem with a linear dependence on the input size and a moderate de-
pendence on the parameter. This result gives the first linear time FPT algorithms for OCT,
ALMOST 2-SAT and DELETION ¢g-Horn BACKDOOR SET DETECTION. We believe that there
are more graph separation problems which can be reduced to d-SKEW-SYMMETRIC MULTI-
cuT and that our algorithm can be used as a “tool” to give (linear time) FPT algorithms for
other problems which have graph separation at their core. We would like to remark that, to
keep our analysis simple, we have not optimized the polynomial dependence of the running
times on k.

We would also like to point out that the algorithms for variants of EDGE BIPARTIZATION
and OCT studied in the paper of Marx et al. [26] use the almost linear time algorithm for
OCT of Kawarabayashi and Reed or the quadratic time algorithm of Reed et al. [37]. There-
fore, using our algorithm instead of these algorithms results in linear time FPT algorithms
for these variants studied by Marx et al.

Finally, we leave open the kernelization complexity of this problem. Given that a (ran-
domized) polynomial kernel for ALMOST 2-SAT exists [20], it would be a natural goal to see
if such a result extends to this much more general problem.
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