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Phrase-based Statistical models are more commonly used as they perform optimally in terms of both, 

translation quality and complexity of the system. Hindi and in general all Indian languages are 

morphologically richer than English. Hence, even though Phrase-based systems perform very well for the 

less divergent language pairs, for English to Indian language translation, we need more linguistic 

information (such as morphology, parse tree, parts of speech tags, etc.) on the source side. Factored models 

seem to be useful in this case, as Factored models consider word as a vector of factors. These factors can 

contain any information about the surface word and use it while translating. Hence, the objective of this 

work is to handle morphological inflections in Hindi and Marathi using Factored translation models while 

translating from English. SMT approaches face the problem of data sparsity while translating into a 

morphologically rich language. It is very unlikely for a parallel corpus to contain all morphological forms of 

words. We propose a solution to generate these unseen morphological forms and inject them into original 

training corpora. In this paper, we study factored models and the problem of sparseness in context of 

translation to morphologically rich languages. We propose a simple and effective solution which is based 

on enriching the input with various morphological forms of words. We observe that morphology injection 

improves the quality of translation in terms of both adequacy and fluency. We verify this with the 

experiments on two morphologically rich languages: Hindi and Marathi, while translating from English. 

 

Morphology Injection; a case study on Indian Language perspective 

• Computing methodologies →  Artificial intelligence →  Natural language 

processing →  Machine translation  • Computing methodologies →  Artificial 

intelligence →  Natural language processing →  Phonology / morphology 

Additional Key Words and Phrases: Statistical Machine Translation, Factored Machine Translation 

Models, Morphology Injection. 

 

1. INTRODUCTION 

 

Formally, Machine translation is a subfield of computational linguistics that 

investigates the use of software to translate text or speech from one natural language 

to another1. Languages do not encode the same information in the same way, which 

makes machine translation a difficult task. The Machine Translation methods are 

classified as transfer-based, rule-based, example-based, interlingua-based, statistics-

based, etc. Statistical machine translation (SMT) is a machine translation paradigm 

where translations are generated on the basis of statistical models whose parameters 

are derived from the analysis of bilingual text corpora2.  
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 Word-based models: The basic unit of translation is a word. IBM models 1 to 

5 describe these models. Even though these models are simple, their biggest 

disadvantage is that they do not consider context while modeling.  

 

 Phrase-based models: The aim is to reduce the restrictions of word-based 

models by translating chunks of words which are contiguous, also called 

Phrases. Note that these phrases need not be linguistic phrases. The length 

of the phrase is variable. Phrase-based models are currently most widely 

used models for the SMT. 

 

 Syntax-based models: Syntax-based translation is based on the idea of 

translating syntactic units, rather than single words or strings of words as in 

phrase- based MT. These models make use of syntactic features of a sentence 

such as parse trees, parts of speech (POS) tags, etc.  

 

 Hierarchical phrase-based models: Hierarchical phrase-based translation 

combines the strengths of phrase-based and syntax-based translation. It uses 

phrases (segments or blocks of words) as units for translation and uses 

synchronous context-free grammars as rules (syntax-based translation).  

 

 Factored phrase-based models: Phrase-based models are a special case of 

factored models. Factored models make use of vector of factors which may 

rep- resent morphological or syntactic information about that phrase instead 

of just using surface form of phrase. Even though Factored models try to add-

in linguistic support for statistical approach, data sparseness and increased 

decoding complexity are big road-blocks in their development. 

 

Statistical translation models which translate into a morphologically rich language 

face two challenging tasks: 

 

• Correct choice of inflection: As single source root word can be mapped to several 

inflectional forms of target root word, the translation system should get the missing 

information from the source text that can help to make correct inflectional choice 

 

• Data sparsity: During training, the corpus of morphologically rich language cannot 

have all inflectional forms of each word 

 

Most approaches to Statistical Machine Translation, i.e., phrase based models 

(Koehn, Och and Marcu, 2003), syntax based models (Yamada and Knight 2001) do 

not allow incorporation of any linguistic information in the translation process. The 

introduction of factored models (Koehn and Hoang, 2007) provided this missing 

linguistic touch to the statistical machine translation. Factored models (Koehn and 

Hoang, 2007) treat each word in the corpus as vector of tokens. Each token can be 

any linguistic information about the word which leads to its inflection on the target 

side. Hence, factored models are preferred over phrase based models (Koehn, Och 

and Marcu, 2003) while translating from morphologically poor language to 

morphologically richer language.  

 

Factored models translate using Translation and Generation mapping steps. If a 

particular factor combination in these mapping steps has no evidence in the training 
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corpus, then it leads to the problem of data sparseness. Hence, though factored 

models give more accurate morphological translations, they may also generate more 

unknowns compared to other unfactored models. In this paper, we study factored 

models and the problem of sparseness in the context of translation to morphologically 

rich languages. We propose a simple and effective solution which is based on 

enriching the input with various morphological forms of words.  

 

     To understand the severity of the sparseness problem, we consider an example of 

verb morphology in Hindi 3 . Hindi verbs are inflected based on gender, number, 

person, tense, aspect and modality. Gender has two values (masculine, non-

masculine). Number has two values (singular and plural). Person has three values 

(first, second and third). Tense has two values (present, non-present). Aspect has 

three values (simple, progressive and perfect). Modality has around nine values 

(shall, will, can, etc.). Thus, for a single root verb in Hindi, we have in total 648 

(2*2*3*2*3*9) inflected forms of it. Hence, a single English verb can be translated to 

648 verbs in Hindi side. Hindi vocabulary has around 40,000 root verbs. Hence, in 

total 25,920,000 (648*40,000) verb forms. It is very likely that parallel Hindi corpus 

cannot have all inflected forms of each verb. Also note that, if the corpus size of 

morphologically richer language is lesser then the problem of sparseness will be more 

severe.  

 

   Thus, even though we can use factored models to correctly generate morphological 

forms of words, the problem of data sparseness limits their performance. In this 

paper, we propose a simple and effective solution which is based on enriching the in- 

put corpora with various morphological forms of words. Application of the technique 

to English-Hindi case-study shows that the technique really improves the translation 

quality and handles the problem of sparseness effectively. 

 

The rest of the paper is organized as follows: Section 2 describes the related work; 

Section 3 describes the overview of Hindi Inflectional Morphology; Section 4 describes 

the basics of factored translation models; Section 5 discusses the data sparseness 

problem and the proposed solution; Section 6 discusses Morphology Injection 

technique; Section 7 discusses Resource Generation process; Section 8 discusses 

Morphology Generation process; Section 9 discusses Experiments and evaluations 

conducted; Section 10 gives a generalized solution to the sparseness problem; Section 

11 draws conclusion and points to future work. 

 

2. RELATED WORK  

 

 Since India is rich in linguistic divergence there are many morphologically rich 

languages quite different from English as well as from each other, there is a large 

requirement for machine translation between them. Development of efficient 

machine translation systems using appropriate methodologies and with limited 

resources is a challenging task. There are many ongoing attempts to develop MT 

systems for Indian languages (Antony, 2013; Kunchukuttan et al., 2014; Sreelekha et 

al., 2014; Sreelekha et al., 2015) using both rule based and statistical approaches. 

There were many attempts to improve the quality of Statistical MT systems such as; 

 
3 Hindi and Marathi are morphologically rich languages compared to English. They are widely spoken in 

Indian sub- continent. 
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using Monolingually-Derived Paraphrases (Marton et al., 2009), using Related 

Resource-Rich languages (Nakov and Ng, 2012). Considering the large amount of 

human effort and linguistic knowledge required for developing rule based systems, 

statistical MT systems became a better choice in terms of efficiency. Still the 

statistical systems fail to handle rich morphology.  

 Research on handling rich morphology has largely focused on translating 

from rich morphology languages, such as Arabic, into English (Habash and Sadat, 

2006). There has been less work on translating from English into morphologically 

richer languages. Koehn (2005) reports in a study of translation quality for languages 

in the Europarl corpus, that translating into morphologically richer languages is 

more difficult than translating from morphologically richer languages. There are 

valid reasons why generating richer morphology from morphologically poor 

languages is harder. Consider the example of translating noun phrases from English 

to Hindi (or German, Czech, etc.). In the case of English, a noun phrase is rendered 

the same if it is the subject or the object. On the other hand, noun phrases are 

inflected based on their role in the sentence in Hindi words. A purely lexical mapping 

of English noun phrases to Hindi noun phrases suffers from the lack of information 

about its role in the sentence, making it hard to choose the right inflected forms. 

          In one of the first efforts to enrich the source in word-based SMT, Ueffing and 

Ney (2003) used part-of-speech (POS) tags, in order to deal with the verb conjugation 

of Spanish and Catalan; so, POS tags were used to identify the pronoun+verb 

sequence and splice these two words into one term. The approach was clearly 

motivated by the problems occurring by a single-word-based SMT and has been 

solved by adopting a phrase-based model. Meanwhile, there is no handling of the case 

when the pronoun stays in distance with the related verb. Minkov et al. (2007) 

suggested a post-processing system which uses morphological and syntactic features, 

in order to ensure grammatical agreement on the output. The method, using various 

grammatical source-side features, achieved higher accuracy when applied directly to 

the reference translations but it was not tested as a part of an MT system. Similarly, 

translating English into Turkish (Durgar El-Kahlout and Oflazer, 2006) uses POS 

and morph stems in the input along with rich Turkish morph tags on the target side, 

but improvement was gained only after augmenting the generation process with 

morphotactical knowledge. Habash et al. (2007) also investigated case determination 

in Arabic. Carpuat and Wu (2007) approached the issue as a Word Sense 

Disambiguation problem. 

 Koehn and Hoang (2007) have conducted experiments on factored SMT 

models using morphology tags added on the morphologically rich side and scored 

with a 7-gram sequence model, along with POS tags for translating from English to 

German, Spanish and Czech. Birch et al. (2007) investigated the probabilistic models 

for using only source tags, where English was the target language. They have used 

Combinatorial Categorial Grammar (CCG) supertags as factors on the input words in 

factored SMT models. 

        Although past work focuses on studying complexity of factored translation 

models ( Tamchyna and Bojar, 2013), the problem of data sparseness is not addressed, 

to the best of our knowledge. Also, substantial volume of work has been done in the 

field of translation into morphologically rich languages. The source language can be 

enriched with grammatical features (Avramidis and Koehn, 2008) or standard 

translation model can be appended with synthetic phrases (Chahuneau et al., 2013). 

We discuss a case study in which we try to handle the noun morphology in English to 

Hindi translation using factored models. There has been previous work done in order 
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to solve the verb morphology for English to Hindi translation (Gandhe et al., 2011). 

The goal is to handle data sparseness against this case study. Our experiments show 

that the model performs very well in order to handle the noun morphology and 

solving the sparseness problem. 

        

3. OVERVIEW OF HINDI INFLECTIONAL MORPHOLOGY 

 

Hindi is morphologically rich language compared to English. Hence, for building 

better English-Hindi translation system, we need to know how Hindi morphology 

works. In this Section, we get a brief overview of the Hindi noun and verb-based 

inflectional morphology. 

3.1 Verb morphology 

 

 
 

Figure 1: Inflectional categories and their markers for Hindi verbs [Singh and 

Sarma, 2011] 
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Many grammarians and morphologists have discussed the inflectional categories of 

Hindi verbs but these studies are either pedagogical or structural in approach. Across 

all approaches, there is much agreement on the kinds of inflectional categories that 

are seen in Hindi verbs. The inflection in Hindi verbs may appear as suffixes or as 

auxiliaries [Singh and Sarma, 2011]. These categories and their exponents are shown 

in Figure 1.  

 While translating from English to Hindi to handle all of these inflections of 

verbs we need to have all the factors available with us to implement a factored 

model. But, as we will see, so many factors in factored model may degrade the 

performance of the translation system. Hence, we tried to use some of these factors 

which are important and which are easily available. 

 

3.2 Noun morphology 

 

Hindi nouns show morphological marking only for number and case. Number can be 

either singular or plural. Case marking on Hindi nouns is either direct or oblique. 

Gender, an inherent, lexical property of Hindi nouns (masculine or feminine) is not 

morphologically marked, but is realized via agreement with adjectives and verbs [Singh and 

Sarma, 2010]. Morphological classification of the noun is shown in Figure 2. All nouns in 

the same class have same morphological inflection behavior. Nouns are classified into 

five classes [Singh and Sarma, 2010]. 

 

 
 

  
 

Figure 2 .  Morphological classification of Hindi nouns [Singh and Sarma, 2010] 

 

 Class A: Includes nouns that take null for all number-case values. These 

nouns are generally abstract or uncountable. 

 Class B: Includes /̄i/, /i/ or /yā/ ending feminine nouns that take 

−yā̃ for the features [+pl, -dir,   -oblique] and −yō for [+pl, +oblique]. 

 Class C: Includes feminine nouns that take −ẽ for the feature [+pl, 

dir] and −ō for [+pl, +oblique]. 
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 Class D: Includes masculine nouns that end in /ā/ or /yā/.  Some 

kinship terms are also involved. Words directly derived from Sanskrit are 

excluded. 

 Class  E: Includes masculine nouns that inflect only for the 

features [+pl, + oblique].  The nouns in this class end with /ū/, /u/, 

/̄i/, /i/ or a consonant. 

 

3.2.1 Predicting Inflectional Class for New Lexemes 

 

For the classification of the new lexemes into one of the five classes discussed in section 

3.2, we need gender information. After gender is lexically assigned to the new lexeme, 

its inflectional class can be predicted using the procedure outlined in Figure 3. A 

masculine noun may or may not be inflected based on its semantic property. If it is an 

abstract noun or a mass noun it will fall into the non-inflecting Class A irrespective of 

its phonological form. On the other hand, a countable lexeme will fall into one of the 

two masculine classes based on its phonological form. Similar procedure follows for 

feminine nouns 

  
 
 

Figure 3: Predicting inflectional class for new lexemes [Singh and Sarma, 2010] 

 

4. FACTORED TRANSLATION MODELS 
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Phrase-based translation models are limited to mapping small contiguous word 

chunks without using any linguistic information such as morphology, syntax, or 

semantics (Koehn, Och and Marcu, 2003). On the other hand, factored translation 

models allow additional annotation at the word level. Factored models consider a 

word as a vector of tokens instead of just a single token which represents different 

levels of annotation as shown in Figure 4. Factored translation models can be seen as 

the combination of several components (language model, reordering model, 

translation steps, and generation steps). These components define one or more 

feature functions that are combined in a log-linear model (Koehn and Hoang, 2007):  

  

                                                          
 

 
     

 

   

                                                                              

 

Each hi is a feature function for a component of the translation, and the λi values are 

weights for the feature functions. Z is normalization constant. 

 

 
 

Figure 4: Factored representations of input and output words (Koehn and Hoang, 2007) 

 

4.1 Factored model for handling morphology 

 

 

 
 

Figure 5: Factored model setup to handle nominal inflections 

 

Note that our goal is to solve the sparseness problem while translating to 

morphologically rich languages. Figure 5 shows a general factored model approach 
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for translation from morphologically poor language to morphologically rich language. 

On the source side we have: Surface word, root word, and set of factors S that affect 

the inflection of the word on the target side. On the target side, we have: Surface 

word, root word, and suffix (can be any inflection).  

 

The model has the following mapping steps:  

 

• Translation step (T0): Maps source root word and factors in S to target root word 

and target suffix 

 

• Generation step (G0): Maps target root word and suffix to the target surface word 

Note that the words which do not take inflections have null as values for the factors 

in S. 

4.2 Factored models for handling verb morphology 

 
 

 

 
 

 

Figure 6: Factored model mapping for handling verbal inflections in Hindi 

 

Verbal inflections in Hindi depend upon tense, number, person, gender, aspect etc. 

English verbs do not explicitly contain this information. Hence, while translating 

from English to Hindi, we need to consider syntactic and semantic information 

hidden in the English sentence to get this information apart from the original verb. 

Once we get these factors we can use factored model mapping shown in the Figure 6 

to handle the morphological inflections of Hindi verbs. Gender is not used in the 

mapping due to two reasons. Firstly, getting gender information on English side is 

very hard. Secondly, just using many factors in factored model does not improve the 

results, but instead it may result in degradation. On English side, we use lemma of 

main verb only and remove any auxiliary verbs present. 
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Because, information contained in the auxiliaries and inflection of the verb will 

already be present in the other factors that we are using in factored model. For 

example, if a sentence has verb is eating, we remove is and retain lemma of eating, 

i.e., eat. 

 

On Hindi side, we create a merged verb from main verb and auxiliary verbs. Main 

verb stem is used as a factor. We merge inflections from main verb with auxiliaries 

and create another factor. 

 

Factored model has a single translation steps and single generation step: 

 

– Translation step: Map main verb lemma, number, person, tense, aspect, and 

modality on English side to main verb stem and merged suffix on Hindi  

 

– Generation step: Map main verb stem and merged suffix to surface form on Hindi 

side 

 

4.3 Factored models for handling noun morphology 

 
Noun inflections in Hindi broadly depend upon number and case (direct/oblique) of 

the noun. Hence, if we decide to use factored models for handling noun inflections, it 

is very natural to use number and case as factors on English side. Hence, the 

suggested factored model mappings would be as shown in Figure 7. 

 

 
 

Figure 7: Factored model setup to handle nominal inflections 

 

 

Factored model has a single translation step and single generation step: 
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– Translation step: Map root noun, number, and direct/oblique case on English side 

to root noun and suffix on Hindi side 

 

– Generation step: Map root noun and suffix to surface form on Hindi side 

 

4.4  Using semantic relations to generate the factors 

 
As discussed in previous section, we need to generate tense, person, number and 

gender information of verb on English side. As this information is absent in the raw 

sentence, we need deep information about the sentence, such as parts of speech (POS) 

tagging, semantic relations, parse tree, etc. to generate this information. In the 

following subsections, we will study how to make use of these extra resources to get 

tense, person, number and gender information. We use Stanford dependency parser 

for getting syntactic parse tree of the sentence. We also use semantic relations 

provided by Stanford’s typed dependencies (Marneffe et al. 2008). In particular, 

rather than the phrase structure representations   that   have   long   dominated in 

the computational linguistic community, typed dependencies represents all sentence 

relationships uniformly. That is, as triples of a relation between pairs of words, such 

as the subject of distributes is Bell. 

 

Consider the following sentence: 

         

           Bell, based in Los Angeles, makes and distributes electronic, computer and 

building products. 

 

For this sentence, the Stanford Dependencies (SD) representation is:  

 

 nsubj(makes-8, Bell-1) 

 nsubj(distributes-10,  Bell-1) 

 partmod(Bell-1, based-3) nn(Angeles-6, Los-5) 

 prep in(based-3, Angeles-6) root(ROOT-0, makes-8) 

 conj and(makes-8, distributes-10) 

 amod(products-16, electronic-11) 

 conj and(electronic-11, computer-13) 

 amod(products-16, computer-13) 

 conj and(electronic-11, building-15) 

 amod(products-16, building-15) 

 dobj(makes-8, products-16) 

 dobj(distributes-10, products-16) 

 

The current representation contains approximately 53 grammatical relations as 

described in (Marneffe et al. 2008). The dependencies are all binary relations: a 

grammatical relation holds between a governor (also known as a regent or a head) 

and a dependent. 

 
4.4.1. Tense, aspect, and modality factor 

 

Algorithm 1 describes how to get tense, aspect, and modality of the sentence using a parse 

tree. 
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4.4.1.1 Person Factor 

 

Algorithm 1 Get tense, aspect, and modality of the sentence  

 

Input: Parse tree of the sentence 

Output: Tense, aspect, and modality of the sentence  

1: tense, aspect, modality =Empty array of strings 

2: For each leaf node in parse tree: 

3: POS = parent (leaf) Ψ //parts of speech (POS) tag of leaf  

4: if   (POS == “VBP”   || POS == “VBZ”   || POS == “VB”) 

5: add “present” to tense 

6: else if (POS == “VBD”) 

7:  add “past” to tense  

8: else if (POS == “MD”) 

9: if ( ! leaf == “can” && !  leaf == “could”)  

10:  add “future” to tense 

11: else 

12:  find add auxVerb to modality  

13: else if (POS == “VBG”) 

14:  add “progressive” to aspect  

15: else if (POS == “VBN”) 

16: add “perfect” to aspect  

17: return tense, aspect, modality 

 

 

Algorithm 2 uses typed dependency to get the subject of the sentence. Person of the 

subject is found by comparing subject with pronouns. If subject is not a pronoun, then 

most probably it will be a third person. 

4.4.1.2  Number Factor 

 
Algorithm 2  Get person of the sentence 

 

Input: Parse tree of the sentence, Typed dependencies 

Output: Person of the sentence  

1: person=Empty string 

2: subject = get subject using typed dependency  “nsubj”  

3: if (subject in [“i”, “we”]) 

4: person= “first” 

5: else if (subject in [“you”])  

6: person= “second” 

7: else if (subject in [“he”, “she”, “it”, “they”])  

8: person= “third” 

9: else  

10: person= “third” 

11: return person 
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Algorithm 3 describes how to use parts of speech (pos) tag of subject to get the number of 

subject. If pos tag end with s, then subject is plural, otherwise it is singular.  

4.4.1.3 Gender factor 

 

Algorithm 3  Get number of the subject in the sentence  

 

Input: Parse tree of the sentence, Typed dependencies  

Output: Number of the subject 

  number =Empty string 

 subject = get subject using typed dependency “nsubj” 

 POS = parent(subject)Ψ//parts of speech (POS) tag of subject  

  if (POS.startsWith(“NN”) && POS.endsWith(“S”)) 

  number= “plural” 

  else if (POS.startsWith(“NN”) && ! POS.endsWith(“S”))  

  number= “singular” 

  return number 

 

Algorithm 4 describes how to get gender of the subject of the sentence.  Although, this 

algorithm is very weak since it gets gender by comparing subject with few pronouns. Hence, 

other pronouns and most importantaly proper nouns are not classified. 
 
 
4.4.1.4  Case factor 

 

 

Algorithm 4 Get gender of the subject of the sentence  

 

Input: Parse tree of the sentence, Typed dependencies  

Output: Gender of the sentence 

1:  gender =Empty string 

2: subject = get subject using typed dependency  “nsubj”  

3: if (subject in [“he”]) 

4: person= “+musc”   

5: else if (subject in [“she”])  

6: person= “-musc” 

7: else if (subject in [“it”])  

8: gender= “neutral” 

9:  return gender 

 

 

To get direct/oblique case of nouns on English side, we need to find out features of an 

English sentence that correspond to direct/oblique case of nouns in Hindi. Currently, 

we use following two features for this purpose. 

 

– Object of preposition has Oblique case 

 

E.g. Fishes live in the rivers 

 

                          मछलिय ाँ  नलिय ों  में  रहती हैं 

                        {machhaliyan nadiyon me rahti hain} 

                           { fishes rivers in live} 
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Here, नलिय ों is oblique form of निी. In the English sentence, river is an object of 

preposition in. Hence, we can say that object of preposition in English sentence 

corresponds to an oblique case of that object in parallel Hindi sentence. 

 

– Subject of the sentence is oblique if it has a direct object and tense of the sentence is 

past, present perfect or past perfect 

 

  E.g.     Boys ate apples 
 िड़क ों  ने सेब ख ए   
 ladkon ne seb khaye 

             boys apples ate 

 
Here, लड़कों is oblique form of लड़का. In the English sentence, boys is the subject of the 

sentence.  It has direct object, apples.  Also, sentence has past tense. 

 

Consider another example: 

 

 Boys went to school 
 लड़के पाठशाला गए 

 ladke pathshala gaye 

 boys school went 

 
Here, लड़के is the direct form of लड़का as it is plural. (Note that, direct form of लड़का 

when plural and oblique form of लड़का when singular, are same, i.e., लड़के). In the 

English sentence, boys is the subject of the sentence. But it does not have direct 

object. 

 

 

Algorithm 5, implements above two features to get the case of nouns. 

 

 

Algorithm 5. Get direct/oblique case of the nouns in the sentence 

 

Input: Parse tree of the sentence, Typed dependencies, subject, direct Object, tense 

Output: Case of the nouns    

1: case=Empty Map of strings 

2: if (subject != “ ” && directObject != “ ”) 

3: if ( tense== “past” || tense== “past  perfect” || tense== “present  perfect”))  

4:  Put (subject, “oblique”) in case 

5: For each entry dep in typed dependencies: 

6: //Object of preposition has ”oblique” case 

7: if   (dep.startsWith(“prep”)   ||  dep.startsWith(“prepc”))  

8:   Put (getObject(dep), “oblique”) in case 

9: For all other nouns in the sentence:  

10: Put (noun, “direct”) in case  

11: return case 
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5. PROBLEM OF DATA SPARSITY 

 

We saw that SMT systems face the problem of data sparsity. One of the reasons is 

that data does not have enough inflectional forms of morphologically rich language, 

while translating from a morphologically poor language to a morphologically rich 

language. Other reason is kind of unobvious, as it arises only in the case while using 

factored models. In this Section, we discuss these two reasons in detail. 
 
 
5.1.  Sparsity while translating into a morphologically rich language 

 

Root words in morphologically rich languages have many inflectional forms. While 

translating from morphologically poor language to a rich language, single word in the 

source language can be translated to multiple words in target language. Unless 

training data has all such inflectional forms present, the model cannot generate 

correct inflectional form of the target word. 

 

For example, consider training data has following pair of sentence: 

 
boy plays → लड़का खेलता है   (ladaka khelta hai) 

 

Now, for any system trained with this data, if given test input as: boy ate, the output 
would be: लड़का खाया (ladaka khaya). This output is wrong, as it has wrong inflection 

of boy.  Correct translation is:  लड़के ने खाया (ladake ne khaya). 

 
5.2.  Sparsity while using Factored model 

 

While factored models allow incorporation of linguistic annotations, it also leads to 

the problem of data sparsity. The sparsity is introduced in two ways: 

 

– Sparsity in Translation: When a particular combination of factors does not exist in 

the source side training corpus 

 

For example, let the factored model have single translation step: X|Y → P |Q 4. 

Suppose the training data has evidence for only xi|yj → pk |ql mapping. The factored 

model learnt from this data can not translate xu|yv, for all u ≠ i and v ≠ j. The 

factored model generates UNKNOWN as output in these cases. 

 

For example, suppose the training data has evidence for only SRoot15|S116|S217 → 

TRoot18| TSuffix19 mapping.   The factored model (described in Section 3.4) learnt 

from this data can not translate SRoot1|S12|S21, SRoot1|S11|S22 or 

SRoot1|S12|S22. The factored model generates UNKNOWN as output. 

 

Note that, if we train simple phrase based model on only the surface form of words, 

we will at least get some output, which may not be correctly inflected, but still will be 

able to convey the meaning. 

 
4 Capital letters indicate factors and small letters indicate values that corresponding factors can take 
5 Source root word factor: SRoot1, SRoot2, etc. 
6 Source S1 factor:  S11, S12, etc. 
7 Source S2 factor:  S21, S22, etc. 
8 Target root word factor: TRoot1, TRoot2, etc. 
9 Target suffix factor: TSuffix1, TSuffix2, etc. 
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– Sparsity in Generation: When a particular combination of factors does not exist in 

the target side training corpus 

 

For example, let the factored model have single generation step: P |Q → R.1 Suppose 

the target side training data has an evidence of only pa|qb →rc. The factored model 

learnt from this data can not generate from pu|qv  all u ≠ a and v ≠ b. Again the 

factored model generates UNKNOWN as output. 

 

For example, suppose the target side training data has an evidence of only 

TSurface110|TRoot1|TSuffix1. The factored model (described in Section 3.4) learnt 

from this data can not generate TSurface2 from TRoot2|TSuffix2 or TSurface3  from 

TRoot3|TSuffix3. 

 

Thus, due to sparsity, we cannot make the best use of factored models. In fact, they 

fare worse than the phrase-based models, especially, when a particular factor 

combination is absent in the training data. In the case of noun inflection factored 

model, this can be observed through following example: 

 

Consider following sentence to be the training data. 
 Factored:  boys|boy|plural|direct play|play|.|.  → लड़के |लड़का |-e खेलते 

|.|. हैं |.|. (ladake khelte hain) 

 Unfactored: boys play → लड़के खेलते हैं (ladake khelte hain) 

 

Now, let the test input be: boys|boy|plural|oblique (for factored) or boys (for 

unfactored). As factor combination boy|plural|oblique is absent in the training data 

of factored model, it will generate unknown output. Whereas, even though 
morphologically wrong phrase-based model will generate लड़के (ladke)(boys) as output. 

 

Hence, the use of factored models may lead to low quality translation. 

 
5.3 Basic Morphology injection for solving data sparsity 

  

The reason of data sparseness in factored models is either the combination of source 

side factors or target side factors are not present in the training data. So, is it 

possible to get all the combinations of factors in the training data? In our case, we are 

using three factors on source side, i.e., lemma, number and direct/oblique case and 

one factor on the target side, i.e., root word (Note that root word here is used for a 
noun with no morphological inflection. E.g.,लड़का (ladka) (boy)). And there is no 

generation step in our mapping; hence, sparseness due to generation step is already 

avoided. Now, to handle the sparseness due to translation step, we need to have all 

morphological forms of each root word in the training data. 

 

Section 3.2 gives morphological classification of nouns based on number, 

direct/oblique case and class of the noun.  Figure 2 shows the suffix that a particular 

noun takes based on these three factors. Hence, to generate all morphological forms 

of a given root word in Hindi, we need to have number, case and class of the noun to 

 
10 Target Surface word factor: TSurface1, Tsurface2, etc.  
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be known on English side (as we are translating from English). In the Section 4.7 we 

describe how to morphologically classify nouns and to generate number and case 

factors for nouns. Gandhe et al., [2011] try to handle verbal inflections using similar 

technique in which they classify the verbs into different classes. Each class has verbs 

which take similar inflections. After classification, they generate all the inflectional 

forms of verbs depending upon the class of the verb. 

 

6. MORPHOLOGY INJECTION TECHNIQUE 

 

As discussed in Section 5, to handle the sparseness of factored models, we need to 

generate all combinations of the factors used. In this section we will see a 

Morphology injection method that generates various morphological forms of noun 

entities by classifying them and augments the training data with newly generated 

morphological forms of nouns. 

 

Basic algorithm of the Morphology injection method can be described as below: 

 

1. Find out noun entity pairs (Eng-Hin) 

2. Classify Hindi nouns into classes 

3. Generate new morphological forms of the nouns using the classification table 

4. Augment training data with the new forms 

 

For example, 

 
Let noun pair be ’river - नदी (nadi )’.  Class of Hindi noun नदी is B. Now, we generate 

new forms of नदी using classification table shown in Figure 8.    

 
 river| sg | dir - नदी | नदी | Null 

 river| sg | obl - नदी | नदी | Null 

 river| pl | dir - नददयााँ   | नदी | यााँ 

 river| pl | obl - नददयों | नदी | यों 

 

The algorithm is elaborated in the following subsections, where it is used in two 

different contexts. 

 
6.1. Using parallel factored corpus 

 

We can use parallel factored corpus which has lemma, number and direct/oblique 

case factors on English side and root word factor on Hindi side. Generation of factors 

will be happening as described in Section 4.4. We need to have factored English-

Hindi corpus with factors as shown in Figure 8. We pass the corpus to Noun entity 

identifier, which is based on the parts of speech (POS) tags to get the noun entities 

present in the corpus. 
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Figure 8: Using parallel factored corpus for Morphology injection method 

 

To find out the pairs of nouns in English-Hindi corpus, we did align the corpus word 

by word. So, now we get the mappings of the form: Esurf|Elem|Enumber|Ecase → 

Hsurf|Hroot|Hsuffix for each noun pair. We can classify these noun pairs using 
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Enumber, Ecase and Hsuffix as discussed in Section 3.2. As each noun pair will have 

many corresponding combinations of number, case and suffix in the training data, we 

need to predict the probability of noun being classified into each of the five classes. 

This can be simply done by keeping a count for each class for a given noun pair and 

classifying each occurrence of this pair in training data into one of the classes. Note 

that there may be case when noun pair cannot be classified or there can be multiple 

classes into which the pair can be classified; in that case, we need to increment the 

count of each such class. Then the counts can then be normalized to get the 

probability. Finally, the noun pair can be classified into a class which has the highest 

probability. 

After we classify the noun pair, we can get all combinations of number, case and 

suffix for given noun pair from classification table. Now, we can use these new 

suffixes to generate new inflected forms of the root word in Hindi. We pass new 

suffixes and Hindi root word to Joiner tool, which generates new surface forms. For 
example, given लड़का (ladka boy) and ’-e’ Joiner will generate लड़के (ladke)(boys). 

Details of the Joiner tool are discussed in Section 7.2. Finally, we get new factored 

pairs of the form: Esurf|Elem|Enumber’|Ecase’ → Hsurf’|Hroot|Hsuffix’. These 

new pairs can be added to the original training data. 

 
6.2  Using monolingual lexicon 

 

We can also use monolingual target side lexicon to generate all combinations of 

factors for the factored model. In our case, we use Hindi lexicon. Hindi lexicon 

contains Hindi nouns, proper nouns, adjectives, verbs, etc. Figure 9 shows the 

pipeline of the same. The pipeline is somewhat similar to that in Figure 8, but here, 

instead of predicting the class of the noun pair from its suffix, we actually classify the 

Hindi noun into one of the five classes. 

 

As discussed in Section 3.2, to classify a Hindi noun into a morphological class, we 

need its gender information, whether or not it takes inflections and its ending 

characters. Using this information, we can classify nouns present in the lexicon as 

shown in Figure 9. After classification, we can generate new morphologically 

inflected forms of the Hindi noun using the classification table shown in Figure 8. 

This process is similar to that discussed in Section 6.1. Now, we also need to generate 

English counterpart of the Hindi noun. 

 

We can use Hindi-to-English dictionary for the same. After getting Englsih side root 

word, we can generate pairs of the form: .|Elem|Enumber’|Ecase’ → Hsurf’|Hroot. 

Note that as we cannot generate English surface word form, it is denoted by a dot in 

the mapping. This does not affect factored model settings, as our translation step 

does not use English surface word. We then append original training data with these 

newly generated pairs. Note that factored settings here differ from that in Section 6.1, 

as we do not use Hindi side suffix here. 
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Figure 9: Using monolingual Hindi lexicon for Morphology injection method 



Role of Morphology Injection in Statistical Machine Translation                                   35:21  
                                                                                                                                         

 

7. RESOURCE GENERATION 

 

In this Section we discusses about the resources that need to be built, before actual 

training of the translation system starts. 

 
7.1 Classification technique used 

 

The approach of using parallel factored corpus as discussed in Section 6.1 is error 

prone and also it depends on the accuracy of the classification technique. We had 

Hindi lexicon readily available with us. Hence, we went forward with the approach of 

using Hindi lexicon for Morphology injection instead. The available Hindi lexicon size 

is 1,13,266 words. The lexicon has words classified into their morphological classes. 

Hence, we easily generated new combinations of factors, i.e., case, number and suffix 

for Hindi nouns as discussed in Section 6. 

 
7.2 Development of a Joiner tool 

 

After getting new suffixes for the Hindi root word, we need to form surface word by 

joining root word and suffix.  A rule-based joiner (or reverse morphological) tool was 

developed which merges root and the suffix based on the class to which the suffix 

belongs and the root word ending. Some of the rules are described below: 

 
if (suffix in [यों , यााँ ] (yom, yam)) 

 
 if (ending in [-e, इ , ई , ँाँ , ँ  ]) 

 

  return (root + suffix) 

 

 else if (ending in [-ee]) 

 

  return (root - ending + -e + suffix) 

 
For example, if the input to joiner is: नदी (nadi)(river) and यों(yom)(s), then above rule 

matches for the given input. As नदी (nadi)(river) ends in -ee, output will be root - 

ending + -e + suffix, i.e., नददयों (nadiyon) (rivers) 

  

Similar rules are formed for other suffixes and classes.  

 
7.3 Development of a dictionary 

 

After getting new morphological forms for Hindi root forms of the nouns, we were in 

need of a dictionary to translate these nouns from Hindi to English. We already had 

a dictionary which contained 1,28,241 Hindi-English pairs of words. But, the noun 

entities present in both the Hindi lexicon and the dictionary were only 9,684. Hence, 

instead of using this dictionary, we decided to go with an alternative approach, where 

we use Google’s freely available online translation system to generate English nouns 

from Hindi. While doing this, we encountered a problem of infrequent nouns in Hindi. 

There were many Hindi nouns in the lexicon that were translated to same English 
noun. E.g. लड़का (ladka)(boy) and छोरा (chhora) (boy) are translated to boy. मछली 
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(machhali) (fish) and मच्छी (machchhi) (fish) are translated to fish. If we use these 

pairs as it is, there is possibility of degrading translation as English noun may get 

translated to an infrequent word. 

 

To solve the problem of infrequent words, we simply do two passes of the translation. 

In first pass, we translate nouns in Hindi lexicon using translation system. In the 

second pass, we translated these translations back to Hindi using same translation 

system. Hence, we get new Hindi lexicon in which the infrequent nouns are 

eliminated. We use these new pairs as a dictionary to translate the Hindi root words. 

Note that if one has frequencies of the nouns in the lexicon, they can be used directly 

to eliminate infrequent nouns. 

 

8.  MORPHOLOGY GENERATION 

 

Hindi is a morphologically richer language compared to English. Hindi shows 

morphological inflections on nouns and verbs. In addition, adjectives in Hindi takes 

the inflection according to the gender and number of the noun it modifies. In this 

section, we study the problem of handling noun and verb morphology while 

translating from English to Hindi using factored models. We also discuss the solution 

to the sparseness problem.  

 
8.1.  Noun morphology 
 

In this section, we discuss the factored model for handling Hindi noun morphology 

and the data sparseness solution in the context of same. 

 
8.1.1 Factored model setup 

 

Noun inflections in Hindi are affected by the number and case of the noun only 

(Singh et al., 2010). So, in this case, the set S, as in Section 4.1, consists of number 

and case. Number can be singular or plural and case can be direct or oblique. 

Example of factors and mapping steps are shown in Figure 10. The generation of the 

number and case factors is discussed in Section 9.  

 

 
Figure 10: Factored model setup to handle nominal inflections 

 
8.1.2 Building word-form dictionary 

 

Thus, in the case of factored model described in Section 8.1.1: 
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 To solve the sparseness in translation step, we need to have all English 

root|number|case→Hindi noun root|number|suffix pairs present in the 

training data. 

 

 To solve the sparseness in generation step, we need to have all Hindi noun 

root|number|suffix → Hindi surface word pairs present in the training data. 

 

In other words, we need to get a set of suffixes and their corresponding number-case 

values, for each noun pair. Using these suffixes and the Hindi root word, we need to 

generate Hindi surface words to remove sparseness in the generation step.  

 

    We need to generate four pairs for each noun present in the training data, i.e., (sg-

dir, sg-obl, pl-dir, pl-obl) and get their corresponding Hindi inflections. In the 

following section, we discuss how to generate these morphological forms.  

 
8.1.2.1. Generating new morphological forms: 

 

Figure 11 shows a pipeline to generate new morphological forms for an English-Hindi 

noun pair. To generate different morphological forms, we need to know the suffix of a 

noun in Hindi for the corresponding number and case combination. We use the 

classification table shown in Table 1 for the same. Nouns are classified into five 

different classes, namely A, B, C, D, and E according to their inflectional behavior 

with respect to case and number (Singh et al., 2010). All nouns in the same class 

show the same inflectional behavior. 

 

 

 
 

Figure 11.  Pipeline to generate new morphological forms for an English-Hindi noun 

pair 
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Table 1: Inflection-based classification of Hindi nouns (Singh et al., 2010) 

 
 Class A Class B Class C Class D Class E 

Sg-dir null null null null null 

Sg-obl null null null ए null 

Pl-dir null या ए  ए null 

Pl-obl null    यों (yam) 

    
ओं (om) ओं   (om)      यों / ओं                                       

(yam /om) 

 
        

To predict the class of a Hindi noun, we develop a classifier which uses gender and 

the ending characters of the nouns as features (Singh et al., 2010). We get four 

different suffixes and corresponding number-case combinations using the class of 

Hindi noun and classification shown in Table 1. 

 
     For example, if we know that the noun लड़का (ladakaa)(boy) belongs to class D, 

then we can get four different suffixes for लड़का (ladakaa) (boy) as shown in Table 2. 

 
8.1.2.2. Generating surface word: 

 
 

Table 2: Morphological suffixes for boy- लड़का (ladakaa) noun pair 

 
 

 

 

 

 

 

 

 

 

 

 

 
Table 3: New morphological forms of boy- लड़का (ladakaa) noun pair 

 
 
English root|Number|Case 

 
Hindi surface|Root|Suffix 
 

 
boy|singular|direct 
 

boy|singular|oblique 

 

boy|plural|direct 

 

boy|plural|oblique 

 
लड़का (ladakaa)| लड़का (ladakaa)|null 
 

लड़के (ladake)| लड़का (ladakaa)|e (e) 

 

लड़के (ladake)| लड़का (ladakaa)|e (e) 

 

लड़कों (ladakon)| लड़का (ladakaa)|a  (on) 

 

English root|Number|Case Hindi root|Suffix 

boy|singular|direct लड़का (ladakaa)|null 

boy|singular|oblique लड़का (ladakaa)| ए (e) 

boy|plural|direct लड़का (ladakaa)| ए (e) 

boy|plural|oblique लड़का (ladakaa)| ओं   (on) 
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Next we generate Hindi surface word from Hindi noun root and suffix using a rule-

based joiner (reverse morphological) tool. The rules of the joiner use the ending of the 

noun root and the class to which the suffix belongs as features. Thus, we get four 

different morphological forms of the noun entities present in the training data. We 

augment the original training data with these newly generated morphological forms. 
Table 3 shows four morphological forms of boy- लड़का (ladakaa) noun pair. Note that 

the joiner solves the sparseness in generation step. 
 
8.2 Verb morphology 

 

In this section, we discuss the factored model for handling Hindi verb morphology 

and the data sparseness solution in the context of the same. 

 
8.2.1 Factored model setup 

 

Verb inflections in Hindi are affected by gender, number, person, tense, aspect, 

modality, etc. (Singh and Sarma, 2011). As it is difficult to extract gender from 

English verbs, we do not use it as a factor on English side. We just replicate English 

verbs for each gender inflection on Hindi side. Hence, set S, as in Section 4.1, consists 

of number, person, tense, aspect and modality. Example of factors and mapping steps 

are shown in Figure 12. The generation of the factors is discussed in Section 9. 

 

 

      English :  ate|eat|single|first|past|simple 

 

                                           To 

 

 
                                  Hindi :     खाया (khaya)|खा(kha)| या (ya)   

                                                       

 

 

 

Figure 12. Factored model setup to handle verbal inflections 

 
Here the verb ate will be having the same form खाया (khaya) in first person, second 

person and third person of the subject.                                    

 
8.2.2 Building word-form dictionary 

 

Thus, in the case of factored model described in Section 8.2.1:  

 

 To solve the sparseness in translation step, we need to have all English 

root|numer|person|tense|aspect|modality →Hindi verb root|suffix pairs 

present in the training data. 

 

 To solve the sparseness in generation step, we need to have all Hindi verb 

root |suffix → Hindi surface word pairs present in the training data. 

In other words, we need to get a set of suffixes and their corresponding number-

person-tense-aspect- modality values, for each noun pair. Using these suffixes and 

the Hindi root word, we need to generate Hindi surface words to remove sparseness 
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in the generation step. In the Section 8.2.2.1, we discuss how to generate these 

morphological forms. 

 
8.2.2.1 Generating new morphological forms: 

 

Figure 13 shows a pipeline to generate new morphological forms for an English-Hindi 

noun pair. Table 4 shows a subpart of a table which is used to Figure 5: Pipeline to 

generate new morphological forms for an English-Hindi noun pair gets suffixes for 

Hindi verb roots. Note that no pre-classification of verbs is required, as these suffixes 
apply to all verbs. Table 5 shows few of many suffixes for भाग (bhaag).  

 
8.2.2.2 Generating surface word: 
 

Table 4: Suffixes for Hindi verbs based on number, person, tense and aspect 

 

  Simple 

   

Singular 

 

Plural 

 

Present 
 

First 

 
ता हाँ /  ती हाँ 

(ta hoon / ti hoon) 

 
ते    हैं    / ती   हैं 

(te haen) / ti haen 

 

Second 

 
ता ह ै  /  ती ह ै

(ta hae / ti hae) 

 

ते  हो / ती हो 
(te ho / ti ho) 

 

Third 

 
ता  ह ै /  ती है 

(ta hae) / (ti hae) 

 
ते   हैं   /  ती   हैं 

(te haen) / (ti haen) 

 

 
Table 5: Morphological suffixes for run- भाग (bhaag) verb pair based on number (N), person (P), tense (T), 

aspect (A) and modality (M) 

 

 
English root|N|P|T|A|M Hindi root | Suffix 

 

run|singular|first|present|simple|- 

 

 
भाग     |ता हाँ     /  ती  हाँ  

(bhaag|ta hoon / ti hoon) 

run|plural|first|present|simple|-  

 

   
  भाग    |  ते   हैं   /   ती  हैं 

(bhaag | ta haen/ ti haen) 

run|singular|second|present|simple|-  

 

   
  भाग    | ता ह ै  /  ती ह ै

(bhaag |ta hae / ti hae) 

run|plural|second|present|simple|-  

 

 
भाग      |  ते हो   / ती हो 

(bhaag | te ho / ti ho) 

run|singular|third|present|simple|-  

 

  
 भाग     |  ता   ह ै  / ती ह ै

(bhaag | ta hae / ti hae) 

  run|plural|third|present|simple|-  
भाग      |  ते   हैं     /  ती  हैं 

(bhaag | te haen / ti haen) 
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Next we generate Hindi surface word from Hindi verb root and suffix using a rule-

based joiner (reverse morphological) tool. The rules of the joiner use only the ending 

of the verb root as features. Thus, we get different morphological forms of the verb 

entities present in the training data. We augment the original training data with 

these newly generated morphological forms. Table 6 shows morphological forms of 
run- भाग (bhaag) verb pair. Note that the joiner solves the sparseness in generation 

step. 

 
Table 6: New morphological forms of run - भाग (bhaag) verb pair 

 
English root|N|P|T|A|M              Hindi s u r f a c e |  R oot | Suffix 

 

run|singular|first|present|simple|- 
 

 
  भागता   हाँ   /    ती हाँ   |    भाग |  ता  हाँ   / ती हाँ 

(bhaagta hoon/ ti hoon| bhaag | ta hoon/ ti hoon) 

 

run|plural|first|present|simple|-  

 

      
   भागते   हैं  |    भाग  |     ते हैं / 

(bhaagte haen | bhaag | te haen) 

 

run|singular|second|present|simple|-  

 

 
भागता ह ै/ ती ह ै | भाग | ता ह ै/  ती ह ै

(bhaagta hae / ti hae | bhaag | ta hae/ ti hae) 

 

run|plural|second|present|simple|-  

 

  
  भागते   हो / ती हो | भाग | ते हो / ती हो 

(bhaagte ho / ti ho | bhaag | te ho / ti ho) 

 

run|singular|third|present|simple|-  

 

      
    भागता   ह ै    | भाग   | ता  ह ै /  ती ह ै

  (bhaagta hae | bhaag | ta hae /  ti hae) 

  

 run|plural|third|present|simple|- 

     
     भागत े  हैं     | भाग    |  ते  हैं   / ती  हैं 

(bhaagte haen | bhaag | te haen/ ti haen) 

 

 
8.3 Noun and Verb morphology 

 

Finally, we create a new factored model which combines factors on both nouns and 

verbs, as shown in Figure 12. We build word-form dictionaries separately as 

discussed in Section 8.1 and Section 8.2. Then, we augment training data with both 

dictionaries. Note that, factor normalization11 on each word is required before this 

step to maintain same number of factors. 

 

We also create a word-form dictionary for phrase-based model. We follow the same 

procedure as described in Section 8, but we remove all factors from source and target 

words except the surface form. 

   

9. EXPERIMENTS AND EVALUATION 

 

We performed experiments on ILCI (Indian Languages Corpora Initiative) En-Hi 

and En-Mr dataset. Domain of the corpus is health and tourism. We used 46,000 

sentence pairs for training and 3000 sentence pairs for testing. Word-form dictionary 

 
11 Use null when particular word cannot have that factor 
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was created using the Hindi and Marathi word lexicon. It consisted of 182,544 noun 

forms and 310,392 verb forms of Hindi and 44,762 noun forms and 106,570 verb 

forms of Marathi. Table 7 shows the statistics of the corpus used for training, testing 

and tuning. Table 8 shows the statistics of the generated word-form dictionary.  

Table 7: Statistics of the corpus used 

Sl. No  Corpus Source  Training Corpus  Corpus Size 

 [Parallel Sentences]  

1 ILCI Health 23000 

2 ILCI Tourism 23000 

Total 46000 

 

Sl. No Corpus Source  Tuning corpus(MERT) Corpus Size 

 [Parallel Sentences] 

 

ILCI ILCI Tourism 500 

ILCI ILCI Health 500 

Total 1000 

 

Sl. No Corpus Source Testing corpus 

 

Corpus Size 

 [Parallel Sentences] 

1 ILCI Tourism 1500 

2 ILCI Health 1500 

Total 3000 

 

Table 8: Statistics of the generated word form dictionary 

Language Verb forms generated Noun Forms generated Total word form dictionary size 

Hindi 310392 182544 492936 

Marathi 106570 44762 151332 

 

     Moses toolkit 12  was used for training and decoding. Language model was 

trained on the target corpus with IRSTLM13. 

For our experiments, we compared the translation output of the following systems: 

 Phrase-based (unfactored) model (Phr) 

 Basic factored model for solving noun and verb morphology (Fact) 

 Phrase-based model trained on the corpus used for Phr augmented with the 

word form dictionary for solving noun and verb morphology (Phrase -Morph) 

 Factored model trained on the corpus used for Fact augmented with the word 

form dictionary for solving noun and verb morphology (Fact-Morph) 

 
12 http://www.statmt.org/moses/ 
13 https://hlt.fbk.eu/technologies/irstlm-irst-languagemodelling-toolkit 

http://www.statmt.org/moses/
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 With the help of syntactic and morphological tools, we extract the number and 

case of the English nouns and number, person, tense, aspect and modality of the 

English verbs as follows: 

Noun factors: 

 Number factor: We use Stanford POS tagger14 to identify the English noun 

entities (Toutanova et al., 2003). The POS tagger itself differentiates between 

singular and plural nouns by using different tags. 

 Case factor: It is difficult to find the direct/oblique case of the nouns as 

English nouns do not contain this information. Hence, to get the case 

information, we need to find out features of an English sentence that 

correspond to direct/oblique case of the parallel nouns in Hindi sentence. We 

use object of preposition, subject, direct object, tense as our features. These 

features are extracted using semantic relations provided by Stanfords typed 

dependencies (De Marneffe et al., 2008). 

Verb factors: 

 Number factor: Using typed dependencies we extract subject of the 

sentence and get number of the subject as we get it for a noun. 

 Person factor: We do lookup into simple list of pronouns to find the person 

of the subject. 

 Tense, Aspect and Modality factor: We use POS tag of verbs to extract 

tense, aspect and modality of the sentence. 

9.1 Automatic evaluation 

Table 9: Automatic evaluation of the translation systems for both Phrase and factor based models 

 

Morph 

Problem 

 

   Model 

 

BLEU Score 

 

Without Tuning With Tuning 

En - Hi En - Mr En-Ml En - Hi En - Mr En-Ml 

 

Noun 

Fact 25.30 16.84 26.17 27.30 18.84 28.23 

Fact-Morph 31.41 20.85 32.42 34.41 22.85 33.45 

 

Verb 

Fact 26.03 17.02 26.54 28.23 19.52 28.82 

Fact-Morph 33.46 25.82 33.54 37.89 26.72 36.30 

 

Noun & Verb 

Fact 23.93 15.25 24.01 26.93 17.55 26.08 

Fact-Morph 30.03 23.38 31.56 33.73 24.58 32.65 

 

Noun  

Phrase 24.87 19.77 26.78 28.87 21.34 29.01 

Phrase-Morph 31.19 22.28 33.30 33.49 25.58 36.12 

 

Verb 

Phrase 25.78 20.17 26.98 28.87 22.27 29.17 

Phrase-Morph 32.29 23.28 37.41 35.46 26.58 38.56 

 

Noun & Verb 

Phrase 26.87 21.37 27.51 29.67 23.67 29.92 

Phrase-Morph 33.19 24.28 3.03 35.49 27.58 42.73 

 
14 http://nlp.stanford.edu/software/tagger.shtml 

http://nlp.stanford.edu/software/tagger.shtml
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The translation systems were evaluated by BLEU score (Papineni et al., 2002). 

Also, as the reduction in number of unknowns in the translation output indicates 

better handling of data sparsity, we counted the number of OOV words in the 

translation outputs. Table 9 shows the BLEU evaluation scores of the translation systems 

for both Phrase and factor based models and Table 10 shows the OOV reduction numbers 

statistics. 

 

Table 10: Counts of total OOVs present before morphology injection and the % OOV reduction after Morph 
Injection 

 

 

Table 11: Counts of total OOVs translated after morphology injection and the matches with the reference 
used for BLEU evaluation 

 
Morph 

Problem 

En - Hi En - Mr  En-Ml 

# OOV 

translated 

# Ref. 

Matches 

# OOV 

translated 

# Ref. 

Matches 

# OOV 

translated 

# Ref. 

Matches 

Noun (Fact) 1291 558 1030 248 1217 523 

Verb (Fact) 2061 971 1077 253 1360 642 

Noun & Verb 

(Fact) 

1526 687 1174 284 1779 613 

Noun & Verb 

(Phrase) 

260 71 574 116 458 123 

 

 

9.2 Subjective Evaluation 

As BLEU evaluation with only single reference is not a true measure of 

evaluating our method, we also performed human evaluation. We found out that 

Fact-Morph/Phrase-Morph systems really have better outputs compared to 

Fact/Phrase systems, in terms of both, adequacy and fluency. 

 

Morph 

Problem 

 

   Model 

  

# OOV 

 

OOV reduction (%) 

En - Hi En - Mr En-Ml En - Hi En - Mr En-Ml 

Noun Fact 3,030 2,399 2,706  

57.39 

 

57.08 

 

58.02 
Fact-Morph 1,739 1,369 1,489 

Verb Fact 3,041 2,772 2,894  

67.78 

 

61.14 

 

61.42 
Fact-Morph 980 1,695 1,534 

Noun & Verb Fact 3,393 4,137 4,124  

55.02 

 

 

39.48 

 

55.00 

Fact-Morph 1,867 2,963 2,345 

Noun & Verb Phrase 1,013 2,572 2,312  

25.67 

 

22.32 

 

21.98 
Phrase-Morph 753 1,998 1,854 



Role of Morphology Injection in Statistical Machine Translation                                   35:31  
                                                                                                                                         

      Table 12. Subjective evaluation scheme for Adequacy [Ramanathan et al., 2009] 

 

                      Level  Interpretation 

 

 5 All meaning is conveyed 

 4 Most of the meaning is conveyed 

 3 Much of the meaning is conveyed 

 2 Little meaning is conveyed 

 1 None of the meaning is conveyed 

  

Table 13.  Subjective evaluation scheme for Fluency [Ramanathan et al., 2009] 

 

Level  Interpretation 

 

5 Flawless Hindi, with no grammatical errors whatsoever 

4 Good Hindi, with a few minor errors in morphology 

3 Non-native Hindi, with possibly a few minor grammatical errors 

2 Disfluent Hindi, with most phrases correct, but ungrammatical overall 

1 Incomprehensible 

 

 

Table 14.  Subjective evaluation of the translation systems with and without word-form dictionary 

Morph 

Problem 

 

   Model 

Adequacy Fluency 

En - Hi En - Mr En-Ml En - Hi En - Mr En-Ml 

Noun Fact 34 % 28 % 35% 36 % 31  % 35% 

Fact-

Morph                   

56 % 48 % 58% 65.04% 57.52% 64.32% 

Verb Fact 38.48 % 30% 37.43

% 

48% 40% 53% 

Fact-

Morph 

58.87% 49.32% 54.89

% 

72% 60.78% 71.23% 

Noun & 

Verb 

Fact 39.32% 34.56% 38.67

% 

45.05% 42.01% 46.02% 

Fact-

Morph 

49.87% 45.45% 51% 60.04% 53.32% 61.34% 

Noun & 

Verb 

Phrase 32.38% 26.34% 33.87

% 

34.98% 30.76% 36.12% 

Phrase-

Morph 

40.96% 38.86% 42.56

% 

58.43% 55.87% 64.12% 

 

For evaluation, randomly chosen 50 translation outputs from each system were 

manually given adequacy and fluency scores. The scores were given on the scale of 1 

to 5 going from worst to best, respectively. Table 14 shows average scores for each 

system. We observe up to 34.36% improvement in adequacy and up to 44.05% 

improvement in fluency for the English to Hindi systems and up to 41.67% 

improvement in adequacy and up to 45.72% improvement in fluency for the English 
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to Marathi systems. Table 12 and Table 13 show the evaluation schemes used 

[ Ramanathan et al., 2009]. Table 12 shows average adequacy and fluency scores for 

each system. 

From the automatic evaluation scores, it is very evident that Fact-Morph/Phrase-

Morph outperforms Fact/Phrase while solving any morphology problem in both Hindi 

and Marathi. But, improvements in En-Mr systems are low. This is due to the small 

size of word-form dictionaries that are used for injection. % reduction in OOV shows 

that, morphology injection is more effective with factored models than with the 

phrase-based model. Also, improvements shown by BLEU are less compared to % 

reduction in OOV. 

 

9.3 Why BLEU improvement is low? 

One possible reason is ambiguity in lexical choice. Word-form dictionary may have 

word forms of multiple Hindi or Marathi root words for a single parallel English root 

word. Hence, many times the translation of the English word may not match the 

reference used for BLEU evaluation, even though it may be very similar in the 

meaning. Table 11 shows the number of OOVs that are actually translated after 

morphology injection and number of translated OOVs that match with the reference. 

We see that matches with the reference are very less compared to the actual number 

of OOVs translated. Thus, BLEU score cannot truly reflect the usefulness of 

morphology injection. 

From the subjective evaluation scores, we found out that Fact-Morph/Phrase-

Morph systems really have better outputs compared to Fact/Phrase systems, in terms 

of both, adequacy and fluency. We observe up to 34.36% improvement in adequacy 

and up to 44.05% improvement in fluency for the English to Hindi systems and up to 

41.67% improvement in adequacy and up to 45.72% improvement in fluency for the 

English to Marathi systems. 

9.4 Why Phrase-based models perform badly? 

Factored models showed improvement after morphology injection. But, the 

performance of phrase-based models degraded. The possible reason may be because 

in latter case, we are just injecting morphological forms into the corpus without 

providing any extra information about when to use them. 

    For example, phrase-based model trained with evidence of only boys-लडके 

{ladake}, when augmented with boys-लडकों {ladakon}, has equal probability to 

translate boys to लडके {ladake} or लडकों {ladakon}. But, factored model trained with 

the evidence of boys|boy|direct- लडके {ladake}|लड़का (ladakaa)|ए(e) when augmented 

with boys|boy|oblique- लडकों{ladakon}|लड़का{ladakaa}|ओं{on}, can correctly translate 

boys to लड़के{ladake} or लड़कों{ladakon} based on direct and oblique case.  

     For example, noun boys} in English can translate to लड़के {ladake} or लड़कों 

{ladakon} in Hindi. Suppose, we train a phrase-based model with the training data 
having evidence of only boys-लड़के {ladake}. We also train a factored model as 

described in Section 4.1 on the same data but with case as an extra factor. Hence, 
factored training corpus will have evidence of only boys|boy|direct- लड़के {ladake} 

|लड़का (ladakaa)|ए(e). Now, we inject a word-form boys- लडकों {ladakon} and 
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boys|boy|oblique- लडकों {ladakon}|लड़का {ladakaa}|ओं {on} in the training corpus of 

phrase-based and factored model, respectively. Then, phrase-based model has equal 
probability to translate boys to लड़के {ladake} or लड़कों {ladakon}. This ambiguity may 

lead to incorrect choice of word while translating. On the other hand, factored model 

knows when to use which form correctly based on direct and oblique case. 

 

Test cases: 

We also performed a qualitative evaluation. We present some examples in Table 

15 with detailed explanation of phenomena with case study. 

 

Table 15: TEST Cases with examples 

 

Examples Test Sentences Explanation of 

Phenomena 

Example 1: 
There is a crowd of traders of the world at the auction center. 

 

In this case, Fact02 

correctly translated 
auction to नीलाम {neelam}. 

Also, note that, as Fact01 

could not translate 

auction, the next word, 

center is incorrectly 
translated to मध्य 

{madhu} {middle}. The 
correct translation is कें द्र 

{kendr} {center}. Thus, we 

also see improvements in 

the correct lexical choice 

for the words in local 

context of the nouns. 

 

Fact: 
वहााँ के auction मध्य  में दनुनया के व्यापाररयों की भीड़ लगी रहती ह ै| 

{vahan ke auction madhya mein vyapariyon ki bhiid lagii 

rahatii hai.} 

{ there auction center in traders crowd is there } 

 

 

Fact- 

Morph:  

 

वहााँ के नीलाम कें द्र में दनुनया के व्यापाररयों की भीड़ लगी रहती है | 

 

{vahan ke niilam kendra mein vyapariyon ki bhiid lagii rahatii 

hai.} 

 

{there in nilam centre world traders  crowd is there} 

 

Example 2 Eyelids are a thin fold of skin that cover and protect the eye. 
Again in this case, 

eyelids and fold are not 

translated by Fact01, but 

Fact02 correctly 
translates them to पलकें  

{palkem} and गुना {guna}, 

respectively. 

 

Fact: 
eyelids त्वचा की पतली fold हैं दक और आाँखों की रक्षा करत ेहैं 

{eyelids tvachaa kii patalii fold hai ki aur aankhon kii 

rakshaa kartein hain.} 

{eyelids skin thin fold and eyes are being protected} 

Fact-

Morph 

पलकें  त्वचा की पतली गुना हैं दक और आाँखों की रक्षा करते हैं   

  

{palaken tvachaa kii patalii gunaa hai ki aur aankhon kii 

rakshaa kartein hain.} 

 

{palkem skin thin guna and eyes are being protected} 

 

 

 

10. GENERALIZED SOLUTION 

 

In Section 5, we studied the sparseness problem and its solution in context of solving 

the noun and verb morphology for English as a source language and Hindi as a target 
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language. But, can the process to generate all factor combinations be generalized for 

other morphologically richer languages on the target side? We have investigated a 

generalized solution to this problem. We can use technique for new target language X 

if: 

 

 We identify the factor set, say S, that affects the inflections of words in 

language X and can extract them from English sentence  

 

 We know which inflection the target word will have for a particular factor 

combination of  factors in S on source side 

 

 We have a joiner tool in language X to generate the surface word from the 

root word and suffix 

 

11. CONCLUSION AND FUTURE WORK 

 

SMT approaches suffer due to data sparsity while translating into a morphologically 

rich language. We solve this problem by enriching the original data with the missing 

morphological forms of words. Morphology injection performs very well and improves 

the translation quality. We observe huge reduction in number of OOVs and 

improvement in adequacy and fluency of the translation outputs. We observe up to 

34.36% improvement in adequacy and up to 44.05% improvement in fluency for the 

English to Hindi systems and up to 41.67% improvement in adequacy and up to 45.72% 

improvement in fluency for the English to Marathi systems. This method is more 

effective when used with factored models than the phrase-based models. Though the 

approach of solving data sparsity seems simple, the morphology generation may be 

painful for target languages which are morphologically too complex. A possible future 

work is to generalize the approach of morphology generation and verify the 

effectiveness of morphology injection on morphologically complex languages.  
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